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Machine Learning Ensemble Modelling to Classify Caesarean 

Section and Vaginal Delivery Types Using Cardiotocography 

Traces  
 

ABSTRACT 

Human visual inspection of Cardiotocography traces is used to monitor the foetus during 

labour and avoid neonatal mortality and morbidity. The problem, however, is that visual 

interpretation of Cardiotocography traces is subject to high inter and intra observer 

variability. Incorrect decisions, caused by miss-interpretation, can lead to adverse perinatal 

outcomes and in severe cases death. This study presents a review of human Cardiotocography 

trace interpretation and argues that machine learning, used as a decision support system by 

obstetricians and midwives, may provide an objective measure alongside normal practices. 

This will help to increase predictive capacity and reduce negative outcomes. A robust 

methodology is presented for feature set engineering using an open database comprising 552 

intrapartum recordings. State-of-the-art in signal processing techniques is applied to raw 

Cardiotocography foetal heart rate traces to extract 13 features. Those with low 

discriminative capacity are removed using Recursive Feature Elimination. The dataset is 

imbalanced with significant differences between the prior probabilities of both normal 

deliveries and those delivered by caesarean section. This issue is addressed by oversampling 

the training instances using a synthetic minority oversampling technique to provide a 

balanced class distribution. Several simple, yet powerful, machine-learning algorithms are 

trained, using the feature set, and their performance is evaluated with real test data. The 

results are encouraging using an ensemble classifier comprising Fishers Linear Discriminant 

Analysis, Random Forest and Support Vector Machine classifiers, with 87% (95% 

Confidence Interval: 86%, 88%) for Sensitivity, 90% (95% CI: 89%, 91%) for Specificity, 

and 96% (95% CI: 96%, 97%) for the Area Under the Curve, with a 9% (95% CI: 9%, 10%) 

Mean Square Error. 

 

Keywords: Perinatal Complications, Cardiotocography, Classification, Data Science, 

Machine Learning, Ensemble Modelling 

1. INTRODUCTION 

UNICEF estimates that 130 million babies are born each year.  One million of these will be 

intrapartum stillbirths and more than three and a half million will die as a result of perinatal 

complications [1]. The number of reported deliveries in the UK during 2012 was 671,255. 

One in every 200 resulted in stillbirth and 300 died in the first four weeks of life [2]. Between 

one and seven in every 1000 foetuses experienced hypoxia (impaired delivery of oxygen to 

the brain and tissue) [3] that resulted in adverse perinatal outcomes and in severe cases death 

[4]. During 2013, according to Tommy’s charity, the rate of stillbirths in the UK was 4.7 per 

1000 births. In 2014, 1,300 babies were injured at birth due to mistakes made by maternity 

staff, which cost the National Health Service (NHS) in the UK more than £1 billion in 

compensation and more than £500 million in legal fees to resolve disputes.  
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Human visual pattern recognition in Cardiotocography (CTG) traces is used to monitor the 

foetus during the early stages of delivery [5]. CTG devices, fitted to the abdomen,  record the 

foetal heartbeat and uterine contractions [6]. The foetal heart rate recordings represent the 

modulation influence provided by the central nervous system. When the foetus is deprived of 

oxygen, the cardiac function is impaired. Detecting its occurrence can be confirmed by cord 

blood (umbilical artery) metabolic acidosis with a base deficit of more than 15mmol/L [7]. 

The etiology is not clear however, environmental factors, such as umbilical cord compression 

and maternal smoking, are known risk factors [8]. 

Obstetricians and midwives use CTG traces to formulate clinical decisions. However, poor 

human interpretation of traces and high inter and intra observer variability, [9]–[11] makes 

the prediction of neonatal outcomes challenging. CTG was introduced into clinical practice 

45 years ago. Since then there has been no significant evidence to suggest its use has 

improved the rate of perinatal deaths. However, several studies do argue that 50% of birth-

related brain injuries could have been prevented if CTG was interpreted correctly [12]. 

Conversely, there is evidence to indicate that over-interpretation increases the number of 

births delivered by caesarean section even when there are no known risk factors [13].  

Computerised CTG has played a significant role in developing objective measures as a 

function of CTG signals [14], particularly within the machine learning community [15]–[18], 

[7],[12], [19]–[23]. According to a Cochrane report in 2015, computerised interpretation of 

CTG traces significantly reduced perinatal mortality [24]. In this study, we build on previous 

works and utilise an open dataset obtained from Physionet. The dataset contains CTG trace 

recordings for normal vaginal births (506) and those that were delivered by caesarean section 

(46). Several machine-learning algorithms are trained using features extracted from raw CTG 

Foetal Heart Rate (FHR) traces contained in the dataset to distinguish between caesarean 

section and vaginal delivery types. This would allow for the optimisation of decision making, 

by obstetricians and midwives, in the presence of FHR traces, linked to caesarean section and 

normal vaginal deliveries. The results demonstrate that an ensemble classifier produces better 

results than several studies reported in the literature.   

2. ANALYSIS 

2.1 Cardiotocography Feature Extraction 

Feature extraction techniques are used to gather specific parameters from a signal. These are 

often more efficient to analyse than the raw signal samples themselves. Signal processing 

does not increase the information content but rather incurs information loss caused by feature 

extraction. However, this is preferable to raw data analysis, as it simplifies classification 

tasks. The features extracted can be broadly divided into two groups, linear and nonlinear. In 

both of these groups, all signal data points are transformed (using a linear or nonlinear 

transformation) into a reduced dimensional space. Thus, the original data points are replaced 

with a smaller set of discriminative variables. For a more detailed discussion on feature 

extraction please refer to [25].  

