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Abstract 

Phenotypic changes in the mammalian mandible can occur at different spatial and temporal scale. We investigated 

mandibular size and shape variation in three extant closely related dolphins (Cetacea, Odontoceti): Tursiops truncatus, 

Stenella coeruleoalba and Delphinus delphis in order to test the hypothesis that similar phenotypic changes occur across 

the same geographical gradient. Our data included 219 specimens (51 S. coeruleoalba, 104 T. truncatus and 64 D. delphis) 

representatives of the following geographic locations: the Mediterranean Sea, the eastern north Atlantic and the North 

Sea. Each mandibular specimen was photographed laterally and spatial positioning of eight homologous 2D landmarks 

was recorded. After applying generalised Procrustes analysis (GPA), intraspecific variation was first investigated between 

sexes and among populations to allow further pooling of samples. Size and shape differences among populations and 

species were investigated through multivariate ordination techniques (PCA), Procrustes ANOVA and allometric analyses. 

In all the three species, Mediterranean populations clearly differed from the extra-Mediterranean ones in terms of direction 

of phenotypic changes, amount and patterns of mandible shape changes. Among the three, the direction of geographic 

phenotypic changes was significantly similar in the striped and common dolphin, while the bottlenose dolphin was the 

most diverging species, differing also in size and allometric trajectory. Shape variation of the two former species 

highlighted a morphological convergence in the Atlantic, and a phenotypic divergence in the Mediterranean. Shape 

differentiation among the three dolphins was interpreted in the light of feeding adaptation and interspecific competition. 

Keywords: Geometric morphometrics, mandible, Stenella coeruleoalba, Tursiops truncatus, Delphinus delphis, 

phenotypic change vectors. 

 

Introduction 

The common dolphin Delphinus delphis, the striped dolphin Stenella coeruleoalba and the bottlenose dolphin 

Tursiops truncatus are small cetaceans belonging to the subfamily Delphininae of the family Delphinidae that comprises 

37 species (Committee for Taxonomy 2016). The Delphininae likely arose from an extremely rapid radiation during mid 

to late Miocene, leading to an unsolved phylogenetic tree and therefore to a still debated taxonomy (McGowen, Spaulding, 

and Gatesy 2009; Steeman et al. 2009). To date, incomplete lineage sorting (Amaral et al. 2012) and hybridization 

(Kingston, Adams, and Rosel 2009) limited progress on molecular analyses. Also, morphological investigations have not 

succeeded in solving the evolutionary relationships among the species, so that more efforts are still needed to clarify the 

systematic of this group (McGowen, Spaulding, and Gatesy 2009; McGowen 2011; Amaral et al. 2012; Perrin, Rosel, 

and Cipriano 2013). 

The three small dolphins are widely distributed in tropical and temperate waters of the Pacific, Atlantic and Indian 

Oceans, and in most seas of the world including the Mediterranean Sea. The Mediterranean is the deepest and the largest 

basin on Earth and it is a marine biodiversity hotspot with high percentages of endemic species (Bianchi and Morri 2000; 

Danovaro and Pusceddu 2007). This semi-enclosed basin is generally characterized by high sea temperature, high salinity, 

great seabed topographic variety and homothermy, with water temperatures remaining constant from 300-500 m to the 

bottom (Coll et al. 2010). The presence of diverse oceanographic dynamics and water circulation patterns result in high 

variability in productivity in both space and time (Otero and Conigliaro 2012). The Atlantic Ocean has denser and cooler 
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waters, characterized by low salinity and lower sea temperatures, decreasing with depth. The Strait of Gibraltar is the 

narrow and shallow passage between the Mediterranean and the Atlantic Ocean. Excluding the Suez Canal, it constitutes 

the only source of oceanic water and, throughout the history, it has been the main source of biota to the Mediterranean 

Sea (Coll et al. 2010). Many studies tested the hypothesis of the Strait of Gibraltar acting as a phylogeographical barrier 

for both invertebrates and vertebrates and three main phylogeographic explanations were presented: lack of population 

structure, Atlantic and Mediterranean separation and genetic boundaries not associated with Gibraltar (Quesada, Beynon, 

and Skibinski 1995; Pérez-Losada, Guerra, and Carvalho 2002; Duran et al. 2004; Cimmaruta, Bondanelli, and Nascetti 

2005; Patarnello, Volckaert, and Castilho 2007). When the Atlantic-Mediterranean transition is analysed at a finer 

geographical scale, some species show a drastic genetic change in correspondence of an oceanographic front located from 

Almeria (Spain) to Oran (Morocco), called the Almeria-Oran Front. Specifically, this phenomenon was observed in Sepia 

officinalis (Pérez-Losada, Guerra, and Carvalho 2002), Mytilus galloprovincialis (Quesada, Beynon, and Skibinski 1995), 

Paracentrotus lividus (Duran et al. 2004), Dicentrarchus labrax (Naciri et al. 1999) and Merluccius merluccius 

(Cimmaruta, Bondanelli, and Nascetti 2005) (Patarnello, Volckaert, and Castilho 2007). 

As for small delphinids, genetic studies have identified population boundaries between Mediterranean and North 

Atlantic populations (Natoli et al. 2008; Garcia-Martinez et al. 1999; Garcia-Martinez et al. 1995; Gaspari et al. 2007; 

Bourret, Macé, and Crouau-Roy 2007; Natoli et al. 2005). In Delphinus delphis, mtDNA revealed significant genetic 

differentiation between the Alboran Mediterranean population and the Atlantic Ocean (Galicia and Portugal) (Natoli et 

al. 2008). Both mtDNA (Garcia-Martinez et al. 1995; Garcia-Martinez et al. 1999) and nuclear markers (Valsecchi et al. 

2004; Gaspari et al. 2007; Bourret, Macé, and Crouau-Roy 2007) revealed a distinct separation between Mediterranean 

and North Atlantic stocks of the striped dolphin Stenella coeruleoalba. Natoli et al. (2005) found a clear genetic 

differentiation from the Black Sea to Scotland (North-East Atlantic Ocean) for the bottlenose dolphin Tursiops truncatus. 

Main differences were found between Scotland and southern North Atlantic, and between the Mediterranean and the 

Black Sea. Genetic differentiation was also observed in mtDNA of the western Mediterranean Tursiops populations 

compared to the adjacent Atlantic ones (Galicia and Portugal), supporting evidences of a genetic boundary at the Almeria-

Orán front. Differences in oceanographic parameters (ocean floor topography, surface salinity, temperature and 

productivity) were claimed as potential drivers of genetic structure (Natoli et al. 2005). 

A high degree of morphometric differentiation was found among small delphinid species across different 

geographical areas (Bell, Kemper, and Conran 2002; Wang, Chou, and White 2000; Perrin 1984; Perrin 1975; Heyning 

and Perrin 1994). Regarding the Mediterranean and the North East Atlantic, researches focused on different areas, making 

comparison among studies complex. Murphy et al (2006) studied the morphological variation of Delphinus delphis in 

eastern North Atlantic and found a latitudinal cline in size, with northern mature males being slightly larger in mandible 

length, skull width and total body length compared to dolphins from the northwest coast of Spain. The Portuguese 

population showed segregation in morphometric characteristics (skull width in males and orbital measurements in 

females) suggesting the mixing of common dolphins off the Portuguese coast with common dolphins in the Mediterranean 

and farther south. Westgate (2007) analysed the cranial morphology of short-beaked common dolphins from the eastern 

and western North Atlantic and detected subtle but significant differences both in males and females, with rostral width 

as an important discriminating variable. The occipital region of the skull also supports the separation of the Mediterranean 

common dolphins from the Irish, British and Danish populations (Nicolosi 2011). Distinct cranial features were detected 

in the coastal French and Mediterranean striped dolphins compared to the Scottish stocks (Loy et al. 2011). In this case, 

shape differences involved mainly the rostral and occipital regions of the skull. By counterpart, morphological variation 

of the bottlenose dolphin has never been investigated in this geographical area. 
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The mandible is a skull component that has been studied in both terrestrial (Klingenberg, Mebus, and Auffray 

