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massive galaxies in the centre of the Coma cluster

Tim Weinzirl,1‹ Shardha Jogee,1 Eyal Neistein,2 Sadegh Khochfar,2,3

John Kormendy,1 Irina Marinova,4 Carlos Hoyos,5 Marc Balcells,6,7,8 Mark den Brok,9

Derek Hammer,10,11 Reynier F. Peletier,12 Gijs Verdoes Kleijn,12 David Carter,13

Paul Goudfrooij,14 John R. Lucey,15 Bahram Mobasher,16 Neil Trentham,17

Peter Erwin2,18 and Thomas Puzia19

1Department of Astronomy, 2515 Speedway, Stop C1400, Austin, TX 78712-1205, USA
2Max Planck Institut f̈ur extraterrestrische Physik, PO Box 1312, D-85478 Garching, Germany
3Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK
4Southwestern University, Department of Physics, 1001 E. University Avenue, Georgetown, TX 78626, USA
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ABSTRACT
We constrain the assembly history of galaxies in the projected central 0.5 Mpc of the Coma
cluster by performing structural decomposition on 69 massive (M� � 109 M� ) galaxies using
high-resolutionF814Wimages from theHubble Space Telescope(HST) Treasury Survey of
Coma. Each galaxy is modelled with up to three Sérsic components having a free Sérsic
indexn. After excluding the two cDs in the projected central 0.5 Mpc of Coma, 57 per cent
of the galactic stellar mass in the projected central 0.5 Mpc of Coma resides in classical
bulges/ellipticals while 43 per cent resides in cold disc-dominated structures. Most of the
stellar mass in Coma may have been assembled through major (and possibly minor) mergers.
Hubble types are assigned based on the decompositions, and we �nd a strong morphology–
density relation; the ratio of (E+S0):spirals is (91.0 per cent):9.0 per cent. In agreement with
earlier work, the size of outer discs in Coma S0s/spirals is smaller compared with lower
density environments captured with SDSS (Data Release 2). Among similar-mass clusters
from a hierarchical semi-analytic model, no single cluster can simultaneously match all the
global properties of the Coma cluster. The model strongly overpredicts the mass of cold gas
and underpredicts the mean fraction of stellar mass locked in hot components over a wide
range of galaxy masses. We suggest that these disagreements with the model result from
missing cluster physics (e.g. ram-pressure stripping), and certain bulge assembly modes (e.g.
mergers of clumps). Overall, our study of Coma underscores that galaxy evolution is not solely
a function of stellar mass, but also of environment.

Key words: galaxies: bulges – galaxies: clusters: Coma – galaxies: elliptical and lenticular,
cD – galaxies: evolution – galaxies: formation – galaxies: structure.
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1 INTRODUCTION

How galaxies form and evolve is one of the primary outstanding
problems in extragalactic astronomy. The initial conditions led to the
collapse of dark matter haloes which clustered hierarchically into
progressively larger structures. In the halo interiors, gas formed ro-
tating discs which underwent star formation (SF) to produce stellar
discs (Cole et al. 2000; Steinmetz & Navarro2002). The subse-
quent growth of galaxies is thought to have proceeded through a
combination of major mergers (e.g. Toomre1977; Barnes1988;
Khochfar & Silk2006,2009), minor mergers (e.g. Oser et al.2012;
Hilz, Naab & Ostriker2013), cold-mode gas accretion (Birnboim
& Dekel 2003; Kere�s et al.2005,2009; Dekel & Birnboim2006;
Brooks et al.2009; Dekel, Sari & Ceverino2009a; Dekel et al.
2009b; Ceverino, Dekel & Bournaud2010), and secular processes
(Kormendy & Kennicutt2004).

In early simulations focusing on gas-poor mergers, the major
merger of two spiral galaxies with mass ratioM1/M 2 � 1/4 would
inevitably destroy the pre-existing stellar discs by violent relax-
ation, producing a remnant bulge or elliptical having a puffed-up
distribution of stars with a low ratio of ordered-to-random motion
(V/� ) and a steep de Vaucouleursr1/4 surface brightness pro�le1

(Toomre1977). Improved simulations (Naab, Khochfar & Burkert
2006; Robertson et al.2006; Governato et al. 2007; Hopkins et al.
2009a,b) signi�cantly revised this picture. In unequal-mass major
mergers, violent relaxation of stellar discs is not complete. Further-
more, for major mergers where the progenitors have moderate-to-
high gas fractions, gas-dissipative processes build discs on small
and large scales (Hernquist & Mihos1995; Robertson et al. 2006;
Hopkins et al.2009a,b; Kormendy et al.2009). The overall single
Sérsic indexn of such remnants are typically 2� n � 4 (Naab et al.
2006; Naab & Trujillo2006; Hopkins et al.2009a). The subsequent
accretion of gas from the halo, cold streams, and minor mergers can
further build large-scale stellar discs, whose size depends on the spe-
ci�c angular momentum of the accreted gas (Steinmetz & Navarro
2002; Birnboim & Dekel2003; Kere�s et al. 2005,2009; Dekel &
Birnboim2006; Robertson et al.2006; Dekel et al.2009a,b; Brooks
et al.2009; Hopkins et al.2009b; Ceverino et al. 2010). Addition-
ally, Bournaud, Elmegreen & Elmegreen (2007a) and Elmegreen
et al. (2009) discuss bulge formation via the merging of clumps
forming within very gas rich, turbulent disc in high-redshift galax-
ies. These bulges can have a range of Sérsic indices, ranging from
n < 2 to n= 4.

As far as the structure of galaxies is concerned, we are still ac-
tively studying and debating the epoch and formation pathway for
the main stellar components of galaxies, namely �attened, dynam-
ically cold, disc-dominated components (including outer discs, cir-
cumnuclear discs, and pseudo-bulges) versus puffy, dynamically
hot spheroidal or triaxial bulges/ellipticals. Getting a census of
dynamically hot bulges/ellipticals and dynamically cold, �attened
disc-dominated components on large and small scales in galaxies
provides a powerful way of evaluating the importance of violent
bulge-building processes, such as violent relaxation, versus gas-
dissipative disc-building processes.

We adopt throughout this paper the widely used de�nition of a
bulge as the excess light above an outer disc in an S0 or spiral
galaxy (e.g. Laurikainen et al.2007,2009,2010; Fisher & Drory
2008; Gadotti2009; Weinzirl et al.2009). The central bulge falls in

1 A de Vaucouleursr1/4 pro�le corresponds to a Śersic (1968) pro�le with
indexn = 4.

three main categories called classical bulges, discy pseudo-bulges
(Kormendy 1993; Kormendy & Kennicutt2004; Athanassoula
2005; Jogee, Scoville & Kenney2005; Kormendy & Fisher2005;
Fisher & Drory2008), and boxy pseudo-bulges (Combes & Sanders
1981; Combes et al.1990; Pfenniger & Norman1990; Athanassoula
2005; Bureau & Athanassoula2005; Martinez-Valpuesta, Shlosman
& Heller 2006). Some bulges are composite mixtures of the �rst
two classes (Kormendy & Barentine2010; Barentine & Kormendy
2012). For remainder of the paper we refer to classical bulges simply
as ‘bulges’ when the context is unambiguous.

Numerous observational efforts have been undertaken to derive
such a census among galaxies in the �eld environment. Photometric
studies (e.g. Kormendy1993; Graham2001; Balcells et al.2003;
Balcells, Graham & Peletier2007b; Laurikainen et al.2007; Fisher
& Drory 2008; Graham & Worley2008; Gadotti2009; Weinzirl
et al. 2009; Kormendy et al.2010) have dissected �eld galaxies
into outer stellar discs and different types of central bulges (clas-
sical, discy/boxy pseudo-bulges) associated with different Sérsic
index, and compiled the stellar bulge-to-total light or mass ratio
(B/T) of spirals and S0s. It is found that low-B/T and bulgeless
galaxies are common in the �eld at low redshifts, both among low-
mass or late-type galaxies (Böker et al.2002; Kautsch et al.2006;
Barazza, Jogee & Marinova2007,2008) and among high-mass spi-
rals or early-type spirals (Kormendy1993; Balcells et al.2003,
2007b; Laurikainen et al.2007; Graham & Worley2008; Gadotti
2009; Weinzirl et al.2009; Kormendy et al.2010). Balcells et al.
(2003) highlighted the paucity ofr1/4 pro�les in the bulges of early-
type disc galaxies. Working on a bigger sample, Weinzirl et al.
(2009) report that the majority (66.4± 4.4 per cent) of massive
(M� � 1010 M� ) �eld spirals have lowB/T (�0.2) and bulges with
low Sérsic index (n � 2).

These empirical results can be used to test models of the assembly
history of �eld galaxies. For instance, Weinzirl et al. (2009) �nd that
the results reported above are consistent with hierarchical semi-
analytic models of galaxy evolution from Khochfar & Silk (2006)
and Hopkins et al. (2009a), which predict that most (�85 per cent)
massive �eld spirals have had no major merger sincez = 2. While
this work reduces the tension between theory and observations for
�eld galaxies, one should note that hydrodynamical models still
face challenges in producing purely bulgeless massive galaxies in
different environments.

It is important to extend such studies from the �eld environment
to rich clusters. Hierarchical models predict differences in galaxy
merger history as a function of galaxy mass, environment, and red-
shift (Cole et al.2000; Khochfar & Burkert2001). Furthermore,
cluster-speci�c physical processes, such as ram-pressure stripping
(Gunn & Gott1972; Fujita & Nagashima1999), galaxy harassment
(Barnes & Hernquist1991; Moore et al.1996,1999; Hashimoto
et al.1998; Moore, Lake & Katz1998; Gnedin2003), and strangu-
lation (Larson, Tinsley & Caldwell1980), can alter SF history and
galaxy stellar components (discs, bulges, bars).

Efforts to establish accurate demographics of galaxy com-
ponents in clusters are ongoing. In the nearby Virgo cluster,
Kormendy et al. (2009) �nd that more than 2/3 of the stellar mass
is in classical bulges/ellipticals, including the stellar mass contribu-
tion from M87.2 Furthermore, there is clear evidence for ongoing

2 M87 is considered as a giant elliptical by some authors and as a cD by
others. The detection of intracluster light around M87 (Mihos et al.2005,
2009) strongly supports the view that it is a cD galaxy. In this paper (e.g.
Table6) we consider M87 as a cD when making comparisons (e.g. Section
4.2) to Virgo.

MNRAS 441,3083–3121 (2014)
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environmental effects in Virgo; see Kormendy & Bender (2012) for
a comprehensive review.

Yet Virgo is not very rich compared with more typical clus-
ters (Heiderman et al.2009). The Coma cluster atz = 0.024
(D = 100 Mpc) has a central number density 10 000 MpcŠ3 (The
& White 1986) and is the densest cluster in the local Universe.
However, ground-based data do not provide high enough resolution
(1 arcsec–2 arcsec= 500–1000 pc) for accurate structural decom-
position, an obstacle to earlier work.