Linear features can be broadly defined as those features that are visible through human 

inspection, for example accelerations and decelerations in the foetal heartbeat. While, 

nonlinear features are much more difficult in interpret or even identify under normal visual 

analysis. For example, formally quantifying the complexity of a signal and the differences 

between two or more observations is practically impossible to achieve through visual 

inspection alone. 



 4 

The International Federation of Gynaecology and Obstetrics (FIGO) and the National 

Institute for Health and Care Excellence (NICE) in the UK have developed guidelines used to 

interpret CTG traces [26]. These are briefly described in Table 1.  

Feature Baseline (bpm) Variability (bpm) Decelerations Accelerations 

Reassuring 110-160 ≥5 None Present 

Non-

Reassuring 

100-109 

161-180 

<5 for 40-90 minutes Typical variable 

decelerations with over 

50% of contractions, 

occurring for over 90 

minutes. Single 

prolonged deceleration 

for up to 3 minutes 

The absence of 

accelerations with 

otherwise normal trace 

is of uncertain 

significance 

Abnormal <100 

>180 

Sinusoidal 

pattern ≥ 10 

minutes 

<5 for 90 minutes Either typical variable 

decelerations with over 

50% of contractions or 

late decelerations, both 

for over 30 minutes. 

Single prolonged 

deceleration for more 

than 3 minutes 

 

Table 1 - Classification of FHR Trace Features (Baseline, Variability, Decelerations and 

Accelerations) 

The FIGO features include the real FHR baseline (RBL), Accelerations, Decelerations, Short-

Term variability (STV) and Long-Term variability (LTV). To understand how the RBL is 

obtained (and used to derive all other features) consider Figure 1. The RBL is calculated as 

the mean of the signal [27] with the peaks and troughs removed (signals that reside outside 

the baseline min and max thresholds). Peaks and troughs are removed using a virtual baseline 

(VBL) which is the mean of the complete signal (with peaks a troughs) and the removal of 

signals that are ±10 bpm from the VBL. 

Acceleration and Deceleration coefficients are obtained by counting the number of transient 

increases and decreases from the RBL, that are ±10bpm and last for 10s or more [28]. 

Accelerations typically indicate adequate blood delivery and are reassuring for medical 

practitioners. While decelerations result from physiological provocation (i.e. compromised 

oxygenation resulting from uterine contractions). If Decelerations do not recover (the absence 

of Accelerations), this can indicate the presence of umbilical cord compression, foetal 

hypoxia or metabolic acidosis [29].  

Meanwhile, STV is calculated as the average of 2.5-second blocks in the signal averaged over 

the duration of the signal. LTV, on the other hand, describes the difference between the 

minimum and maximum value in a 60-second block averaged over the duration of the signal. 

The presence of both STV and LTV describe normal cardiac function [30]. If STV or LTV 

decreases or is absent, this could indicate the onset of an adverse pathological outcome [31].  

FIGO features represent the morphological structure of the FHR signal and are the visual 

cues used by obstetricians and midwives to monitor the foetus. However, using these alone 

has seen high inter and intra variability. This has led to studies designed to extract non-linear 

features (not easily identifiable through human visual inspection) from the FHR signal to try 

to improve and support outcome measures obtained by obstetricians and midwives [32].  
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Figure 1: Using the FHR signal (Beats per Minute) to calculate the Real Baseline 

Root Mean Squares (RMS) and Sample Entropy (SampEn) are two signal processing 

coefficients that are commonly used in antepartum and intrapartum studies to represent the 

non-visual patterns contained in the FHR [33]–[36]. RMS measures the magnitude of the 

varying quantity and is an effective signal strength indicator in heart rate variability studies. 

Sample entropy on the other hand represents the non-linear dynamics and loss of complexity 

in the FHR, and is a useful indicator for foetal hypoxia and metabolic-acidosis detection [37].  

CTG signals are also translated into frequency representations, via Fast Fourier Transform 

(FFT) [38] and Power Spectral Density (PSD) to minimise signal quality variations [39]. In 

the context of FHR analysis, frequency features have been successfully used in [40] and more 

recently in [41] and [42]. For example, Peak Frequency (FPeak) is derived from the PSD and 

used in antepartum and intrapartum analysis to measure variability and normal sympathetic 

and parasympathetic function [33], [34], [43].  

Meanwhile, non-linear features [44], such as Poincare plots, have seen widespread use in 

heart rate variability studies [45]. In this study, the difference between two beats (BB) is 

calculated rather than the normal RR interval used in PQRST analysis. The two descriptors of 

the plot are SD1 and SD2. These coefficients are associated with the standard deviation of 

BB and the standard deviation of the successive difference of the BB interval. The ratio of 

SD1/SD2 (SDRatio) describes the relation between short and long-term variations of BB.    

The box-counting dimension (FD) enables the dynamics of the FHR to be estimated [46] and 

is a direct measure of the morphological properties of a signal. The signal is covered with 
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optimally sized boxes where the number of boxes describes the box-counting dimension 

coefficient. In previous studies, these features have proven to be an effective indicator for 

foetal hypoxia and metabolic acidosis detection [47].  

In the case of self-affinity measures in FHR signals, previous studies have demonstrated that 

it is a beneficial coefficient in classification tasks [48]. Detrend Fluctuation Analysis (DFA) 

produces an exponent value that indicates the presence or absence of self-similarity [49]. 

DFA examines the signal at different time scales and returns a fractal scaling exponent x. The 

calculations are repeated for all considered window sizes defined as n. In this instance, the 

focus is on the relation between F(n) and the size of the window n. In general, F(n) will 

increase with the size of window n. 