2003; Raia 2004; Meloro et al. 2008; van Heteren 2009; Meloro 2011; Prevosti et al. 2012; van Heteren et al. 2016) and 

aquatic mammals (Barroso, Cranford, & Berta, 2012; Guidarelli, Nicolosi, Fusco, de Francesco, & Loy, 2014; Heyning 

& Perrin, 1994; Nummela, Kosove, Lancaster, & Thewissen, 2004; Wang et al., 2000). In cetaceans, mandibular variation 

has been little explored. Only Barroso, Cranford, and Berta (2012) analysed mandibular shape across all major 

odontocetes lineages, while Guidarelli et al. (2014) focused on the interspecific variation and modularity in three 

Mediterranean dolphins. In spite of its structural simplicity, the mandible has proved to be an informative mammalian 

skull component, useful in discriminating species (Guidarelli et al. 2014), identifying ecological adaptations (Meloro 

2011; Meloro and O’Higgins 2011; Prevosti et al. 2012), intraspecific geographic variation (Murphy et al. 2006; Westgate 

2007; Loy et al. 2008) and phylogenetic signal at macroevolutionary scale (Meloro et al. 2008; Figueirido, Palmqvist, 

and Pérez-Claros 2009; Meloro et al. 2011; Barroso, Cranford, and Berta 2012; van Heteren et al. 2016). 

Taking into account the evidences of both genetic and morphological segregation between the Mediterranean and 

the eastern North Atlantic populations observed in many cetacean taxa, and considering the specific conditions of the 

Mediterranean and the Atlantic environments, we explored the mandibular morphology of D. delphis, T. truncatus and S. 

coeruleoalba to test the following hypotheses: 1. the three dolphin species exhibit significant differences in mandibular 

size and shape between the Mediterranean and the extra-Mediterranean stocks 2. morphological variation in the three 

species follows similar trajectories of size and shape changes across discrete geographic areas. 

 

Materials and methods 

Data were collected on a total of 220 specimens belonging to Delphinus delphis (n= 64), Stenella coeruleoalba (n 

= 51) and Tursiops truncatus (n = 104). Each species is represented by populations coming from three broad geographic 

areas: the Mediterranean Sea (MS), the North East Atlantic (AO) and the North Sea (NS) (Fig. 1, Table 1) (Online 

Resource 1). 

Only adult individuals were selected. When age information was not available, the mandibular length and the 

shape of the coronoid crest were used as proxies of age (Perrin 1975; Mead and Fordyce 2009) . Mandibles were 

photographed in lateral view with a Nikon 3100 camera set at a fixed distance from the object (1.5 m). Eight landmarks 

(Fig. 2) were recorded to provide adequate coverage of the mandibular morphology.  

Landmarks were digitized on the right hemi-mandible using the software tpsDig2 version 2.26 (Rohlf 2003). We 

selected the right hemi-mandible because there were more undamaged specimens available. To measure the two nested 

sources of error associated with imaging and digitizing, ten specimens were photographed twice and, on each image, the 

eight-landmarks were digitized twice on two different days. A Procrustes analysis of variance (ANOVA) was first run in 

MorphoJ version 1.06b to test for image and digitizing error (Klingenberg 2011, 

http://www.flywings.org.uk/MorphoJ_page.htm). 

 

A generalized Procrustes analysis (GPA) was performed to translate, scale and rotate all landmark configurations 

in order to minimize the average distances of configurations from the reference. The reference in GPA is an iteratively 

computed mean configuration named consensus (Rohlf and Slice 1990). These operations remove all sources of variation 

that are not shape differences and separate shape from size. The size variable is the centroid size (CS), that is the square 

root of the summed squared distances of each landmark from the centroid of the landmark configuration. Shape variables 

http://www.flywings.org.uk/MorphoJ_page.htm
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are new coordinates that describe the location of each specimen in a curved space related to Kendall’s shape space and 

represent the difference between the consensus and each sample (Slice 2001). These differences are measured as 

Procrustes distances. Since most of methods of multivariate statistics assume a Euclidean space, after superimposition 

shape coordinates are projected from Kendall’s space onto a Euclidean space tangent to the consensus. Multivariate 

analyses can be run in this tangent space in which linear distances among configurations approximate original Procrustes 

distances in Kendall’s space (Zelditch et al. 2004). 

To assess shape and size differentiation between sexes (intraspecific variation) we performed a Procrustes 

ANOVA as implemented in the R package geomorph (Adams & Otárola-Castillo, 2013) in R Studio version 0.98.1103 

(R Studio) with 9,999 number of iterations, using Procrustes distances and centroid size values respectively (D. delphis: 

f = 11, m = 21; S. coeruleoalba: f = 18, m = 27; T. truncatus: f = 36, m = 40). 

A One-way non-parametric multivariate analysis of variance (MANOVA) on Procrustes coordinates was run to 

test for significant differences among different populations within each species (software PAST, version 2.17c, 

HAMMER et al. 2001). The Procrustes ANOVA was employed to test the null-hypothesis (H0) that there is no significant 

interspecific size and shape difference among species and populations.  

The function procD.allometry (R package geomorph) was used first to investigate intraspecific allometry in each 

species, and then to test for significant interspecific differences among allometric trends with natural log-transformed 

centroid size (lnCS) as the covariate predictor, performing an ANOVA for homogeneity of slopes. 

To statistically compare patterns of phenotypic changes among species’ populations from the three selected 

geographic areas, we employed the function trajectory.analysis (R package geomorph). Phenotypic change along a 

geographic gradient is represented by a trajectory connecting sample from three different seas along a latitudinal gradient 

(Collyer and Adams 2013; Meloro et al. 2014). The phenotypic trajectory analysis computes pairwise comparisons among 

the geometric attributes of the trajectories, describing the shape (S), the magnitude (D) and the orientation (Ѳ) of 

phenotypic changes. For each species, the differences in shape are computed as the deviations between corresponding 

geographical levels across two scaled and aligned phenotypic trajectories expressed as Euclidean distance. The magnitude 

is the path-length distance, derived from the sum of the Euclidean distances of sequential geographical levels within each 

trajectory and defines the amount of shape change; the orientation is the direction of its first principal component (PC1). 

When phenotypic change is quantified across two levels, the change is represented by a vector connecting the phenotypic 

means of the two levels. Compared to trajectories, vectors can be mathematically described by two attributes: magnitude 

and direction of phenotypic change. Trajectory and vector’s attributes are calculated for each species and then statistically 

compared to infer how patterns of phenotypic change diverge. The variation in attributes is assessed via permutation and 

the extent to which they are concordant allows to detect differences or similarities among patterns of phenotypic variation 

(Adams and Collyer 2009). Trajectories are visualized in the space of principal components (PC1 and PC2) and display 

the phenotypic change that occurs from one geographic region to another. For each pairwise comparison, attribute 

differences are significant if the P values from a generally high number of permutations (9,999) are less than a type I error 

rate of α < 0.05. An analysis of variance (ANOVA) was performed with type I sums of squares (SS) and a randomized 

residual permutation procedure (RRPP) (Collyer, Sekora, and Adams 2015). 

 

Results 

Measurement error 
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The Procrustes ANOVA run among distinct sampling replicates proved that the shape variables and centroid size 

values obtained through each session of data acquisition were not significantly different. For both size and shape variation, 

differences among individuals significantly accounted for the 97% of total variance. Differences among replicates due to 

imaging were non-significant and explained about 0.7% while the digitalization error accounted for less than 1.7%. 

Intraspecific shape and size variation 

In each species, sexual dimorphism was not significant neither in size nor shape (Table 2). The analyses provided 

no evidence of sexual dimorphism for the mandibular structure. Therefore, all subsequent analyses were conducted on 

pooled samples of both sexes, including the specimens of unknown sex. 

