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Abstract 13 

More loci/partitions should improve Bayesian estimation of divergence times on 14 

phylogenies but it has recently been shown that this can lead to surprisingly poor estimation 15 

due to the way it affects the prior on mean substitution rate. Here we consider the likely 16 

impact of partition number on divergence times analyses carried out using the program 17 

BEAST. Mitochondrial genome data from toad-headed lizards (genus Phrynocephalus) from 18 

the Qinghai-Tibetan Plateau were used to examine this effect. Under increased partitioning 19 

of the sequences, BEAST posterior divergence times became unreasonably narrow and 20 

downwardly biased due to misspecification of the mean substitution rate prior. This effect 21 

was detectable when relatively few partitions were used (i.e., between four and eight), but 22 

became very acute for 27-86 partitions. Fortunately, a correction that adjusts the standard 23 

deviation of the mean of locus rates led to results that were equivalent to those obtained 24 

using the latest version of the program MCMCtree, which implements a new 25 

gamma-Dirichlet prior to overcome this problem. A review of the literature shows that a 26 

substantial number of BEAST dating studies are likely to have been affected by this 27 

misspecification of the rate prior. 28 
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Introduction 37 

Bayesian estimation of divergence times on a phylogeny has been the subject of intensive 38 

research for over ten years, see Yang (2014) and Drummond and Bouckaert (2015). 39 

Nonetheless, many statistical aspects of Bayesian dating are still under investigation with 40 

the impact of tree and rates priors on posterior times being a particularly active area (Brown 41 

& Yang, 2010; Dos Reis et al., 2014; Heled & Drummond, 2012; Ritchie et al., 2017). 42 

Theoretical work has clarified the relationships between decreased posterior interval 43 

widths on divergence times and both increased amounts of sequence data and number of 44 

loci/partitions, as well as demonstrating how this improvement is limited by uncertainties in 45 

the calibrations (Rannala & Yang, 2007; Zhu et al., 2015). Note that here we use the terms 46 

partition and locus synonymously to define sequence alignments to which individual models 47 

are applied. Some partitioning effects have been explored using maximum likelihood and 48 

Bayesian dating of large amounts of nuclear sequence (Mulcahy et al., 2012). More recently 49 

a significant effect was identified where increasing the number of data partitions led to 50 

misspecification of the prior on locus rates (described below). This problem was addressed 51 

by incorporating new priors in MCMCtree (v4.8)(Dos Reis et al., 2014), a program which 52 

dates sequence divergence on a fixed topology. Using newly-generated mitogenome data 53 

from Chinese Phrynocephalus lizards, we examine the potential impact of the rate prior 54 

misspecification in studies that have used a very widely-used alternative program: BEAST. 55 

Bayesian dating analyses generally treat locus rates as independent and identically 56 

distributed (i.i.d) random variables which are typically specified from gamma or lognormal 57 



distributions. Individual rate priors can strongly influence divergence time estimation 58 

because the mean of the locus rates under a strict clock (or the mean of the mean branch 59 

rate under an independent-rates relaxed clock) will have a decreasing standard deviation as 60 

more locus rates are sampled. The standard deviation of the mean of the rate across loci is 61 

s/√nL (where s is the standard deviation of the locus rates and nL is the number of loci) and 62 

so tends to zero as the number of loci tends to infinity (Dos Reis et al., 2014). Hence the 63 

mean locus rate prior becomes very restrictive which, due to the confounding of rate and 64 

time, leads to overly-narrow and biased posteriors on divergence times. In other words, as 65 

the number of loci/partitions increase, posteriors will provide the misleading impression 66 

that divergence times are known with a high degree of precision and the location of the 67 

posteriors will be inaccurate because they will be heavily influenced by the restrictive mean 68 

locus rates prior. 69 

New gamma-Dirichlet priors on locus rates and variance of log-transformed rates, σ2, 70 

have been implemented in MCMCtree (v4.8) to overcome the misspecification of the mean 71 

locus rate prior (Dos Reis et al., 2014). An alternative option that has been proposed for 72 

other programs is to proportionally increase the variances of the individual rate priors in a 73 

way that holds constant the standard deviation of the mean locus rate prior. Dos Reis et al. 74 