2.2 Automated Cardiotocography Classification 

Computer algorithms are utilised extensively in biomedical research and are a fundamental 

component within most clinical decision support systems. CTG is no different, where 

machine learning algorithms have proven to be excellent decision makers in CTG analysis. 

For example, Warrick et al. [15] developed a system to model FHR and Uterine Contraction 

(UC) signal pairs to estimate their dynamic relation [50]. The authors conclude that it is 

possible to detect approximately half of the pathological cases one hour and 40 minutes 

before delivery with a 7.5% false positive rate. Kessler et al. [54] on the other hand applied 

CTG and ST waveform analysis resulting in timely intervention for caesarean section and 

vaginal deliveries [7].  

In a similar study, Blinx et al. [51] compared a Decision Tree (DT), an Artificial Neural 

Network (ANN), and Discriminant Analysis (DA). The ANN classifier obtain 97.78% overall 

accuracy. The Sensitivity and Specificity values were not provided making accuracy alone an 

insufficient performance measure. Ocak et al. [52] evaluated an SVM and Genetic Algorithm 

(GA) classifier and reported 99.3% and 100% accuracies for normal and pathological 

delivery outcomes. Similar results were reported in [53] and [54]. Again, Sensitivity and 

Specificity values were not provided. Meanwhile Menai et al [55] classified foetal state using 

a Naive Bayes (NB) classifier with four different feature selection (FS) techniques: Mutual 

Information, Correlation-based, ReliefF, and Information Gain. The NB classifier in 

conjunction with ReliefF features produced 93.97%, 91.58%, and 95.79% for Accuracy, 

Sensitivity and Specificity, respectively.   

While, Karabulut et al. [56] utilised an adaptive boosting (AdaBoost) classifier producing an 

accuracy of 95.01% - again no Sensitivity or Specificity values were provided. While Spilka et 

al., [13], used a Random Forest (RF) classifier and latent class analysis (LCA) [57] producing 

Sensitivity and Specificity values of 72% and 78% respectively [5]. Generating slightly better 

results in [45], Spilka et al. attempted to detect perinatal outcomes using a C4.5 decision tree, 

Naive Bayes, and SVM. The SVM produced the best results using a 10-fold cross validation 

method, which achieved 73.4% for Sensitivity and 76.3% of Specificity.  

3. METHODOLOGY 

In this study all experiments were run on a Dell XPS 13 Developer Edition laptop, with a 6th 

Gen Intel Core processor and 16GB of memory on Ubuntu version 16.04 LTS. The software 

developed uses R and RStudio. The data was obtained from Physionet using RDSamp. 

Several packages from the CRAN repository are utilised in this study and include the Signal 

package to filter the FHR signal and the following packages to support the feature extraction 

process; fractaldim; fractal; pracma; psd; seewave and car. Finally, for the classification and 
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evaluation tasks the following packages were utilised; MASS, hmeasure, pROC, ROCR 

randomForest, caret, e1071, and DMwR.   

3.1 Dataset Description 

Intrapartum recordings were collected between April 2010 and August 2012 from the 

University Hospital in Brno in Czech Republic (UHB) with the support of the Czech 

Technical University (CTU) in Prague [5]. The CTG-UHB database is publically available at 

Physionet. The database contains 552 CTG recordings for singleton pregnancies with a 

gestational age greater than 36 weeks. The STAN S21/S31 and Avalon FM 40/50 foetal 

monitors were used to acquire the CTG records. The records do not contain prior known 

development factors; the duration of stage two labour is less than or equal to 30 minutes; 

foetal heart rate signal quality is greater than 50 percent in each 30 minute window; and the 

pH umbilical arterial blood sample is available for each record. 46 records are for deliveries 

by caesarean section due to pH ≤7.20 – acidosis, n=18; pH >7.20 and pH < 7.25 – foetal 

deterioration, n=4; and n=24 due to clinical decision without evidence of pathological 

outcomes) – the remaining 506 records are normal vaginal deliveries. Each record begins no 

more than 90 minutes before delivery and contains FHR (measured in beats per minute) and 

UC (measured in mmHg) time series signals – each sampled at 4Hz. The FHR was obtained 

from an ultrasound transducer attached to the abdominal wall (cardio). The UC was obtained 

from a pressure transducer also attached to the maternal abdomen (toco). The FHR signal is 

only considered in this study as it provides direct information about the foetal state. Table 2 

summarises the associated clinical data for all records contained in the CTG-UHB database. 

For a full description of the dataset, please refer to [5].  

Table 2:  Clinical CTU-UHB Data Summary for Vaginal and Caesarean Section Delivery 

Types 

506 – Vaginal; 46 – Caesarean Section 

 Mean Min Max 

Maternal Age (Years) 29.8 18 46 

Parity 0.43 0 7 

Gravidity 1.43 1 11 

Gestational Age (Weeks) 40 37 43 

pH 7.23 6.85 7.47 

BE -6.36 -26.8 -0.2 

BDecf (mmol/l) 4.60 -3.40 26.11 

Apgar (1 Minute) 8.26 1 10 

Apgar (5 Minute) 9.06 4 10 

Length of Stage II. (min) 11.87 0 30 

Neonate's Weight (grams) 3408 1970 4750 

Neonate's Sex (Male/Female) 293 Male / 259 Female 
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Table 3 provides details of the outcome measures used in the CTU-UHB database. For the 46 

caesarean section records, the ID is the file number in the CTU-UHB dataset; Age describes 

the mothers age; pH describes the umbilical artery pH value for each case; BDef is base 

deficit in extracellular fluid; pCO2 describes the partial pressure of carbon dioxide; BE is 

base excess; and Apgar scores are a subjective evaluation of the delivery. For a more in-depth 

discussion of the dataset and these parameters please refer to [5]. 