In this paper we make use of data from theHubble Space
Telescope(HST) Treasury Survey (Carter et al.2008) of Coma
which provides high-resolution (50 pc) imaging from the Advanced
Camera for Surveys (ACS). Our goal is to derive the demographics
of galaxy components, in particular classical bulges/ellipticals and
�attened disc-dominated components (including both large-scale
discs and discy pseudo-bulges), in the Coma cluster, and to com-
pare the results with lower density environments (LDEs) and to
theoretical models, to constrain the assembly history of galaxies.

In Section 2 we present our mass-complete sample of cluster
galaxies with stellar massM� � 109 M� . In Section 3 we de-
scribe our structural decomposition strategy. Section 3.1 describes
our working assumption in this paper of using Sérsic index as
a proxy for tracing the disc-dominated structures and classical
bulges/ellipticals. Section 3.2 outlines our procedure for structural
decomposition, and we refer the reader to Appendix A for a more
detailed description. Section 3.3 overviews the scheme we use to
assign morphological types (MT) to galaxies. In Section 4.1, we
quantitatively assign galaxy types based on the structural decom-
positions. We also make a census (Section 4.2) of structures built
by dissipation versus violent stellar processes, explore how stellar
mass is distributed in different galaxy components (Section 4.3), and
consider galaxy scaling relations (Section 4.4). In Section 4.5, we
evaluate and discuss the effect of cluster environmental processes. In
Section 5 we compare our empirical results with theoretical models,
after �rst identifying Coma-like environments in the simulations.
Readers not interested in the complete details about the theoretical
model can skip to Sections 5.3 and 5.6. We summarize our results
in Section 6.

We adopt a �at� cold dark matter cosmology with� � = 0.7
andH0 = 73 km sŠ1 MpcŠ1. We use AB magnitudes throughout
the paper, except where indicated otherwise.

2 DATA AND SAMPLE SELECTION

This study is based on the data products from theHST/ACS Coma
Cluster Treasury Survey (Carter et al.2008), which provides ACS
Wide Field Camera images for 25 pointings spanning 274 arcmin2

in theF475WandF814W�lters. The total ACS exposure time per
pointing is typically 2677 s inF475Wand 1400 s inF814W. Most
(19/25) pointings are located within 0.5 Mpc from the central cD
galaxy NGC 4874, and the other 6/25 pointings are between 0.9
and 1.75 Mpc southwest of the cluster centre. The full width at
half-maximum (FWHM) of the ACS point spread function (PSF)
is �0.1 arcsec (Hoyos et al.2011), corresponding to�50 pc at the
100 Mpc distance of the Coma cluster (Carter et al.2008). Note that
the 19 pointings cover only 19.7 per cent by area of the projected
central 0.5 Mpc of Coma. This limited spatial coverage of ACS in
the projected central 0.5 Mpc of Coma may introduce a possible
bias in the sample due to cosmic variance. We quantify this effect
in Appendix B5 and discuss the implications throughout the paper.

Hammer et al. (2010) discuss the images and SEXTRACTOR source
catalogues for Data Release 2.1 (DR2.1). TheF814W5� limit for

point sources is 26.8 mag (Hammer et al.2010), and we estimate
the 5� F814Wsurface brightness limit for extended sources within
a 0.7 arcsec diameter aperture to be 25.6 mag arcsecŠ2. Several of
the ACS images in DR2.1 suffer from bias offsets on the interchip
and/or interquadrant scale that cause dif�culty in removing the sky
background. We use the updated ACS images reprocessed to reduce
the impact of this issue. The DR2.1 images are used where this issue
is not present.

2.1 Selection of bright cluster members

We select our sample based on the eyeball catalogue of Trentham
et al. (in preparation), with updates from Marinova et al. (2012).
This catalogue provides visually determined morphologies and clus-
ter membership status for galaxies with an apparent magnitude
F814W� 24 mag. Morphology classi�cations in this catalogue
come from a combination of RC3 (de Vaucouleurs et al.1991) and
visual inspection. In Section 4.1 we assign Hubble types based only
on our own multicomponent decompositions.

Cluster membership is ranked from 0 to 4 following the method of
Trentham & Tully (2002). Membership class 0 means the galaxy is
a spectroscopically con�rmed cluster member. The subset of spec-
troscopically con�rmed cluster members was identi�ed based on
published redshifts (Colless & Dunn1996; Mobasher et al.2001;
Adelman-McCarthy et al.2008; Chiboucas et al.2010) and is ap-
proximately complete in surface brightness at the galaxy half-light
radius (µe, F814W) to �22.5 mag arcsecŠ2 (den Brok et al.2011). The
remaining galaxies without spectroscopic con�rmation are assigned
a rating of 1 (very probable cluster member), 2 (likely cluster mem-
ber), 3 (plausible cluster member), or 4 (likely background object)
based on a visual estimation that also considers surface brightness
and morphology.

From this catalogue, we de�ne a sample S1 of 446 cluster mem-
bers havingF814W� 24 mag and membership rating 0–3 located
within the projected central 0.5 Mpc of Coma, which is the pro-
jected radius probed by the central ACS pointings. To S1 we add
the second central cD galaxy NGC 4889, which is not observed by
the ACS data. The majority (179) of S1 galaxies have member class
0, and 30, 131, and 106 have member class 1, 2, and 3, respectively.

2.2 Calculation of stellar masses

Stellar masses are a thorny issue. Uncertainties in the mass-to-light
ratios of stellar populations (M/L) arise from a poorly known ini-
tial mass function (IMF) as well as degeneracies between age and
metallicity. We calculate stellar masses based on theHST F475W
andF814W-band photometry. First, we convert theHST(AB) pho-
tometry to the Cousins–Johnson (Vega) system using

I = F 814WŠ 0.38 (1)

from the WFPC2 Photometry Cookbook and

B Š I = 1.287(F 475WŠ F 814W) + 0.538 (2)

from Price et al. (2009).
Next, we calculateI-bandM/L from the calibrations of Into &

Portinari (2013) for a Kroupa, Tout & Gilmore (1993) IMF with

I lum = 10(Š0.4(I Š35Š4.08)) (3)

and

M� = I lum × 10(0.641(BŠI )Š0.997), (4)

MNRAS 441,3083–3121 (2014)
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where I corresponds to the apparentMAG_AUTOSEXTRACTOR

magnitude,3 35 is the distance modulus to Coma, and 4.08 is the
solar absolute magnitude inI band.

We use the above method to calculate stellar masses for all galax-
ies in S1 except NGC 4889, which does not have ACS data. For
NGC 4889, we usegr Petrosian magnitudes from SDSS Data Re-
lease 10 (DR10; Ahn et al.2013). Stellar masses are determined
using the relations of Bell et al. (2003) and assuming a Kroupa IMF,
namely

glum = 10(Š0.4(gŠ35Š5.10)) (5)

and

M� = glum × 10(Š0.499+1.519(gŠr )Š0.1), (6)

whereg andr are apparent SDSS magnitudes, 35 is the distance
modulus to Coma, and 5.10 is the solar absolute magnitude ing
band.4

It is hard to derive the stellar mass of cD galaxies for several rea-
sons. The stellarM/L ratio of cDs is believed to be high (Mdyn/L B >
100; Schneider2006), but is very uncertain as most of the light of
a cD is in an outer envelope made of intracluster light and galaxy
debris. Another problem is that even if one knew the correct stellar
M/L ratio, it is likely that the available photometry from ACS and
SDSS is missing light from the extended low surface brightness en-
velope. Given all these factors, it is likely that the above equations,
which are typically used to convert colour toM� for normal rep-
resentative galaxies, are underestimating theM/L ratios and stellar
masses of the cDs, so that the adopted stellar masses for the cDs
(M� � 6Š8 × 1011 M� ) are lower limits. Due to the uncertain stel-
lar masses of the cDs, we present many of our results without them,
and we take care to consider them separately from the less massive
galaxy population of E, S0, and spiral galaxies.

2.3 Selection of �nal sample of massive galaxies

The left-hand panels of Fig.1 show the distributions ofF814W
magnitudes (upper panel) and stellar masses (lower panels) for
sample S1, while in the right-hand panels of the same �gure the
correlations of stellar masses withF814Wmagnitudes (upper panel)
andg Š r colours (lower panel) are shown.

In this paper, we focus on massive (M� � 109 M� ) galaxies. Our
rationale is that we are speci�cally interested in understanding the
evolution of the most massive cluster galaxies through comparisons
with model clusters (Section 5) which show mass incompleteness
at galaxy stellar massesM� < 109 M� . We found for sample S1
that imposing the mass cutM� � 109 M� effectively removes most
galaxies identi�ed in the Trentham et al. catalogue as dwarf/irregular
and very low surface brightness galaxies. With this cut, we are left
with 75 galaxies that consist primarily of E, S0, and spiral galaxies,
two cDs, and only six dwarfs. 3 out of 75 galaxies are signi�cantly
cutoff from the ACS detector, and we ignore these sources. Of
the remaining 72 galaxies, 69/72 have spectroscopic redshifts. The
3/72 galaxies without spectroscopic redshifts appear too red to be

3 For galaxies COMAi125935.698p275733.36= NGC 4874 and CO-
MAi125931.103p275718.12, SEXTRACTOR vastly underestimates the total
F814Wluminosity, and the calculation is instead made with the total lumi-
nosity derived from structural decomposition (Section 3.2).
4 The Kroupa IMF offset term reported asŠ0.15 in Bell et al. (2003) was
calculated assuming unrealistic conditions (Bell, private communication).
The correct value isŠ0.1 and is used in Borch et al. (2006).

in Coma (Fig.1d), and the estimated SDSS DR10 photometric
redshifts are much larger than the redshift of Coma (0.024). We
also neglect these three sources as they are unlikely to be Coma
members. Our �nal working sample S2 consists of the 69 galaxies
inside the projected central 0.5 Mpc with stellar massM� � 109 M�
and spectroscopic redshifts. Table1 cross references our sample
with other data sets.

3 METHOD AND ANALYSIS

3.1 Using Śersic index as a proxy for tracing disc-dominated
structures and classical bulges/ellipticals

As outlined in Section 1, galaxy bulges and stellar discs hold in-
formation on galaxy assembly history. The overall goal in this
work is to separate galaxy components into groups of classical
bulges/ellipticals versus disc-dominated structures.

