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HIGHLIGHTS

1. A symbiotic balance of the free lime and silica oxides has been proposed.

2. A cement-free binder has been developed for soft soil stabilisation.

3. FGD gypsum extensively contributed to the compressive strength evolution.

4. UCS evolution was evidenced via the use of XRD and SEM techniques.
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Abstract

Soil stabilisation using traditional binders such as Ordinary Portland Cement (OPC), has a 

serious negative environmental impact, specifically carbon dioxide (CO2) emissions as a result 

of the manufacture of OPC. Because of this, the use of sustainable binders has become a critical 

issue to help reduce cement production through the use of by-product materials. This research 

seeks to develop a new ternary blended cementitious binder (TBCB) to replace cement for soft 

soil stabilisation. Different ternary mixtures containing wastes i.e., high calcium fly ash 

(HCFA), palm oil fuel ash (POFA) and rice husk ash (RHA) along with flue gas 

desulphurisation (FGD) gypsum used as a sulphate activator and grinding agent, were 

examined. The results illustrate that ternary mixtures improved the engineering and mechanical 

properties of stabilised soil. The results indicated that the plasticity index (PI) was reduced 
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from 20.2 to 13.0 and the unconfined compressive strength (UCS) increased after 28 days of 

curing from 202kPa to 944kPa using the optimum non-FGD activated mixture. FGD 

contributed significantly by increasing the UCS to 1464kPa at 180 days of curing, which 

surpassed that for the reference cement (1450kPa), and by improving the soil consistency 

limits; where the PI decreased to 11.7 using TBCB compared with 14.5 for the soil treated with 

the reference cement. X-ray diffraction (XRD) and scanning electron microscopy (SEM) 

analysis revealed substantial changes in the diffraction patterns and microstructure components 

of the TBCB paste over the curing period, confirming the formation of cementitious products. 

A solid, coherent and compacted structure was achieved after treatment with TBCB as 

evidenced by the formation of C-S-H, CH and ettringite.

Keywords

By-product materials; FGD gypsum; high-calcium fly ash; microstructure; soft soil 

stabilisation; sustainable blended binder.

1. Introduction

Climate change and global warming are major risks facing humankind because of their severe 

effect on the planet. Global warming is linked to the phenomenon of greenhouse gases (GHGs) 

emissions, CO2  being the most prevalent of these (Specht et al., 2016). Ordinary Portland 

Cement (OPC) is one of the most extensively used construction materials worldwide (Karim 

et al., 2013). It is the most used material after water, having significant advantages as a 

construction material in different civil engineering industries including soil stabilisation. 

However, the use of cement has many drawbacks, specifically negative environmental impacts, 

something which has become a major concern around the world resulting in global debate about 

how to reduce cement production. Cement manufacturing as a single industry, is estimated to 

contribute about 6 - 7% of global CO2 emissions (Aprianti, 2017; Zhang et al., 2017). 
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Therefore, OPC makes a substantial contribution to global warming and GHGs emissions; 

finding alternative materials to reduce OPC production has become a vital issue for current and 

future generations. 

Waste, or by-product materials (BMs), are produced in huge quantities every day worldwide. 

They also have a negative impact on sustainability and the environment due to the cost of 

disposal and potential contamination to land and groundwater if heavy metals are present as 

part of their chemical composition (Karim et al., 2013). However, some BMs have high to 

moderate calcium contents such as sewage sludge ash (SSA), ground granulated blast furnace 

slag (GGBS) and calcium carbide residue (CCR). Such materials have the potential to play the 

role of cementitious materials, reacting with silicates through a pozzolanic reaction, resulting 

in cementitious products similar to those obtained from the OPC hydration process (Sun et al., 

2015). Other BMs are rich in silica (Si) and alumina (Al), such as pulverised fuel ash (PFA), 

silica fume (SF), palm oil fuel ash (POFA) and rice husk ash (RHA) which react pozzolanically 

with the hydrated calcium compounds (Aprianti, 2017). Numerous research projects have been 

conducted to utilise BMs to replace a portion of cement in binders and then used in diverse 

construction projects such as concrete for buildings, rigid pavements and soil stabilisation 

(Kumar et al., 2007; Jaturapitakkul et al., 2011; Horpibulsuk et al., 2012; Kotwica et al., 2017). 

Recently, researchers attempted to develop new cementitious binders produced completely 

from OPC-free blended materials using high calcium waste fly ashes mixed with different types 

of pozzolanic and alkaline wastes and fly ashes (Sadique et al., 2013; Al-Hdabi et al., 2014; 

Dulaimi et al., 2017).

In terms of soil mechanics, soft soils are considered problematic because of their undesirable 

properties associated with low compressive strength, high compressibility and dramatic 

volume change when their water content changes (Kolias et al., 2005). Soil improvements, 
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specifically soil stabilisation, is the most acceptable technique to mitigate these properties and 

meet the requirements of engineering projects. Soft soil stabilisation has traditionally been 

achieved by mixing soft soils with binder materials such as lime, cement and/or fly ash. Studies 

involving lime and OPC as preferred binder materials, rely on their ability to bind soil particles 

to each other, resulting in an improved material (Farouk and Shahien, 2013; Jafer et al., 2017).