Table 3:  Caesarean Section Outcome Measures for pH, BDecf, pCO2, BE, Apgar1 and 

Apgar5 

ID Age pH BDecf pCO2 BE Apgar1 Apgar5 

2001 30 7.03 22.52 2.8 -23.7 10 10 

2002 39 7.27 3.75 6.5 -4.5 7 4 

2003 25 6.96 16.96 7.2 -19 6 8 

2004 34 6.95 11.44 11.6 -15.3 6 8 

2005 31 7.25 3.47 7 -5.5 10 10 

2006 32 7.29 NaN NaN NaN 10 10 

2007 27 7.04 20.42 3.8 -21.8 10 10 

2008 26 6.98 13.43 9.3 -16.7 5 7 

2009 21 6.96 20.34 5.4 -23 10 10 

2010 19 7.3 -0.48 7.2 -1.5 10 10 

2011 37 7.01 12.1 9.2 -14.8 3 7 

2012 26 7.29 -0.44 7.4 -1.4 9 9 

2013 27 6.85 22.63 6.4 -25.3 8 8 

2014 34 7.32 2.28 6 -3.2 10 10 

2015 29 7.33 4.15 5.3 -5.1 9 10 

2016 38 7.27 1.88 7.1 -3.8 9 10 

2017 34 7.32 -0.16 6.7 -2 10 10 

2018 30 7.31 3.93 5.7 -5 10 10 

2019 31 7.29 4.13 6 -5.6 9 9 

2020 28 7.15 3.09 9.6 -5.8 4 7 

2021 28 7.3 0.19 7 -2.2 9 10 

2022 31 7.28 -0.38 7.6 -1.6 9 10 

2023 28 6.98 14.49 8.7 -17.4 6 8 

2024 39 7.01 7.14 12.1 -10.9 2 4 

2025 29 6.99 12.61 9.5 -16 8 8 

2026 32 7.23 -0.13 8.7 -2.1 10 10 

2027 26 7.31 1.88 6.3 -3.2 9 10 

2028 36 7.18 4.82 8.1 -7.2 8 9 

2029 34 7.28 1.22 7.1 -3.4 10 10 

2030 42 7.04 26.11 0.7 -26.8 10 10 

2031 26 7.29 1.52 6.8 -2.9 9 9 

2032 35 7.26 3.14 6.9 -4.7 9 10 

2033 26 7.39 0.86 5.2 -1.5 9 9 

2034 34 7.34 NaN NaN NaN 9 9 

2035 27 7.26 2.23 7.2 -4.3 8 9 

2036 34 7.29 2.5 6.5 -3.7 5 7 
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2037 29 7.25 1.09 7.8 -3 9 10 

2038 27 7.36 3.5 5 -4 5 8 

2039 29 7.32 -0.51 6.8 -0.5 9 10 

2040 23 7.23 5.27 6.8 -7 2 6 

2041 32 7.37 3.69 4.8 -3.1 9 9 

2042 27 7.33 -0.5 6.6 -0.8 9 10 

2043 26 7.08 10.92 7.9 -13.3 8 9 

2044 27 7.02 9.13 10.6 -12.3 8 8 

2045 32 7.03 8.91 10.4 -12.2 7 9 

2046 19 7.01 NaN NaN NaN 5 7 

3.2 Signal Pre-processing 

The FHR signal contains noise and unwanted artefacts resulting from subjects themselves, 

the equipment, and the environment [58]. Based on the findings in [59] and [12], the FHR 

manifests itself predominantly in low frequencies. In [37], [60]–[62] several frequency bands 

are defined: very low frequency (VLF) at 0-0.03Hz, low frequency (LF) at 0.03-0.15Hz, 

movement frequency (MF) at 0.15-0.50Hz, and high frequency (HF) at 0.50-1Hz. LF is 

mainly associated with the activity generated by the sympathetic system, HF with the 

parasympathetic system, and the MF band with foetal movement and maternal breathing. 

Both LF and HF frequencies are used in [63] with LF at 0.05-0.2Hz and HF at 0.2-1Hz.  

However, according to Warrick et al. [59], FHR variability at frequencies greater than 

0.03Hz are likely noise because there is no power in the FHR signal above this frequency.  

In this paper, each of the 552 FHR signal recordings are filtered using a Finite Impulse 

Response (FIR) 6th order high pass filter with a cut-off frequency of 0.03Hz in accordance 

with [59]. This was achieved using the R Signal package in RStudio. Phase distortion, 

introduced by a one-pass filter, is corrected using a two-pass filter. Cubic Hermite spline 

interpolation is used to remove noise and low-quality artefacts.   

3.3 Features Selection 

The feature vectors in this study include RBL, Accelerations, Decelerations, STV, LTV, 

SampEn, FD, DFA, FPeak, RMS, SD1, SD2 and SDRatio. There is general agreement among 

experts that FIGO features, such as Accelerations and Decelerations, can effectively 

discriminate between pathological and normal records [64]. However, Spilka et. al [45] argue 

that non-linear features, such as FD and SampEn, have much better discriminative capacity 

when classifying normal and pathological records, reporting 70% for Sensitivity, 78% for 

Specificity and 75% for the Area Under the Curve (AUC) using an SVM classifier. 