It is common practice (e.g. Laurikainen et al.2007; Gadotti2009;
Weinzirl et al.2009) to characterize galaxy structures (bulges, discs,
and bars) with generalized ellipses whose radial light distributions
are described by the Sérsic (1968) pro�le:

I (r ) = I e exp

�

Šbn

� �
r
re

� 1/n

Š 1

��

, (7)

whereIe is the surface brightness at the effective radiusre andbn
5

is a constant that depends on Sérsic indexn.
In this paper, we adopt the working assumption that in interme-

diate and high-mass (M� � 109 M� ) galaxies, a low Śersic index
n below a threshold valuendisc max corresponds to a dynamically
cold disc-dominated structure. Note we specify ‘disc-dominated’
rather than ‘pure disc’ as we refer to barred discs and thick discs.
While this assumption is not necessarily waterproof, it is based on
multiple lines of compelling evidence that are outlined below.

(i) Freeman (1970) showed that many large-scale discs of S0
and spiral galaxies are characterized by an exponential light pro�le
(Sérsic indexn = 1) over 4–6 disc scalelengths. Since then, it has
become standard practice in studies of galaxy structure to model
the outer disc of S0s and spirals with an exponential pro�le (e.g.
Kormendy1977; Boroson1981; Kent 1985; Byun & Freeman1995;
de Jong1996; Baggett, Baggett & Anderson1998; Allen et al.2006;
Laurikainen et al.2007; Gadotti2009; Weinzirl et al.2009).

(ii) On smaller scales, �attened, rotationally supported inner
discs with highV/� (i.e. discy pseudo-bulges) have been asso-
ciated with low Śersic indexn � 2 (Kormendy1993; Kormendy &
Kennicutt2004; Athanassoula2005; Jogee et al.2005; Kormendy
& Fisher 2005; Fisher & Drory2008; Fabricius et al.2012). This
suggestsndisc max should be close to 2.
Fabricius et al. (2012) explore the major-axis kinematics of 45 S0–
Scd galaxies with high-resolution spectroscopy. They demonstrate a
systematic agreement between the shape of the velocity dispersion
pro�le and the bulge type as indicated by the Sérsic index. Low
Sérsic index bulges have both increased rotational support (higher
�V2�/�� 2� values) and on average lower central velocity dispersions.
Classical bulges (discy pseudo-bulges) have centrally peaked (�at)
velocity dispersion pro�les whether identi�ed visually or by a high
Sérsic index.

5 The precise values ofbn are given from the roots of the equation� (2n)Š
2� (2n, bn) = 0, where� is the gamma function and� is the incomplete
gamma function.
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TheHST/ACS Coma Cluster Survey – VII 3087

Figure 1. Shows in panels (a) to (d) the luminosity, stellar mass, andg Š r colour, respectively, for the 446 galaxies in sample S1 havingF814W� 24,
locations within the projected central 0.5 Mpc of the Coma cluster, and cluster membership rating 0–3, where rating 0 means spectroscopically con�rmed and
ratings 1–3 indicate increasingly less likely cluster membership. See Section 2.1 for details. In panel (b), the two most massive sources are cD galaxies, and
the arrows indicate their adopted stellar masses are lower limits (Section 2.2). The solid line in panel (d) is the colour–luminosity break between the red and
blue sequence of galaxies from Blanton et al. (2005), which we convert from luminosity to stellar mass using the relations of Bell et al. (2003). The dotted line
in panels (b)–(d) indicates our main sample of 69 spectroscopically con�rmed members withM� � 109 M� .

(iii) At high (z � 2) redshift, where it is not yet possible to
fully resolve galaxy substructures, it has become conventional to
use the global Śersic indexn � 2 in massive galaxies to separate
disc-dominated versus bulge-dominated galaxies (e.g. Ravindranath
et al.2004; van der Wel et al.2011; Weinzirl et al.2011). Weinzirl
et al. (2011) further explore the distributions of ellipticities (1Š
b/a) for the massivez � 2 galaxies with low (n� 2) and high (n>
2) global Śersic index. They �nd galaxies with low global Sérsic
indexn � 2 have a distribution of projected ellipticities more similar
to massivez � 0 spirals than to massivez � 0 ellipticals.

The above does not allow for low-n, dynamically hot structures.
A low-n dynamically hot structure would be considered in our

study as a pure photometric disc, a low-nbulge, or an unbarred
S0 galaxy. The error due to misunderstood objects in the �rst two
groups is expected to be small or non-existent. There is only one
pure photometric disc in the sample (Section 4.1) and low-n bulges
(N= 20) only make up 2.2 per cent of galaxy stellar mass (excluding
the cDs, Section 4.2). Furthermore, �g. 15 of Fabricius et al. (2012)
shows that no low-n bulge turns out to be dynamically hot.

There are 20 unbarred S0 galaxies in our sample, and these ac-
count for 18.5 per cent of the galaxy stellar mass (excluding the cD
galaxies). About 75 per cent of these objects have stellar mass and
luminosity consistent with dwarf spheroidal galaxies (Kormendy
et al. 2009). Even if some of these systems are actually dwarf
spheroidals, they may not be dynamically hot as some studies
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3088 T. Weinzirl et al.

Table 1. Cross identi�cations.

Galaxy name SDSS DR8 name 2MASS XSC (or PSC name) GMP name Dressler (1980) name
(1) (2) (3) (4) (5)

COMAi125926.458p275124.81 1237667444048658752 – GMP3473 –
COMAi13007.123p275551.49 1237667444048724242 2MASSJ13000711+2755511 GMP2931 –
COMAi125930.270p28115.17 1237667324334571563 – GMP3406 –
COMAi125937.200p275819.97 1237667444048658537 2MASSJ12593720+2758203 GMP3308 –
COMAi125953.929p275813.75 1237667444048658918 – GMP3098 –
COMAi13018.351p28333.32 1237667324334637348 – GMP2787 –
COMAi125937.010p28106.95 1237667324334571551 2MASSJ12593699+2801074 GMP3312 –
COMAi125946.943p275930.90 1237667324334571832 2MASSJ12594688+2759308 GMP3166 –
COMAi13030.954p28630.22 1237667324334637213 2MASSJ13003091+2806300 GMP2626 –
COMAi13035.420p275634.06 1237667444048724352 – GMP2585 –
COMAi125950.183p275445.52 1237667444048658912 – GMP3131 –
COMAi125959.476p275626.02 1237667444048658878 – GMP3034 –
COMAi13000.949p275643.85 1237667444048658882 2MASSJ13000095+2756433 GMP3017 –
COMAi13034.430p275604.95 1237667444048724349 2MASSJ13003442+2756047 GMP2591 –
COMAi125931.893p275140.76 1237667444048658763 2MASSJ12593186+2751406 GMP3383 –
COMAi125931.103p275718.12 1237667444048658549 – GMP3392 –
COMAi13041.193p28242.34 1237667324334702866 2MASSJ13004119+2802424 GMP2529 –
COMAi125845.533p274513.75 1237667323797635368 2MASSJ12584558+2745132 GMP4035 –
COMAi13018.545p28549.62 1237667324334637356 2MASSJ13001857+2805503 GMP2784 –
COMAi13021.673p275354.81 1237667444048724303 2MASXJ13002172+2753545 GMP2736 –
COMAi13024.823p275535.94 1237667444048724320 2MASSJ13002482+2755353 GMP2692 –
COMAi13051.149p28249.90 1237667324334702708 2MASSJ13005112+2802499 GMP2423 –
COMAi13011.143p28354.91 1237667324334637325 2MASSJ13001117+2803551 GMP2879 –
COMAi125937.990p28003.52 1237667324334571647 2MASSJ12593798+2800036 GMP3292 –
COMAi13018.873p28033.38 1237667324334637362 2MASXJ13001890+2800332 GMP2777 –
COMAi125911.543p28033.32 1237667324334506328 2MASSJ12591153+2800334 GMP3681 –
COMAi125904.797p28301.16 1237667324334506316 2MASXJ12590475+2803019 GMP3780 –
COMAi125909.468p28227.35 1237667324334506325 2MASXJ12590943+2802279 GMP3707 –
COMAi125935.286p275149.13 1237667444048658774 2MASXJ12593524+2751488 GMP3339 –
COMAi13005.405p28128.14 1237667324334637091 2MASXJ13000538+2801282 GMP2960 –
COMAi125950.105p275529.44 1237667444048658822 2MASXJ12595013+2755292 GMP3133 –
COMAi13018.772p275613.34 1237667444048723991 2MASXJ13001877+2756135 GMP2778 –
COMAi125938.321p275913.89 1237667444048658535 2MASXJ12593827+2759137 GMP3291 D154
COMAi125940.270p275805.71 1237667444048658530 2MASSJ12594026+2758058 GMP3254 D127
COMAi125944.208p275730.38 1237667444048658531 2MASXJ12594423+2757307 GMP3206 D126
COMAi125939.659p275714.03 1237667444048658528 2MASSJ12593965+2757141 GMP3269 D128
COMAi13044.632p28602.31 1237667324334702891 2MASXJ13004459+2806026 GMP2489 D191
COMAi125928.721p28225.92 1237667324334571539 2MASXJ12592868+2802258 GMP3433 D177
COMAi125942.301p275529.15 1237667444048658653 2MASXJ12594234+2755287 GMP3222 D125
COMAi13017.014p28350.07 1237667324334637347 2MASXJ13001702+2803502 GMP2805 D171
COMAi125956.697p275548.71 1237667444048658858 2MASXJ12595670+2755483 GMP3068 D123
COMAi13016.534p275803.15 1237667444048723984 2MASXJ13001655+2758032 GMP2815 D122
COMAi13006.395p28015.94 1237667324334637086 2MASXJ13000643+2800142 GMP2940 D150
COMAi13027.966p275721.56 1237667444048724118 2MASXJ13002798+2757216 GMP2654 D119
COMAi13012.868p28431.74 1237667324334637140 2MASXJ13001286+2804322 GMP2861 D173
COMAi125943.721p275940.82 1237667324334571645 2MASSJ12594372+2759409 GMP3213 D153
COMAi13028.370p275820.64 1237667444048724328 2MASXJ13002835+2758206 GMP2651 D147
COMAi13042.832p275746.95 1237667444048724176 2MASXJ13004285+2757476 GMP2510 D116
COMAi13038.761p28052.34 1237667324334702605 2MASXJ13003877+2800516 GMP2551 D146
COMAi13014.746p28228.69 1237667324334637152 2MASXJ13001475+2802282 GMP2839 D172
COMAi13022.170p28249.30 1237667324334637189 2MASXJ13002215+2802495 GMP2727 D170
COMAi125931.453p28247.60 1237667324334571535 2MASXJ12593141+2802478 GMP3390 D176
COMAi13018.093p275723.59 1237667444048723985 2MASSJ13001809+2757235 GMP2794 D120
COMAi13040.838p275947.80 1237667324334702869 2MASXJ13004081+2759476 GMP2535 D145
COMAi125852.097p274706.15 1237667323797635203 2MASXJ12585208+2747059 GMP3958 D072
COMAi125946.782p275825.99 1237667444048658525 2MASXJ12594681+2758252 GMP3170 D152
COMAi13008.003p28442.81 1237667324334637131 2MASXJ13000803+2804422 GMP2922 D174
COMAi125929.956p275723.26 1237667444048658522 2MASSJ12592995+2757231 GMP3414 D131
COMAi125929.403p275100.46 1237667444048658609 2MASXJ12592936+2751008 GMP3423 D088
COMAi125932.771p275901.04 1237667444048658523 2MASXJ12593276+2759008 GMP3367 D155
COMAi125944.407p275444.84 1237667444048658654 2MASXJ12594438+2754447 GMP3201 D124
COMAi125930.824p275303.05 1237667444048658616 2MASXJ12593079+2753028 GMP3400 D103
COMAi13039.767p275526.19 1237667444048724135 2MASXJ13003975+2755256 GMP2541 D118
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TheHST/ACS Coma Cluster Survey – VII 3089