Substantial quantities of POFA and RHA are produced, worldwide, every year (Aprianti et al., 

2015). The disposal and transportation of the solid waste generated from POFA and RHA 

activity is a serious problem, both environmentally and financially, making it necessary to 

address this problem with some urgency. 

POFA is a pozzolanic waste material from the palm oil industry.  It is generated in huge 

quantities, mainly in developing countries (Karim et al., 2013). Indonesia and Malaysia are the 

primary POFA producers, manufacturing 86% of global supplies (Aprianti, 2017). Shafigh et 

al. (2014) reported that Malaysia’s annual production of crude palm oil is 7 million tonnes, 

while a hundred  thousand tonnes of POFA are produced by Thailand annually, as reported by 

Jaturapitakkul et al. (2007). 

The influence of POFA as a cement replacement, on the compressive strength of mortar, was 

investigated by Jaturapitakkul et al. (2011). POFA was found to be able to enhance the 

compressive strength of mortars when replacing OPC type I by 10% - 40% by the binder mass. 

The results showed that because of the efficacy of POFA particles at filling pore voids and its 

pozzolanic reaction, the compressive strength of mortars increased with an increase in the 

cement replacement.  

In the field of soft soil stabilisation, POFA has been used as a cement replacement in order to 

improve the Atterberg limits and unconfined compressive strength (UCS) (Pourakbar et al., 

2015). Ground POFA was used in two different particle sizes (30µm and 12µm) by Mujah et 
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al. (2015) for soil improvement. Shear and one dimensional consolidation tests were conducted 

to evaluate the effect of different sizes of POFA particles in soil stabilisation, the results 

indicating that fine grade POFA gave a much more pronounced improvement in comparison to 

the coarse grade. In addition, the internal friction angle and cohesion of the soil when reinforced 

with both grades of POFA, increased between 50% - 60%.  However, there are few, if any, 

investigations of POFA as a potential pozzolanic activator for calcium based materials for use 

in soft soil stabilisation.

RHA is a waste that is produced from the incineration processes of rice husk for power 

generation purposes and rice processing mills (Karim et al., 2013; Mujah et al., 2015). It is 

produced in huge quantities in the major rice supplier countries such as China, India, Malaysia, 

Indonesia and Bangladesh. It was reported that approximately 742 million metric tonnes of rice 

paddies are produced annually by the rice husk harvest by the end of 2013 , while the global 

annual production of RHA is estimated to be about 7500 thousand tonnes, with an approximate 

annual growth of 1.1% (Aprianti et al., 2015). RHA is a super-pozzolanic material due to its 

high silica content (85% to 90%), meaning it can be used as a SCM to produce high 

performance concrete and geopolymer cement as established by recent research (Hwang and 

Huynh, 2015; Alex et al., 2016; Sua-iam et al., 2016). Research conducted by Nimwinya et al. 

(2016) used calcined water treatment sludge (WTS) and RHA, activated by alkali solutions of 

sodium hydroxide (NaOH) and sodium silicate (Na2SiO3), to produce a sustainable geopolymer 

binder. The results showed that RHA helped increase the ratio of SiO2/Al2O3 which, in turn, 

significantly increased the compressive strength of the prepared mortars. The optimum 

SiO2/Al2O3, at approximately 4.9 and 5.9, provided the highest compressive strength at room 

temperature and 60oC, respectively. 
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Flue gas desulphurisation (FGD) gypsum is a waste or industrial by-product material, which is 

generated from the wet-type desulphurisation processes used in coal-fired power plants; its 

main phase is calcium sulphate dehydrate (Zhang et al., 2016a). Due to its major component 

being calcium sulphate, FGD has been used as a grinding agent, instead of gypsum, and to 

achieve higher early strength by different researchers. Qiao et al. (2006) used FGD mixed with 

rejected PFA to produce a binder for stabilisation/solidification processes, as the final stages 

in the treatment of hazardous waste before sending to landfill. The results of strength tests 

indicated an acceptable development in compressive strength using a binder containing 10% 

FGD, the strength achieved being suitable for disposal in landfill. A high-calcium waste fly 

ash, activated by natural alkaline material, was used as a cement replacement.  The mortars 

prepared using this fly ash were found to exhibit higher compressive strengths at all ages of 

curing, when the FGD was used as 5% of the added binder, as stated by Sadique et al. (2013).

In spite of the works mentioned above, there is little if any research using POFA, RHA and 

FGD to activate a calcium based material in soft soil stabilisation, making this research the first 

to utilise the aforementioned wastes in a ternary blending system. This research was carried 

out using 100% replacement of traditional binder (OPC) by waste materials to get benefits both 

in terms of producing an environmentally friendly binder and to offer substantial economic 

advantages. The influence of different ternary mixtures produced from mixing HCFA, POFA 

and RHA at different proportions, on the compressive strength of the stabilised soil, along with 

compaction parameters and consistency limits, were investigated. The prepared samples of the 

treated soil were exposed to different curing periods, ranging between 3 and 180 days, to 

evaluate the short and long term performance of the mixtures. Scanning electron microscopy 

(SEM) testing and energy dispersive X-Ray spectroscopy (EDX) analyses were carried out on 

the developed binder paste to analyse the improvement gained in the geotechnical properties 

of the stabilised soil.
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2. Materials and Methods

2.1 Materials

2.1.1 Soil samples

The soil used in this study was collected from the shoulder of the River Alt estuary, located in 

Hightown to the north of Liverpool, UK. This type of soil covers a very large area in Hightown 

as well as the coastal area of the river and can be used for a variety of applications in different 

construction projects. The soil samples were collected from depths ranging between 0.3m to 

0.5m below ground level. They were put in well-sealed bags of 20 to 25kg and sent to the soils 

laboratory. Figs. 1a and b show the satellite image of the site and the corresponding location 

where the soil samples were extracted.