In all three species, non-parametric MANOVA performed on Procrustes coordinates showed significant 

differences between populations (D. delphis: TSS = 0.033, WSS = 0.028, F = 6.138, P < 0.001; S. coeruleoalba: TSS = 

0.022, SSW = 0.019, F = 3.064, P < 0.01; T. truncatus:  SST = 0.083, SSW = 0.075, F = 5.554, P < 0.001). Post hoc tests 

revealed non-significant pairs for populations of North Sea vs Atlantic Ocean in D. delphis and S. coeruleoalba (see Table 

3). In the striped dolphin, pairwise comparison between the Atlantic Ocean and the Mediterranean Sea population was 

significant only without Bonferroni correction (P < 0.05) (Table 3). In the bottlenose dolphin, significant shape differences 

in all populations pairs were detected (Table 3). The CVA plot (Fig. 3) displays the discrimination among the three 

populations and highlights the differentiation between the Mediterranean and the North Sea specimens. Wireframe graphs 

show that morphological changes are concentrated in the ramus, which is wider, with more developed condylar and 

coronoid processes compared to the Mediterranean configuration. 

Interspecific shape and size variation 

Shape. The first two PCs extracted from shape variables accounted for the 75% of total variance (Fig. 4). Species 

were best discriminated along the first axis (63% of variance), with the bottlenose dolphin clearly separated in 

correspondence of the negative scores. Shape changes along the first PC concern the alveolar groove length and the ramus’ 

expansion that are inversely correlated: on the positive scores, the common dolphin and the striped dolphin show a narrow 

jaw morphology characterized by a longer tooth row and a reduced ramus width, whereas the bottlenose dolphin has a 

massive mandible with a shorter dental groove and a wider ramus, distinctly developed along the dorso-ventral axis. 

Procrustes ANOVA highlighted interspecific differences among species and populations together with the interaction 

between the two factors (Table 4). 

Size. ANOVA test with permutation was run to test for significant interspecific differences among means and then 

a multiple comparison test among species was conducted. Size (Centroid Size) was significantly different among taxa (F 

= 57.987, df = 2, P-value < 0.01) (Fig. 5) and populations (F = 14.140, df = 2, P-value < 0.01) but after pairwise 

comparisons the bottlenose dolphin was the only significantly different species with respect to the other small dolphins 

(P-value < 0.001). A more complex model including both species and population as factors detected a significant 

interaction between the two independent variables (F = 4.664, df = 4, P-value < 0.01). 

 

Allometry 



7 
 

A significant association was detected between size (lnCS) and shape in the whole sample with size explaining 

19% of the total shape variance (df = 1; SS = 0.053; MS = 0.053; R2 = 0.193; F = 87.497; Z = 21.929; P < 0.01). The null 

hypothesis of parallel slopes among species was rejected based on a significance criterion of alpha = 0.05 (group 

allometries: df = 210; SSE = 0.124; SS = 0.004; R2 = 0.017; F = 3.748; Z = 2.992; P < 0.05). Figure 6 shows allometric 

trajectories as the first principal component of predicted shape values on lnCS (Adams and Nistri 2010; Adams, Rohlf, 

and Slice 2013). 

In the bottlenose dolphin, CS accounted for 9% of the total shape variance (1000 permutation runs, P < 0.001) 

while in the common and the striped dolphins the effect of size on shape was not significant (1000 permutation runs, P > 

0.05). 

 

Trajectories and vectors analyses 

 

First, we analysed phenotypic trajectories change in the three species along the geographic gradient from the 

Mediterranean to the North Sea (Fig. 7, Table 5), including three areas: the Mediterranean Sea, the North-East Atlantic 

and the North Sea. The analysis evidenced that the three species display similar magnitude and direction of phenotypic 

change (Table 5). 

Each taxon exhibits the same amount of phenotypic change along the trajectory from the Mediterranean to the 

North East Atlantic. In the striped dolphins shape changes are mainly expressed along the second PC, while for the 

common and the bottlenose dolphin shape variation is distributed along the first PC (Fig. 7). The magnitude of shape 

changes is nearly similar among species except for the common dolphin which shows a shorter path (Table 5). 

Since most pairwise comparisons did not show any significant difference between the North East Atlantic and the 

North Sea populations, a phenotypic change vector (PCV) method (Adams and Collyer 2009) was used combining these 

two in a single population (extra-Mediterranean). ANOVA performed on the Procrustes distances detected significant 

differences among Species, Seas and their interaction (Table 6). 

The analysis of phenotypic vectors between the Mediterranean Sea and the extra Mediterranean showed the same 

low and not significant amount of shape change among the three taxa (DD, S = 0.001, P = 0.745; DD, T = 0.002, P = 0.490; 

DS, T = 0.001, P = 0.770), while the direction of phenotypic change was significantly different between the bottlenose 

dolphin and the other two species (ѲD, T = 75.730°, P = 0.015; ѲS, T = 99.681°, P = 0.005). The angle between the striped 

and the common dolphin was not significantly different from random expectation even if it was particularly large (ѲD, S 

= 71.177°, P = 0.070). 

Figure 8 compares species’ shape configurations corresponding to the two geographic areas as deformation grids 

associated to the population mean on PC1 and PC2: the Mediterranean Sea and the North Atlantic Ocean. The 

Mediterranean common dolphins have a longer corpus with a thinner mandibular tip and a smaller ramus compared to 

the Atlantic stock. Morphological variation is concentrated on landmarks corresponding to the end of the alveolar line 

and to the angular and coronoid processes. Striped dolphin’s shape changes involve the position of the angular and the 

condylar processes. In the Atlantic group, specimens display a more robust mandible with the angular process that expands 

posteriorly, and a shorter corpus expanded along the dorso-ventral axis. In the Mediterranean population, the angular 

process moves anteriorly and the ramus profile is more rounded. The Mediterranean stocks of the bottlenose dolphins  

show a different morphological pattern. Compared to the Mediterranean specimens the Atlantic population has a shorter 
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corpus and a wider ramus which is characterized by an expansion of the angular and condylar processes along the antero-

posterior axis. 

 

Discussion 

The results of our analyses confirmed significant differences in the shape of the mandible between the 

Mediterranean populations and the extra-Mediterranean ones, whereas slighter discrimination was found between the 

North east Atlantic and the North Sea stocks of dolphins. The only exception is represented by the striped dolphin, whose 

Mediterranean population is significantly different from the North Sea but not from the North East Atlantic stock. The 

non-significant difference observed between these two striped dolphin’s populations could be related to the small sample 

size that prevented from finding a statistically supported separation. 

The three small dolphins undergo similar amount of morphological variation across the geographic gradient but 

the bottlenose dolphin’s shape changes follow a different direction. Indeed, many aspects of shape and size variability 

indicate a more pronounced differentiation of T. truncatus compared to the other small delphinids: it differs in both size, 

allometric trajectory and direction of shape change vectors while, on the other hand, the striped and common dolphins 

share similar mandibular size values, same direction of shape change and allometric trajectories. These findings are 

partially consistent with the original question, as we found a significant morphological separation between the 

Mediterranean and the extra-Mediterranean stocks in the three species. In contrast, patterns of phenotypic change are 

shared just by the two small delphinids. In and out the Mediterranean, the striped and the common dolphins share similar 

patterns of phenotypic changes even if these are more evident in the former species. Striped and common dolphins from 

the extra-Mediterranean area have a similar morphology defined by an expanded angular process along the antero-

posterior axis and a slender shape compared to the bottlenose dolphin. When the Mediterranean populations are 

concerned, the mandible has a restricted angular process and a well-pronounced mandibular notch. However, when the 

two geographic areas are compared, the two small dolphins seem to diverge in the Mediterranean Sea and to converge 

out from the basin. 

Interspecific shape change variation was in accordance with previous results (Guidarelli et al. 2014) that described 

a clear discrimination of the bottlenose dolphin from the other two species. The higher similarity between the two small 

dolphins compared to the bottlenose dolphin is in accordance with phylogenies provided by molecular data (Amaral, 

Sequeira, and Coelho 2007; Amaral et al. 2012) who hypothesized a closer phylogenetic relationship between the striped 

and common dolphin. T. truncatus’ mandible is large and massive with a shorter alveolar groove while S. coeruleoalba 

and D. delphis are characterized by a slender and longer tooth row (Fig. 4). At the intraspecific level, the bottlenose 

dolphin in the extra-Mediterranean population displays an extended ramus with pronounced condylar and coronoid 

processes and a wide coronoid crest. The Mediterranean population shows a relatively slender morphology with a 

restricted ramus and a thinner mandibular symphysis (Figs. 3, 8).  

