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ABSTRACT 

 

Purpose: To investigate differences in neuromuscular factors between elite and non-elite 

players, and to establish which factors underpin direction-specific unilateral jump 

performance. Methods: Elite (n=23; age, 18.1 ± 1.0 yrs; BMI, 23.1 ± 1.8 kg/m2) and non-elite 

(n=20; age, 22.3 ± 2.7 yrs; BMI, 23.8 ± 1.8 kg/m2) soccer players performed three unilateral 

countermovement jumps (CMJs) on a force platform in the vertical, horizontal-forward and 

medial directions. Knee extension isometric maximum voluntary contraction (iMVC) torque 

was assessed using isokinetic dynamometry. Vastus lateralis fascicle length and angle of 

pennation (AoP), and quadriceps femoris muscle volume (Mvol) and physiological cross 

sectional area (PCSA) were assessed using ultrasonography. Vastus lateralis activation was 

assessed via electromyography. Results: Elite soccer players presented greater knee extensor 

iMVC torque (365.7±66.6 vs. 320.1±62.6 N·m; P=0.045), Mvol (2853±508 vs. 2429±232 cm3, 

P=0.001) and PCSA (227±42 vs. 193±25 cm2, P=0.003) than non-elite. In both cohorts, 

unilateral vertical and unilateral medial CMJ performance correlated with Mvol and PCSA 

(r≥0.310 P≤0.043). In elite soccer players, unilateral vertical and unilateral medial CMJ 

performance correlated with upward phase vastus lateralis activation, and AoP (r≥0.478, 

P≤0.028). Unilateral horizontal-forward CMJ peak vertical power did not correlate with any 

measure of muscle size or activation but correlated inversely with AoP (r=-0.413; P=0.037). 

Conclusions: Whilst larger and stronger quadriceps differentiated elite from non-elite players, 

relationships between neuromuscular factors and unilateral jump performance were shown to 

be direction-specific. These findings support a notion that improving direction-specific 

muscular power in soccer requires improving a distinct neuromuscular profile. 
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INTRODUCTION 

Powerful efforts are performed frequently during elite soccer match-play 1 and often determine 

the outcome of competitive games 2. Elite soccer players have been shown to out-perform non-

elite soccer players during maximal unilateral countermovement jumps (CMJs) in the vertical, 

horizontal-forward and medial directions 3, thus suggesting unilateral CMJ capabilities in 

different directions may be important determinants of elite soccer playing status. An analysis 

of the kinetic, kinematic and electromyographic variables suggested that unilateral CMJs in 

different directions assess independent lower-limb power qualities in soccer players 3. 

However, no attempt has been made to investigate the neuromuscular factors underpinning 

direction-specific (soccer-associated) CMJ performance. Such information could be used to 

inform the neuromuscular factors that should be considered when prescribing the specific detail 

of elite soccer maximal power related assessment and development protocols. 

A series of interrelated neuromuscular factors contribute to maximal muscular power 

production, which is defined by the force-velocity relationship 4. Muscle volume is the product 

of muscle physiological cross-sectional area (representative of the maximum force-generating 

capacity of that muscle) and fascicle length (a major determinant of muscle contraction 

velocity) 5. Therefore, as power is the product of force x velocity, it follows that muscle volume 

should represent a major determinant of maximum muscle power. Indeed, quadriceps femoris 

muscle volume has been shown to be strongly related to mean power produced during bilateral 

vertical CMJs in adults and children (r2 = 0.9) 6, and moderately related in male children alone 

(r2 = 0.3) 7. Nonetheless, bilateral vertical CMJ performance is not a determinant of elite soccer 

playing status; instead, unilateral CMJ performance in different directions has been shown to 

differentiate between elite and non-elite soccer players 3. As unilateral CMJs in different 

directions require distinct vertical peak power 3,8 and resultant take-off velocity 3 capabilities, 

such tasks may be underpinned by neuromuscular factors specific to the direction of the 
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propulsion. However, the contribution of muscle volume and its individual components 

(physiological cross sectional area and fascicle length) to unilateral CMJ performance in 

different directions remains unknown.  

In addition to fascicle length, fascicle pennation angle (the angle at which the 

fascicles insert into the aponeurosis) is also thought to influence maximal power. The fascicle 

pennation angle is thought to be determined by the number of sarcomeres arranged in parallel 

and, thus, the muscle fibre cross sectional area 9. A larger fascicle pennation angle would 

allow more contractile material to attach to the aponeurosis, thus increasing the whole muscle 

physiological cross sectional area (PCSA) and enabling the muscle to produce more force 9,10. 