(2014) suggested modification of the shape (α) and scale (β) parameters of the gamma prior 75 

on locus rates, to G(α/nL, nL/β), where nL is the number of loci. The variance of the mean 76 

locus rates prior will then be the same as for a one partition analysis with the locus rate 77 

specified from G(α, β). 78 



Many BEAST divergence time analyses have been published in the past five years alone, 79 

and partitioning of data from one marker and/or using multiple loci appears common. Here 80 

we consider the likely impact of misspecification of the prior on mean rate on these 81 

divergence time estimates. This is assessed using sequence data obtained by ourselves and 82 

others from the mitochondrial genomes of Chinese Phrynocephalus lizards from the 83 

Qinghai-Tibetan Plateau (QTP). We then consider the effects of the correction proposed by 84 

(Dos Reis et al., 2014 ) on BEAST analyses and compare it with the new gamma-Dirichlet 85 

prior in MCMCtree. 86 

Analyses of Mitgenome Sequences  87 

We analyzed 19 mitochondrial genomes from 13 recognized QTP Phrynocephalus with 88 

intraspecific sampling of three of these: P. theobaldi (3 subspecies/lineages), P. vlangalii (4 89 

subspecies/lineages), P. erythrurus (2 subspecies). The full list of specimens and their 90 

capture sites are listed in Supplementary file 1. The species form a monophyletic group and 91 

are subdivided into reciprocally monophyletic viviparous groups and oviparous groups (Jin & 92 

Brown, 2013). Of these, eight new mitochondrial genomes have been recently sequenced 93 

and 11 published genomes were already available (all genomes are available on GENBANK: 94 

see Supplementary file 1). The Phrynocephalus mitochondrial genome sequencing approach 95 

is described in Liao and Jin (2016). 96 

97 



Figure 1. Phrynocephalus tree topology.  98 

The Phrynocephalus tree topology used in all analyses, with node labels. 99 

 100 

Our dating analyses used a single topology derived from the tree previously inferred 101 

from mtDNA and nuclear sequences (Jin & Brown, 2013; Fig. 1). Bayesian and NJ analyses of 102 

the current mitogenome data did not reveal any discordance with this tree. The 103 

mitogenome sequence alignment was divided using 11 different strategies that provided 104 

between 1 and 86 sequence partitions. Although many studies now tend to use automated 105 

methods of finding partitions, the main focus here was the impact of the number of 106 

partitions rather than the partition characteristics. In brief, the strategies were based on 107 

both mitochondrial genes and different positions within these genes: codon position in 108 

protein-coding genes, stem or loop regions of rRNAs and tRNAs. Fewer partitions were 109 



achieved by grouping genes and/or grouping codon positions and/or grouping stem/loop 110 

RNA regions. For example, the eight partition analysis grouped all protein coding genes but 111 

divided the sequences by codon positions, tRNA regions were grouped and sequences 112 

divided by stem/loop, rRNA regions were treated as for the tRNAs while the final partition 113 

was the control region. Analyses with higher numbers of partitions made use of all possible 114 

divisions. For example, the 86 partition analysis divided the three codon positions for each of 115 

the 13 genes, stems or loops for each of the 22 tRNA and two rRNA genes and the control region 116 

sequence (note that two very short tRNA partitions of 25 and 27 bp with negligible 117 

information content were excluded from the 75, 84 and 86 partition analyses). The 118 

partitions are described fully in Supplementary file 2. 119 

All data partition strategies were analyzed using both BEAST (v.1.8.1) and MCMCtree 120 

(v.4.8). To ensure the generality of our findings we also repeated the one, four, 27 and 46 121 

partition analyses using BEAST 2 (v. 2.4.7)(Bouckaert et al., 2014) with replicate 122 

specifications to those described below for the BEAST 1.8.1 uncorrected gamma rate prior 123 

analyses. 124 

Preliminary analyses revealed that the most generally suitable site model was HKY+G, 125 

which is available in both programs, and therefore applied independently to each partition. 126 

A relaxed clock with uncorrelated rates on branches drawn from a lognormal distribution 127 

was also applied independently to each partition. 128 

The same node age calibrations were used in both programs and have been justified 129 

previously (Jin & Brown, 2013). The age (Ma) of the node that was ancestral to all P. 130 



vlangalii and P. erythrurus (node 5, Fig. 1) was specified from the uniform distribution 131 