To verify these findings the discriminant capabilities for each feature is determined in this 

study using a Recursive Feature Elimination algorithm (RFE) [65]. The complete feature set 

is initially modelled using an RFE algorithm. RFE implements a backwards selection of 

features based on feature importance ranking. The less important features are sequentially 

eliminated prior to modelling. The goal is to find a subset of features that can be used to 

produce an accurate model. Figure 2 highlights the accuracy (cross-validation results) using 

different feature combinations.  
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Figure 2: Recursive Feature Elimination using an Accuracy (Cross-Validation) Measure of 

Importance  

The results indicate that it is possible to obtain high accuracies with good Kappa agreement 

using just eight of the thirteen features as illustrated in Table 3.  

Table 3: RFE Feature (Variables) Rankings Using Accuracy and Kappa Estimates 

Variables Accuracy Kappa AccSD KapSD 

1 0.8183 0.6384 0.0813 0.1628 

2 0.8448 0.6890 0.0345 0.0693 

3 0.8821 0.7630 0.0343 0.0685 

4 0.8942 0.7861 0.0316 0.0640 

5 0.8959 0.7891 0.0370 0.0752 

6 0.9129 0.8237 0.0373 0.0755 

7 0.9163 0.8305 0.0325 0.0662 

8 0.9232 0.8444 0.0377 0.0766 

9 0.9180 0.8336 0.0393 0.0798 

10 0.9129 0.8231 0.0406 0.0825 
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11 0.9214 0.8402 0.0354 0.0721 

The eight ranked features (Variables = eight in Table 3) are DFA, RMS, FD, SD1, SDRatio, 

SD2, SampEn, and STV.  Based on the CTU-UHB dataset, the results support the findings 

made by Spilka et al. [45] that non-linear features, such as DFA, SD1, SD2, and SampEn, 

have good discriminatory capabilities. Interestingly, the RFE did not rank any of the FIGO-

based features with the exception of STV. 

3.4 Synthetic minority over-sampling 

The CTU-UHB dataset is imbalanced in favour of normal vaginal deliveries (506 normal 

delivery records and 46 caesarean section cases). Consequently, imbalanced datasets 

introduce bias during the training phase [1]. Therefore, the probability of classifying a normal 

vaginal delivery using a random sample will be 91.6% (506/552) compared with classifying a 

caesarean section delivery, which will be 8.3% (46/552). Consequently, the cost of predicting 

a term pregnancy that results in a serious pathological outcome is much higher than 

predicting a caesarean section delivery to find there is no pathological evidence to support the 

intervention. In this study, this problem is addressed by oversampling the minority class 

using the Synthetic Minority Over-sampling Technique (SMOTE), which has been 

successfully used in several biomedical studies [66]–[73]. Note, only the training set is 

oversampling (the test set contains real data only). 

3.5 Classification 

Several simple, yet powerful, classifiers are considered in this study. First, Fishers Linear 

Discriminant Analysis (FLDA) algorithm is utilised to determine the presence of linearity in 

the CTU-UHB dataset. A linear combination of features is adopted to find the direction along 

which the two classes are best separated. Data is projected onto a line in such a way that it 

maximises the distance between the means of the two classes while minimizing the variance 

within each class. Classification is performed in this one-dimensional space. 

Ensemble classifiers have shown to have powerful classification and regression capabilities. 

In this study, we consider the Random Forest (RF) classifier [23], [74]. This algorithm uses 

an ensemble of many randomised decision-trees to vote on the classification outcome. Each 

decision-tree is randomised using a bootstrap statistical resampling technique, with random 

feature selection. The optimal split is calculated using different feature sets, which continues 

until the tree is fully grown without pruning. This procedure is repeated for all trees in the 

forest using different bootstrap samples of the data. Classifying new samples can then be 

achieved using a majority vote.  

Finally, a Support Vector Machine is considered, which has previously been used to solve 

practical classification problems, particularly in biomedical domains [22], [75]–[77]. SVM 

binary classifiers maximise the margins in a hyperplane in such a way that it increases the 

distance between classes. In order to separate binary classes the SVM creates a linear 

separating hyperplane. The SVM achieves this by maximizing the margin between 

observations in this higher dimensional space. 

3.6 Validation Methods 

Holdout and k-Fold Cross-Validation are adopted as data splitting methods. In the Holdout 

approach an 80/20 split is adopted (80% for training and 20% for testing). The training and 

test sets contain randomly selected records from the CTG-UHB dataset. Since the exact 

selection of instances is random, the learning and test stages are repeated (oversampling on 

https://www.jair.org/media/953/live-953-2037-jair.pdf


 12 

the training set occurs within this process). The performance metrics for each model is 

averaged over 30 epochs. Under the k-fold method, five folds with one and 30 epoch 

configurations are used. Both methods are compared to validate the suitability of an 80/20 

split. Sensitivity and specificity measures are adopted to evaluate the performance of binary 

classification tests. Sensitivities refer to the true positive rate for caesarean section deliveries, 

while, specificities measure the true negative rate for normal vaginal deliveries.  

The Area Under the Curve (AUC) is used to evaluate [78] model performance in binary 

classification tasks [79]. While, Mean Squared Error (MSE) measures the differences 

between actual and predicted values for all data points. A MSE value of zero indicates that 

the model correctly classifies all instances. For miss-classifications, the MSE will be 

progressively larger.  

4. RESULTS 

This section presents the results for classifying caesarean section and vaginal delivery types 

using features extracted from the FHR signals contained in the CTG-UHB dataset. The 

feature set is split using an 80% holdout technique and 5-fold cross-validation. The 

performance metrics consist of Sensitivity, Specificity, AUC, and MSE values and are 

substantiated using 95% confidence intervals (95% CI). The initial evaluation provides a 

baseline for comparison with all subsequent evaluations considered in this study.  