Thus, a greater fascicle pennation angle should lead to an increase in force output, although 

there is a concomitant reduction in the force resolved at the tendon due to the oblique line of 

pull of the fascicles 9,10. Furthermore, fascicle pennation angle correlates inversely with the 

rate of force development (RFD) 11 and has a negative influence on muscle contractile 

velocity 9,12. However, the contribution of fascicle pennation angle to sport-specific actions 

such as unilateral CMJs in different directions, remains unknown.  

 Maximal muscular power is not only determined by muscle architecture and size, but 

also by the ability to recruit motor units and activate all of the fibres in the specific muscles 

involved in the movement 4. Whilst it has been established that unilateral 3 and bilateral CMJs 

in different directions require different muscle activation strategies 13,14, the role of muscle 

activation in determining direction-specific unilateral CMJ performance is not known.  

While identifying the neuromuscular components that contribute to unilateral CMJ 

performance in each direction could allow the prescription of more specific training 

intervention strategies, understanding which neuromuscular factors determine soccer playing 

status could potentially inform talent selection and development protocols. Furthermore, if a 

specific neuromuscular component differentiates between soccer performance levels, it can be 
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assumed that this quality is important for elite performance. However, no attempt has been 

made to compare the neuromuscular capabilities in elite and non-elite soccer players. Current 

soccer talent identification models may therefore, be limited. 

Subsequently, the aims of our study were to: (1) investigate the differences in muscle 

strength, size, architecture and activation between elite and non-elite soccer players; and (2) 

determine the contribution of muscle size, architecture and activation to unilateral CMJ 

performance in different directions in elite and non-elite soccer players. 

 

METHODS 

Subjects 

Forty-three male soccer players volunteered to take part in this study, which was approved by 

Liverpool John Moores University Ethics Committee and complied with the Declaration of 

Helsinki. Participants provided written informed consent prior to being assigned to one of two 

groups according to their level of competition. The elite soccer player group (n = 23, mean ± 

SD: age 18.1 ± 1.0 years; height 182.5 ± 7.3 cm; weight 77.2 ± 10.1 kg) included one 

goalkeeper, nine defenders, five midfielders and eight forwards from an English Premier 

League football academy, who regularly participated at U18 and U21 level. The non-elite 

soccer player group (n = 20, mean ± SD: age 22.3 ± 2.7 years; height 175.0 ± 5.8 cm; weight 

72.9 ± 7.3 kg) included one goalkeeper, five defenders, six midfielders and eight forwards, 

who participated in at least one hour per week of competitive soccer (11-a-side or five-a-side), 

and one hour per week of soccer specific or fitness based training. Non-elite participants were 

excluded if they did not meet these inclusion criteria or had previously played soccer at 

academy, semi-professional, or professional level. All participants had been free of any injury 

to the lower body within the previous three months and had not previously sustained a serious 

knee or ankle injury which may be aggravated during testing procedures, or cause an adverse 
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effect on performance. Participants were fully familiarised with all testing procedures in a 

separate session and were asked to complete a physical activity and health questionnaire prior 

to the study for screening purposes. This questionnaire allowed us to ascertain if each potential 

participant satisfied the specific inclusion and exclusion criteria. 

 

Design 

All participants attended the lab on two separate occasions with at least 72 hours between 

each session. The first session enabled the participants to be familiarised with the assessment 

protocol, which consisted of performing three unilateral CMJs in the vertical, horizontal-

forward and medial directions on each leg, three repetitions of knee extension and knee 

flexion isometric maximal voluntary contractions (iMVCs), and ten successful repetitions of 

isometric rapid knee extension contractions [successful rapid isometric contractions were 

defined as contractions initiated from a stable baseline force (no pre-tension or visible 

countermovement) that reached 80% of their respective iMVC peak torque]. All CMJs were 

visually demonstrated to the participants by the investigator. This session was also used to 

determine the superior jumping leg [defined as the limb that produced the highest ground 

reaction force during a unilateral vertical CMJ]. During the second session, participants 

performed all CMJs, knee extension and knee flexion iMVCs, knee extension isometric 

explosive force assessments, and measurements of vastus lateralis muscle architecture, and 

quadriceps femoris muscle anatomical cross sectional area (using ultrasonography). 

Electromyographic (EMG) activity in the vastus lateralis and biceps femoris was measured 

throughout the CMJ and strength assessments. In order to minimise the influence of previous 

activity, the testing was performed at least 48 h following any high intensity multi-directional 

exercise which included any form of soccer match-play activity.  
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Methodology 

Countermovement jumps.  