Differences in feeding apparatus morphologies and diets revealed in both terrestrial (Adams and Rohlf 2000) and 

marine vertebrates (del Castillo et al. 2017) may indicate how partitioning of ecological niches reduce the occurrence of 

competition for food resources when the species are in direct sympatry (M. Bearzi 2005). Therefore, mandibular shape 

changes could be explained in terms of adaptive processes (e.g., convergence and divergence) related to interspecific 

interactions and feeding ecology. The common dolphin is mainly considered a neritic predator feeding on epipelagic and 

mesopelagic shoaling fish (e.g., anchovy Engraulidae, sardine Sardina pilchardus) in both the Mediterranean Sea and the 

Atlantic Ocean (G. Bearzi et al. 2003; Spitz, Rousseau, and Ridoux 2006; Silva 1999). However, even when living in the 
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oceanic domain, the common dolphin seems to select a particular prey type, which is small shoaling migrating 

mesopelagic fish, rather than a particular prey species (Pusineri et al. 2007). In the Mediterranean Sea, D. delphis is often 

observed in association with S. coeruleoalba (G. Bearzi et al. 2003) with a decreasing eastward gradient of relative 

abundance of common dolphin likely relative to its capacity to form single species group (Frantzis and Herzing 2002). 

No evidence of food competition exists between the two species because contrarily to the common dolphin, the 

Mediterranean diet of the striped dolphin is mainly based on demersal (Lahaye et al. 2006) and pelagic cephalopods (e.g. 

Ommastrephidae, Histioteuthidae, Onychoteuthidae) (Wurtz and Marrale 1993; Meotti and Podestà 1997). The taller 

shape of the striped dolphin’s ramus observed in the Mediterranean stock is concordant with its teuthophagous diet since 

from an evolutionary point of view, more robust mandibles are correlated with a suction feeding strategy rather than a 

raptorial behaviour (Johnston and Berta 2011; Werth 2000). Outside the basin, the striped dolphin is mainly observed in 

oceanic waters feeding primarily on small mesopelagic fish (Spitz et al. 2006; Pusineri et al. 2007) whereas the common 

dolphin lives in neritic areas occurring mostly over the continental shelf (Silva 1999), likely limiting the interspecific 

competition for food resources. The bottlenose dolphin shows a clear different pattern of shape change across the 

geographic gradient compared with the other two dolphins (Fig. 8, Table 5). Since its significant allometric component, 

T. truncatus’ shape change is clearly related to size variation. The Atlantic population’s jaw morphology is more robust 

compared to the Mediterranean one and is characterized by well-developed bony processes and a prominent mandibular 

notch, possibly reflecting muscle insertion for a stronger musculature (Mead and Fordyce 2009). The species is generally 

considered an opportunistic feeder and a top predator of coastal and shelf habitat, however, in the Mediterranean its diet 

is primarily based on demersal prey such as European hake Merluccius merluccius, European Conger Conger conger, 

common cuttlefish Sepia officinalis, common octopus Octopus vulgaris (Blanco, Raga, and Salomón 2001; G. Bearzi, 

Fortuna, and Reeves 2009) while the importance of hake in the Mediterranean diet contrasts with the greater importance 

of gadids (e.g., whiting Merlangius merlangius) in the East Atlantic (Santos et al. 1994; Blanco, Raga, and Salomón 

2001) and with a diet inclusive of big prey such as haddock Melanogrammus aeglefinus and large salmonids Salmo salar 

and Salmo trutta in northern latitudes including the Black Sea (Wilson, Thompson, and Hammond 1997; Santos Vázquez 

1998; Santos et al. 2001). Despite high level of sympatry with the common dolphin in the Mediterranean neritic habitat, 

associations between the two species have been rarely observed (G. Bearzi et al. 2005). Whether this could be related to 

different prey preferences is not known, however remarkably different feeding strategies have been observed: the 

bottlenose dolphin performs long dives (up to eight min) preying demersal species while the common dolphin performs 

shorter dives (less than two min) and prefers small epipelagic fish. Our morphological data supports this dietary 

segregation since D. delphis’ slender mandibular shape is typically related to the raptorial feeding strategy while T. 

truncatus’ blunted jaw (i.e., shorter length, higher ramus and reduced dentition) corresponds to a suction feeder structure. 

Finally, despite the observed differences between the bottlenose dolphin mandibular morphology and the other 

two small species, it is worth noting that they display some common patterns of geographic phenotypic change: first, the 

Mediterranean populations are always clearly different from the Atlantic ones; second, the amount of phenotypic change 

is significantly similar among species. From an evolutionary point of view, after the isolation of the Mediterranean Basin 

during the Messinian salinity crisis, which occurred in the late Miocene (5.59-5.33 Ma) (Krijgsman et al. 1999), the 

Atlantic waters rapidly refilled the basin (Garcia-Castellanos et al. 2009). In fact, while the Italian Miocene fossil record 

is almost negligible, the Italian Pliocene fossils testify the Mediterranean colonization by the Atlantic oceanic fauna 

(Cagnolaro et al. 2015). Sharing the same semi-enclosed basin could have led to a more pronounced interspecific niche 

segregation within the basin compared to the Atlantic Ocean, with species displaying habitat partitioning to avoid direct 

competition: here the mandibular structure divergence observed in the Mediterranean stocks of the striped and the 
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common dolphins seems to support this hypothesis while, on the other hand, the Mediterranean morphological divergence 

of the bottlenose dolphin could be related to the marked difference of prey type (e.g., lack of big and large prey living in 

northern latitudes). Future researches should concentrate on these aspects of evolutionary ecology to link the observed 

anatomical differences to different functional demand related to distinct diet preferences. Last but not least, we underline 

the role of geometric morphometrics to investigate the morphological variability of species both at the intraspecific and 

interspecific level and to identify functional important anatomical changes. 

 

This research received financial support from the University of Molise and through SYNTHESYS funding (grant 

agreement n°226506) within the European Union's Seventh Framework Programme. 

The authors declare that they have no conflict of interest. 

 

References 

Adams, D. C., and M. L. Collyer. 2009. “A General Framework for the Analysis of Phenotypic Trajectories in 

Evolutionary Studies.” Evolution 63 (5): 1143–54. doi:10.1111/j.1558-5646.2009.00649.x. 

Adams, D. C., and A. Nistri. 2010. “Ontogenetic Convergence and Evolution of Foot Morphology in European Cave 

Salamanders (Family: Plethodontidae).” BMC Evolutionary Biology 10 (216): 1–10. doi:10.1186/1471-2148-10-

216. 

Adams, D. C., and E. Otárola-Castillo. 2013. “Geomorph: An R Package for the Collection and Analysis of Geometric 

Morphometric Shape Data.” Methods in Ecology and Evolution 4: 393–99. doi:10.1111/2041-210X.12035. 

Adams, D. C., and F. J. Rohlf. 2000. “Ecological Character Displacement in Plethodon: Biomechanical Differences Found 

from a Geometric Morphometric Study.” Proceedings of the National Academy of Sciences of the United States of 

America 97 (8): 4106–11. doi:10.1073/pnas.97.8.4106. 

Adams, D. C., F. J. Rohlf, and D. E. Slice. 2013. “A Field Comes of Age: Geometric Morphometrics in the 21st Century.” 

Hystrix, the Italian Journal of Mammalogy 24 (1). doi:10.4404/hystrix-24.1-6283. 

Amaral, A. R., J. A. Jackson, L. M. Möller, L. B. Beheregaray, and M. M. Coelho. 2012. “Species Tree of a Recent 

Radiation: The Subfamily Delphininae (Cetacea, Mammalia).” Molecular Phylogenetics and Evolution 64 (1). 

Elsevier Inc.: 243–53. doi:10.1016/j.ympev.2012.04.004. 

Amaral, A. R., M. Sequeira, and M. M. Coelho. 2007. “A First Approach to the Usefulness of Cytochrome c Oxidase I 

Barcodes in the Identification of Closely Related Delphinid Cetacean Species.” Marine and Freshwater Research 

58 (6): 505–10. doi:10.1071/MF07050. 

