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Abstract

Statistical power assessment is an important component of hypothesis-driven research but until
relatively recently (mid-1990s) no methods were available for assessing power in experiments in-
volving continuum data and in particular those involving one-dimensional (1D) time series. The
purpose of this study was to describe how continuum-level power analyses can be used to plan
hypothesis-driven biomechanics experiments involving 1D data. In particular, we demonstrate how
theory- and pilot-driven 1D effect modeling can be used for sample-size calculations for both single-
and multi-subject experiments. For theory-driven power analysis we use the minimum jerk hypoth-
esis and single-subject experiments involving straight-line, planar reaching. For pilot-driven power
analysis we use a previously published knee kinematics dataset as a pilot dataset. Results show
that powers on the order of 0.8 could be achieved with relatively small sample sizes, five and ten for
within-subject minimum jerk analysis and between-subject knee kinematics, respectively. However,
the appropriate sample size depends on a priori justifications of biomechanical meaning and effect
size. The main advantage of the proposed technique is that it encourages a priori justification re-
garding the clinical and/or scientific meaning of particular 1D effects, thereby robustly structuring
subsequent experimental inquiry. In short, it shifts focus from a search for significance to a search
for non-rejectable hypotheses.
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1. Introduction

Statistical power is the probability that an experiment with a specific sample size will detect

a true effect see (Appendix A for terminology) given experimental noise or variance. The main

goal of power analysis is to calculate the sample size required to detect a meaningful effect. A

priori sample size calculation based on appropriate power levels (conventionally > 0.8) represents

a strong position for subsequent inferences. When not calculated a variety of inferential errors can

result (Hopkins Batterham, 2016; Knudson, 2017).

The secondary goals of a priori sample size calculation are to avoid over- and under-powering.

Over-powered experiments have too many observations and consequently risk detecting meaning-

less, possibly small effects. Under-powered experiments conversely have too few observations to

convincingly distinguish true effects from noise. In Biomechanics both over- and under-powered

experiments are widely prevalent (Knudson, 2017).

Power analysis’ critical step is defining a meaningful effect. Biomechanical effects can be de-

rived in a variety of ways: (1) analytically based on mathematical hypotheses (Flash Hogan, 1985;

Todorov, 2004), (2) numerically based on optimizations of musculoskeletal models, (3) referentially

based on results reported in the literature, and (4) empirically based on pilot results. Nevertheless,

very few studies in the Biomechanics literature employ a priori sample size calculations (Knudson,

2017).

In our estimation a key problem is data dimensionality. Many experiments measure one-

dimensional (1D) processes (e.g. kinematic and force trajectories), yet most power analysis soft-

ware requires zero-dimensional (0D) data (e.g. body mass, height). This is problematic because

it adds complexity to power analysis; not only does one have to justify a particular biomechan-

ical effect, but one also has to justify why a particular 0D metric robustly summarizes one’s 1D

dataset (Pataky et al., 2013).Nevertheless, in other literatures a variety of open-source tools exist

for dealing with 1D and higher-dimensional effects (Appendix B).

The main purpose of this study was to describe sample size calculations for hypothesis-driven

Biomechanics experiments involving 1D data. In particular we demonstrate how a numerical

method called ‘power1d’ (Pataky, 2017) can be used along with theory- and pilot-based 1D effects
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to calculate sample sizes in single- and multi-subject experiments.

2. Methods

Analyses were conducted in Python 2.7 using Canopy 1.4 (Enthought Inc., Austin, USA),

spm1d (Pataky, 2012) and power1d (Pataky, 2017).

2.1. Example 1: Theory-driven power analysis

The minimum jerk hypothesis (Flash Hogan, 1985) was tested for planar reaching in a single

subject. This hypothesis predicts that, when moving from one point to another in a specific time

interval, one follows the kinematic trajectory which minimizes total jerk, where jerk is the third

temporal derivative of position in the intended movement direction.

2.1.1. Pilot experiment

One graduate student, naive to the intent of the study, provided informed consent to participate

following ethical approval at Shinshu University. The subject sat unconstrained with their chest

squarely touching a table. A board (50 cm long, 5 cm wide) was placed on the table at shoulder

height and perpendicular to the subject. Two targets were marked on the board 30 cm apart using

circular stickers (diameter=4 cm), corresponding to transverse plane elbow angles of approximately

150 deg and 45 deg. The subject was instructed to start with a fully-extended index finger above

the proximal target, to move “rapidly but comfortably” to the distal target without touching the

board, and to keep their elbow at shoulder height. Ten consecutive trials were performed with 30

s rests between trials.