On arrival at the laboratory for the second session, all participants had their height and body 

mass measured. Participants performed three trials of each CMJ type (with 60 seconds recovery 

between trials within a single CMJ type, and 180 s between jump types), thus performing a 

total of 18 CMJs (9 unilateral jumps on each leg). The exact methods for the performance and 

data analysis of unilateral CMJs has been explained in detail previously 3. The key performance 

variables for the unilateral vertical CMJ were jump height (calculated from the impulse-

momentum relationship derived take off velocity and equation of constant acceleration 

methods 15) and peak vertical power (peak V-power). The key performance variables for 

horizontal-forward and medial CMJs were projectile range (calculated using equations of 

constant acceleration 16), peak V-power, and peak horizontal-forward power (for horizontal-

forward CMJs only) or peak medial power (for medial CMJs only). Projectile range was used 

as the criterion performance measure for horizontal-forward and medial CMJs as, unlike when 

measuring jump distance using a measuring tape, projectile range is not affected by airborne 

and landing technique and better represents the propulsive phase of the jump 17. All peak power 

variables were allometrically scaled to body mass (BM0.67) (Jaric et al., 2005). 

  

Muscle Volume  

Muscle volume was assessed by adapting a previously validated measurement 18. With the 

participant in a relaxed seated position (knee joint angle at 90°), B-mode ultrasonography 

(MyLab 30 CV, Esoate Biomedica, Genoa, Italy) was used to locate the distal (lateral femoral 

condyle) and proximal (base of greater trochanter) ends of the femur, with the distance between 

both points providing the femur length. The anatomical cross-sectional area (ACSA) of the 

quadriceps was then measured at 40% of femur length (from the distal end) using ultrasound, 
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and following a previously reported method 19. Using the femur length, quadriceps femoris 

anatomical cross sectional area at 40% femur length, and a series of regression equations 

detailed elsewhere 18, the quadriceps femoris muscle volume (Mvol) was calculated 5. To 

account for skeletal-dependent inter-individual variability, quadriceps femoris Mvol was also 

normalised to femur length and referred to as relative quadriceps femoris Mvol. 

 

Muscle architecture  

Vastus lateralis muscle architecture was measured at rest using ultrasonography with the 

participant in a relaxed seated position (knee joint angle at 90°). Once the origin and insertion 

of the vastus lateralis were identified, this enabled the lateral and medial boundaries of the 

muscle to be located at 50% of its length. The centre of the muscle was then marked on the 

skin with a permanent marker pen, and this location was used for all architectural measures. 

Muscle thickness, fascicle length (Lf), and pennation angle (p) were measured at rest according 

the procedures described previously 5. To account for skeletal-dependent inter-individual 

variability, Lf was also normalised to femur length and referred to as relative Lf. 

 

Muscle strength 

Knee extension and knee flexion iMVCs were assessed on an isokinetic dynamometer (Biodex 

3, Medical Systems, Shirley, NY, USA) and analysed using AcqKnowledge data acquisition 

software (Biopac Systems Inc., Goleta, CA, USA). All measurements were performed on the 

superior jumping leg only. Muscle activation during these iMVCs was used to normalize the 

EMG data during the jump assessment protocol. Participants sat on the rigid chair with their 

hip angle set to 85° (supine position was equivalent to 180°) and strapped securely at the hip, 

chest and distal thigh with inextensible straps to minimise movement. The set-up and protocol 
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for iMVCs has been described in detail previously 5 but the knee angle was fixed at 90° via 

goniometry for all assessments.  

Following the iMVCs, participants were asked to perform ten isometric rapid knee extension 

contractions, each separated by a 20 s rest interval. This method has been explained in detail 

elsewhere 11,20. Briefly, during each contraction, participants were instructed to extend their 

knee as ‘fast and hard’ as possible from a relaxed state for <1 s, while avoiding a 

countermovement and achieving ~80% quadriceps iMVF. The three contractions with the 

greatest peak rate of force development (RFD) were chosen for further analysis which 

consisted of measuring force output at 50, 100 and 150 ms after force onset, in addition to RFD 

from 0-50 ms, 50-100 ms, and 100-150 ms after force onset. The mean rapid force and RFD 

values from the three contractions were used for subsequent analysis. Force onsets were 

identified by manual identification according to guidelines proposed by Tillin and Colleagues 

21. 