Barroso, C., T. W. Cranford, and A. Berta. 2012. “Shape Analysis of Odontocete Mandibles: Functional and Evolutionary 

Implications.” Journal of Morphology 273 (9): 1021–30. doi:10.1002/jmor.20040. 

Bearzi, G., C. M. Fortuna, and R. R. Reeves. 2009. “Ecology and Conservation of Common Bottlenose Dolphins Tursiops 

Truncatus in the Mediterranean Sea.” Mammal Review 39 (2): 92–123. doi:10.1111/j.1365-2907.2008.00133.x. 

Bearzi, G., E. Politi, S. Agazzi, S. Bruno, M. Costa, and S. Bonizzoni. 2005. “Occurrence and Present Status of Coastal 

Dolphins (Delphinus Delphis and Tursiops Truncatus) in the Eastern Ionian Sea.” Aquatic Conservation: Marine 

and Freshwater Ecosystems 15 (3): 243–57. doi:10.1002/aqc.667. 

Bearzi, G., R. R. Reeves, G. Notarbartolo di Sciara, E. Politi, A. Cañadas, A. Frantzis, and B. Mussi. 2003. “Ecology , 

Status and Conservation of Short-Beaked Common Dolphins Delphinus Delphis in the Mediterranean Sea.” 

Mammal Review 33 (3): 224–52. doi:10.1046/j.1365-2907.2003.00032.x. 



11 
 

Bearzi, M. 2005. “Dolphin Sympatric Ecology.” Marine Biology Research 1 (3): 165–75. 

doi:10.1080/17451000510019132. 

Bell, C. H., C. M. Kemper, and J. G. Conran. 2002. “Common Dolphins (Delphinus Delphis) in Southern Australia: A 

Morphometric Study.” Australian Mammalogy 24: 1–10. 

Bianchi, C. N., and C. Morri. 2000. “Marine Biodiversity of the Mediterranean Sea: Situation, Problems and Prospects 

for Future Research.” Marine Pollution Bulletin 40 (5): 367–76. doi:10.1016/S0025-326X(00)00027-8. 

Blanco, C., J. A. Raga, and O. Salomón. 2001. “Diet of the Bottlenose Dolphin (Tursiops Truncatus) in the Western 

Mediterranean Sea.” Journal of the Marine Biological Association of the United Kingdom 81: 1053–58. 

doi:10.1017/S0025315401005057. 

Bourret, V. J. R., M. R. J. M. Macé, and B. Crouau-Roy. 2007. “Genetic Variation and Population Structure of Western 

Mediterranean and Northern Atlantic Stenella Coeruleoalba Populations Inferred from Microsatellite Data.” 

Journal of the Marine Biological Association of the United Kingdom 87: 265–69. 

doi:10.1017/S0025315407054859. 

Cagnolaro, L., B. Cozzi, G. Notarbartolo di Sciara, and M. Podestà. 2015. “Cetacea.” “Fauna d’Italia Vol.” XLIX. 

Mammalia IV. Bologna: Calderini, Bologna. 

Castillo, D. L. del, M. Viglino, D. A. Flores, and H. L. Cappozzo. 2017. “Skull Ontogeny and Modularity in Two Species 

of Lagenorhynchus : Morphological and Ecological Implications.” Journal of Morphology 278 (2): 203–14. 

doi:10.1002/jmor.20629. 

Cimmaruta, R., P. Bondanelli, and G. Nascetti. 2005. “Genetic Structure and Environmental Heterogeneity in the 

European Hake (Merluccius Merluccius).” Molecular Ecology 14 (8). Blackwell Science Ltd: 2577–91. 

doi:10.1111/j.1365-294X.2005.02595.x. 

Coll, M., C. Piroddi, J. Steenbeek, K. Kaschner, F. Ben Rais Lasram, J. Aguzzi, E. Ballesteros, et al. 2010. “The 

Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats.” PloS ONE 5 (8): e11842. 

doi:10.1371/journal.pone.0011842. 

Collyer, M. L., and D. C. Adams. 2013. “Phenotypic Trajectory Analysis: Comparison of Shape Change Patterns in 

Evolution and Ecology Linear Shape Change Associated with a Continu- Ous Variable.” Hystrix, the Italian Journal 

of Mammalogy 24 (1): 75–83. doi:10.4404/hystrix-24.1-6298. 

Collyer, M. L., D. J. Sekora, and D. C. Adams. 2015. “A Method for Analysis of Phenotypic Change for Phenotypes 

Described by High-Dimensional Data.” Heredity 115 (4). Nature Publishing Group: 357–65. 

doi:10.1038/hdy.2014.75. 

Committee for Taxonomy. 2016. “Committee on Taxonomy.” List of Marine Species and Sub Species. Society for Marine 

Mammology. https://www.marinemammalscience.org/. 

Danovaro, R., and A. Pusceddu. 2007. “Ecomanagement of Biodiversity and Ecosystem Functioning in the Mediterranean 

Sea: Concerns and Strategies.” Chemistry and Ecology 23 (5): 347–60. doi:10.1080/02757540701653384. 

Duran, S., C. Palacin, M. A. Becerro, X. Turon, and G. Giribet. 2004. “Genetic Diversity and Population Structure of the 

Commercially Harvested Sea Urchin Paracentrotus Lividus (Echinodermata, Echinoidea).” Molecular Ecology 13 

(11). Wiley Online Library: 3317–28. 

Figueirido, B., P. Palmqvist, and J. A. Pérez-Claros. 2009. “Ecomorphological Correlates of Craniodental Variation in 

Bears and Paleobiological Implications for Extinct Taxa: An Approach Based on Geometric Morphometrics.” 

Journal of Zoology 277: 70–80. doi:10.1111/j.1469-7998.2008.00511.x. 

Frantzis, A., and D. L. Herzing. 2002. “Mixed-Species Associations of Striped Dolphins (Stenella Coeruleoalba), Short-



12 
 

Beaked Common Dolphins (Delphinus Delphis), and Risso’s Dolphins (Grampus Griseus) in the Gulf of Corinth 

(Greece, Mediterranean Sea).” Aquatic Mammals 28 (2): 188–97. 

Garcia-Castellanos, D., F. Estrada, I. Jiménez-Munt, C. Gorini, M. Fernàndez, J. Vergés, and R. De Vicente. 2009. 

“Catastrophic Flood of the Mediterranean after the Messinian Salinity Crisis.” Nature 462 (7274). Macmillan 

Publishers Limited. All rights reserved: 778–81. http://dx.doi.org/10.1038/nature08555. 

Garcia-Martinez, J., E. Barrio, J. A. Raga, and A. Latorre. 1995. “Mitochondrial DNA Variability of Striped Dolphins 

(Stenella Coeruleoalba) in the Spanish Mediterranean Waters.” Marine Mammal Science 11 (2): 183–99. 

doi:10.1111/j.1748-7692.1995.tb00517.x. 

Garcia-Martinez, J., A. Moya, J. A. Raga, and A. Latorre. 1999. “Genetic Differentiation in the Striped Dolphin Stenella 

Coeruleoalba from European Waters according to Mirochondrial DNA (mtDNA) Restriction Analysis.” Molecular 

Ecology 8: 1069–73. 

Gaspari, S., A. Azzellino, S. Airoldi, and A. R. Hoelzel. 2007. “Social Kin Associations and Genetic Structuring of Striped 

Dolphin Populations (Stenella Coeruleoalba) in the Mediterranean Sea.” Molecular Ecology 16 (14): 2922–33. 

doi:10.1111/j.1365-294X.2007.03295.x. 

Guidarelli, G., P. Nicolosi, G. Fusco, M. C. de Francesco, and A. Loy. 2014. “Morphological Variation and Modularity 

in the Mandible of Three Mediterranean Dolphins.” Italian Journal of Zoology 81 (3): 354–67. 

Hammer, Ø., D. A. T. Harper, and P. D. Ryan. 2001. “PAST: Paleontological Statistics Software Package for Education 

and Data Analysis.” Palaeontolia Electronica 4. 