Once the soil samples arrived at the laboratory, representative samples were taken to determine 

the natural moisture content. The rest of the soil samples were air dried for approximately four 

days, followed by 24hrs of oven drying at 110±5oC. After drying, soil lumps were fragmented 

using a light wooden hammer then passed through a sieve of size 3.35mm. Table 1 illustrates 

the main physical and engineering properties of the virgin soil (VS) used in this study. The 

grain size distribution revealed that it was composed of 13.1% sand, 43.9% silt and 43.0% clay, 

making the VS silty clay. The liquid limit and plasticity index were found to equal 44.0% and 

20.2 respectively, while the organic matter content obtained from the loss of ignition test was 

7.95%. Based on this analysis, and according to BS EN ISO 14688-2:2004+A2013 (European 

Committee for Standardization, 2013), the VS used in this study is classified as an intermediate 

plasticity silty clay with sand (CI). 
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Fig. 1. (a) The satellite image of the site from where the soil was extracted, (b) soil extraction 
location (location coordinates are 53°31'03.4"N 3°03'48.2"W).

Table 1. Main physical and geotechnical properties of the virgin soil used in this study.

             Mg/m3= Mega gram/cubic metre, kPa = kilopascal.

2.1.2 Binder Materials

The materials used to produce the binders in this study were high calcium fly ash (HCFA), 

palm oil fuel ash (POFA), rice husk ash (RHA) and flue gas desulphurisation (FGD) gypsum. 

HCFA is obtained from power generation plants using an incineration process at temperatures 

Property Value
Natural Moisture Content (NMC) % 36.8
Liquid Limit LL % 44
Plastic Limit PL % 23.8
Plasticity index PI 20.2
Sand % 13.1
Silt % 43.9
Clay % 43.0
Specific Gravity (Gs) 2.57
Maximum dry density (MDD) Mg/m3 1.57
Optimum moisture content OMC % 23.0
pH 7.78
Organic Matter Content % 7.95
Unconfined Compressive Strength (UCS) kPa 66.5
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between 850oC and 1100oC by means of a fluidised bed combustion system (FBCS). The POFA 

was imported from the Sg. Tengi Palm Oil Factory, Kuala Kubu Bharu, Selangor, Malaysia, as 

a waste material produced from the incineration processes applied to palm oil fibres at 

temperatures ranging between 800oC and 1000oC. It was treated by passing through a sieve 

size of 150µm to remove the incomplete incinerated materials then ground for 15 minutes using 

a pestle and mortar grinder to increase the pozzolanic reactivity. A similar procedure was 

applied on POFA prior to being used in the experimental work by Awal and Shehu (2013). The 

RHA was supplied by NK Enterprises Company, Jharsuguda, Orissa, India, while the FGD 

gypsum was provided by the soils laboratory in LJMU. The reference cement used in this study 

was a commercially available cement type CEM-II/A/LL 32.5-N supplied by Cemex Quality 

Department, Warwickshire, UK. The chemical compositions of the binder materials utilised in 

this study are listed in Table 2. The oxide contents were obtained by conducting the X-Ray 

florescence spectrometry (XRF) analysis using a Shimadzu’s EDX-720 Energy Dispersive X-

Ray Fluorescence Spectrometer. 

Table 2 shows the substantial calcium oxide content of HCFA which, with the silica oxide 

content, is comparable to those for the reference cement. The chemical compositions of the 

HCFA in this study are consistent with those of Dulaimi et al. (2016) but the CaO content of 

the HCFA (66.76%) is higher than that reported by Sadique et al. (2012a). Based on the 

chemical compound analysis, HCFA has a promising enough CaO content to have the potential 

to form the basis for the cementitious material as it can react with pozzolanic materials to 

produce cementitious compounds. The main oxides of POFA are in line with those reported by 

Chindaprasirt et al. (2014) with slight differences in K2O and Al2O3 content. With respect to 

the RHA, SiO2 is the main oxide (90%+), this the same as the chemical composition reported 

by Karim et al. (2013); however, there is more SiO2 in the current research sample. The 

pozzolanic materials in POFA and RHA, represented by SiO2 and Al2O3, promise to boost the 
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pozzolanic reaction during the hydration process. It has been reported that silicates and 

aluminates react chemically with the hydrated lime Ca(OH)2 in cement in the presence of 

moisture, forming more cementitious gel such as calcium silicate hydrate (C-S-H) and calcium 

aluminate hydrate (C-A-H) (Jiang et al., 2016). The chemical compositions in Table 2 show 

that the FGD was composed mainly of CaO and sulphate (SO3) with a small amount of SiO2. 

A similar chemical composition for FGD was reported by Zhang et al. (2016b). 