The torque signal (for iMVCs and isometric explosive contractions) was interfaced with 

an analog-to-digital converter (Biopac Systems Inc., Goletta, USA), sampled at 2000 Hz with 

a PC using AcqKnowledge software (Biopac Systems Inc.) and low-pass filtered (10-Hz edge 

frequency). 

 

Physiological cross sectional area 

The physiological cross sectional area (PCSA) of the quadriceps femoris was calculated by 

dividing quadriceps femoris Mvol by vastus lateralis Lf 5.  

 

Electromyography 

During all CMJ and iMVC assessments, surface EMG activity was recorded from the vastus 

lateralis and biceps femoris muscles of the dominant lower limb using self-adhesive Ag/AgCl 
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bipolar surface electrodes (2-cm inter-electrode distance, 1-cm circular conductive area; 

product 72000-S/25, Neuroline 720, Ambu, Denmark). The EMG signal was sampled 

simultaneously at a rate of 2000 Hz with ground reaction force data during jump assessments, 

and isokinetic dynamometry torque data during strength assessments. The exact methods for 

the recording and analysis of EMG has been explained in detail previously 3. 

 

Antagonist muscle co-activation 

To determine the extent of antagonist muscle co-activation during the knee extension iMVC, 

the average root mean squared EMG activity of the biceps femoris muscle over a 500ms epoch 

around peak torque was recorded during knee extension and knee flexion isometric maximal 

voluntary contraction. The ratio of antagonist co-activation during the knee extension iMVC 

was recorded as a percentage of the average root mean squared EMG activity of the biceps 

femoris during maximal knee flexion contraction.  

 

Maximum quadriceps femoris muscle isometric torque  

The torque produced by the hamstring muscle group during knee extension iMVC was 

estimated, assuming a linear relationship between torque and EMG activity 5. Overall knee 

extensor corrected isometric maximal voluntary torque (iMVT) was calculated by the addition 

of the estimated antagonist torque during knee extension to the actual knee extension isometric 

maximal voluntary torque 5,22. 

 

Quadriceps femoris muscle specific force 

As the force transmitted from the quadriceps femoris muscle fibres to the tendon is reduced 

according to fascicle p, a reduced PCSA of the quadriceps femoris was determined by 

multiplying the PCSA by the cosine of the resting vastus lateralis fascicle p, where fascicle p 
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was representative of the mean quadriceps femoris fascicle p 5. Subsequently, dividing knee 

extension corrected iMVC torque by the patellar tendon moment arm (0.048 m) previously 

reported for healthy young men provided maximum isometric knee extensor force. Quadriceps 

femoris specific force was calculated as maximum isometric knee extensor force divided by 

reduced PCSA 5.  

 

Statistical analyses 

The mean and standard deviation (s) were calculated for all variables. All data were tested for 

normality using the Shapiro Wilks normality test. For variables measured at three different 

time points during explosive isometric contractions (force, RFD, RFD relative to isometric 

maximal voluntary force), the influence of group and time interval was analysed with a mixed 

repeated measures ANOVA (two groups x three time intervals). All other dependent variables 

were assessed using an independent samples t-test. Pearson’s correlations were used to 

determine relations between jump performance variables [height or projectile range, peak V-

power, peak horizontal power or peak medial power and muscle size, morphology and 

activation. Statistical analysis was completed using SPSS version 23 (SPSS Inc., Chicago, IL), 

and the significance level was set at P ≤ 0.05. 

 

RESULTS 

 

Differences between elite and non-elite soccer players 

Muscle Strength 

Differences between elite and non-elite soccer players for muscle strength, muscle size and 

architecture, and voluntary muscle activation are presented in Tables 1, 2 and 3, respectively.  
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Insert Table 1 here 

 

Insert Table 2 here 

 

Insert Table 3 here 

 

The neuromuscular factors contributing to unilateral direction-specific jump 

performance 

The positive and inverse relationships between jump performance variables and neuromuscular 

factors are displayed in Table 4. Additional figures have been included to illustrate the spread 

of data for specific relationships. 

 

Both groups 

Unilateral vertical CMJ peak V-power correlated with quadriceps femoris Mvol (Fig. 1A), 

relative quadriceps femoris Mvol, PCSA and vastus lateralis muscle thickness (Table 4). No 

performance measure of unilateral horizontal-forward CMJ correlated with any measure of 

muscle size or vastus lateralis architecture (P ≥ 0.066). However, unilateral medial CMJ peak 

V-power correlated with quadriceps femoris Mvol (Fig. 1B), relative quadriceps femoris Mvol, 

quadriceps femoris PCSA and mean vastus lateralis activation in the upward phase (Table 4).  