Two rigid plates containing four reflective markers each were affixed to the subject’s forearm

and upper arm and two additional reflective markers were attached above the humeral epicondyles.

Marker positions were recorded at 100 Hz using four Oqus 5 cameras (Qualisys AB, Göteborg,

Sweden). Planar elbow angles were computed using Visual3D v6 (C-Motion, Germantown, MD,

USA). Movement start and stop were determined using an angular velocity threshold of 5 deg/s.

Data were linearly interpolated to a temporal domain of 0 – 100%. Unfiltered data were analyzed.
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2.1.2. Power analysis

First, the pilot data (Fig.1a) were used to compute the temporal smoothness, or ‘full-width-

at-half-maximum’ (FWHM) (Kiebel et al., 1999; Pataky et al., 2013), of the 1D residuals (Fig.1b);

here FWHM = 26.1%. Next, noise amplitude was estimated as the average standard deviation

(SD) value of 6.2 deg (Fig.1c). The minimum jerk trajectory between the experimentally measured

mean starting and ending elbow angles, SD and FWHM formed a power1d model for generating

random data samples (Fig.1d,e).

Third, we defined kinematics representing an alternative hypothesis (H1) (Fig.1f) which, if true,

would cause us to reject the null (minimum jerk) hypothesis (H0). We chose alternative kinematics

with a maximum difference of 20 deg at the instant of maximum velocity (time=50%) and whose

difference tapered exponentially to zero at the endpoints. H1 meaning is addressed in §4.1.

Last, we generated 10,000 random data samples over a range of sample sizes J and calculated

the power for each, where power is defined as the probability that the experiment will reject H0

if H1 is true; the 1D rejection criterion is described extensively elsewhere (Friston et al., 1996;

Pataky et al., 2013). Following convention we computed the minimum J required to achieve power

> 0.8 at α=0.05.

2.1.3. Hypothesis testing experiments

The subject repeated the experiment but was asked to move at half the previous speed. A

one-sample t test was conducted (α=0.05) to compare the mean trajectory to the hypothesized

minimum jerk datum. The first experiment was then repeated for a second graduate student, after

receiving their informed consent, to judge the relevance of the original power analysis to a novel

subject.

2.2. Example 2: Pilot-driven power analysis

A previous dataset (Neptune et al., 1999) was revisited. Ten subjects had lower limb kinematics

measurements taken during v-cut and side-shuffle manoeuvres. We focussed on sagittal plane knee

kinematics.

Based on observed trajectories (Fig.2a) we constructed two data sample models (Fig.2b-c).
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The first, representing H0, used the observed v-cut mean trajectory as the datum for both samples,

and noise was modeled as smooth Gaussian with the same average amplitude and FWHM as the

original data (Fig.2b). The second, representing H1, added a Gaussian pulse to produce a different

datum for the side-shuffle task (Fig.2c), similar to the observed mean (Fig.2a). As above we used

power1d to calculate the minimum J required to achieve power > 0.8.

3. Results

3.1. Example 1: Theory-driven power analysis

Power analyses (Fig.3) suggested that a sample size of J=5 was needed to reject the minimum

jerk hypothesis (H0) with a power of 0.8 (Fig.3c). In the slow reaching experiment H0 was rejected

as predicted for J=5 (Fig.4i) and not for smaller sample sizes (Fig.4g,h), where the chronolog-

ically first J trials were analyzed in each case. When J=4 the maximum mean difference was

approximately 25 deg (Fig.4e) which was slightly larger than the a priori 20 deg and thus yielded

a near-significant result (Fig.4h).

For the second subject, H0 was not rejected for J=5 (Fig.5g) but was rejected for both J=6

and J=7 (Fig.5h,i). Note that this subject’s mean difference from the minimum jerk datum was

only 10 deg (Fig.5d–f), or half of H1’s 20 deg signal. Nevertheless, Subject 2’s variability was also

approximately half as large as Subject 1’s, implying that the overall effect size was similar. Thus,

while H0 was rejected for both J=6 and J=7, both results are over-powered and thus invalid based

on our a priori criterion of 20 deg.

3.2. Example 2: Pilot-driven power analysis

For the ten-subject knee kinematics dataset a sample size of J=10 yielded power=0.8 (Fig.6).