Table 2. Chemical properties of the materials used in this study

Chemical composition %
Material pH LOI %

CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O SO3

HCFA 12.86 N/A 66.76 25.12 2.38 0.03 2.57 1.718 0.31 0.38

POFA 13.04 2.78 9.047 53.01 6.487 4.873 1.329 1.495 6.501 2.531

RHA 8.98 2.05 0.493 90.20 4.03 0.183 0.609 0.90 1.36 -

FGD 12.3 - 35.89 14.3 - - 0.54 1.23 - 34.64

OPC 13.04 0.28 66.12 24.91 1.728 1.668 1.322 1.357 0.836 2.655

2.2 Experiments and testing program

2.2.1 Compaction parameters test

The standard Procter compaction test was performed to determine the maximum dry density 

(MDD) and optimum moisture content (OMC) for the virgin soil and the soil treated with 

different binders. The procedure followed is fully explained in BS 1377-4:1990 (British 

Standard, 2002). Sample pastes made from the binder-soil mixtures, were mixed and prepared 

after adding water, then compacted using an electrical compactor. This test is essential to 

prepare the samples required for other geotechnical experiments such as the unconfined 

compressive strength (UCS) test.
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2.2.2 Atterberg limits

This test was carried out according to BS 1377-2:1990 (British Standard, 1998) to determine 

the liquid limit (LL), plastic limit (PL) and plasticity index (PI) of the untreated and treated soil 

with different binders. Samples of the treated soil were prepared by adding a specified quantity 

of binder, then mixed manually with soil for not less than 5 minutes or until a homogenous 

colour was apparent. The test was performed immediately after adding water to the binder-soil 

mixtures. The cone penetration method was used to determine the LL using a cone 

penetrometer devise.

2.2.3 Unconfined compressive strength test

The unconfined compressive strength (UCS) test is one of the most common tests used to 

evaluate the strength of the soil and its suitability for use in different civil engineering projects. 

This test was performed using a computerised and motorised triaxial machine but without 

applying any lateral load in the triaxial cell (σ3 = 0). The test procedure described in BS 1377-

7:1990 (British Standard, 1999) was adopted. Specimens of the binder-soil mixtures, with 

specific dimensions of diameter 38mm and height 76mm, were prepared using a fixed volume 

mould. Three specimens were prepared for each corresponding dose of additives by 

compressing the soil-binder mixture inside the fixed volume mould using a manual hydraulic 

compression rig. Following this, the specimens were removed from the mould, weighed, 

wrapped in cling film, labelled, placed in well-sealed plastic bags and stored for curing at room 

temperature (20 ± 2oC).

2.2.4 Testing program and mixing proportions

The first stage of the experiments comprised the optimisation of the binder content using the 

HCFA alone as a binder. This stage was dependant on the results of the UCS tests which were 

conducted on specimens of soil treated with different percentages of HCFA (0, 3, 6, 9, 12 and 



ACCEPTED MANUSCRIPT

15% by the dry mass). The specimens were kept for different curing periods (7, 14 and 28 days) 

prior to UCS testing. The second stage was for both ternary blending optimisation and 

comparison of the binders’ performance with that of the soil treated with the reference cement 

(OPC). The performance of different binders was evaluated dependant on the results of the 

Atterberg limits, compaction parameters and UCS tests. The comparative UCS testing was 

carried out on the specimens at 3, 7, 28, 90 and 180 days. Table 3 illustrates the mixing 

proportions adopted to produce different binder mixtures from the waste materials used in this 

study. The mixtures containing FGD were ground at 15 minutes using a pestle and mortar 

grinder with low agitation (1 horsepower) and a bowl capacity of 2.5 litres.

Table 3. Mixing proportions used to produce different blended binders.

Binder ID OPC % HCFA % POFA % RHA % FGD %

VS - - - - -

U - 100 - - -

BB1 - 75 25 - -

BB2 - 75 - 25 -

TB1 - 75 12.5 12.5 -

TB1-FG - 75 12.5 12.5 5

TB2 - 66 17 17 -

TB2-FG - 66 17 17 5

RF 100 - - - -

RF is for reference, U is for unary mixture which contains HCFA only, BB and TB are for the binary 
and ternary blended binders respectively, and FG is for the binders treated with FGD

2.3 Techniques for the analytical characterisation

2.3.1 X-ray diffraction (XRD) analysis 

The XRD analysis was carried out using a Rigaku Miniflex diffractometer with Cu-Kα X-ray 

radiation at a voltage of 30kV. An electrical current of 15mA was used, with a scanning speed 

of 2.0 degree/min in continuous scan mode, starting from 5o rising to 65o. This analysis was 
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conducted on the raw materials, in their dry powder state, and on the hydrated pastes of the 

most remarkable binder mixture (TBCB) along with the reference cement. The hydrated pastes 

were subjected to 3, 28 and 180 days of curing prior to XRD analysis. The diffraction patterns 

of the undisturbed raw materials shown in Fig. 2 indicate that the mineralogy of HCFA was 

crystalline without significant background noise (Fig. 2a); the major crystal peaks were calcite 

(CaCO3), lime (CaO), gehlenite (CaAl[AlSiO7]), merwinite (Ca3Mg[SiO4]), mayenite 

(Ca12Al14O33) and quartz (SiO2) (Fig. 2a). The dominant mineral phase of POFA was quartz 

(SiO2), while cristobalite (SiO2) and potassium aluminium phosphate (K3Al2[PO4]3) were 

identified as minor phases, similar to the diffraction patterns of the POFA as reported by Karim 

et al. (2013) (Fig. 2b). The XRD analysis of RHA shown in Fig. 2c reveals an amorphous 

nature which is expected to show high reactivity during the hydration reaction. Finally, a 

crystalline nature was observed for the FGD gypsum with calcium sulphate hemihydrate 

(CaSO4.0.5H2O) as the dominant mineralogical phase (Fig. 2d).