Table 1 – continued

Galaxy name SDSS DR8 name 2MASS XSC (or PSC name) GMP name Dressler (1980) name
(1) (2) (3) (4) (5)

COMAi13042.766p275817.38 1237667324334702622 2MASXJ13004277+2758166 GMP2516 D144
COMAi13048.646p28526.69 1237667324334702681 2MASXJ13004867+2805266 GMP2440 D168
COMAi13017.683p275718.93 1237667444048723981 2MASXJ13001768+2757192 GMP2798 D121
COMAi13051.464p28234.86 1237667324334702705 2MASXJ13005158+2802341 GMP2417 D167
NGC 4889 1237667444048723983 2MASXJ13000809+2758372 GMP2921 D148
COMAi125935.698p275733.36 (NGC 4874) 1237667444048658532 2MASXJ12593570+2757338 GMP3329 D129

Notes.If there is no match in the 2MASS Extended Source catalogue (2MASX), where available, the 2MASS Point Source catalogue name (2MASS) is given
in column (3). GMP name refers to the Godwin, Metcalfe & Peach (1983) catalogue.

(e.g. Kormendy et al.2009, Kormendy & Bender2012) claim that
many dwarfs are actually disc systems closely related to dIrr, which
have been stripped of gas via supernova feedback or environmental
effects. The remaining 25 per cent would be misclassi�ed ellipti-
cal galaxies as they are too bright and massive to be dwarfs. Note,
however, that �g. 33 of Kormendy et al. (2009) shows that elliptical
galaxies withMV < Š18 and Śersic n < 2 are very rare. In the
worse-case scenario that all of our unbarred S0 galaxies are dy-
namically hot structures, our measurement of the dynamically hot
stellar mass in Section 4.2 would be too low by�30 per cent.

The second natural related working assumption in our paper is
that in intermediate and high-mass (M� � 109 M� ) galaxies, com-
ponents with Śersicn > n disc max are classical bulge/elliptical com-
ponents (de�ned in Section 1). Such bulges/ellipticals are formed
by the redistribution of stars during major and minor galaxy col-
lisions.N-body simulations show that minor mergers consistently
raise the bulge Śersic index (Aguerri, Balcells & Peletier2001;
Eliche-Moral et al.2006; Naab & Trujillo2006). The effect of suc-
cessive minor mergers is cumulative (Aguerri et al.2001; Bournaud,
Jog & Combes2007b; Naab, Johansson & Ostriker2009; Hilz et al.
2012).

We empirically setndisc max to 1.66 based on looking at the Sérsic
n of outer discs in those Coma galaxies that are barred, and by
de�nition, must harbour outer disc since bars are disc features.
Appendices B2 and D discuss the empirical details behind this
choice.

3.2 Overview of our structural decomposition procedure

For our mass-complete sample of 69 intermediate-to-high mass
(M� � 109 M� ) galaxies, we use deep, high-resolution (0.1 arcsec
or 50 pc),F814W-band images of Coma fromHST/ACS, which
allow for accurate structural decomposition. We �t galaxies with
one, two, or three Śersic pro�les, plus a nuclear point source, when
needed (see Appendix A for details). We useGALFIT (Peng et al.
2002). In a model with one or more Sérsic pro�les, there is expected
to be coupling between the free parameters, particularlyre andn,
although most previous studies have generally ignored this effect.
Weinzirl et al. (2009) explore the issue of parameter coupling for
barred and unbarred spiral galaxies.

We take some precautions to ensure accurate decompositions.

(i) We �t all structures with a generalized Sérsic pro�le where
the Śersic index is a free parameter (Section 3.3). This limits the
number of a priori assumptions on the physical nature or shape of
galaxy structures.

(ii) In clusters, the featureless (i.e. no spiral arms delineated by
young stars, rings of SF, or gas/dust lanes) outer discs of gas-poor
S0s are not readily distinguished from the equally featureless outer

stellar components of classical ellipticals. We do this in essence by
applyingndisc max to the Śersic indexn of the outer galaxy structure.

(iii) Not requiring outer discs to have an exponentialn = 1 pro-
�le accommodates non-exponential disc structures (e.g. discs with
down-bending truncations or up-bending antitruncations; Freeman
1970; van der Kruit1979; van der Kruit & Searle1981a,b; de Grijs,
Kregel & Wesson2001; Pohlen et al.2002; Matthews & Gallagher
1997; Erwin, Beckman & Pohlen2005; Pohlen & Trujillo2006;
Maltby et al.2012) that are rotationally supported.

(iv) Stellar bars, ovals/lenses, and nuclear point sources are mod-
elled when needed, which is critical for obtaining a reliable charac-
terization of the bulge (e.g. Balcells et al.2003; Laurikainen et al.
2005,2007; Weinzirl et al. 2009).

Our structural decomposition scheme and decision sequence are
described in detail in Appendix B, illustrated in Figs2 and3, and
brie�y outlined below.

(i) Stage 1 (single Śersic �tted with nuclear point source if
needed). The single Sérsic model is adopted if either the galaxy
does not show any coherent structures (e.g. inner/outer discs, bars,
bulges, rings, or spiral arms) indicating the need for additional
Sérsic components, or, alternatively, if the galaxy has a core – a
light pro�le that deviates downward from the inward extrapolation
of the Śersic pro�le (see Appendix C). Such galaxies are interpreted
as photometric ellipticals if the single Sérsic index is above a thresh-
old valuendisc max associated with discs (Section 3.1, Appendices
B2 and D); otherwise they are considered photometric discs. Three
galaxies show convincing evidence for being cores, and these are lu-
minous objects with high single Sérsicn > n disc max (see Appendix
B2, Table2, and Appendix C). The results of Stage 1 are listed in
Table3. See Appendix B1 for additional details on the single Sérsic
�ts.

(ii) Stage 2 (double Śersic model with nuclear point source if
needed). Galaxies showing coherent structure in the Stage 1 resid-
uals are subjected to a two-component Sérsic + Sérsic �t, with
nuclear point source if needed (see Fig.3). This two-component
model is intended to model the inner (C1) and outer (C2) galaxy
structures.
There are two possible outcomes. (a) If the outer component C2
is an outer disc based on having Sérsic indexn � ndisc max, then
the galaxy is considered a spiral or S0 with an outer disc having
a photometric bulge and, in some cases, a large-scale bar. (b) If
the outer component C2 does not meet our de�nition of an outer
disc, then the galaxy is considered a photometric elliptical having
an outer component C2 withn > n disc max and an inner component
C1 of anyn. See Appendix B2 for details.

(iii) Stage 3 (triple Śersic model with nuclear point source if
needed). Case (a) in Stage 2 identi�es spiral and S0 galaxies with
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3090 T. Weinzirl et al.

Figure 2. Provides an overview of our structural decomposition method. All galaxies are subjected to Stage 1, and most are further processed in Stage 2. A
galaxy best �tted with a single Śersic pro�le plus point source (if needed) is interpreted as a photometric elliptical or photometric disc. A galaxy with extra
coherent structure that cannot be described with a single Sérsic pro�le is subjected to a multiple-component �t in Stage 2 and, if needed, Stage 3. Fig.3
describes Stage 2 and Stage 3 in more detail.

an outer disc. These galaxies are further processed as follows. (a)
If there is evidence for a large-scale bar (see Appendix B2), then
a triple Śersic pro�le is �tted in Stage 3 for the photometric bulge,
disc, and bar. (b) Otherwise, the galaxy is considered as unbarred
and the double Śersic �t for a photometric bulge and disc is adopted.
In both cases (a) and (b), it is important to note that the photometric
bulge is allowed to have any Sérsic indexn, thus allowing for
structures withn � ndisc max and structures withn > n disc max.

3.3 Overview of our galaxy classi�cation scheme

The decomposition scheme discussed above and in Figs2 and 3
leads naturally to the galaxy classi�cation system outlined in Fig.4,
where there are �ve main galaxy types, G1 to G5. Systems best
�tted by single Śersic models (plus a nuclear point source if present)
represent galaxies of type G1 and G2. Systems best �tted by two or
three Śersic pro�les (plus a nuclear point source if present) represent
galaxies of type G3 to G5.

(i) G1. Photometric disc withn � ndisc max (plus a nuclear point
source if present).

(ii) G2. Photometric elliptical withn > n disc max (plus a nuclear
point source if present).

(iii) G3. Unbarred S0 or spiral having an outer disc withn �
ndisc max and an inner photometric bulge of anyn (plus a nuclear
point source if present).

(iv) G4. Barred S0 or spiral having an outer disc withn �
ndisc max, a bar, and an inner photometric bulge of anyn (plus a
nuclear point source if present).

(v) G5. Photometric elliptical having an outer component with
n > n disc max and an inner component of anyn.

This galaxy classi�cation scheme has multiple advantages. First,
it allows us to identify low-n disc-dominated structures within
galaxies, both on large scales and in the central regions, in the
form of outer discs withn � ndisc max in spirals and S0s, photomet-
ric bulges withn � ndisc max in spirals and S0s (representing discy
pseudo-bulges), and inner discs within ellipticals represented by a
component C1 havingn � ndisc max. Furthermore, it allows a cen-
sus of galaxy components withn > n disc max more akin to classical
bulges/ellipticals. Our scheme does not allow for low-ndynamically
hot components. As discussed in Section 3.1, this is not a problem
because in our sample such structures are not expected to be present
in large numbers.

Table4 lists the distribution of best-�tting models for the sample
of galaxies with stellar massM� � 109 M� , and the breakdown of
galaxies into classes G1 to G5. Table5 lists the structural parameters
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TheHST/ACS Coma Cluster Survey – VII 3091

Figure 3. Shows the steps following stages 2 and 3 from Fig.2. A galaxy without an extended outer disc is interpreted as a photometric E, while a galaxy
with such a disc is labelled either an S0 or spiral. When evidence for a large-scale bar is found in a galaxy with an outer disc, Stage 3 is used to model the bar
component.
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Table 2. Properties of cored ellipticals.