The point-of-interest (POI) and center-of-interest (COI) power continua indicate that maximum

power occurred at time=50%, close to the instant of maximum knee flexion, but with smaller-than

omnibus powers.
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4. Discussion

4.1. Main implications

This paper has shown that traditional power analyses can be conducted for one-dimensional

(1D) biomechanical data. Single-subject results suggest that relatively small samples of approx-

imately five may be adequately powerful to detect 1D effects (Fig.3) but also that those sample

sizes can greatly over-power single-subject analysis when subject-specific variability is incorrectly

modeled (Fig.5). Multi-subject results similarly showed that sample sizes of approximately ten may

be suitable to detect population-level effects (Fig.6). However, these dataset- and model-specific

conclusions do not necessarily generalize to other experiments. For example, smaller effects than

those investigated herein may require much larger sample sizes to obtain similar powers. The only

general conclusion we make is that robust power analysis is possible for 1D effects.

In §2.1.2 we chose one model based on the average SD and one specific alternative hypothesis.

This would naturally lead one to question why we used those and not others. This question, in fact,

emphasizes this paper’s main message. Explicit a priori justification of the clinical or scientific

meaning of alternative effects represents hypothesis-driven research and is scientifically stronger

than exploratory research, which attempts to infer meaning in a post hoc manner. Exploratory

results are of course often necessary as preliminary probes of complex biomechanical systems, but

exploratory findings themselves may be scientifically meaningless (Knudson, 2017) because they

are derived from a null prediction with no rationale for what effect sizes should cause rejection.

A priori non-null hypotheses and corresponding power analyses would benefit the literature by

shifting focus from a search for significance to a search for experimentally irrefutable hypotheses.

An important strength of the Biomechanics literature is its ability to predict complex 1D tra-

jectories through theory like minimum jerk (Flash Hogan, 1985) and optimal control (Todorov,

2004), or through musculoskeletal model optimization (Pizzolato et al., 2016). Integrating realistic

1D variability with these theoretical and numerical approaches creates explicit a priori 1D effects,

and coupling those effects with 1D power analyses represents a highly generalizable framework for

robust bio- and neuro-mechanical hypothesis testing.
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4.2. Power misunderstandings

From the perspective of hypothesis-driven research, a common problem is that power and effect

sizes are often assessed in a post hoc sense (Knudson, 2017). Post hoc power analysis is in fact invalid

(Hoenig Heisey, 2001) mainly because both power and α pertain only to a priori perspectives

regarding the infinite set of all possible experiments (see Appendix Cfor an extended discussion).

Just as α cannot logically be computed from a given dataset (i.e. what is the smallest α that would

yield significance for the observed effect), neither can power.

A second common misunderstanding is that significance can be obtained simply by increasing

sample size. This interpretation is incorrect because it describes over-powering (Hopkins Batterham,

2016), or equivalently employing more subjects or trials than are necessary to elucidate a specific hy-

pothesized effect. A priori sample size analysis balances over- and under-powering, conventionally

with a target power of 0.8.

4.3. Limitations

This paper does not address the issue of how to derive clinically or biomechanically meaningful

effects. We employed relatively large signals (Figs.1f, 2c), but smaller signals may be meaning-

ful. Nevertheless, this paper shows that it is possible to robustly test clearly defined 1D effects,

and thereby encourages an a priori perspective on meaning, which is scientifically much more

robust than attempting to infer meaning from observed signals which, by definition, may be ran-

dom. Shifting to a priori justifications of meaning would transform analyses from exploratory to

hypothesis-driven.

The proposed approach is limited to classical hypothesis testing so is largely irrelevant to ma-

chine learning studies, including those involving dimensionality reduction techniques like principal

components analysis. These techniques can not only yield valuable insights into biomechanical sys-

tems but are often essential for engineering applications like neural prostheses control. Nevertheless,

since many studies in Biomechanics continue to employ classical hypothesis testing (Knudson, 2017)

we expect the proposed framework to remain relevant for some time. In particular, a priori power

analysis will reduce the prevalence of false positives (Pataky et al., 2016; Knudson, 2017).
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4.4. Summary