Fig. 2. Diffraction patterns of the waste materials used in this research; (a) HCFA, (b) POFA, 
(c) RHA and (d) FGD gypsum. C: calcite, L: lime, G: gehlenite, M: mayenite, Mr: merwinite, 

Q: quartz, Cr: cristobalite, K: potassium aluminium phosphate and Gh: calcium sulphate 
hemihydrate.
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2.3.2 Scanning electron microscopy (SEM) observation

The SEM imaging technique was carried out on the raw materials in their powder states and 

on the hydrated pastes of TBCB and RF. This test was undertaken using an EDX Oxford Inca 

x-act detector, an FEI SEM model Inspect S and a Quanta 200 with an accelerating voltage of 

5-20kV. Prior to SEM imaging, the specimens were coated with a thin layer of Palladium using 

a sputter coater for increased visibility. The samples of the hydrated pastes were allowed 3, 28 

and 180 days of curing before performing the SEM imaging.

Fig. 3 shows the microphotographs of the raw materials used in this study. The HCFA particles 

are agglomerated and have a coagulated state occurring in clusters. It was indicated by Segui 

et al. (2012) that the high porosity of binder materials with an agglomerated morphology could 

lead to a reduction in the workability due to the increase in the water absorbed by the large 

open areas of high porosity. POFA has spherical-shaped particles with some irregular-shaped 

particles with sharp angles while the SEM observation of RHA revealed that its particles tend 

to have an irregular shape with sharp angles. FGD gypsum particles were found mainly to be 

large tabular-shaped with a small number of small irregular-shaped particles. The large size 

particles are gypsum as reported by Zhong et al. (2012)
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Fig. 3. SEM images of the raw materials

3. Results and discussion

3.1 Optimisation of the binder content

The optimisation of the binder content was carried out using HCFA alone as an additive to the 

soft soil, dependant on the results of the UCS tests. The compaction tests were conducted prior 

to the UCS tests, to determine the MDD and OMC for each dosage of HCFA used to prepare 

the corresponding specimens for the UCS tests. Fig. 4 illustrates the effect of the HCFA content 

on the MDD and OMC of the treated soil; the MDD decreased and OMC increased significantly 

with the increase in HCFA content. The MDD for the virgin soil decreased substantially from 

1.56Mg/m3 to 1.40Mg/m3 when adding 15% of HCFA by dry mass. This percentage increased 

the OMC significantly from 23% for the untreated soil to 30.5%. This behaviour may be 
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attributed to the substantial CaO content of HCFA which increases the water demand of the 

soil-binder mixture, this high water demand leading to a higher OMC value (Jauberthie et al., 

2010). The cation exchange which occurs immediately after adding water between the clay 

minerals of the treated soil and CaO’s positive ions, may also contribute to the increase in water 

demand of soil-binder mixtures (Eskisar, 2015).

Fig. 4. Effect of HCFA content on MDD and OMC

Fig. 5 shows the results of the UCS tests on soil treated with different portions of HCFA and 

cured over various times. Significant increments in the soil compressive strength were achieved 

with the use of HCFA. The UCS was found to increase with a continuous increase in HCFA 

content and curing time. However, a reduction was observed in UCS with the use of 15% 

HCFA when compared with that for the soil treated with 12%, indicating that the optimum 

binder contented is 12% by dry mass of the treated soil as this facilitates a higher compressive 

strength across all curing times. At 28 days of curing, the UCS increased from 200kPa for the 

untreated soil, to almost 700kPa with the use 12% of HCFA.



ACCEPTED MANUSCRIPT

The flocculation phenomenon, in addition to the cation exchange that occurred between clay 

mineral cations in the stabilised soil and the divalent calcium ions of the HCFA, may have been 

responsible for the early strength improvement (James and Pandian, 2016). With the increase 

in curing time, the development in the soil’s compressive strength can be attributed to the 

pozzolanic reaction occurring between the hydrated lime in HCFA and the silicates and 

aluminates of the treated soil, resulting in cementitious products that produced a coherent and 

compact structure (Aïtcin, 2016; James and Pandian, 2016). These products include calcium 

silicate hydrates (C-S-H) and calcium aluminate hydrates (C-A-H) which are a result of the 

pozzolanic reaction. 

The optimum content (12% HCFA) obtained from this stage of the experiment, was used as 

the total binder dose to be added to the stabilised soil for the later ternary blending optimisation 

processes. The same percentage was also used for the reference binder (OPC).

Fig. 5. UCS of the soil treated with different proportions of HCFA at different curing times.