 

Insert Figure 1 here 

 

Elite Group Only 

Unilateral vertical CMJ peak V-power correlated significantly with PCSA (r = 0.550, P = 

0.010), quadriceps femoris Mvol (r = 0.508, P = 0.019) and relative quadriceps femoris Mvol (r 



 13 

= 0.500, P = 0.021). Unilateral vertical CMJ height correlated significantly with mean upward 

phase vastus lateralis activation (Table 4) and vastus lateralis p (Fig. 2A). Similarly, unilateral 

medial CMJ peak V-power correlated significantly with mean upward phase vastus lateralis 

activation (r = 0.471, P = 0.042) and unilateral medial CMJ projectile range correlated 

significantly with vastus lateralis p (Fig. 2C). In contrast, unilateral horizontal-forward CMJ 

peak V-power correlated inversely with vastus lateralis p (Fig. 2B). 

 

Insert Figure 2 here 

 

Non-elite Group Only 

Unilateral vertical CMJ peak V-power correlated with quadriceps femoris Mvol (r = 0.492, P = 

0.028). Unilateral horizontal CMJ peak V-power correlated significantly with relative Lf (Table 

4). Unilateral medial CMJ peak V-power correlated inversely with mean vastus lateralis 

activation in the downward phase (Table 4).  

 

Insert Table 4 here 

 

DISCUSSION 

The aims of our study were to investigate the differences in neuromuscular characteristics 

between elite and non-elite soccer players, and determine which neuromuscular factors 

contributed to unilateral CMJ performance in different directions. We have shown for the first 

time that elite soccer players presented with greater knee extensor iMVT, quadriceps femoris 

Mvol (absolute and relative to femur length), and quadriceps femoris PCSA than non-elite 

soccer players. Correlations between jump performance variables and neuromuscular factors 

in both cohorts revealed that absolute and relative quadriceps femoris Mvol, and PCSA 
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contribute to unilateral vertical and medial, but not horizontal-forward CMJ performance. In 

elite soccer players only, vastus lateralis p correlated positively with unilateral vertical and 

medial, but inversely with horizontal-forward CMJ performance. Moreover, vastus lateralis 

activation during the upward CMJ phase correlated only with unilateral vertical CMJ height 

and unilateral medial CMJ peak V-power in elite soccer players. Our data shows that 

quadriceps femoris muscle size (Mvol and PCSA) and maximal isometric force may be 

characteristics of elite soccer playing status; and the neuromuscular factors underpinning 

unilateral CMJ performance are direction-specific, with a different combination of 

neuromuscular factors underpinning unilateral vertical and medial, compared to horizontal-

forward CMJ performance.   

It is imperative that physiological assessments for elite soccer players evaluate 

characteristics considered important for high-level soccer performance. If the presentation of 

performance or physiological factors differ between elite and non-elite soccer players, these 

characteristics may be important for performance at the elite level 23,24 and could therefore be 

considered within soccer talent identification criteria. Within this context, elite soccer players 

presented with greater knee extensor iMVT but similar knee flexor iMVT and knee extensor 

isometric explosive capabilities, compared to non-elite soccer players. Previous research has 

shown differences between elite and amateur players in knee flexor isokinetic strength 23 but 

the current results are the first to suggest that knee extensor isometric strength may be an 

indicator of elite soccer playing status. Elite soccer players presented with significantly greater 

absolute and relative quadriceps femoris Mvol, and quadriceps femoris PCSA than non-elite 

soccer players. However, vastus lateralis architecture and muscle specific force (maximum 

force per unit PCSA) were not different between groups, thus suggesting that muscle quality 

is similar between elite and non-elite soccer players. As 12 weeks of recreational soccer 

training has been shown to result in a 12% increase in muscle fibre cross sectional area in 
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untrained participants 25, it is possible that the greater QF size in ESP could be attributed to 

them performing high force muscle actions more frequently during professional soccer training 

(as opposed to non-elite soccer players, who performed soccer training less regularly). 

Alternatively, as QF Mvol, strength and power in healthy young men are associated with a 

variation of the alpha-actinin-3 (ACTN3) gene 26, and elite soccer players have previously been 

shown to have a higher frequency of the preferential  ACTN3genotype compared to endurance 

athletes and control participants 27, it is possible that the differences reported here in QF muscle 

morphology between elite and non-elite soccer players are associated with differences in 

genetic make-up. Whilst further research is needed to test these hypotheses, we are the first to 

show that knee extensor iMVT and quadriceps femoris muscle size differentiate between elite 

and non-elite soccer players.  