This paper aligns traditional power analysis procedures with 1D biomechanical data. The

proposed framework robustly supports hypothesis-driven research for experiments involving 1D

data. Its main scientific advantages are that it encourages a priori justifications of meaning, and

consequently that it promotes a shift in focus from a search for significance to a search for non-

rejectable hypotheses.
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Figure 1:   Example 1, components needed for hypothesis-driven power analysis. (a) Pilot data (elbow flexion angle, one subject, 
ten trials) and minimum jerk trajectory.  (b) Residual trajectories (i.e., difference from sample mean).  (c) Standard deviation (SD) 
trajectory with average SD depicted.  (d-e) Data samples generated randomly based on residual smoothness (FWHM=26.1) and 
average SD (6.2).  (f) An alternative hypothesis (H1) depicted with null hypothesis (H0) minimum jerk trajectory; the goal of power 
analysis is to calculate the sample size needed to reject H0 if H1 is true. 



Figure 2:   Example 2. (a) Multi-subject ‘pilot’ experimental data (Neptune et al., 1999);  means and individual subjects depicted as 
thick and thin lines, respectively.  (b) Null hypothesis model; individual subject trajectories are randomly generated as smooth 
Gaussian trajectories which vary about the corresponding hypothesized mean trajectory. (c) Alternative hypothesis model.  Power 
analysis consists of: (i) using the null model to calculate the t threshold that the Gaussian trajectories would reach with a probability 
of (1 - alpha), then (ii) calculating the probability that the alternative model will cross that threshold.



Figure 3:   Example 1, power results.  The omnibus (whole-continuum) power is depicted along with point-of-interest (POI) and 
center-of-interest (COI) power continua. Increasing the sample size from three in panel (a) to four in panel (b) results in an omnibus 
power increase from 0.438 to 0.764, as summarized in the first two values of panel (c).  The panel (c) results suggest that a sample 
size of five is required to reject the null hypothesis with a power of 0.8.



Figure 4:   Example 1, main experiment hypothesis testing (Subject 1).  Top panels:  datasets, means and minimum jerk trajectories 
for three sample sizes. Middle panels: same data as in top panels but with respect to the minimum jerk trajectory (i.e. the null 
hypothesis).  Bottom panels: hypothesis testing results;  SPM{t} = statistical parametric map (t statistic);  t* = critical threshold.  A 
priori sample size analysis suggested sample size = 5 for power = 0.8 (Fig.3) but here three different sample sizes are presented to 
illustrate effects on final statistical results.



Figure 5:   Example 1, second hypothesis testing experiment result (Subject 2). Data presentation follows Fig.4.



Figure 6:  Example 2, power and sample size analysis. Data presented as in Fig.3.  Results suggest that a sample size of 10 is 
required to reject the null (Fig.5b) with a probability of 0.8 when the alternative (Fig.5c) is in fact true.



Appendix A Terminology

Table A.1 and Fig.A.1 below summarize the power-relevant terminology used in the main manuscript.

A brief discussion follows.

Table A.1: Power-related terminology.

Category Term Description

Data dimen-
sionality

Univariate data Scalar data

Multiivariate data Vector data

Measurement
domain di-
mensionality

0D data Univariate or multivariate data; the type of data analyzed by
most commercial statistical software

1D data Univariate or multivariate data which vary continuously over a
continuous one-dimensional (1D) domain, usually space or time

Data model
components

Signal Expected mean deviation from a datum (Fig.A.1). Units: same
as observation.

Noise Residuals about a datum (Fig.A.1). Units: same as observation.

E↵ect Noise-normalized signal (Fig.A.1). Unitless.

Hypothesis
testing

Null hypothesis (H0) A testable statement of equality (e.g. Force change = 0)

Alternative hypothesis (H1) A non-testable statement of inequality (e.g. Force change > 0)

Probability Type I error (↵) The probability of rejecting H0 when it is true

Type II error (�) The probability of failing to reject H0 when it is false

Power (1 - �) The probability of rejecting H0 given an alternative true e↵ect

1D power
types

Omnibus power The probability of rejecting H0 at any point in a 1D continuum;
i.e. in unconstrained 1D hypothesis testing

Center of interest (COI) power The probability of rejecting H0 within a given radius about a
specific point in a 1D continuum; i.e. in regionally-constrained
1D hypothesis testing.

Point of interest (POI) power The probability of rejecting H0 at a specific point in a 1D con-
tinuum; i.e. in point-constrained 1D hypothesis testing. Equiv-
alent to 0D power when a single continuum point is selected in
an a priori manner for hypothesis testing.