ACCEPTED MANUSCRIPT

3.2 Ternary blending optimisation and developing of TBCB

3.2.1 Atterberg limits

The results of the Atterberg limits test shown in Fig. 6, indicate that almost all liquid limits 

(LLs) and plastic limits (PLs) increased significantly for the treated soil in comparison to the 

virgin soil. Plasticity indices (PIs) decreased with the treatment because of the greater 

increment in PL, with respect to LL, for each different proportion of additive. The highest value 

of LL was obtained from the soil treated with U (100% HCFA) due to the high CaO content, 

slight reductions occurring after adding the blended mixtures. LL values are related to the 

HCFA content in the binder; a higher HCFA content, gave higher LL and PL. Accordingly, the 

PI decreased in relation to the difference between LL and PL for the corresponding binder type, 

this promoting an increase in soil workability, as indicated by Baran et al. (2001). The results 

of the Atterberg limits tests indicated that while the lowest value of PI was obtained from TB2-

FG (11.74), all mixtures recorded PIs lower than that for the RF (14.5). 

Interestingly, the addition of FGD gypsum as a grinding aid (GA) and sulphate activator to the 

ternary blended binders (TB1 and TB2), contributed to further reductions in the plasticity 

index. There were slight reductions in both LL and PL of the soil treated with ternary mixtures 

aided by FGD, leading to a further reduction in PI. The reduction in LL can be attributed to the 

decrease in water demand of the binder after using FGD in parallel with the grinding technique. 

The use of grinding with FGD as a GA, boosts the speed at which ground particles of the 

activated fly ash dissolve when mixed with water. In turn,  water demand is decreased, this 

increasing the reactivity of the activated fly ash (Sadique et al., 2012a).  FGD also assisted in 

breaking up large plerospheres (i.e. a reduction in porous particles) which in turn, decreased 

particles roughness. This is of benefit for the grinding process, decreasing water demand  as 
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argued by Aydın et al. (2010). This reduction in PI increases the soil-binder mixture 

workability as well as increasing the soils’ resistance to swelling and shrinkage stresses.

Fig. 6. Atterberg limits for the soil treated with different types of binder

3.2.2 Compaction parameters

Fig. 7 shows the MDD and OMC values for the untreated soil and soil the treated with different 

binders, obtained from the standard Proctor compaction test. Overall, the MDD decreased and 

the OMC increased for all soil-binder mixtures in comparison to the virgin soil, this due to the 

presence of CaO in the binder which leads to a rise in water demand. A substantial reduction 

in MDD, with a significant increase in OMC, was observed for the U mixture (100% HCFA). 

There were gradual increments in MDD, accompanied by continuous reductions in OMC, for 

all the blended mixtures except the soil treated with BB2 which recorded the lowest MDD and 

highest OMC. This behaviour  was due to the proportion of RHA (25%) in this binder, which 

may be due to the morphology structure of RHA, a high presence of porous and spongy 

particles and a high water demand (Karim et al., 2013). Although the MDDs increased after 

treatment with the blended binders, the highest value being achieved by TB2-FG (1.49Mg/m3), 
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they are still much lower than that of the soil treated with OPC (RF mixture) which was 

1.53Mg/m3. The OMC values obtained from the compaction test were related to the 

corresponding values of LL and PL, presented in the previous section, in which the binders 

with high LL and PL also had a high OMC and vice versa. A similar scenario was reported by 

Garzón et al. (2016) when studying the effect of lime on phyllite clay stabilisation. The reduced 

OMC in the case of mechanically activated ternary blended binders were attributed to particle 

packing by fine ground particles that act as a filler for the void spaces which also reduced inter-

particle friction (Malhotra and Mehta, 2012). Similar improvement relating to reduced water 

demand after mechanical activation of HCFA was reported by Sadique et al. (2013).

Fig. 7. MDD and OMC of the soil treated with different types of binders

3.2.3 Unconfined compressive strength (UCS)

The comparative UCS values of the stabilised soil are presented in Fig. 8. It was evident that 

the compressive strength increased noticeably over 180 days of curing for all types of mixtures 

tested. However, the degree of strength development varied significantly among binder types. 

In general, the soil specimens treated with blended binders had compressive strengths higher 
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than the soil treated with U at all ages. However, all mixtures showed compressive strengths 

lower than that for the soil treated with RF for curing periods up to 90 days. At 180 days of 

curing, a very impressive compressive strength was obtained for the soil samples treated with 

the TB2-FG mixture (1464kPa) which exceeded that for RF (1450kPa). Even after a short 

period of curing (3 days), an increase in compressive strength was evident for all types of 

mixtures. Unlike the other binders, TB2-FG had a UCS of 923kPa at 3 days of curing which 

exceeded all the other UCS values for soil samples treated with the other mixtures, except RF, 

even after 28 days of curing. 

The increase in compressive strength achieved after the treatment with the binary mixture BB1 

(75% HCFA + 25% POFA) was due to an increase in cementitious products because of the 

superior pozzolanic reaction between POFA silicates with the hydrated lime produced from the 

HCFA (Aïtcin, 2016). The pozzolanic materials in POFA, along with the high pH value, 

facilitated the high UCS by boosting the chemical activation of HCFA, resulting in the 

formation of extra cementitious products (C-S-H). Pourakbar et al. (2015) reported a similar 

improvement in the UCS of soil by using 10% binder of a binary mixture containing cement 

80:20 POFA. The soil treated with BB2, which contained 25% RHA in the total binder, showed 

compressive strengths slightly lower than those obtained from the soil treated with BB1 (Fig. 