Galaxy name Core Śersic (� , rb) 2D Śersic pro�le w/o 2D Śersic pro�le w/o
core masked (n,re) core masked (n, re)

(1) (2) (3) (4)

COMAi125909.468p28227.35 (0.16, 0.13 arcsec) (2.54, 4.2) (2.54, 4.20 arcsec)
NGC 4874 (ACSF814W) (0.15, 1.40 arcsec) (2.89, 35.4 arcsec) (11.4, 875.0 arcsec)
NGC 4874 (SDSSi band) (0.15, 2.32 arcsec) (4.30, 88.3 arcsec) (4.70, 107.0 arcsec)
NGC 4889 (SDSSi band) (0.06, 1.88 arcsec) (3.90, 42.9 arcsec) (7.80, 129.0 arcsec)

Notes.Galaxies are identi�ed as having a core following the procedure in Appendix C. Two of the cored galaxies (NGC
4874 and NGC 4889) are cD galaxies.

Table 3. Galaxy properties and single Sérsic pro�le structural parameters.

Galaxy name RA Dec. M� F814Wmagnitude re n
(M� ) (kpc)

(1) (2) (3) (4) (5) (6) (7)

COMAi125926.458p275124.81 194.860 245 27.856 893 1.03e+09 17.43 0.97 1.88
COMAi13007.123p275551.49 195.029 679 27.930 971 1.03e+09 17.42 0.62 2.76
COMAi125930.270p28115.17 194.876 126 28.020 883 1.05e+09 17.46 1.04 1.90
COMAi125937.200p275819.97 194.905 001 27.972 214 1.12e+09 17.68 0.29 4.51
COMAi125953.929p275813.75 194.974 706 27.970 489 1.17e+09 17.41 1.10 1.30
COMAi13018.351p28333.32 195.076 465 28.059 258 1.17e+09 17.13 1.32 1.23
COMAi125937.010p28106.95 194.904 209 28.018 598 1.23e+09 17.34 0.69 2.08
COMAi125946.943p275930.90 194.945 597 27.991 917 1.40e+09 17.02 1.49 1.65
COMAi13030.954p28630.22 195.128 977 28.108 396 1.46e+09 17.07 1.41 1.94
COMAi13035.420p275634.06 195.147 586 27.942 797 1.72e+09 16.83 1.92 1.81
COMAi125950.183p275445.52 194.959 098 27.912 647 1.81e+09 16.95 1.57 1.41
COMAi125959.476p275626.02 194.997 820 27.940 564 1.83e+09 16.53 2.41 2.30
COMAi13000.949p275643.85 195.003 956 27.945 514 1.92e+09 16.40 2.00 3.38
COMAi13034.430p275604.95 195.143 461 27.934 709 1.94e+09 16.65 2.11 2.10
COMAi125931.893p275140.76 194.882 888 27.861 324 1.96e+09 16.78 0.94 1.88
COMAi125931.103p275718.12 194.879 597 27.955 035 1.99e+09 16.87 2.47 1.61
COMAi13041.193p28242.34 195.171 639 28.045 097 2.15e+09 16.83 0.86 1.66

COMAi125845.533p274513.75 194.689 724 27.753 820 2.21e+09 16.56 2.14 2.09
COMAi13018.545p28549.62 195.077 272 28.097 119 2.25e+09 16.64 1.62 1.73
COMAi13021.673p275354.81 195.090 308 27.898 559 2.71e+09 16.37 1.46 2.57
COMAi13024.823p275535.94 195.103 430 27.926 652 2.73e+09 16.41 2.68 2.15
COMAi13051.149p28249.90 195.213 122 28.047 197 2.78e+09 15.52 5.35 3.17
COMAi13011.143p28354.91 195.046 429 28.065 253 2.83e+09 16.38 1.42 2.12
COMAi125937.990p28003.52 194.908 292 28.000 979 2.97e+09 16.53 1.16 2.00
COMAi13018.873p28033.38 195.078 639 28.009 273 2.98e+09 16.58 0.38 3.29
COMAi125911.543p28033.32 194.798 099 28.009 258 3.26e+09 16.40 1.22 1.84
COMAi125904.797p28301.16 194.769 991 28.050 323 3.78e+09 16.09 2.16 2.28
COMAi125909.468p28227.35 194.789 451 28.040 932 5.14e+09 15.94 1.88 2.54
COMAi125935.286p275149.13 194.897 029 27.863 650 5.27e+09 15.96 1.06 1.54
COMAi13005.405p28128.14 195.022 521 28.024 486 8.40e+09 15.11 2.61 2.58

COMAi125950.105p275529.44 194.958 773 27.924 845 8.88e+09 15.62 1.35 2.32
COMAi13018.772p275613.34 195.078 218 27.937 041 9.56e+09 15.09 3.23 2.57
COMAi125938.321p275913.89 194.909 675 27.987 192 9.96e+09 14.93 3.67 3.50
COMAi125940.270p275805.71 194.917 794 27.968 254 1.01e+ 10 15.04 2.52 5.94
COMAi125944.208p275730.38 194.934 203 27.958 439 1.20e+10 14.60 3.55 3.89
COMAi125939.659p275714.03 194.915 246 27.953 900 1.21e+10 15.05 1.33 3.65
COMAi13044.632p28602.31 195.185 968 28.100 644 1.38e+10 14.86 1.82 2.84
COMAi125928.721p28225.92 194.869 671 28.040 534 1.39e+10 14.95 1.67 2.97
COMAi125942.301p275529.15 194.926 256 27.924 765 1.61e+10 14.56 1.16 7.49
COMAi13017.014p28350.07 195.070 896 28.063 911 1.79e+10 14.75 1.35 3.91

COMAi125956.697p275548.71 194.986 241 27.930 200 1.82e+10 14.35 4.71 3.80
COMAi13016.534p275803.15 195.068 895 27.967 542 1.84e+10 14.24 2.98 4.58
COMAi13006.395p28015.94 195.026 649 28.004 430 1.87e+10 13.82 5.01 7.52
COMAi13027.966p275721.56 195.116 526 27.955 989 2.11e+10 14.51 1.55 4.68
COMAi13012.868p28431.74 195.053 620 28.075 485 2.11e+10 14.52 1.40 3.21

COMAi125943.721p275940.82 194.932 172 27.994 675 2.13e+10 14.48 1.38 3.81
COMAi13028.370p275820.64 195.118 212 27.972 400 2.17e+10 14.24 4.29 4.04
COMAi13042.832p275746.95 195.178 470 27.963 042 2.49e+10 14.17 2.70 4.47

MNRAS 441,3083–3121 (2014)

 at Liverpool John M
oores U

niversity on M
arch 17, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



TheHST/ACS Coma Cluster Survey – VII 3093

Table 3 – continued

Galaxy name RA Dec. M� F814Wmagnitude re n
(M� ) (kpc)

(1) (2) (3) (4) (5) (6) (7)

COMAi13038.761p28052.34 195.161 508 28.014 541 2.51e+10 13.87 5.34 4.31
COMAi13014.746p28228.69 195.061 442 28.041 304 2.88e+10 14.06 1.58 4.70
COMAi13022.170p28249.30 195.092 378 28.047 029 2.88e+10 13.84 2.97 4.08
COMAi125931.453p28247.60 194.881 057 28.046 557 2.88e+10 14.22 1.82 2.84
COMAi13018.093p275723.59 195.075 391 27.956 554 2.89e+10 14.41 1.27 2.41
COMAi13040.838p275947.80 195.170 159 27.996 612 2.97e+10 14.00 3.15 3.27
COMAi125852.097p274706.15 194.717 073 27.785 042 3.05e+10 14.02 1.90 3.29
COMAi125946.782p275825.99 194.944 929 27.973 886 3.44e+10 13.83 3.38 4.33
COMAi13008.003p28442.81 195.033 348 28.078 560 3.51e+10 14.10 1.13 2.59

COMAi125929.956p275723.26 194.874 818 27.956 462 3.92e+10 13.32 3.85 4.89
COMAi125929.403p275100.46 194.872 516 27.850 130 4.26e+10 13.87 1.68 4.07
COMAi125932.771p275901.04 194.886 550 27.983 624 4.49e+10 13.20 5.50 5.86
COMAi125944.407p275444.84 194.935 031 27.912 457 4.62e+10 13.67 2.26 2.96
COMAi125930.824p275303.05 194.878 435 27.884 182 5.02e+10 13.61 1.54 3.77
COMAi13039.767p275526.19 195.165 696 27.923 943 5.02e+10 13.44 2.93 3.64
COMAi13042.766p275817.38 195.178 194 27.971 495 5.73e+10 13.43 2.37 4.00
COMAi13048.646p28526.69 195.202 693 28.090 749 6.69e+10 13.30 2.21 3.02
COMAi13017.683p275718.93 195.073 683 27.955 259 7.06e+10 13.28 2.13 2.85
COMAi13051.464p28234.86 195.214 436 28.043 019 7.48e+10 13.07 2.85 3.92

NGC 4889 195.033 750 27.977 000 5.78e+11 10.57 22.65 4.37
COMAi125935.698p275733.36 (NGC 4874) 194.898 743 27.959 269 7.69e+11 10.96 17.35 3.05

Notes.Rows are sorted by increasingM� .

from the best single or multicomponent model. In summary, we �t
6, 38, and 25 galaxies with 1, 2, and 3 Sérsic pro�les, respectively.
Our best-�tting models have reduced� 2 of the order of 1. In terms
of galaxy types G1 to G5, we assign 1, 5, 24, 25, and 14 objects to
classes G1, G2, G3, G4, and G5, respectively. The number of Stage
3 �ts implies that the bar fraction among galaxies with an extended
outer disc is 50.0± 7.1 per cent, and this is consistent with the bar
fraction in Coma derived by Marinova et al. (2012).

4 EMPIRICAL RESULTS ON GALAXY
STRUCTURE

4.1 Galaxy types and morphology–density relation in the
centre of Coma

We next map classes G1 to G5 to more familiar Hubble types,
namely cD, photometric E, S0, and spiral. The Hubble types as-
signed here depend only on the morphology classes (G1 to G5)
associated with structural decomposition; they are independent of
the MT from the Trentham et al. (in preparation) catalogue dis-
cussed in Section 2. The results are shown in Table4, and this
process is explained in detail below.

The one object in class G1 (photometric disc) has a single Sérsic
index n � ndisc max and a nuclear point source. This object has no
visible spiral arms, so it is an S0. Objects assigned to class G2 (pho-
tometric ellipticals) have single Sérsic indexn > n disc max and in-
clude two known central cD galaxies, NGC 4874 and NGC 4889. We
label these two sources separately as cD galaxies because they con-
tain a disproportionately large fraction of the stellar mass. Classes
G3 (unbarred S0, spiral) and G4 (barred S0, spiral) represent S0 or
spiral disc galaxies with a possible large-scale bar. We label the six
galaxies in either class G3 or G4 showing spiral arms in the data or
residual images as spirals, while the remaining sources are labelled
S0. Class G5 objects are identi�ed as photometric ellipticals having

an outer component withn > n disc max and an inner component of
anyn.