Figure A.1: Power-relevant terminology: “signal”, “noise” and “e↵ect”. The goal of power analysis is to
determine the probability of detecting a signal given the underlying noise. That probability is related
most closely to the e↵ect size, or signal-to-noise ratio. (a) An arbitrary signal and smooth Gaussian
noise with a constant standard deviation (SD) of 1.0. (b) Same as (a) but with a constant SD of 1.8;
since the noise is greater and also constant across the continuum the e↵ect is uniformly compressed. (c)
Same as (a) but with irregular, complex noise; in this particular case the noise amplitude scales with
the signal so the e↵ect is constant across the 1D continuum.

Discussion

Standard power theory and most commercial software packages deal exclusively with 0D data. Their

relations to 1D data can be elusive because it is usually di�cult to justifiably reduce a 1D observation to

a specific 0D metric in an a priori manner (Pataky et al., 2013). Moreover, power-relevant terminology

is not readily translatable to 1D data. For 0D data the ‘e↵ect’ is simply the signal-to-noise ratio, but for

1D data the relation amongst signal, noise and e↵ect can be more complex because both signal and noise

magnitudes can change across the 1D domain (Fig.A.1), and also because noise can be signal-dependent,

implying that a constant e↵ect size implies neither constant signal nor constant noise. Furthermore,

adjacent values in time are often highly correlated due to the viscoelastic nature of biological tissues,

implying that 0D approaches, which neglect this temporal correlation, are generally not valid for smooth

1D data analysis.

There are three separate types of power that exist in 1D power analysis: point-of interest (POI),

center-of-interest (COI) and omnibus (Figs.3,6, main manuscript) (Pataky, 2017). The POI power

continuum shows the probability of rejecting the null hypothesis at each continuum point. The COI

continuum shows power increases associated with extending the hypothesis testing scope to adjacent

continuum nodes. The omnibus power represents the power of rejecting H0 anywhere in the continuum.

By definition, POI power <= COI power <= omnibus power. COI powers are equivalent to POI and

omnibus powers when the COI radii are zero and 100%, respectively.



Appendix B Existing power analysis methods

While hypothesis testing emerged in the literature nearly a century ago (Fisher, 1925), statistical

power was not formally discussed until the late 1980s (reviewed in Huberty, 1993). Power analysis’

relatively recent emergence has led to a number of misunderstandings and misuses (Hoenig and Heisey,

2001), an under-appreciation of its value (Hopkins and Batterham, 2016) and ad hoc e↵ect definitions

(Knudson, 2017).

Continuum-level approaches to statistical power first emerged in the 1990s (Friston et al., 1996)

and currently three main categories of continuum-level power analysis exist (Fig.B.1): inflated variance,

non-central random field theory (RFT), and numerical.

Figure B.1: Overview of existing continuum-level power analysis methods.

The inflated variance method (Friston et al., 1996) is based on (central) random field theory (RFT)

(Adler and Hasofer, 1976; Adler and Taylor, 2007). RFT describes the probabilistic behavior of smooth

Gaussian continua (see Fig.B.1a,b) and has been shown to accurately model the variance observed in

a variety of 1D biomechanical datasets (Pataky et al., 2013). For power analysis this approach defines

signal as a second Gaussian process with larger variance and potentially di↵erent smoothness (i.e.

di↵erent frequency content), thereby representing a hypothesis for which the continuum location(s) and

precise e↵ect amplitudes are a priori unknown. In the context of joint angle trajectories, for example,

this inflated variance signal implies that the approximate magnitude of a particular change is known

(e.g. 10 deg) but not its location or extent in time. This interpretation of signal is useful for purely

exploratory analysis in which precise e↵ect predictions are not made. However, the method itself has



low power because the signal prediction is imprecise Hayasaka et al. (2007). In other words, if there is

a true signal which systematically occurs at the same point in time across subjects and/or trials, then

the inflated variance method will predict far more subjects and/or trials than are actually needed to

detect that signal.

The second approach to continuum-level power analysis is the non-central RFT method (Hayasaka

et al., 2007; Mumford and Nichols, 2008). This method models signal as a constant shift (Fig.B.1b),

possibly isolated to specific continuum regions. This signal represents, for example, a constant change

of 5 deg from a reference joint angle trajectory. This type of signal is perfectly analogous to the classical

definition of power, and since the signal is precise the non-central RFT method is more powerful than

the inflated variance method (Hayasaka et al., 2007). Neverthless, its main limitation is that it defines

signal in a binary sense: a continuum region either possesses constant signal or none. This is not

very useful for biomechanics applications in which precise kinematic and dynamic trajectories can be

predicted based on theory or musculoskeletal model optimization.