4.1 Using all Features from Original Data 

In the first evaluation, all 13 FHR features extracted from the original data are utilised to train 

the classifiers. The average performance of each classifier is evaluated using 30 simulations. 

4.1.1 Classifier Performance 

The results in Table 4 show that the Sensitivities (caesarean section deliveries) for all 

classifiers are very low, while corresponding Specificities are high. This is expected, given 

that the dataset is skewed in favour of vaginal delivery records. 95% CI adjusted for 

Sensitivity, Specificity, AUC and MSE are determined using the FLDA, RF and SVM 

classification models. 

Table 4: Classification Performance Metrics Using all Features from Original Data 

Classifier Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI) 

MSE 

(95% CI) 

FLDA 0.02(0.01,0.03) 0.99(0.99,0.99) 0.68(0.65, 0.69) 0.08(0.07,0.08) 

RF 0.02(0.00,0.04) 0.99(0.99,0.99) 0.71(0.68,0.73) 0.08(0.07, 0.08) 

SVM 0.00(0.00,0.00) 0.99(0.99,0.99) 0.60(0.58,0.61) 0.08(0.07,0.08) 

The AUC value for the SVM is relatively low, which equates to slightly better than chance, 

while the FLDA produces a slightly higher value and the RF classifier slightly higher again 

as shown in Table 4 and illustrated in Figure 3.  
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Figure 3: Sensitivity, Specificity and AUC Performance Measures for all Features and 

Original Data Using the FLDA, RF and SVM Classifiers 

Table 5 shows the error rates – see Figure 4 for visual comparison. The errors are more or 

less consistent with the expected MSE base-rate of 8.3% (46 caesarean section deliveries/552 

CTG FHR records). While 5-fold cross-validation does improve the error rates in the case of 

the SVM, the results are not considered statistically significant. 

Table 5: Cross-Validation Error Rates for Original Data Using the FLDA, RF and SVM 

Classifiers 

Classifier Cross-Val 5-Fold 1-Rep Cross-Val 5-Fold 30-Rep 

 Error Error 

FLDA 0.09 0.09 

RF 0.08 0.08 

SVM 0.07 0.07 

The primary reason Sensitivities are so low is that there are only 46 caesarean section records 

to model the class verses 506 normal vaginal delivery records. Conversely, Specificities are 

high because it is easier to classify normal vaginal deliveries due to better representation in 

the classifier models. As such, caesarean section cases need to be oversampled to normally 

distribute the data [80].   
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Figure 4: Cross-Validation Error Rates for all Features and Original Data Using the FLDA, 

RF and SVM Classifiers 

4.2 Using all Features from SMOTE Data 

Using the holdout technique the 80% allocated for training is resampled using the SMOTE 

algorithm (the remaining 20% is retained as real test data) by under sampling the majority by 

100% and oversampling the minority by 600%. The classifiers are remodelled again using all 

13 features and the average performance of each classifier is evaluated using 30 simulations. 

4.2.1 Classifier Performance 

The results, using the new SMOTEd training data (192 caesarean section records and 224 

normal delivery records) and the real test data, can be found in Table 6 and illustrated in 

Figure 5. 

Table 6: Classification Performance Metrics Using all Features from SMOTE Data 

Classifier Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI) 

MSE 

(95% CI) 

FLDA 0.53(0.46,0.59) 0.70(0.68,0.72) 0.67(0.64,0.71) 0.08(0.07,0.08) 

RF 0.59(0.54,0.65) 0.57(0.55,0.59) 0.62(0.60,0.64) 0.08(0.08,0.08) 

SVM 0.66(0.58,0.74) 0.41(0.35,0.46) 0.55(0.52,0.57) 0.08(0.08,0.08) 

These indicate that the Sensitivities, for all models have significantly improved. This is 

however at the expense of lower Specificities. Interestingly, the AUC values for all classifiers 

have decreased with the FLDA decreasing by one percent, the RF by nine percent and the 

SVM by five percent. Given that the Sensitivity and Specificity values are now more evenly 

distributed than the previous evaluation this is a much more accurate assessment of the AUC 

values. 
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Figure 5: Sensitivity, Specificity and AUC Performance Measures for all Features and 

SMOTEd Data Using the FLDA, RF and SVM Classifiers 

Table 7 and Figure 6 show that the error rates are more or less consistent with the previous 

set of results.  

Table 7: Cross-Validation Error Rates for SMOTE Data Using the FLDA, RF and SVM 

Classifiers 

Classifier Cross-Val 5-Fold 1-Rep Cross-Val 5-Fold 30-Rep 

 Error Error 

FLDA 0.09 0.09 

RF 0.07 0.08 

SVM 0.05 0.05 

5-fold cross-validation does provide improvements over the holdout technique in some cases, 

however these are not considered statistically significant with the exception of the SVM. 
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Figure 6: Cross-Validation Error Rates for all Features and SMOTEd Data Using the FLDA, 

RF and SVM Classifiers 

4.3 Using RFE Selected Features from SMOTE Data 

The eight RFE ranked features (DFA, RMS, FD, SD1, SDRatio, SD2, SampEn and STV) are 

used to remodel the classifiers and determine whether the previous results can be improved.  

4.3.1 Classifier Performance 

Looking at Table 8, there are some interesting results. The Sensitivity values remained 

roughly the same with the exception of the SVM which improved by 26%. The Specificity 

values have also improved slightly except the SVM. There were also notable improvements 

in the AUC values.       