U(1.35-5.00) and the node that was ancestral to all of the oviparous species (node 8, Fig. 1) 132 

was specified from U(7.24-10.95). A maximal constraint of 25 Ma was placed on the root. 133 

One of the differences between programs is that the upper and lower limits of the uniform 134 

distribution are hard in BEAST, but are soft in MCMCtree. The latter implements an 135 

exponential decline in density above and below the specified limits of the distribution (here, 136 

each tail comprised 2.5% of the total density). 137 

The prior on rates in MCMCtree was a flexible gamma prior in which both shape (α) and 138 

scale (β) parameters were 1, denoted as G(1,1). The gamma distributions are specified in 139 

MCMCtree using shape/rate rather than shape/scale parameterization but to be consistent 140 

we describe all gamma distributions in terms of the latter. The G(1,1) distribution provides a 141 

flexible prior for substitution rates (95% Highest posterior density (HPD): 0.025-3.689 142 

subs/site/Ma) and was also used for the σ2 prior on rate variation and the α shape prior. A 143 

G(5,1) prior was specified for κ, the transition: transversion rate ratio. The 144 

Birth-Death-Sampling prior on times was used with parameters λ=5, μ=5, ρ=0.1, as this has 145 

been shown to be quite flexible (Brown & Yang, 2010). 146 

All BEAST analyses were all carried out on the fixed topology (Fig. 1) to replicate 147 

MCMCtree analyses. A first set of “uncorrected” BEAST analyses specified locus rates 148 

through the ucld.Mean parameters from a G(1,1) distribution (for all partitions). A second 149 

set of “corrected” analyses applied variance corrections to this gamma prior for analyses 150 

with ≥2 partitions as proposed by Dos Reis et al. (2014): priors were specified from G(α/nL, 151 



nL/β), which simplifies to G(1/nL, nL) here. Dos Reis et al. (2014) also implemented a new 152 

prior on the variance of the log transformed rates, which could be emulated through 153 

corrections to ucld.Stdev parameters in BEAST, but we did not attempt this. The prior on 154 

times was sampled from a Birth-Death speciation prior which has two parameters: 155 

speciation rate, specified from the uniform distribution U(0,10000), and relative death rate, 156 

specified from U(0,1). (An example BEAST input file is provided in Supplementary file 3). 157 

Prior distributions were estimated by repeating analyses without data. 158 

Dependence of Divergence Times on Number of Loci 159 

Uncorrected BEAST analyses suffered from the general and major problem described by Dos 160 

Reis et al. (2014) for MCMCtree. Both the locations and widths of posterior divergence 161 

times were highly dependent on the number of partitions (Fig. 2a). Increasing numbers of 162 

partitions led to unreasonably narrow posteriors with lower median divergence times. We 163 

confirmed this effect is not confined to BEAST v. 1.8: the replicate BEAST 2.4.7 analyses gave 164 

the same means and posterior widths to those obtained from the earlier version of the 165 

program. Despite a relatively recent root (~10 Ma), posterior means at many nodes were 166 

generally 1-2 Ma lower for analyses with more than 8 partitions compared to analyses with 167 

no data partitioning. At the same time, the widths of the 95% Highest Posterior Densities 168 

(HPD) showed drastic decreases, with the interval on the root decreasing from 169 

approximately 5 Ma to 0.7 Ma. The change in the mean depends on the degree of 170 

misspecification of the priors on rates but underestimation of the uncertainty in divergence 171 



times is a general problem. The effects are noticeable even for quite low numbers of 172 

partitions. 173 

 174 

Figure 2. Posterior divergence times obtained from BEAST and MCMCtree.  175 

Posterior divergence times (means and 95% HPDs) at three selected nodes (1, 2 and 15) on 176 

the Phrynocephalus tree for different numbers of partitions. a) BEAST analyses with a G(1,1) 177 

prior on all rates, b) BEAST analyses with corrected priors on rates, c) MCMCtree v4.8 178 

analyses. BEAST prior divergence times (95% HPDs in Ma) were (7.3-18.1) for node 1, 179 