Investigating the physiological mechanisms that underpin soccer performance 

characteristics can inform the specific detail of performance enhancement programmes. 

Quadriceps femoris muscle size (Mvol and PCSA) was related to unilateral vertical and medial 

CMJ peak V-power, but not to any measure of unilateral horizontal-forward CMJ performance 

in elite and non-elite soccer players. These findings are somewhat in accordance with previous 

research that reported a positive relationship between bilateral vertical CMJ and quadriceps 

femoris muscle volume 6,7. Horizontal-forward CMJs have previously been shown to require 

greater hamstring activation 13,14, and a greater motion and more vigorous utilization of the hip 

joint 13,14 than vertical CMJs. Therefore, it may be that properties of the hamstring muscle 

group, rather than the quadriceps femoris, determine unilateral horizontal-forward CMJ 

performance. Vertical CMJs, on the other hand, produce greater knee joint moments 13,14. 

Therefore, larger PCSA and Mvol of the quadriceps femoris muscle group appear to be more 

important for unilateral vertical CMJ peak V-power production. The positive effect of a large 

quadriceps femoris muscle group on unilateral medial CMJ performance may also suggest that 



 16 

unilateral medial CMJs require high moments at the knee joint, although this has not yet been 

investigated. Our data suggest that the greater quadriceps femoris Mvol displayed by the elite 

soccer players could be advantageous for soccer performance by facilitating explosive 

unilateral propulsive movements directed in the vertical and medial, but not horizontal, 

directions. Moreover, as it has previously been reported that elite soccer players are required 

to perform approximately 50 forceful changes of direction 28, and many other unorthodox 

powerful movements while exerting physical force against an opponent 29, it is also possible 

that the greater quadriceps femoris muscle size and strength (displayed by elite players), may 

assist to stabilise the knee during such explosive actions. 

In addition to muscle size, the architecture of the muscle is thought to be important in 

determining the power output of the whole muscle 12,30. The vastus lateralis p measurements 

in soccer players in the current study were similar to values previously reported in youth elite 

soccer players 31. The current study is the first to show that vastus lateralis p was positively 

related to unilateral vertical CMJ height and unilateral medial CMJ peak V-power, but was 

inversely related to unilateral horizontal-forward CMJ peak V-power in elite soccer players. 

Presuming the geometry of the vastus lateralis is representative of the total quadriceps femoris 

muscle architecture 5, the greater vastus lateralis p and in theory, greater number of sarcomeres 

aligned in parallel (and therefore, greater PCSA) 9,32, could allow the quadriceps femoris 

muscle to extend the knee joint with more force (and therefore, power) 32, thus increasing 

unilateral vertical and unilateral medial CMJ performance in elite soccer players. However, 

greater p has been associated with reduced muscle contraction velocity 9,12 and RFD 11. As the 

unilateral horizontal-forward CMJ requires greater take-off velocities than unilateral vertical 

and unilateral medial CMJs, a greater vastus lateralis p may reduce the quadriceps femoris 

contraction velocity and therefore, reduce peak V-power during unilateral horizontal-forward 

propulsion. Hence, we have demonstrated that the contribution of quadriceps femoris muscle 
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architecture to unilateral CMJ performance in soccer players is specific to the direction of the 

jump. Nevertheless, it should be noted that our study was limited as we only measured the 

geometry of the vastus lateralis muscle and assumed it representative of the total quadriceps 

femoris muscle.  

Maximal power production is not only governed by muscle size and architecture, but 

by the ability of the nervous system to activate the specific muscle groups during ballistic 

actions 4. Mean upward phase vastus lateralis activation was positively related to vertical 

(unilateral vertical CMJ height) and medial (unilateral medial CMJ peak V-power) jump 

performance in elite soccer players. However, downward phase vastus lateralis activation was 

inversely related to unilateral medial CMJ peak V-power in non-elite soccer players. Previous 

research has documented a strong relationship between bilateral vertical CMJ performance and 

knee extensor muscle activation during the first 100 ms of the rise in ground reaction force (r 

= 0.81) 33, and  a moderate relationship between bilateral vertical CMJ and drop jump peak 

concentric force, and downward phase vastus lateralis activation (r = 0.599)  34. These studies 

support our findings with the elite, but are in contrast to our findings in non-elite, soccer 

players. There were no relationships between unilateral horizontal-forward CMJ performance 

and vastus lateralis activation or biceps femoris activation in either cohort. Our study 

demonstrates that biceps femoris activation does not contribute to unilateral CMJ performance 

in different directions. However, greater vastus lateralis activation enhances unilateral vertical 

and unilateral medial, but not unilateral horizontal-forward CMJ performance, in elite soccer 

players.  