Considering the Hubble types assigned above, we �nd evidence
of a strong absence of spiral galaxies. In the projected central
0.5 Mpc of the Coma cluster, there are two cDs (NGC 4874 and
NGC 4889), spirals are rare, and the morphology breakdown of
(E+S0):spirals is (25.3 per cent+65.7 per cent):9.0 per cent by num-
bers and (32.0 per cent+62.2 per cent):5.8 per cent by stellar mass.
Note that our ratio of E-to-S0 galaxies is lower than found else-
where for Coma (e.g. Gavazzi et al.2003) and for other clusters
(e.g. Dressler1980; Fasano et al.2000; Poggianti et al.2009),
where it is�1–2. This is driven by the effect of cosmic variance on
our sample (Appendix B5). Also, the total stellar mass cited here
does not include the cDs as their stellar mass is quite uncertain (see
Section 2.2).

In contrast to the central parts of Coma, LDEs are typi-
cally dominated by spirals. This is quantitatively illustrated by
Table 6, which compares the results in Coma with the lower
density Virgo cluster and the �eld. We note that Virgo has
signi�cantly lower projected galaxy number densities and halo
mass (Binggeli, Tammann & Sandage1987) than the centre of
Coma. McDonald, Courteau & Tully (2009) study a sample of
286 Virgo cluster member galaxies that is complete down to
BT = 16 (Vega mag). At stellar massM� � 109 M� , if M87
is counted as a giant elliptical, the (E+S0):spirals breakdown
is (34.1 per cent+31.6 per cent):34.8 per cent by numbers and
(59.2 per cent+19.3 per cent):21.4 per cent by stellar mass. There is
evidence (Mihos et al.2005,2009; Kormendy et al.2009) that M87
has a cD halo, and after excluding M87, the (E+S0):spirals break-
down changes slightly to (33.5 per cent+31.6 per cent):34.8 per cent
by numbers and (57.2 per cent+20.3 per cent):22.5 per cent by stel-
lar mass. In the �eld, the (E+S0):spiral morphology breakdown
is �20 per cent:80 per cent by number for bright galaxies (Dressler
1980).
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3094 T. Weinzirl et al.

Figure 4. Overview of our galaxy classi�cation system (Section 3.3). Galaxies are deemed to be best represented by a either a single or multicomponent
Sérsic pro�le (plus point source, if needed). Galaxies �tted with a single Sérsic pro�le are further interpreted as a pure disc (if Sérsic indexn � ndisc max) or
photometric elliptical (if Śersic indexn > n disc max). When a multicomponent Sérsic pro�le is required, the galaxy is either an unbarred/barred S0 or spiral,
or a photometric E with inner and outer components. S0s and spirals must have an outer component C2 with Sérsic indexn � ndisc max. The inner component
C1 can have anyn. If the outer component C2 has Sérsic indexn > n disc max, the galaxy is a photometric elliptical with inner component C1 of anyn. The
value ofndisc max is set to 1.66 based on several considerations (See Appendices B2 and D). We determinendisc max to be the maximum Śersic index of the
outer disc in spiral and S0 galaxies showing clear signs of an outer disc, such as bars, spiral arms, rings, or high inclination.

4.2 What fraction of total galactic stellar mass is in
disc-dominated structures versus classical bulges/ellipticals?

Here and in Section 4.3, we discuss the stellar mass breakdown
among galaxy components within each galaxy type. Our results are
summarized in Tables7 and8.

Recall that in Section 2.2, the total stellar masses were computed
through applying calibrations ofM/L to theHST F475WandF814W
photometry. To calculate the stellar mass in galaxy substructures we
assume a constantM/L ratio and simply multiply theF814Wlight
ratio of each component by the total galaxy stellar mass. A more
rigorous approach is to also perform the decompositions in the
F475Wband and to fold the colours of galaxy substructures into
the calculation. In Appendix B6, we consider the effect of galaxy
colour gradients for a subset of galaxies; the effect of the colour
gradients on the stellar mass fractions is small (�5 per cent) and
does not impact our conclusions.

Table 7 summarizes our attempt at providing a census
of the stellar mass among disc-dominated components and

classical bulges/ellipticals, in the projected central 0.5 Mpc of
Coma, excluding the two cDs. We highlight the main results
below.

(i) Stellar mass in low-n �attened disc-dominated structures
(43 per cent). The total stellar mass in small and large-scale disc-
dominated components is�36.0 per cent. Bars are disc-dominated
components in the sense that they are �attened non-axisymmetric
components. Bar proportions typically range from 2.5:1 to 5:1 in
their equatorial plane (Binney & Tremaine1987). The stellar mass
percentage in bars is 6.8 per cent. Thus, the total fraction mass in
disc-dominated components is 43 per cent.

(ii) Stellar mass in high-n classical bulges/ellipticals
(57 per cent). The remaining stellar mass is in components
with n > n disc max. These components include the outer com-
ponents of photometric ellipticals, the central components with
n > n disc max in photometric ellipticals, and the bulges of S0s and
spirals withn > n disc max. The per cent stellar mass in these systems
is 57 per cent.
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TheHST/ACS Coma Cluster Survey – VII 3095

Table 4. Distribution of best-�tting structural decompositions for stellar massM� � 109 M� .

Morphology Number per bin Stage 1 Stage 1 Stage 2 Stage 2 Stage 3 Stage 3
w/o w/o w/o w/o w/o w/o

Point source Point source Point source Point source Point source Point source
(1) (2) (3) (4) (5) (6) (7) (8)

All Galaxies 69 3 3 14 24 14 11

In terms of galaxy types G1 to G5

G1: photometric disc 1 0 1 0 0 0 0
G2: photometric E 5 3 2 0 0 0 0

G3: unbarred S0, spiral 24 0 0 8 16 0 0
G4: barred S0, spiral 25 0 0 0 0 14 11

G5: photometric E with 14 0 0 6 8 0 0
extra inner component

In terms of Hubble types cD, E, S0, and spiral

cD 2 2 0 0 0 0 0
Photometric E 17 1 2 6 8 0 0

S0 44 0 1 8 12 14 9
Spiral 6 0 0 0 4 0 2

Notes.This table shows the distribution of best-�tting models and the breakdown of galaxies into classes G1 to G5 arrived at by applying the structural
decomposition and galaxy classi�cation schemes described in Section 3.3 and Figs2–4.

(iii) Environmental dependence of disc-dominated structures.
Finally, we discuss howf disc dominated, the fraction of galactic stel-
lar mass in disc-dominated structures, varies with environment. For
the lower density �eld-like environments studied by Weinzirl et al.
(2009), this fractionf disc dominatedis �89.6 per cent for galaxies with
M� � 1010 M� . Applying the same mass cut in Coma, the fraction
f disc dominatedis �40.1 per cent, which is lower than in the �eld as
expected.
Due to the effect of cosmic variance on our sample (Appendix B5),
our measurement of disc-dominated stellar mass is larger by an
estimated factor of 1.27, compared to what would be obtained from
an unbiased sample. This is estimated by weighting the fraction
of hot and cold stellar mass in elliptical, S0, and spiral galaxies
(Table 8) with the morphology–density distribution from GOLD
Mine for the projected central 0.5 Mpc of Coma.
We also note here the results for the Virgo cluster, in which
Kormendy et al. (2009) �nd that in galaxies withM� � 5× 109 M� ,
more than 2/3 of the stellar mass is in classical bulges/ellipticals,
implying thatf disc dominatedis less than 1/3. It may seem surprising
that our value off disc dominatedin Coma is higher than the value of
1/3 for Virgo. However, we believe this apparent discrepancy is due
to the fact that the Virgo study includes the giant elliptical galaxy
M87, which is marginally classi�ed as a cD (Kormendy et al.2009),
while our study excludes the two cDs in the central part of Coma. If
we include these two cDs and adopt a conservative lower limit for
their stellar mass, then the fractionf disc dominatedof stellar mass in
the low-n component would be less than 27 per cent, since the cDs
add their mass to high-n stellar components (see Appendix B4).

4.3 What fraction of stellar mass within S0, E, spirals is in
disc-dominated structures versus classical bulges/ellipticals?

We now discuss how the stellar mass is distributed among E, S0,
and spiral Hubble types in the projected central 0.5 Mpc of Coma.
As above, fractional stellar masses are reported without including
the cD galaxies.

(i) Mass distribution among high-n classical bulges/ellipticals
versus low-n discy pseudo-bulges in Coma S0s and spirals. Bulges

account for �30.5 per cent of the stellar mass across E, S0,
and spiral galaxies. The ratioR of stellar mass in high-n(n �
1.7) classical bulges to low-n (n � 1.7) discy pseudo-bulges is
28.3percent/2.2 per cent or 12.9.

(ii) Mass distributions among bulges in Coma S0s versus S0s in
lower density environments. We next compare the bulges of Coma
S0s versus S0s in LDEs. The results are summarized in Table9.
We base this comparison on the results of Laurikainen et al. (2010),
who derive structural parameters from 2D multicomponent decom-
positions of 117 S0s in LDEs that include a mix of �eld and Virgo
environments. For S0s in these LDEs withM� � 7.5× 109 M� , the
ratio R of stellar mass in high-n(n � 1.7) classical bulges to low-n
(n � 1.7) discy pseudo-bulges is 30.6 per cent/4.7 per cent or 6.5,
while it is 41.7 per cent/2.4 per cent or 17.4 in the projected central
0.5 Mpc of Coma. Note that the difference in mass stored in high-n
and low-nbulges is not due to a greater frequency of high-n bulges,
which is similar at this mass range.

(iii) Mass distribution in outer and inner components of photo-
metric ellipticals in Coma.By de�nition in Section 4.1, photometric
ellipticals have no outer disc. The outer components of these ellip-
ticals have Śersicn from 1.72 to 6.95, with a median value of 2.1.
The total fractional stellar mass of the outer structures in ellipticals
relative to our sample (minus the cDs) is�25.9 per cent. Photomet-
ric ellipticals may contain an inner component of any Sérsicn, and
we �nd a range inn of 0.31 to 5.88 in Śersic index, with a median of
1.0. Inner components withn � ndisc max represent compact inner
discs analogous to the discy pseudo-bulges in S0s and spirals; most
of these inner components (9/14 or 64.3± 12.8 per cent) qualify as
inner discs.

4.4 Scaling relations for outer discs and bulges

Here, we explore scaling relations for the bulges and outer discs
in the projected central 0.5 Mpc of the Coma cluster. We assess
how these structures compare with outer discs and bulges in LDEs,
such as �eld, groups, and even low-density clusters similar to the
Virgo cluster, where environmental processes and merger histories
are likely to be different.
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Table 5. Structural parameters for the best model.