Heteren, A. H. van. 2009. “Cave Bears and Their Closest Living Relatives : A 3D Geometric Morphometrical Approach 

To the Functional Morphology of the Cave Bear.” Acta Carsologica Slovaca 47 (1): 33–46. 

Heteren, A. H. van, A. MacLarnon, C. Soligo, and T. C. Rae. 2016. “Functional Morphology of the Cave Bear (Ursus 

Spelaeus) Mandible: A 3D Geometric Morphometric Analysis.” Quaternary International 16 (1): 299–314. 

doi:10.1016/j.quaint.2013.10.056. 

Heyning, J. E., and W. F. Perrin. 1994. “Evidence for Two Species of Common Dolphins (Genus Delphinus) from the 

Eastern North Pacific.” Natural History Museum of Los Angeles County, Contributions in Science. 

http://www.nhm.org/site/sites/default/files/pdf/contrib_science/CS442.pdf. 

Johnston, C., and A. Berta. 2011. “Comparative Anatomy and Evolutionary History of Suction Feeding in Cetaceans.” 

Marine Mammal Science 27 (3): 493–513. doi:10.1111/j.1748-7692.2010.00420.x. 

Kingston, S. E., L. D. Adams, and P. E. Rosel. 2009. “Testing Mitochondrial Sequences and Anonymous Nuclear Markers 

for Phylogeny Reconstruction in a Rapidly Radiating Group: Molecular Systematics of the Delphininae (Cetacea: 

Odontoceti: Delphinidae).” BMC Evolutionary Biology 9: 245. doi:10.1186/1471-2148-9-245. 

Klingenberg, C. P. 2011. “MorphoJ: An Integrated Software Package for Geometric Morphometrics.” Molecular Ecology 

Resources 11 (2): 353–57. doi:10.1111/j.1755-0998.2010.02924.x. 

Klingenberg, C. P., K. Mebus, and J. Auffray. 2003. “Developmental Integration in a Complex Morphological Structure: 

How Distinct Are the Modules in the Mouse Mandible?” Evolution & Development 5 (5): 522–31. 

doi:10.1046/j.1525-142X.2003.03057.x. 

Krijgsman, W., F. J. Hilgen, I. Raffi, F. J. Sierro, and D. S. Wilson. 1999. “Chronology, Causes and Progression of the 

Messinian Salinity Crisis.” Nature 400 (6745): 652–55. http://dx.doi.org/10.1038/23231. 

Lahaye, V., P. Bustamante, W. Dabin, O. Van Canneyt, F. Dhermain, C. Cesarini, G. J. Pierce, and F. Caurant. 2006. 

“New Insights from Age Determination on Toxic Element Accumulation in Striped and Bottlenose Dolphins from 

Atlantic and Mediterranean Waters.” Marine Pollution Bulletin 52 (10): 1219–30. 



13 
 

doi:10.1016/j.marpolbul.2006.02.020. 

Loy, A., P. Genov, M. Galfo, M. G. Jacobone, and A. Vigna Taglianti. 2008. “Cranial Morphometrics of the Apennine 

Brown Bear (Ursus Arctos Marsicanus) and Preliminary Notes on the Relationships with Other Southern European 

Populations.” Italian Journal of Zoology 75 (1): 67–75. doi:10.1080/11250000701689857. 

Loy, A., A. Tamburelli, R. Carlini, and D. E. Slice. 2011. “Craniometric Variation of Some Mediterranean and Atlantic 

Populations of Stenella Coeruleoalba (Mammalia, Delphinidae): A Three-Dimensional Geometric Morphometric 

Analysis.” Marine Mammal Science 27 (2): E65–78. doi:10.1111/j.1748-7692.2010.00431.x. 

McGowen, M. R. 2011. “Toward the Resolution of an Explosive Radiation-A Multilocus Phylogeny of Oceanic Dolphins 

(Delphinidae).” Molecular Phylogenetics and Evolution 60 (3). Elsevier Inc.: 345–57. 

doi:10.1016/j.ympev.2011.05.003. 

McGowen, M. R., M. Spaulding, and J. Gatesy. 2009. “Divergence Date Estimation and a Comprehensive Molecular 

Tree of Extant Cetaceans.” Molecular Phylogenetics and Evolution 53 (3). Elsevier Inc.: 891–906. 

doi:10.1016/j.ympev.2009.08.018. 

Mead, J. G., and R. E. Fordyce. 2009. “The Therian Skull : A Lexicon with Emphasis on the Odontocetes.” Smithsonian 

Contributions to Zoology, no. 627: 1–249. doi:10.5479/si.00810282.627. 

Meloro, C. 2011. “Feeding Habits of Plio-Pleistocene Large Carnivores as Revealed by the Mandibular Geometry.” 

Journal of Vertebrate Paleontology 31 (2): 428–46. doi:10.1080/02724634.2011.550357. 

Meloro, C., N. Cáceres, F. Carotenuto, F. Passaro, J. Sponchiado, G. L. Melo, and P. Raia. 2014. “Ecogeographical 

Variation in Skull Shape of Capuchin Monkeys.” Journal of Biogeography 41 (3). Elsevier GmbH.: 501–12. 

doi:10.1111/jbi.12203. 

Meloro, C., and P. O’Higgins. 2011. “Ecological Adaptations of Mandibular Form in Fissiped Carnivora.” Journal of 

Mammalian Evolution 18 (3): 185–200. doi:10.1007/s10914-011-9156-z. 

Meloro, C., P. Raia, F. Carotenuto, and S. N. Cobb. 2011. “Phylogenetic Signal, Function and Integration in the Subunits 

of the Carnivoran Mandible.” Evolutionary Biology 38 (4): 465–75. doi:10.1007/s11692-011-9135-6. 

Meloro, C., P. Raia, P. Piras, C. Barbera, and P. O’Higgins. 2008. “The Shape of the Mandibular Corpus in Large Fissiped 

Carnivores : Allometry , Function and Phylogeny.” Zoological Journal of the Linnean Society 154: 832–45. 

Meotti, C., and M. Podestà. 1997. “Stomach Contents of Striped Dolphins, Stenella Coeruleoalba (Meyen, 1833) from 

the Western Ligurian Sea (Cetacea, Delphinidae).” Atti Della Societa Italiana Di Scienze Naturali E Del Museo 

Civico Di Storia Naturale Di Milano 137: 5–15. 

Murphy, S., J. S. Herman, G. J. Pierce, E. Rogan, and A. C. Kitchener. 2006. “Taxonomic Status and Geographical Cranial 

Variation of Common Dolphins (Delphinus) in the Eastern North Atlantic.” Marine Mammal Science 22 (3): 573–

99. doi:10.1111/j.1748-7692.2006.00037.x. 

Naciri, M., C. Lemaire, P. Borsa, and F. Bonhomme. 1999. “Genetic Study of the Atlantic/Mediterranean Transition in 

Sea Bass (Dicentrarchus Labrax).” Journal of Heredity 90 (6): 591–96. doi:10.1093/jhered/90.6.591. 

Natoli, A., A. Birkun, A. Aguilar, A. Lopez, and A. R. Hoelzel. 2005. “Habitat Structure and the Dispersal of Male and 

Female Bottlenose Dolphins (Tursiops Truncatus).” Proceedings of The Royal Society - Biological Sciences 272 

(1569): 1217–26. doi:10.1098/rspb.2005.3076. 

Natoli, A., A. Cañadas, C. Vaquero, E. Politi, P. Fernandez-Navarro, and A. R. Hoelzel. 2008. “Conservation Genetics 

of the Short-Beaked Common Dolphin (Delphinus Delphis) in the Mediterranean Sea and in the Eastern North 

Atlantic Ocean.” Conservation Genetics 9 (6): 1479–87. doi:10.1007/s10592-007-9481-1. 

Nicolosi, P. 2011. “Variabilità Intraspecifica in Delfino Comune, Delphinus Delphis Linnaeus, 1758. L’utilizzo Della 



14 
 

Morfometria Geometrica Bi- E Tridimensionale Come Strumento Diagnostico E Conoscitivo.” University of 

Molise. 