Table 8: Classification Performance Metrics Using RFE Selected Features from SMOTE 

Data 

Classifier Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI) 

MSE 

(95% CI) 

FLDA 0.59(0.53,0.63) 0.71(0.69,0.72) 0.68(0.66,0.71) 0.08(0.07,0.08) 

RF 0.76(0.70,0.81) 0.56(0.54,0.58) 0.70(0.68,0.73) 0.08(0.07,0.08) 

SVM 0.52(0.45,0.59) 0.67(0.65,0.69) 0.63(0.59,0.66) 0.08(0.08,0.08) 

While the RF produced the best Sensitivity values, its Specificity value is much lower than in 

the previous evaluation. 
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Figure 7: Sensitivity, Specificity and AUC Performance Measures for RFE Features from 

SMOTEd Data Using the FLDA, RF and SVM Classifiers 

The MSE values, in Table 9 and illustrated in Figure 8, remained more or less the same.  

Table 9: Cross-Validation Error Rates for SMOTE Data Using the FLDA, RF and SVM 

Classifiers 

Classifier Cross-Val 5-Fold 1-Rep Cross-Val 5-Fold 30-Rep 

 Error Error 

FLDA 0.09 0.09 

RF 0.08 0.08 

SVM 0.05 0.05 

5-fold cross validation did not report any significant improvements on the MSE values 

previously reported and did not outperform those produced using the holdout technique. 
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Figure 8: Cross-validation Error Rates for RFE Features and SMOTEd Data Using the 

FLDA, RF and SVM Classifiers 

4.4 Using RFE Selected Features from SMOTE Data and Ensemble Modelling 

The previous results indicate slight improvements using oversampling. The best model fit is 

achieved using the RF classifier with the RFE selected features from SMOTEd data, with 

76% (95% CI: 70%,81%) for Sensitivity, 56% (95% CI: 54%,58%) for Specificity, 70% (95% 

CI: 68%,73%) for the AUC, with a 8% (95% CI: 7%,8%) MSE. In an attempt to improve the 

results, the next evaluation considers an ensemble model comprising FLDA, RF and SVM 

combinations.   

4.4.1 Model Correlation Analysis 

Model correlation analysis is performed and models with correlations less than 0.75 between 

predictions are retained and combined to form an ensemble classifier. Low correlation means 

that the models have good predictive capabilities, but in different ways. Correlations that are 

high, suggest that models are making the same or very similar predictions and this reduces 

the benefits of combining predictions. Consequently, the goal is to create a new classifier that 

utilises the strengths of each model to improve the overall metric values. Table 10 shows that 

the three models used in this study are below the 0.75 correlation threshold and are thus 

suitable candidates for ensemble modelling.  

Table 10: Model Correlation Analysis for the FLDA, RF and SVM Classifiers 

 FLDA RF SVM 

FLDA 1.0000 0.6781 0.3741 

RF 0.6781 1.0000 0.4703 

SVM 0.3741 0.4703 1.0000 
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4.4.2 Classifier Performance 

Table 11, presents the results for the different ensemble model combinations. The values for 

all performance metrics when using the ensemble classifier combinations have improved.   

Table 11: Ensemble Classification Performance Metrics Using Classifier Ensemble 

Combinations 

Ensemble Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

AUC 

(95% CI) 

MSE 

(95% CI) 

FLDA_RF_SVM 0.87(0.86,0.88) 0.90(0.89,0.91) 0.96(0.96,0.97) 0.09(0.09,0.10) 

FLDA_RF 0.81(0.78,0.85) 0.90(0.87,0.94) 0.96(0.94,0.97) 0.08(0.05,0.11) 

FLDA_SVM 0.71(0.68,0.73) 0.82(0.80,0.85) 0.87(0.86,0.88) 0.18(0.17,0.19) 

RF_SVM 0.87(0.85,0.88) 0.91(0.89,0.92) 0.96(0.96,0.97) 0.08(0.07,0.09) 

The best results were obtained from a FLDA, RF and SVM ensemble model with 87%(95% 

CI: 86%,88%) for Sensitivity, 90%(95% CI: 89%,91%) for Specificity, 96%(95% CI: 

96%,97%) for the AUC with a 8%(95% CI: 9%,10%) MSE. 

 

Figure 9: Sensitivity, Specificity and AUC Performance Measures for Ensembler Model and 

RFE Features from SMOTEd Data Using the FLDA, RF and SVM Classifiers 

5. DISCUSSION 

This study used machine learning to classify caesarean section and vaginal delivery types 

using CTG records from 552 subjects. The main objective was determine whether machine 

learning could be used to optimise the decisions made by obstetricians and midwives, in the 

presence of FHR traces, linked to caesarean section and normal vaginal deliveries. To 
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achieve this machine learning algorithms were modelled using the 552 records from the 

CTU-UHB database. No pre-selection of perinatal complications was made. In the pre-

processing tasks, the FHR signal was filtered, and noise and low-quality artefacts were 

removed based on findings in previous studies [38], [39], [81]–[83]. 

Several features were extracted from the raw FHR signal. The resulting feature set was used 

to train FLDA, RF, and SVM classifiers. The initial classification results achieved high 

Specificities (normal deliveries). However, this was at the cost of very low Sensitivities 

(caesarean section deliveries) which in this study are considered more important. Cross-

validation was utilised to increase the Sensitivity values. However, the MSE improvements 

were not statistically significant. This was attributed to the disproportionate number of 

vaginal and caesarean section delivery records and a skewed distribution towards the majority 

class. The minimum error rate displayed across all classifiers was approximately 8% using 

the holdout technique. Low MSE error rates are subjected to classifiers minimizing the 

probability of error when there is insufficient evidence to classify otherwise.  