Galaxy name Gn Hubble type Point source/T, C1/T, C2/T, Bar/T C1 re C1n C2re C2n Bar re Barn
(per cent, per cent, per cent, per cent) (kpc) (kpc) (kpc)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

COMAi125926.458p275124.81 G5 E (0.22, 92.40, 7.36, 0.00) 1.05 1.72 0.42 0.85 – –
COMAi13007.123p275551.49 G5 E (0.00, 100.00, 0.00, 0.00) 0.63 1.94 0.32 5.88 – –
COMAi125930.270p28115.17 G5 E (0.46, 89.20, 10.30, 0.00) 1.13 1.83 0.62 0.70 – –
COMAi125937.200p275819.97 G5 E (0.00, 79.90, 20.10, 0.00) 0.31 6.20 0.20 0.89 – –
COMAi125953.929p275813.75 G3 spiral (0.46, 43.00, 56.50, 0.00) 0.79 1.31 1.31 0.63 – –
COMAi13018.351p28333.32 G3 S0 (0.05, 42.50, 57.40, 0.00) 0.85 1.24 1.75 0.52 – –
COMAi125937.010p28106.95 G5 E (0.51, 91.10, 8.42, 0.00) 0.79 2.13 0.35 0.51 – –
COMAi125946.943p275930.90 G3 S0 (0.09, 7.22, 92.70, 0.00) 0.31 0.98 1.47 1.01 – –
COMAi13030.954p28630.22 G4 S0 (0.33, 2.13, 75.40, 22.20) 0.14 1.11 1.87 1.20 0.61 0.85
COMAi13035.420p275634.06 G3 S0 (0.06, 28.10, 71.80, 0.00) 0.73 1.05 2.51 0.76 – –
COMAi125950.183p275445.52 G4 S0 (0.28, 1.85, 86.80, 11.10) 0.19 0.76 1.68 0.91 0.88 0.42
COMAi125959.476p275626.02 G3 S0 (0.38, 42.00, 57.60, 0.00) 1.07 1.67 2.67 0.72 – –
COMAi13000.949p275643.85 G3 S0 (0.35, 27.70, 72.00, 0.00) 0.47 1.56 2.43 1.15 – –
COMAi13034.430p275604.95 G3 S0 (0.00, 40.80, 59.20, 0.00) 1.15 1.80 2.83 1.00 – –
COMAi125931.893p275140.76 G5 E (0.19, 89.40, 10.40, 0.00) 1.04 2.09 0.62 0.65 – –
COMAi125931.103p275718.12 G1 S0 (0.11, 0.00, 100.00, 0.00) – – 2.38 1.52 – –
COMAi13041.193p28242.34 G3 spiral (0.29, 30.60, 69.10, 0.00) 0.41 1.08 1.11 0.84 – –

COMAi125845.533p274513.75 G5 E (0.08, 100.00, 0.00, 0.00) 2.98 2.09 1.52 1.71 – –
COMAi13018.545p28549.62 G3 S0 (0.14, 34.90, 64.90, 0.00) 0.76 0.97 2.83 0.86 – –
COMAi13021.673p275354.81 G3 S0 (0.74, 30.40, 68.90, 0.00) 0.40 1.14 1.71 0.56 – –
COMAi13024.823p275535.94 G3 spiral (0.23, 14.20, 85.50, 0.00) 0.58 1.36 3.06 1.20 – –
COMAi13051.149p28249.90 G3 S0 (0.05, 16.30, 83.60, 0.00) 0.96 1.57 5.98 1.35 – –
COMAi13011.143p28354.91 G3 S0 (0.13, 19.20, 80.70, 0.00) 0.66 2.64 1.48 1.40 – –
COMAi125937.990p28003.52 G4 spiral (0.76, 22.60, 67.50, 9.09) 0.37 2.38 1.40 0.50 0.67 0.33
COMAi13018.873p28033.38 G4 S0 (0.00, 54.20, 34.70, 11.10) 0.18 2.95 0.86 1.04 0.51 0.56
COMAi125911.543p28033.32 G3 S0 (0.19, 23.90, 75.90, 0.00) 0.54 0.95 1.55 1.21 – –
COMAi125904.797p28301.16 G4 S0 (0.09, 4.23, 76.80, 18.90) 0.21 1.22 2.72 1.12 0.83 0.85
COMAi125909.468p28227.35 G2 E (0.00, 100.00, 0.00, 0.00) 1.88 2.54 – – – –
COMAi125935.286p275149.13 G5 E (0.05, 85.80, 14.10, 0.00) 1.37 2.08 0.70 0.31 – –
COMAi13005.405p28128.14 G4 S0 (0.00, 14.20, 72.20, 13.60) 0.35 1.18 3.60 0.92 1.29 0.45

COMAi125950.105p275529.44 G4 S0 (0.00, 26.70, 66.00, 7.31) 0.80 2.37 1.99 1.66 0.51 0.28
COMAi13018.772p275613.34 G4 S0 (0.00, 9.13, 69.10, 21.80) 0.49 0.98 2.87 0.69 1.64 0.60
COMAi125938.321p275913.89 G3 spiral (0.08, 25.30, 74.60, 0.00) 0.71 2.06 3.27 0.89 – –
COMAi125940.270p275805.71 G4 S0 (0.00, 33.40, 65.70, 0.94) 0.31 3.39 1.82 0.86 0.48 0.14
COMAi125944.208p275730.38 G5 E (0.00, 85.30, 14.70, 0.00) 5.43 5.82 1.95 0.56 – –
COMAi125939.659p275714.03 G3 S0 (0.64, 33.70, 65.70, 0.00) 0.32 1.91 1.97 1.08 – –
COMAi13044.632p28602.31 G3 S0 (0.00, 26.80, 73.20, 0.00) 0.35 1.51 2.36 0.80 – –
COMAi125928.721p28225.92 G4 S0 (0.00, 25.30, 33.70, 41.00) 0.40 1.65 3.28 0.57 1.54 1.05
COMAi125942.301p275529.15 G3 S0 (0.00, 25.20, 74.80, 0.00) 0.08 1.53 0.98 1.48 – –
COMAi13017.014p28350.07 G4 S0 (0.00, 47.20, 31.60, 21.20) 0.70 4.67 3.57 0.58 0.80 0.64

COMAi125956.697p275548.71 G4 S0 (0.18, 49.60, 26.20, 24.00) 1.89 4.33 3.57 0.25 2.48 0.41
COMAi13016.534p275803.15 G3 S0 (0.00, 84.10, 15.90, 0.00) 3.26 6.16 3.59 0.48 – –
COMAi13006.395p28015.94 G3 S0 (0.00, 66.10, 33.90, 0.00) 1.60 6.78 2.08 0.84 – –
COMAi13027.966p275721.56 G4 S0 (0.00, 42.80, 41.30, 15.90) 0.42 2.67 3.32 0.32 1.01 0.98
COMAi13012.868p28431.74 G4 S0 (0.00, 67.10, 19.10, 13.80) 0.77 2.42 5.07 0.41 3.00 0.53

COMAi125943.721p275940.82 G3 S0 (0.00, 69.20, 30.80, 0.00) 0.76 3.20 1.83 0.72 – –
COMAi13028.370p275820.64 G4 S0 (0.05, 33.80, 31.40, 34.80) 0.85 2.53 5.02 0.38 3.61 0.59
COMAi13042.832p275746.95 G4 S0 (0.00, 43.90, 46.40, 9.68) 0.75 3.01 3.81 0.47 1.51 0.39
COMAi13038.761p28052.34 G4 S0 (0.13, 16.80, 71.90, 11.10) 0.46 1.68 3.81 0.85 2.86 0.61
COMAi13014.746p28228.69 G3 S0 (0.43, 78.20, 21.40, 0.00) 0.90 3.68 2.26 0.47 – –
COMAi13022.170p28249.30 G4 S0 (0.00, 15.20, 73.40, 11.50) 0.31 1.35 3.49 1.24 1.31 0.48
COMAi125931.453p28247.60 G3 S0 (0.00, 78.60, 21.40, 0.00) 1.61 3.51 2.36 0.86 – –
COMAi13018.093p275723.59 G2 E (0.17, 100.00, 0.00, 0.00) 1.27 2.37 – – – –
COMAi13040.838p275947.80 G5 E (0.13, 99.91, 0.00, 0.00) 3.16 2.34 0.34 1.83 – –
COMAi125852.097p274706.15 G5 E (0.00, 50.00, 50.00, 0.00) 2.12 6.95 1.74 1.41 – –
COMAi125946.782p275825.99 G4 S0 (0.00, 15.70, 67.70, 16.60) 0.31 1.75 3.44 0.67 1.23 0.72
COMAi13008.003p28442.81 G3 S0 (0.00, 85.00, 15.00, 0.00) 0.99 3.00 1.66 0.57 – –

COMAi125929.956p275723.26 G4 S0 (0.37, 24.20, 25.50, 49.90) 0.45 1.75 5.59 0.33 3.15 1.02
COMAi125929.403p275100.46 G5 E (0.00, 100.00, 0.00, 0.00) 2.37 1.86 0.28 2.19 – –
COMAi125932.771p275901.04 G4 S0 (0.02, 49.00, 46.70, 4.25) 2.21 6.05 3.01 0.83 0.50 0.54
COMAi125944.407p275444.84 G4 S0 (0.00, 34.30, 62.10, 3.65) 0.75 2.59 2.92 1.09 1.38 0.23
COMAi125930.824p275303.05 G4 spiral (0.36, 41.90, 41.20, 16.50) 0.54 1.89 6.41 0.66 1.79 0.46
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TheHST/ACS Coma Cluster Survey – VII 3097

Table 5 – continued

Galaxy name Gn Hubble type Point source/T, C1/T, C2/T, Bar/T C1 re C1n C2re C2n Bar re Barn
(per cent, per cent, per cent, per cent) (kpc) (kpc) (kpc)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

COMAi13039.767p275526.19 G4 S0 (0.01, 46.30, 53.40, 0.34) 1.28 3.05 3.59 1.42 0.89 0.28
COMAi13042.766p275817.38 G4 S0 (0.00, 66.90, 31.30, 1.80) 1.27 2.99 6.23 0.35 1.42 0.17
COMAi13048.646p28526.69 G5 E (0.11, 70.20, 29.70, 0.00) 3.12 5.17 1.87 1.10 – –
COMAi13017.683p275718.93 G2 E (0.21, 100.00, 0.00, 0.00) 2.13 2.80 – – – –
COMAi13051.464p28234.86 g5 E (0.00, 100.00, 0.00, 0.00) 3.90 2.01 0.61 2.21 – –

NGC 4889 G2 cD (0.00, 100.00, 0.00, 0.00) 57.7 7.8 – – – –
COMAi125935.698p275733.36 (NGC 4874) G2 cD (0.00, 100.00, 0.00, 0.00) 391.3 11.4 – – – –

Notes.Rows are sorted by increasingM� . In columns 4–8, the meaning of C1 and C2 depends on Hubble type. For cD and elliptical (E) galaxies, C1 is the
outermost structure. For E galaxies, C2 represents the inner component of anyn. For S0 and spiral galaxies, C1 is the bulge and C2 is the outer disc. The bar
component represents bars/ovals in S0 and spiral galaxies. For cored galaxies (NGC 4874, NGC 4889, COMAi125909.468p28227.35), the reported model
corresponds to the 2D �t where the cored region of the galaxy has been masked (see Table2 and Appendix C).