The third approach is a numerical method which iteratively simulates random 1D continua to com-

pute power (Pataky, 2017). This method, while computationally intensive, overcomes the limitations of

both aforementioned methods because it a↵ords arbitrary modeling of both signal and noise (Fig.B.1c).

This allows an investigator to generate a specific 1D signal of interest, to create 1D noise models to mimic

theoretical or experimentally observed variance, and ultimately to compute the sample size required to

robustly test arbitrary 1D signal predictions in their arbitrary noise environments. The numerical ap-

proach is the most general approach, flexibly implementing either of the two aforementioned approaches

or arbitrary signal and noise (Pataky, 2017). Since it is most general the main manuscript uses only the

numerical method.



Appendix C Post hoc power assessment

Estimating power based on an experimentally observed result (i.e. post hoc power assessment) has

been shown to be illogical and invalid for 0D data (Hoenig and Heisey, 2001). This Appendix aims to

explain why in the context of 1D data.

Consider the four datasets depicted in Fig.C.1. Each depicts a true signal to which smooth Gaussian

continua were added. Hypothesis testing results (from one-sample t tests) for each dataset are depicted in

Fig.C.2. These hypothesis testing results represent all four possible outcomes of an arbitrary experiment.

That is, in the case of a null e↵ect one can either correctly fail to reject the null hypothesis (H0) (Dataset

A, true negative) or incorrectly reject H0 (Dataset B, false positive). In the case of a true e↵ect one

can either correctly reject H0 (Dataset D, true positive) or incorrectly fail to reject H0 (Dataset C,

false negative). Note that we constructed these datasets to convey specific points regarding power so

we encourage readers to judge their relevance to real Biomechanics experiments.

Figure C.1: Simulated datasets.



Figure C.2: One-sample t test results. The solid black line depicts the test statistic (t value) continuum.
The horizontal line depicts the critical threshold at a Type I error rate of ↵=0.05.

While Fig.C.2 represents all possible experimental outcomes, power analysis pertains only to those

cases where true e↵ects exist (i.e. Datasets C and D). Nevertheless, to understand why post hoc power

analysis is invalid it is useful to first consider the other cases (Datasets A and B), where there is no true

signal, and in particular the concept of Type I error.

Type I error (↵) is also termed a ‘false positive’ and refers to the mistake of inferring an e↵ect when

none exists (Dataset B). The Type I error rate is set before an experiment, conventially at ↵=0.05,

and one applies this criterion to the observed data to either reject H0 (Fig.C.2b) or fail to reject H0

(Fig.C.2a). Note that it is possible, albeit scientifically invalid, to adjust ↵ after observing the data. For

example, given the results in (Fig.C.2a), one could increase the value of ↵ until the critical threshold

decreases enough to reject H0; in Fig.C.2a one would need to use ↵=0.65 to reject H0. It is scientifically

invalid to adjust ↵ in this post hoc manner because it is non-objective. In other words, ↵ pertains not

to a specific experiment, but instead to the infinite set of identical experiments in which no true e↵ect

exists, but in which random ‘e↵ects’ are observed due to random sampling.



Similarly, Type II error (�) is termed a ‘false negative’ and refers to the mistake of inferring no e↵ect

when one in fact exists (Dataset C). It is related to power as: power = (1 - �), where power is the

probability of inferring an e↵ect when one truly exists. Similar to ↵, � must be set before an experiment

because it pertains not to a specific experiment, but instead to the infinite set of identical experiments

in which a specific e↵ect exists, and in which a range of ‘e↵ects’ are observed experimentally due to

random sampling. Identical to ↵, � mustn’t be computed based on the results of an experiment because

a particular experiment’s ‘e↵ect’ may have been caused by random sampling. That is, one can never

know what the true e↵ect is based on an experimentally observed e↵ect, so neither ↵ nor � should be

computed based on experimentally observed e↵ects.

In summary, one must specify both ↵ and � (and thus power and e↵ect size) only in an a priori

manner because random sampling ensures that an experimentally observed e↵ect is generally unrelated

to the underlying true e↵ect. Further considerations of post hoc power calculations are provided in

Hoenig and Heisey (2001).
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