Nummela, S., J. E. Kosove, T. E. Lancaster, and J. G. M. Thewissen. 2004. “Lateral Mandibular Wall Thickness in 

Tursiops Truncatus: Variation due to Sex and Age.” Marine Mammal Science 20 (3): 491–97. doi:10.1111/j.1748-

7692.2004.tb01174.x. 

Otero, M. D. M., and M. Conigliaro. 2012. “Marine Mammals and Sea Turtles of the Mediterranean and Black Seas.” 

Gland, Switzerland and Malaga, Spain: IUCN. 

Patarnello, T., F. A. M. J. Volckaert, and R. Castilho. 2007. “Pillars of Hercules: Is the Atlantic-Mediterranean Transition 

a Phylogeographical Break?” Molecular Ecology 16 (21): 4426–44. doi:10.1111/j.1365-294X.2007.03477.x. 

Pérez-Losada, M., A. Guerra, and G. R. Carvalho. 2002. “Extensive Population Subdivision of the Cuttlefish Sepia 

Officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula Indicated by Microsatellite DNA Variation.” 

Heredity 89: 417–24. http://www.nature.com/hdy/journal/v89/n6/abs/6800160a.html. 

Perrin, W. F. 1975. “Variation of Spotted and Spinner Porpoise (Genus Stenella) in the Eastern Pacific and Hawaii.” 

Scripps Institution of Oceanography 21. 

———. 1984. “Patterns of Geographical Variation in Small Cetaceans.” Acta Zoologica Fennica 172 (1956): 137–40. 

http://www.scopus.com/inward/record.url?eid=2-s2.0-

0021565514&partnerID=40&md5=a8aabe754a6c8f6ff40f691ac6a932e0. 

Perrin, W. F., P. E. Rosel, and F. Cipriano. 2013. “How to Contend with Paraphyly in the Taxonomy of the Delphinine 

Cetaceans?” Marine Mammal Science 29 (4): 567–88. doi:10.1111/mms.12051. 

Prevosti, F. J., G. F. Turazzini, M. D. Ercoli, and E. Hingst-Zaher. 2012. “Mandible Shape in Marsupial and Placental 

Carnivorous Mammals: A Morphological Comparative Study Using Geometric Morphometrics.” Zoological 

Journal of the Linnean Society 164 (4): 836–55. doi:10.1111/j.1096-3642.2011.00785.x. 

Pusineri, C., V. Magnin, L. Meynier, J. Spitz, S. Hassani, and V. Ridoux. 2007. “Food and Feeding Ecology of the 

Common Dolphin (Delphinus Delphis) in the Oceanic Northeast Atlantic and Comparison with Its Diet in Neritic 

Areas.” Marine Mammal Science 23 (1): 30–47. doi:10.1111/j.1748-7692.2006.00088.x. 

Quesada, H., C. M. Beynon, and D. O. Skibinski. 1995. “A Mitochondrial DNA Discontinuity in the Mussel Mytilus 

Galloprovincialis Lmk: Pleistocene Vicariance Biogeography and Secondary Intergradation.” Molecular Biology 

and Evolution 12 (3): 521–24. http://mbe.oxfordjournals.org/cgi/content/long/12/3/521. 

Raia, P. 2004. “Morphological Correlates of Tough Food Consumption in Large Land Carnivores.” Italian Journal of 

Zoology 71 (1): 45–50. 

R Studio. n.d. “[Program]. 0.98.1103 Version. Boston: RStudio Inc; 2009–2014.” 

Rohlf, F. J. 2003. “tpsDig2 Version 2.26.” Dept. of Ecology and Evolution, State Univ. of New York, Stony Brook, NY. 

Rohlf, F. J., and D. E. Slice. 1990. “Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks.” 

Systematic Biology 39 (1): 40–59. doi:10.2307/2992207. 

Santos, M. B., G. J. Pierce, R. J. Reid, I. A. P. Patterson, H. M. Ross, and E. Mente. 2001. “Stomach Contents of 

Bottlenose Dolphins ( T Ursiops Truncatus ) in Scottish Waters.” Journal of the Marine Biological Association of 

the United Kingdom 81 (5): 873–78. doi:10.1017/S0025315401004714. 

Santos, M. B., G. J. Pierce, H. M. Ross, R. J. Reid, and B. Wilson. 1994. “Diets of Small Cetaceans from the Scottish 

Coast.” International Council for the Exploration of the Sea (Marina Mammal Committee) CM 1994/N: 16 pp. 

Santos Vázquez, M. B. 1998. “Feeding Ecology of Harbour Porpoises, Common and Bottlenose Dolphins and Sperm 

Whales in the Northeast Atlantic.” PhD Thesis, no. July: 284. 



15 
 

Silva, M. A. 1999. “Diet of Common Dolphins, Delphinus Delphis, off the Portuguese Continental Coast.” Journal of the 

Marine Biological Association of the United Kingdom 79: 531–40. 

Slice, D. E. 2001. “Landmark Coordinates Aligned by Procrustes Analysis Do Not Lie in Kendall’s Shape Space.” 

Systematic Biology 50 (1): 141–49. doi:10.1080/106351501750107594. 

Spitz, J., E. Richard, L. Meynier, C. Pusineri, and V. Ridoux. 2006. “Dietary Plasticity of the Oceanic Striped Dolphin, 

Stenella Coeruleoalba, in the Neritic Waters of the Bay of Biscay.” Journal of Sea Research 55 (4): 309–20. 

doi:10.1016/j.seares.2006.02.001. 

Spitz, J., Y. Rousseau, and V. Ridoux. 2006. “Diet Overlap between Harbour Porpoise and Bottlenose Dolphin: An 

Argument in Favour of Interference Competition for Food?” Estuarine, Coastal and Shelf Science 70 (1–2): 259–

70. 

Steeman, M. E., M. B. Hebsgaard, R. E. Fordyce, S. Y. W. Ho, D. L. Rabosky, R. Nielsen, C. Rahbek, H. Glenner, M. V. 

Sørensen, and E. Willerslev. 2009. “Radiation of Extant Cetaceans Driven by Restructuring of the Oceans.” 

Systematic Biology 58 (6): 573–85. doi:10.1093/sysbio/syp060. 

Valsecchi, E., W. Amos, J. A. Raga, M. Podestà, and W. Sherwin. 2004. “The Effects of Inbreeding on Mortality during 

a Morbillivirus Outbreak in the Mediterranean Striped Dolphin (Stenella Coeruleoalba).” Animal Conservation 7 

(2): 139–46. doi:10.1017/S1367943004001325. 

Wang, J. Y., L.-S. Chou, and B. N. White. 2000. “Osteological Differences between Two Sympatric Forms of Bottlenose 

Dolphins (Genus Tursiops) in Chinese Waters.” Journal of Zoology 252 (2): 147–62. 

doi:10.1017/S0952836900009894. 

Werth, A. J. 2000. “A Kinematic Study of Suction Feeding and Associated Behavior in the Long-Finned Pilot Whale, 

Globicephala Melas (Traill).” Marine Mammal Science 16 (2): 299–314. doi:10.1111/j.1748-7692.2000.tb00926.x. 

Westgate, A. J. 2007. “Geographic Variation in Cranial Morphology of Short-Beaked Common Dolphins (Delphinus 

Delphis) from the North Atlantic.” Journal of Mammalogy 88 (3): 678–88. doi:10.1644/06-MAMM-A-177R.1. 

Wilson, B., P.M. Thompson, and P. S. Hammond. 1997. “Habitat Use by Bottlenose Dolphins: Seasonal Distribution and 

Stratified Movement Patterns in the Moray Firth, Scotland.” Journal of Applied Ecology 34: 1365–74. 

Wurtz, M., and D. Marrale. 1993. “Food of Striped Dolphin, Stenella Coeruleoalba, in the Ligurian Sea.” Journal of the 

Marine Biological Association of the United Kingdom 73: 571–78. 

Zelditch, M. L., D. L. Swiderski, H. D. Sheets, and W. L. Fink. 2004. “Geometric Morphometrics for Biologists.” Elsevier 

59: 457. doi:10.1016/B978-0-12-386903-6.00001-0. 