 

PRACTICAL APPLICATIONS 

Our data suggest that elite soccer clubs could include knee extensor iMVC torque and 

quadriceps femoris size (Mvol and PCSA) assessments in novel talent selection criteria. 
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Moreover, when aiming to develop unilateral vertical and medial jump capabilities, elite soccer 

players should focus on increasing quadriceps femoris size (volume and PCSA) and vastus 

lateralis pennation angle. In contrast, increasing vastus lateralis pennation angle may have a 

negative impact upon unilateral horizontal-forward CMJ capabilities and therefore, training 

methods for developing unilateral power performance should target neuromuscular adaptations 

specific to the direction of the jump. 

 

CONCLUSION 

By comparing neuromuscular characteristics in elite and non-elite soccer players, we have 

demonstrated that greater knee extensor iMVC torque and quadriceps femoris size (Mvol and 

PCSA) may be important indicators of elite soccer playing status. Moreover, we show that the 

size of the quadriceps femoris muscle group contributes to unilateral vertical and unilateral 

medial CMJ, but not unilateral horizontal-forward CMJ performance. We also propose that the 

greater knee extensor iMVC torque and quadriceps femoris size (Mvol and PCSA) displayed by 

elite soccer players could also assist in stabilising the knee during explosive change of direction 

tasks performed during soccer match-play.  In elite soccer players, greater vastus lateralis 

muscle activation and vastus lateralis fascicle pennation angle appear to enhance CMJ 

performance in the vertical and medial directions, but a larger vastus lateralis pennation angle 

reduces unilateral horizontal-forward CMJ performance. Together these findings suggest that 

jump performance in the vertical and medial directions are underpinned by similar 

neuromuscular characteristics, which are in contrast to the unilateral horizontal-forward CMJ.  
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Tables  

 

  

TABLE 1. Measured and calculated isometric contraction variables in elite (n = 23) 

and non-elite (n = 20) players; mean ± SD. 

 

Variable Elite Non-elite 

KE iMVT (N·m) 365.7 ± 66.6* 320.1 ± 62.6 

KF iMVT (N·m) 121.2 ± 39.5 116.3 ± 22.1 

Co-activation (%) 27.9 ± 13.5 23.7 ± 15.6 

Specific force (N ·cm-2) 36.8 ± 7.3 36.5 ± 8.7 

Peak RFD (N.s-1) 48,284 ± 11,689 43,045 ± 9,110 

Time to peak RFD (ms) 72 ± 16 68 ± 16 

RFD 0-50 ms (N.s-1) 14,812 ± 10,113 13,666 ± 6,239 

RFD 50-100 ms (N.s-1) 30,226 ± 9,486 28,554 ± 7,694 

RFD 100-150 ms (N.s-1) 22,394 ± 7,343 20,325 ± 5,644 

nRFD 0-50 ms (%MVF.s-1) 2.236 ± 1.582 2.286 ± 1.176 

nRFD 50-100 ms (%MVF.s-1) 4.622 ± 1.148 4.590 ± 1.195 

nRFD 100-150 ms (%MVF.s-1) 3.374 ± 0.608 3.212 ± 0.659 

 

KE, knee extensor; iMVT, isometric maximal voluntary torque; RFD, rate of force 

development; nRFD, rate of force development normalised to maximum voluntary 

force (MVF). 

* Elite significantly greater than non-elite (P < 0.05) 
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TABLE 2. Quadriceps femoris (QF) muscle morphology and architecture in elite (n=23) and non-elite 

(n=20) players; mean ± SD.  

 

Muscle variable Elite       Non-Elite                          

QF Vm (cm3) 2852.5  ± 507.5** 2428.8  ± 232.1 

Relative QF Vm (cm3/cm) 61.06 ± 9.45* 54.67 ± 4.06 

QF PSCA (cm2) 227.16 ± 42.31* 192.57 ± 25.42 

QF ACSA (cm2) 80.85 ± 15.84* 69.80 ± 6.72 

VL muscle thickness (mm2) 26.41  ± 2.93 26.06  ± 3.25 

VL p () 14.88 ± 2.23 14.65 ± 2.04 

VL Lf (mm) 127.20 ± 18.11 127.84 ± 17.43 

Relative VL Lf (mm/cm) 2.73 ± 0.40 2.88 ± 0.37 

 

Vm, muscle volume; PCSA, physiological cross-sectional area; ACSA, anatomical cross-sectional 

area; VL, vastus lateralis muscle; p, angle of pennation; Lf, fascicle length.  

