Toffalini, E, Giofré, D and Cornoldi, C

http://researchonline.ljmu.ac.uk/id/eprint/7338/

Article

Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work)

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk
Pros and cons of using intelligence batteries for the study of clinical populations:

A response to Beaujean (2017)

Enrico Toffalini¹, David Giofrè², & Cesare Cornoldi¹

1 Department of General Psychology, University of Padova, Padova, Italy.
2 Natural Science and Psychology, Liverpool John Moores University, Liverpool, UK.

Paper accepted 6/20/17

Correspondence concerning this article should be addressed to:

Dr. David Giofrè
Liverpool John Moores University
Natural Sciences and Psychology
Tom Reilly Building Byrom Street, Liverpool, L3 3AF
Tel. +44 151 904 6336
Fax. +44 151 904 6302
E-mail: david.giofre@gmail.com

Word count: 537
Pros and cons of using intelligence batteries for the study of clinical populations: A response to Beaujean (2017)

In his commentary to our study (Toffalini, Giofrè, & Cornoldi, 2017), Beaujean (2017) raised some important issues. In particular, he suggested that the reliability of the WISC-IV indexes may be inadequate for clinical interpretation, that abnormal differences should be discussed rather than statistical significance, and that evidence of the treatment utility of WISC-IV indexes is limited. We agree with Beaujean that using cognitive strengths and weaknesses in isolation for individual clinical decisions is dangerous. However, investigation of groups is somewhat different; comparing group performances under different subtests or conditions, without definitive conclusions, can enhance clinical psychological research.

Concerning technical aspects of Beaujean’s commentary, it must be noted that he calculated the “unique” reliability with the omega-s (ω_s), considering a bi-factor model of intelligence. Not all researchers agree with this model, suggesting that the perceived superiority of the bi-factor over the higher-order model could be biased (Murray & Johnson, 2013; but see Gignac, 2016, and Molenaar, 2016 for a different argument). We agree with Beaujean, however, that the bi-factor model may provide relevant information. For this reason, we applied the bi-factor model to our data on 1383 children with SLD (Giofrè, Toffalini, & Cornoldi, 2017). The ω_s was .46 for VCI, .20 for PRI, .37 for WMI, and .57 for PSI, which is in line with recent studies of children with SLD in the USA (Styck & Watkins, 2016). Notably, ω_s measures the effect of reliability of each index after controlling for the g-factor, and criteria (e.g. cut-offs) for evaluating ω_s are not clear. However, some criteria have been proposed based on a simulation study (Gignac & Kretzschmar, 2017). In fact, following these criteria, the unique reliability of indexes in general is relatively large ($\omega_s > .30$), with the exception of PRI. Demonstrably, the indexes can provide some useful information.

Concerning abnormal differences vs. clinical significance, we agree that statistical significance is often arbitrary. However, abnormal differences can also be arbitrary. For example,
abnormal differences are defined by fixed criteria (e.g., 5% or 1%) in the standardization sample (Silverstein, 1989). Both statistical significance and abnormal differences raise problems, and the “clinical significance” should be considered instead (Kazdin, 1999). We recently showed that differences within the intellectual profile can be clinically relevant in discriminating between typically developing children vs. children with SLD (with adequate sensitivity and specificity; Giofrè et al., 2017). We agree, however, that distinguishing between different subtypes of SLD on the sole basis of the intellectual profile is problematic, because similarities tend to prevail over differences. In our study (Toffalini et al., 2017) we mentioned this fact, but we noted that even small differences can be relevant from a theoretical point of view and should not be neglected.

Regarding the treatment utility, we agree that evidence is insufficient to support the exclusive use of cognitive ability tests, particularly WISC-IV indexes, for designing intervention. Intervention techniques are beyond the goals of our study and have not been sufficiently examined in the literature. Our data merely offer some evidence suggesting that different indexes may be differently linked to success in different aspects of achievement, like reading, calculation and writing.

All in all, we would like to thank Beaujean for his insightful comments, which should be considered in future research.
References

Gignac, G. E. (2016). The higher-order model imposes a proportionality constraint: That is why the bifactor model tends to fit better. Intelligence, 55, 57–68. doi:10.1016/j.intell.2016.01.006

Molenaar, D. (2016). On the distortion of model fit in comparing the bifactor model and the higher-order factor model. Intelligence, 57, 60–63. doi:10.1016/j.intell.2016.03.007