(3.6-13.8) for node 2, and (0.2-5.7) for node 15. These priors on times are not affected by 180 

specification of the i.i.d priors on rates or the number of partitions. 181 



 182 

183 



The impact of increasing numbers of partitions was greatly ameliorated in BEAST by 184 

proportionately increasing the variances of the i.i.d. priors on individual partition rates 185 

relative to the number of partitions (Fig. 2b). This correction had no effect on priors on 186 

divergence times but maintained the standard deviation of the mean locus rate prior 187 

constant for analyses with different numbers of partitions. The success of the correction 188 

was verified by the similarity with results from MCMCtree (Fig. 2c), which incorporates a 189 

new gamma-Dirichlet prior to overcome misspecification of the mean locus rate prior. There 190 

were some differences in posterior divergence times between MCMCtree and the corrected 191 

BEAST analyses, but this would be expected due to several significant differences between 192 

the programs, including the way calibrations are specified.  193 

As expected, posterior intervals on divergence times in correctly-specified MCMCtree 194 

and BEAST analyses were narrower with increased numbers of loci: posterior variances in 195 

divergence times are expected to decrease at the rate 1/nL (Zhu et al., 2015). This is 196 

exemplified by the width of the posterior on the root: 5 Ma with no partitioning compared 197 

with 3.8 Ma for 86 partitions. Decreases in respective widths with increasing numbers of 198 

partitions were relatively greater in some other nodes (Fig. 2). This finding underlines the 199 

advantage of using more loci, providing the mean locus rate prior is correctly specified. 200 

It is more difficult to explain the more subtle pattern of variation in the locations of 201 

posterior ages in the corrected BEAST (and MCMCtree) analyses with increasing number of 202 

loci. Mean ages were younger for fewer partition analyses. For example, the root was 0.7 203 

Ma younger (and some other basal nodes were up to 2 Ma younger) when the data were 204 



not partitioned, compared with 27-86 partitions (Fig. 2). Identification of the priors that 205 

might be responsible for this change is not straightforward. The fact that the same 206 

between-partition pattern is seen in MCMCtree shows that this effect is general, rather than 207 

being specific to BEAST. An increasingly influential prior on times with an increase in 208 

uninformative partitions seems an unlikely explanation (and in fact the pattern runs counter 209 

to this). An alternative explanation is that it is due to the influence of individual locus rate 210 

priors on relatively uninformative partitions. The gamma distributions are flexible but have a 211 

mean (μ=1) that must exceed the partition rates and so some/all posterior branch rates will 212 

be overestimated when phylogenetic information is lacking. In relatively uninformative 213 

partitions the gamma prior will be very influential and the overestimated ucld.Mean rate 214 

will lower divergence times due to the confounding of time and rate. This explanation 215 

provides a better fit to the pattern observed in our analyses and was supported by: i) 216 

simulation and analyses of datasets that contained non-informative and informative 217 

partitions, and ii) generally higher posterior means of mean locus rates in MCMCtree for 218 

greater numbers of partitions. 219 

The following search terms were used in the search engine Bing/Academic: “beast”, 220 

“divergence time”, and “dating” to find relevant papers published between 2007-2017. The 221 

search produced 15500 hits which were ordered in terms of their suitability to the search 222 

term. We sampled the first 50 papers/theses that appeared to represent independent 223 

BEAST divergent time analyses of empirical data and recorded the number of partitions 224 

used. The numbers of partitions in these studies ranged from 1-86 (mean = 5.6, median 225 

=3.0) summarized in Figure 3. A significant proportion of these studies (38%) used five or 226 



more partitions. It is likely that some of these studies linked the clock across all partitions 227 

(this information was frequently missing), in which case the problematical mean locus rate 228 

prior should not affect divergence times in the way described here, as found by Zheng and 229 

Wiens (2016). Nevertheless, we conclude that a significant number of published BEAST 230 

divergence time estimations are likely to have been affected by the prior on rates. 231 

Application of the correction to the ucld.Mean prior on rates will however remove this issue 232 

from future BEAST studies. This problem will also be helped by the development of methods 233 

to assess the number of clock models that are suitable for a dataset (Duchêne et al., 2014) 234 

as this will likely lead to a reduction in the number of “clock-partitions” that are used in an 235 

analysis. 236 

Figure 3. Numbers of partitions used in a sample of 50 divergence time studies. 237 
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