7). This may be due to the density of the samples treated with BB2 as it was lower than those 

treated with BB1. Nicholson (2015) reported that an increase in the MDD of treated soil might 

contribute to an increase in the compressive strength of the soil and improvements in other 

geotechnical properties. The pure silica provided by RHA in ternary mixtures was found to be 

beneficial for strength development. The latter has a susceptibility to dissolve and react 

chemically with hydrated lime, resulting in an increase in cementitious products formation as 

shown in Fig. 8 for TB1 and TB2.   
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Fig. 8. Unconfined compressive strength of the soil treated with different binders at different 
curing times

The high alkalinity of POFA and an increase in the pozzolanic materials content in the total 

binder, as in the mixture TB2,  ensures the generation of sufficient  pozzolanic materials which 

in turn  boosts  the pozzolanic activation of the hydrated lime from HCFA. Puppala et al. (2015) 

reported that a high alkaline environment for the chemical reaction of binders is preferable as 

this boosts hydration and pozzolanic reactions. Such circumstances accelerate the solution of 

the glassy phases of silicates and aluminates and provides extra silica that has the capacity to 

react with hydrated lime resulting in more cementitious compounds. Similar findings were 

reported by Al-Hdabi et al. (2014) when they developed a new cold Bitumen Emulsion mixture 

(CBEM) using supplementary cementitious materials to replace the lime (the conventional 

filler) in such mixtures. 

With respect to the results achieved after the application of grinding using  FGD as a GA, FGD 

helped  increase the compressive strength significantly after relatively long curing periods 

(Sadique et al., 2013; Zhang et al., 2016b). The evolution achieved in UCS after using FGD 

can be attributed to the dual role of FGD gypsum by increasing the reactivity of fly ash particles 

during the inter-grinding due to the increment in the specific surface area and by sulphate 
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activation by providing SO4
2- during the hydration reaction. FGD depolymerised the glass 

structure of fly ash facilitating additional penetration of Ca2+ and SO4
2- resulting in an 

accelerated pH and boosted dissociation of the fly ashes glass phase. This led to enhance the 

hydration and pozzolanic reactions resulting in the production of more cementitious products, 

hence, the compressive strength increased (Sadique et al., 2012b; Wright and Khatib, 2016). A 

similar finding has been reported by Zhang et al. (2016b) regarding a composite cementitious 

system produced from FGD gypsum combined with metakaolin-cement, where the 

compressive strength of the mortars of this composite exceeded that for the mortars prepared 

using pure cement, after 120 days of curing. 

In summary, the TB2-FG mixture is the one chosen as the TBCB to be used for subsequent 

XRD analysis and microstructural investigation.

3.3 Comparative XRD analysis and SEM observation of the hydrated pastes of TBCB and RF

3.3.1 XRD analysis

A chemical synergy was apparent in the mechanically activated ternary blend (TBCB), where 

pozzolanic and hydraulic properties between the blended materials were compensated and 

balanced by each other (Fig.9 – dry powder). Gartner and Macphee (2011) also reported that a 

combination of oxide phases was necessary, that is metastable in presence of water and tends 

to convert to a more stable phase assemblage when hydrated. The presence of aluminium and 

potassium ions, supplied by POFA, and amorphous silica and aluminium ions supplied by 

RHA, were expected to accelerate the dissolution of HCFA by reducing the concentration of 

Ca+2 and Al+3 in the mix to form ettringite and alunite and hence solidify the system. 

In terms of the hydrated states, the phase composition of the TBCB and control cement 

hydration products were identified in the XRD analysis as shown in Fig. 9 and Fig. 10 

respectively. In the case of TBCB, the hydrates were identified as C-S-H, portlandite 
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[Ca(OH)2], ettringite [(Ca6Al2(SO4)3(OH)12·26H2O], alunite [(KAl3(SO4)2(OH)6], which were 

found to intensify with age. This indicates accelerated hydration and subsequent progressive 

strength development. Moreover, as for the reference cement (Fig. 10), the rapid consumption 

of mineral phases with reduction of crystallinity, the appearance of new crystal peaks of 

hydrates, and conversion of the silicate phase to CH phase was in accordance with the 

observation stated by Esteves (2011) and Esteves (2011) concerning the XRD study of 

cementitious material upon hydration. The main strength generating reaction product of 

cementitious materials is C-S-H. In the case of TB2+FG paste, the characteristic peak 

corresponding to C-S-H has been termed as C-Al/K-S-H in the XRD diffractogram as shown 

in Fig. 9. Similar combinations of calcium sodium/potassium silicate hydrate were reported by 

Guo et al. (2009) and Sadique et al. (2013).