Using the SMOTE algorithm to oversample the training significantly improved the Sensitivity 

for all classifiers but reduced all Specificities when 13 features were used. We argue that 

while oversampling is not ideal, it is a recognised way to normally distribute datasets [66]–

[72]. The AUC values across all classifiers did not improve. The MSE values remained 

broadly the same. The best results were achieved using the RF classifier with 59% (95% CI: 

54%, 65%) for Sensitivity, 57% (95% CI: 55%, 59%) for Specificity, 62% (95% CI: 60%, 

64%) for the AUC, with a 8% (95% CI: 8%, 8%) MSE. We considered the RF classifier to the 

best as indicated by the approximate balanced between Sensitivity and Specificity values.  

However, the results are not sufficient for use in a medical decision support system.   

Using the RFE algorithm, five features were considered to have no or very low discriminative 

capacity and were removed. This left eight features for further classifier modelling and 

evaluation. The results showed improvements in all classifiers with the best results obtained 

from the RF model with 76% (95% CI: 70%, 81%) for Sensitivity, 56% (95% CI: 54%, 58%) 

for Specificity, 70% (95% CI: 68%, 73%) for the AUC, with a 8% (95% CI: 7%, 8%) MSE.   

Combining the classifiers into ensemble models demonstrated a marked improvement in all 

of the classifier models. The best results were obtained when the FLDA, RF and SVM 

classifiers were combined with overall values of 87% (95% CI; 86%, 88%) for Sensitivity, 

90% (95% CI: 89%, 91%) for Specificity, 96% (95% CI: 96%, 97%) for the AUC, with a 8% 

(95% CI: 9%, 10%) MSE. Ensemble modelling is able to achieve this by running the 

individual models and synthesising the results to improve the overall accuracy. In the case of 

the SVM, it has good generalisation capabilities and in this study, the eight features were 

used to maximise the margins in the hyperplane to increase the distance between classes to 

provide better discrimination. In the case of the RF, each decision-tree is randomised using a 

bootstrap statistical resampling technique, with random feature selection. Many randomised 

decision-trees use the data points of a particular class to vote and classify new data points. 

This is particularly useful for observations located close to the decision boundary, where 

classifiers such as the SVM, based on isolated data points, find them difficult to classify. In 

the context of linear discrimination, the results show that using the FLDA it is not possible to 

maximise the between class variance sufficiently to remove class overlap. This shows that 

classification errors are unavoidable around the decision boundary. In a similar way to the 

SVM, the FLDA finds it easier to classify observations farthest away from the decision 

boundary than those close to it or overlapping using the CTU-UHB dataset.  
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Consequently, it is clear to see that through ensemble modelling, the strengths of each model 

can be utilised to distinguish between caesarean section and vaginal delivery types using the 

FHR signal. In particular, the results demonstrate that the ensemble model, trained using the 

DFA, RMS, FD, SD1, SDRatio, SD2, SampEn, and STV, features, provides significant 

improvements, using a robust methodology, on many previously reported machine learning 

studies in automated Cardiotocography trace interpretation [16], [45], [52], [53], [75], [84], 

[85].  

6. CONCLUSIONS AND FUTURE WORK 

Complications during labour can result in adverse perinatal outcomes and in severe cases 

death. Consequently, early detection and the prediction of pathological outcomes could help 

to reduce foetal morbidity and mortality rates worldwide and indicate if surgical intervention, 

such as caesarean section, is required. Human CTG analysis is used to monitor the foetus 

during labour. However, poor human interpretation has led to high inter and intra observer 

variability. A strong body of evidence has therefore suggested that automated computer 

analysis of CTG signals might provide a viable way of diagnosing true perinatal 

complications and predict the early onset of pathological outcomes with much less variability 

and better accuracy.   

The study presented in this paper explored this idea and utilised FHR signals from CTG 

traces and supervised machine learning, to train and classify caesarean section and vaginal 

deliveries. This was achieved using an ensemble classifier modelled using oversampled 

training data consisting of eight RFE ranked features. The results demonstrate using an 

ensemble model consisting of a FLDA, RF, and SVM model, it is possible to obtain 87% 

(95% CI: 86%, 88%) for Sensitivity, 90% (95% CI: 89%, 91%) for Specificity, and 96% (95% 

CI: 96%, 97%) for AUC, with a 9% (95% CI: 9%, 10%) MSE.   

While, the results are encouraging, further more in-depth studies are required. For example, 

mapping signals to pH values or a range of values for multivariate classification would be 

interesting. This would provide a granular assessment of outcomes potentially more accurate 

and inclusive than simply predicting whether a mother will have a caesarean section or 

vaginal delivery. Future research will also explore opportunities to obtain a much larger 

normally distribution dataset, removing the need for oversampling.  

We only considered the FHR signal in this study, because it provides direct information about 

the foetus’s state. However, it would be useful to create an extended dataset that encompasses 

features extracted from the UC signal. Studying the effects UC has on the foetus during 

pregnancy provides valuable information as can be seen in our previous work [83], and could 

yield additional important information. Lastly, it would be interesting to remove the feature 

engineering stage altogether in favour of deep learning and stacked autoencoders. This would 

force models to learn meaning for information or structure in the data that could potentially 

be more representative of the data than the features considered in this paper.   

Overall, the study demonstrates that classification algorithms provide an interesting line of 

enquiry worth exploring, when classifying caesarean section and vaginal delivery types.   
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