* Significantly greater than non-elite (P < 0.01) 

** Significantly greater than non-elite (P ≤ 0.001) 
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TABLE 3. Peak muscle activation (% iMVC) attained during direction-specific unilateral countermovement jumps (CMJs) in 

elite (n=19) and non-elite (n=19) players; mean ± SD.  

 

  Peak VL EMG (%iMVC) Peak BF EMG (%iMVC) 

CMJ Jump Phase Elite Non-Elite Elite Non-Elite 

UV Downward 106.5 ± 70.4 105.2 ± 39.8 47.6 ± 19.6 60.5 ± 36.1 

 Upward 227.4 ± 134.5 156.6 ± 78.3 91.3 ± 46.2 87.1 ± 45.6 

UH Downward 139.1 ± 67.9 103.6 ± 35.4 118.0 ± 43.3 124.3 ± 66.3 

 Upward 190.5 ± 100.3 143.1 ± 37.3 125.7 ± 68.7 128.6 ± 51.0 

UM Downward 107.8 ± 65.1 104.0 ± 35.9 44.5 ± 36.5 54.9 ± 20.1 

 Upward 183.5 ± 101.2 140.7 ± 33.4 87.3 ± 68.7 73.7 ± 35.9 

 

VL, vastus lateralis muscle; EMG, electromyography; iMVC, isometric maximal voluntary contraction; UV CMJ, unilateral 

vertical countermovement jump; UH CMJ, unilateral horizontal-forward countermovement jump; UM CMJ, unilateral medial 

countermovement jump. 
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 Table 4. Correlations between unilateral countermovement jump (CMJ) performance measures and neuromuscular properties of the quadriceps femoris muscle group in elite (n = 23) and 

non-elite (n = 20) soccer players. Inverse correlations are highlighted in bold.  

 

 

 

 

 Jump type 

 

  

Unilateral vertical CMJ 

 

Unilateral horizontal-forward CMJ 

 

Unilateral medial CMJ 

Neuromuscular 

variable 

Jump height 

(cm) 

Peak V power 

(W/kg) 

Projectile range 

(cm) 

Peak H-power 

(W/kg) 

Peak V-power 

(W/kg) 

Projectile range 

(cm) 

Peak M-power 

(W/kg) 

Peak V-power 

(W/kg) 

QF Vm (cm3)  Fig. 1 

 

     Fig. 1 

 

QF Vm relative to FL 

(cm3/cm) 

 r = 0.539  

P < 0.001 

     r = 0.389, 

P = 0.01 

QF PSCA (cm2)  r = 0.524 

P < 0.001 

     r = 0.310  

P = 0.043 

VL muscle thickness 

(mm2) 

 r = 0.323 

P = 0.039 

      

VL p () Fig. 2 

 

   Fig. 2 

 

Fig. 2 

 

  

Relative VL Lf 

(mm/cm) 

    r = 0.482 b  

P = 0.031 

   

VL EMG upward 

phase 

r = 0.498 a 

P = 0.042 

      r = 0.346,  

P = 0.039 

VL EMG downward 

phase 

       r = -0.532 b 

P = 0.034 

 

Vm, muscle volume; FL, femur length; PCSA, physiological cross-sectional area; ACSA, anatomical cross-sectional area; MT, muscle thickness; VL, vastus lateralis muscle; p, angle of 

pennation; Lf, fascicle length.  
a Significantly correlation in elite players only 
b Significantly correlation in non-elite players only 
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Figure Legends 

 

Figure 1. The relationships between: unilateral vertical countermovement jump (CMJ) peak 

V-power and quadriceps femoris muscle volume (Mvol) (a; r = 0.566, P < 0.001); unilateral 

medial CMJ peak V-power and quadriceps femoris Mvol (b; r = 0.438, P = 0.003) in elite (n = 

23) and non-elite (n = 20) players. Peak V-power, peak vertical power allometrically scaled to 

body mass. 

 

Figure 2. The relationships between vastus lateralis pennation angle (p) and: unilateral vertical 

countermovement jump (CMJ) height (a; r = 0.478, P = 0.028); unilateral horizontal-forward 

CMJ peak V-power (b; r = -0.437, P = 0.037); unilateral medial CMJ projectile range (c; r = 

0.413, P = 0.050) in elite players (n = 23). Peak V-power, peak vertical power allometrically 

scaled to body mass. 
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Figure 1  
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Figure 2 

 