Fig. 9. XRD patterns of the hydrated pastes of TBCB at different curing periods. C: calcite, 
L: lime, M: mayenite, Mr: merwinite and Q: quartz
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Fig. 10. XRD patterns of the hydrated pastes of RF at different curing periods. C: calcite, A: 
alite, B: belite, and F: ferrite 

3.3.2 SEM observation

Fig. 11 and Fig. 12 show the micrographs of the TBCB and RF paste samples after 3, 28 and 

180 days of curing respectively. In the case of TBCB, the formation of hydration products, 

specifically the flaky shaped crystals (Portlandite (CH)), was clearly evidenced at 3 days of 

curing. SEM analysis revealed a more pronounced microstructure after 3 days of curing; the 

hydration products CH, C-S-H gel and needle-shaped particles (ettringite) were clearly 

observed at 28 and 180 days of curing. No intact powder particles of raw materials were 

detected; the HCFA, POFA and RHA particles were transformed into hydration products due 

to a successful hydration reaction (Fig. 11). A compacted and coherent structure was achieved 

which was consistent with the development gained in the compressive strength of the stabilised 

soil as well as with the results obtained from the XRD analysis for TBCB. The consequent 

changes in the microstructure of the TBCB paste was comparable to that for the reference 
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cement shown in Fig. 12. However, the SEM images indicated a denser microstructure for the 

cement paste with less CH crystals detected for the curing periods up to 28 days. After 28 days 

of curing, most of the ettringite and CH were found to have been consumed due to the 

successful pozzolanic reaction, the surface of the TBCB paste almost completely covered by 

C-S-H gel. A very dense microstructure of TBCB was observed at 180 days of curing, which 

was similar to that of RF, where the hydration products, specifically C-S-H gel, were found 

mainly in the pore areas of the sample. The greater profusion of CH crystals and ettringite in 

RF compared to TBCB, after 180 days of curing, (Fig. 11 & Fig. 12) was found to be consistent 

with their corresponding XRD analyses (Fig. 9 & Fig. 10). 

Moreover, in case of TBCB, the conversion of ettringite to Monosulfoaluminoferrite (AFm) 

was also detected at 28 days of curing, appearing as lath-like crystals. AFm appears after a 

period of low activity due to the slow diffusion of species in the hardened materials which 

experience a chemical reaction between ettringite and C3A (Marchon and Flatt, 2016). The 

formation of ettringite, and the more pronounced AFm at 28 days,  can be attributed to the 

existence of FGD gypsum which contains a significant amount of sulphates; similar findings 

were reported by Jha and Sivapullaiah (2016).



ACCEPTED MANUSCRIPT

Fig. 11. The micrographs of the TBCB paste at 3, 28 and 180 days of curing.
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Fig. 12. The micrographs of the RF paste at 3, 28 and 180 days of curing.
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4. Conclusions

The effect of high calcium fly ash, along with its pozzolanic activation using POFA and RHA 

on the mechanical properties of a soft soil, were examined in this study. The use of FGD 

gypsum, as a grinding agent and retarder to boost the chemical reaction and develop 

compressive strength, was also investigated. This is a novel approach for the use of waste 

materials to develop a new, sustainable, ternary blended cementitious binder (TBCB) for use 

in soft soil stabilisation. Based on the results obtained in this study, the following conclusions 

can be drawn:

1. A new, ternary blended cementitious binder (TBCB) produced from waste materials was 

developed from 66% HCFA + 17% POFA + 17% RHA, activated with 5% FGD gypsum, 

by total binder. This binder can be used for commercial cement replacement in soft soil 

stabilisation which, in turn, contributes to the reduction of the negative environmental 

footprint created by the manufacture of cement.

2. In terms of soil consistency limits, significant improvements in Atterberg limits were 

achieved using TBCB, which were even better than those obtained from the soil treated 

with the reference cement. By using TBCB, PI decreased significantly from 20.22 for the 

untreated soil to 11.74 for soil treated with TBCB which was less than that for soil treated 

with RF (14.5). This will significantly improve soil resistance against swelling and 

shrinkage stresses.

3. FGD gypsum contributed significantly to improve the soil consistency limits when they 

are compared with the soil treated with non-mechanically activated binder (TB2). A further 

reduction in PI was achieved with the FGD activation which recorded the lowest PI value 

(11.74). Additionally, FGD gypsum was found very beneficial in the development of the 
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soil compressive strength as it contributed to the acceleration of the dissolution of the 

silicates which led to enhance the pozolanic reaction.

4. UCS of the soft soil at a short curing period (3 days) noticeably increased with the use of 

TBCB. The UCS of the stabilised soil increased from 200kPa for the virgin soil to 923kPa 

by using TBCB; this is 4.6 times the UCS of the untreated soil. This value represents 

87.24% of the UCS of the soil treated with reference cement (1058kPa). This improvement 

can facilitate the provision of a strong enough soil base for labour and equipment at 

building sites within a very short time.

5. With respect to the compressive strength at prolonged curing periods, substantial 

developments in UCS were achieved, specifically for the samples treated with TBCB. 

Their UCS exceeded that for the samples treated with RF at 180 days of curing. A UCS of 

1464kPa was recorded for the soil treated with TBCB; the soil treated with RF achieved 

1450kPa. This represents a significant improvement in soil strength by 7.32 times that for 

compacted virgin soil.  

6. XRD analysis clearly confirmed the improvements gained in the mechanical and 

engineering performances of the soil stabilised with TBCB. The formation of cementitious 

hydrates such as C-Al/K-S-H, Portlandite (CH) and ettringite, were evidenced using XRD 

and SEM techniques. The results obtained were found to be consistent with the 

developments achieved in the compressive strength of the soil after treatment with TBCB. 

The morphological components of the hydrated paste of TBCB were found comparable to 

that for the RF over similar curing times. Therefore, it can be concluded that the formation 

of cementitious products contributed to the development of the UCS of the soft soil 

stabilised with TBCB.
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