 

 

 



 

Figure 1 Location of samples. NS = North Sea; AO = eastern North Atlantic; MS= Mediterranean Sea; D = Delphinus 

delphis; S = Stenella coeruleoalba; T = Tursiops truncatus. 
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Figure 1 Allometric trajectories are shown as the first principal component of predicted shape values on log-transformed 

centroid size (lnCS). Green, red and black dots represent respectively Tursiops truncatus, Stenella coeruleoalba and 

Delphinus delphis. 

 

Figure Click here to download Figure Figure 6.docx 

http://www.editorialmanager.com/evol/download.aspx?id=20713&guid=cfb7c498-faf2-4296-a24c-5733a4b4e12e&scheme=1
http://www.editorialmanager.com/evol/download.aspx?id=20713&guid=cfb7c498-faf2-4296-a24c-5733a4b4e12e&scheme=1


 

Figure 1 Location of landmarks on the right hemi-mandible. Landmark descriptions as follow: 1. Most anterior tip of the 

mandible; 2. Posterior ventral tip of the angular process; 3. Ventral extreme point of the condylar process; 4. Dorsal 

extreme point of the condylar process; 5. Most concave point of the mandibular notch; 6. Tip of the coronoid process; 7. 

Most posterior end of alveolar groove; 8. Most anterior end of alveolar groove. 
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Figure 1 Left: geographic trajectories for the three species D. delphis (Dd, red) S. coeruleoalba (Sc, green) and T. 

truncatus (Tt, blue) across three geographical areas: white, grey and black points represent respectively the mean shape 

for the Mediterranean Sea, the North East Atlantic Ocean and the North Sea. Right: geographic vectors for the three 

species D. delphis (Dd, red) S. coeruleoalba (Sc, green) and T. truncatus (Tt, blue) across two geographical areas: white, 

and black points represent respectively the mean shape for the Mediterranean Sea and the North Atlantic Ocean. 

Trajectories and vectors are displayed along the first two principal component axes summarizing 75 % of cumulative 

variance. 
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Figure 8 Deformation grids, produced with TpsRelw, show features of mean shape configurations 

corresponding to the Mediterranean and extra-Mediterranean populations of the three species. Wireframe 

grids show shape changes relative to the PC1. Scale factor=5. 
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Figure 1 Scatter plot of CV scores for the three populations of Tursiops truncatus. Shape differences are displayed as 

contour plots of deviations (dark blue) from the mean shape (light blue) at the extremes of the axis showing the higher 

separation among the seas. Scale factor=8. 
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Figure 1 Shape variation of Delphinus delphis (red) Stenella coeruleoalba (green) and Tursiops truncatus (blue) along 

the first two principal components axes, summarizing 75% of cumulative variance. Wireframe graphs for the extremes of 

each axis are shown, light blue line refers to the consensus configuration, blue line represents the configuration 

corresponding to the extreme of the axis. Scale factor = 0.1. 
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Figure 1 Box plot for centroid size (CS) for the three species. Dd = Delphinus delphis; Sc = Stenella coeruleoalba; Tt = 

Tursiops truncatus. 
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Table 1 Details on sample numbers and collections. D = Delphinus delphis; S = Stenella coeruleoalba; T = Tursiops 

truncatus; MS = Mediterranean Sea, AO = North East Atlantic; NS = North Sea. 

Museum 
D. delphis S. coeruleoalba T. truncatus 

MS AO NS MS AO NS MS AO NS 

Museo Civico di Storia Naturale di Milano 3   36   1   

Museo Civico di Storia Naturale di Genova 3         

Museo Civico di Zoologia di Roma 4   6   6   

Museo di Storia Naturale, Università di Pisa (Calci)       1   

Museo Zoologico, Università di Firenze       5   

Accademia dei Fisiocritici, Siena       24   

Naturalis Biodiversity Center, Leiden  2 2       

Royal Belgian Institute of Natural Sciences, 

Bruxelles 
        3 

Zoological Museum, University of Copenhagen  4 6      1 

National History Museum of Scotland, Edinburgh  1 17  4 4  1 19 

University of Haifa, Israel 6      24   

Natural History Museum, Tel Aviv University 1         

Aquário Vasco da Gama, Lisboa        6  

Museu Nacional de História Natural e da Ciência, 

Lisboa 
 5      6  

Muséum National d'Histoire Naturelle, Paris 3 3        

Naturhistoriska riksmuseet, Stockholm  2 2   1    

Zoological Museum, Barcelona       7   

Total for population 20 17 27 42 4 5 68 13 23 

Total for species  64   51   104  
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Table 1 ANOVA based on a randomized residual permutation procedure (RRPP) with 1000 random permutations. Sex 

as independent variable and Procrustes distances and Centroid Size values as dependent variable for shape and size 

respectively. 

  
Df SS MS Rsq F Z Pr(>F) 

D. delphis Size 1 8.320 8.321 0.018 0.536 0.330 0.450 

 Shape 1 0.000 0.000 0.027 0.828 0.696 0.491 

S. coeruleoalba Size 1 5.920 5.918 0.006 0.280 0.172 0.625 

 Shape 1 0.000 0.000 0.018 0.804 0.685 0.534 

T. truncatus Size 1 327.000 326.970 0.032 2.441 1.424 0.115 

 Shape 1 0.001 0.001 0.022 1.685 1.394 0.133 
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Table 1 Pairwise comparisons among D. delphis, S. coeruleoalba and T. truncatus' populations. Above and below the 

diagonal P-values of Bonferroni corrected and uncorrected significance respectively. AO = Atlantic Ocean, MS = 

Mediterranena Sea, NS = North Sea. 

D. delphis AO MS NS 

AO 0 < 0.001 0.2 

MS < 0.001 0 < 0.001 

NS 0.066 < 0.001 0 

S. coeruleoalba    

AO 0 0.14 1 

MS 0.046 0 0.009 

NS 0.352 0.003 0 

T. truncatus    

AO 0 0.026 0.049 

MS 0.008 0 < 0.001 

NS 0.016 < 0.001 0 
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Table 1 ANOVA based on a randomized residual permutation procedure (RRPP) with 1000 random permutations. 

Procrustes distances as dependent variable and Species, Sea and the interaction between the two as independent, 

categorical variables. Here, “Sea” identifies populations coming from the three geographic areas. 

 Df SS MS Rsq F Z Pr(>F) 

Species 
2 0.138179 0.069090 0.48020 110.5364 26.1997 0.001 ** 

Sea 2 
0.007516 

0.003758 0.02612 6.0126 4.9682 0.001 ** 

Species x Sea 4 
0.008298 

0.002075 0.02884 3.3192 3.0464 0.001 ** 

Residuals 214 
0.133758 

0.000625     

Total 
222 0.287752      
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Table 1 Pairwise comparisons of geometric attributes of phenotypic trajectories for each species across the three 

geographic areas. S = trajectory shape difference; D = amount of mandible shape changes; Ѳ = direction of phenotypic 

changes. 

 S D Ѳ 

Delphinus - Stenella 
SD, S = 0.351, P = 0.525 DD, S = 0.0005, P = 0.980 ѲD, S = 80.022°, P = 0.255 

Delphinus – Tursiops 
SD, T = 0.431, P = 0.150 DD, T = 0.003, P = 0.775 ѲD, T = 94.704°, P = 0.095 

Stenella – Tursiops 
SS, T = 0.190, P = 0.815 DS, T = 0.004, P = 0.745 ѲS, T = 109.147°, P = 0.130 
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Table 1 ANOVA based on a randomized residual permutation procedure (RRPP) with 1000 random permutations. 

Procrustes distance is the dependent variable, and species, sea and the interaction between the two are the independent, 

categorical variables. Here, “Sea” represents populations coming from two geographic areas. 

 Df SS MS Rsq F Z Pr(>F) 

Species 
2 0.136589 0.068295 0.49393 114.752 25.5011 0.001 ** 

Sea 1 
0.005989 

0.005989 0.02166 10.064 7.8506 0.001 ** 

Species x Sea 2 
0.006596 

0.003298 0.02385 5.541 4.6910 0.001 ** 

Residuals 214 
0.127362 

0.000595     

Total 
219 0.276536      
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