Table 6. Morphology–density relation.

Region Mass or mag cut Galaxy typea,b Per cent by numbers Per cent by stellar mass
(1) (2) (3) (4) (5)

Central 0.5 Mpc M� � 109 M� (E+S0):spiral (25.3+ 65.7):9.0 (32.0+ 62.2):5.8
of Coma (This work)

Virgo (McDonald et al.2009) M� � 109 M� (E+S0):spiral (33.8+ 31.3):35.0 (57.2+ 20.3):22.5
Virgo (McDonald et al.2009) MB � Š 19 (E+S0):spiral (28.2+ 36.9):35.0 (57.3+ 20.2):22.5

Field (Dressler1980) Bright galaxies (E+S0):spiral (�20):�80 -

Notes.aComa has two cD galaxies in the central 0.5 Mpc.
bM87 in Virgo is considered an elliptical galaxy by McDonald et al. (2009). The detection of intracluster light around M87 (Mihos et al.2005,2009) is
de�nitive proof that it is a cD galaxy (see also the discussion in Kormendy et al.2009). Here, we consider M87 a cD galaxy and do not include it in the above
statistics for ellipticals.

Table 7. Total galactic stellar mass in disc-dominated structures versus classical bulges/ellipticals.

Structure Per cent of stellar mass in the
projected central 0.5 Mpc of Coma

(1) (2)

Disc-dominated components withn � ndisc max

Outer discs of S0s 27.7
Outer discs of spirals 2.94
Bulges withn � ndisc max (pseudo- or discy bulge) in S0s 2.07
Bulges withn � ndisc max (pseudo- or discy bulge) in spirals 0.13
Inner component withn � ndisc max (inner discs) in photometric E 3.26
Total 36.1

Bars

Bars in S0s 6.11
Bars in spirals 0.73
Total 6.84

Non-disc ‘hot’ components withn > n disc max

Outer component withn > n disc max in photometric E 26.0
Inner component withn > n disc max in photometric E 2.74
Inner component withn > n disc max in S0s 26.2
Inner component withn > n disc max in spirals 2.06
Total 57.0

Notes.These numbers apply to the galaxies in the projected central 0.5 Mpc of Coma, after excluding the two cDs. We exclude the two cDs due to their
uncertain stellar mass and the reasons outlined at the end of Section 2.2.

For this comparison, we use the results of Gadotti (2009), who
studies face-on (b/a � 0.9) galaxies from the SDSS Data Release
2 in a volume limited sample at 0.02� z � 0.07. He derives
galaxy structure from 2D decompositions of multibandgri images
that account for bulge, disc, and bar components. The Coma sam-

ple S0s/spirals have stellar mass 109 � M� � 6 × 1010 M� , and
for this comparison we consider only galaxies with stellar mass
5 × 109 � M� � 6 × 1010 M� . We proceed with the caveat that the
sample from Gadotti (2009) is incomplete in mass forM� � 5 ×
1010 M� .
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3098 T. Weinzirl et al.

Table 8. Fraction of stellar mass in disc-dominated structures versus classical bulges/ellipticals in different galaxies.

Structure Per cent of stellar mass within Per cent of stellar mass in the
each galaxy type projected central 0.5 Mpc of Coma

(1) (2) (3)

Photometric E (N= 17)

Outer component withn > n disc max 81.2 26.0
Inner component withn > n disc max 8.6 2.74
Inner component withn � ndisc max 10.2 3.26
Point sources 0.09 0.03
Total 100 32.0

S0 (N= 44)

Outer disc withn � ndisc max 44.4 27.7
Bars 9.8 6.11
Bulges withn > n disc max (classical bulge) 42.2 26.2
Bulge components withn � ndisc max (discy pseudo-bulge) 3.3 2.07
Point sources 0.06 0.04
Total 100 62.1

Spiral (N= 6)

Outer disc withn � ndisc max 50.0 2.94
Bars 12.4 0.73
Bulges withn > n disc max (classical bulge) 35.0 2.06
Bulge components withn � ndisc max (discy pseudo-bulge) 2.2 0.13
Point sources 0.3 0.02
Total 100 5.90

Notes.The totals listed in column 3 correspond to column 5 of Table6. These numbers apply to the galaxies in the projected central 0.5 Mpc of Coma, after
excluding the two cDs. We exclude the two cDs due to their uncertain stellar mass and the reasons outlined at the end of Section 2.2.

Table 9. Bulge Śersic index in S0s across different environments.

Bulge Śersic index of S0s Environment Stellar mass cut Per cent of S0s Per cent of bulge stellar mass in S0s
(1) (2) (3) (4) (5)

This work

n � ndisc max Projected Central 0.5 Mpc of Coma, high density M� � 109 M� 38.6± 7.3 3.06
n > n disc max Projected Central 0.5 Mpc of Coma, high density M� � 109 M� 59.1± 7.4 42.2

This work

n � ndisc max Projected Central 0.5 Mpc of Coma, high densityM� � 7.5× 109 M� 21.4± 7.8 2.4
n > n disc max Projected Central 0.5 Mpc of Coma, high densityM� � 7.5× 109 M� 78.6± 7.8 41.7

Laurikainen et al. (2010)

n � ndisc max Lower density M� � 7.5× 109 M� 22.3± 3.9 4.7
n > n disc max Lower density M� � 7.5× 109 M� 77.7± 3.9 30.6

Notes.This table shows the fraction of S0 galaxies with bulge Sérsic index above and below the valuendisc max = 1.66 determined empirically in
Appendix B2. The �rst four rows pertain to the Coma cluster and represent different stellar mass cuts. The bottom two rows are for S0 galaxies studied
by Laurikainen et al. (2010) from much LDEs than the rich Coma cluster. Column 5 represents the per cent of total bulge stellar mass to total galaxy stellar
mass calculated over S0s satisfying each speci�c bulge index and stellar mass cut.

Fig. 5 compares properties of large-scale discs (size, luminosity)
with galaxyM� . Fig.5(a) explores theprojectedhalf-light radius in
thei band (re) of outer discs along the major axis at a given galaxy
M� in Coma versus LDEs. It shows that at a given galaxyM� , the
average discre is smaller in the projected central 0.5 Mpc of Coma
compared with LDEs by�30–82 per cent. While the scatter in disc
re is large, the separation between the two mean values in each mass
bin is larger than the sum of the errors. The suggestion that outer
discs in Coma are more compact is consistent with the results of
previous analyses of disc structure in Coma (Aguerri et al.2004;
Gutiérrez et al.2004). Fig.5(b) makes a similar comparison for the
outer disc luminosity between Coma and LDEs. We use here the
ACSF814Wphotometry for Coma and the SDSSi-band photometry
from Gadotti (2009). At a given stellar mass, the average outer disc

luminosities are fainter by�40–70 per cent, excluding the lowest
mass bin.

We next consider the effect ofM/L to test if the difference in
outer disc luminosity could imply a difference in outer disc mass.
For Coma, we show thegalaxy-wide(M/L) i ratio estimated, while
for the Gadotti (2009) sample we showi-bandM/L ratios in the
outer discs, (M/L)d, i . Fig.5(c) compares the resulting (M/L) values
against galaxyM� . The average (M/L)i in Coma is larger than the
average (M/L)d, i in LDEs by a factor of�1.3Š2 at a given galaxy
M� , excluding the lowest mass bin. This difference in (M/L) i ac-
counts for�48–80 per cent of the average offset in disc luminosity.
This suggests thatsomeof the difference in outer disc luminosity
might be driven by a real difference in outer disc mass. Cappellari
(2013), in comparison, concludes that spirals in Coma transformed
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TheHST/ACS Coma Cluster Survey – VII 3099

Figure 5. Panels (a) and (b) compare the properties of large-scale discs (re, luminosity) with galaxy stellar massM� . Massive (5× 109 � M� � 6 × 1010

M� ) S0/spiral galaxies from the projected central 0.5 Mpc of Coma as well as low-density environments (LDEs) are considered. The LDE sample is from
Gadotti (2009) and includes galaxies in SDSS Data Release 2 that are face-on (b/a� 0.9) and have redshift 0.02� z � 0.07. In panel (b), thei-band luminosity
represents the ACSF814Wphotometry for Coma galaxies and the SDSSi-band photometry for the LDE galaxies. Panel (c) comparesi-band mass-to-light
ratio (M/L)i with galaxyM� . For Coma, the galaxy wide mass-to-light ratio is plotted, while for LDEs theouter disc(M/L) i is shown. In all panels, the mean
values (large symbols) in galaxyM� for Coma and LDEs are slightly offset along thex-axis, as shown by the red triangle and blue squares, in order to avoid
the error bars from overlapping. The mean values are calculated in 0.18 dex bins. The error bars on the mean values represent the standard error on the mean.
This �gure demonstrates that at a given galaxy stellar mass, the average disc half-light radiusre in the i band is smaller in the projected central 0.5 Mpc of
Coma compared to LDEs.

into fast rotating early-type galaxies while decreasing inglobal
half-light radius with little mass variation.

Fig. 6 examines how bulge size (re), bulge luminosity, bulge
Sérsic index, and bulge-to-disclight ratio (B/D) scale with galaxy
M� . Figs6(a)–(c) show that bulge size, bulge luminosity, and bulge

Sérsic index as a function of galaxyM� are not systematically offset
in Coma versus LDEs. Fig.6(d) shows there is a great scatter in
B/D versus galaxyM� .

Fig. 7(a) showsB/D versus bulge Śersic index. At a given bulge
Sérsic index, galaxies in Coma show a systematically higher average

MNRAS 441,3083–3121 (2014)

 at Liverpool John M
oores U

niversity on M
arch 17, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



3100 T. Weinzirl et al.

Figure 6. Is similar to Fig.5, except that it emphasizes S0/spiral galaxy bulges. See Section 4.4 and Fig.5 for extra details on the sample from Gadotti (2009).
Panels (a), (b), (c), and (d) show bulge size (re), bulgei-band luminosity, bulge Śersic index, and bulge-to-disclight ratio (B/D), respectively, versus galaxy
M� . In all panels, the error bars on the mean values (large symbols) represent the standard error on the mean, and in all panels the mean values in galaxyM�

for Coma and LDEs are slightly offset along thex-axis, as shown by the red triangle and blue squares, in order to avoid the error bars from overlapping. This
�gure demonstrates that at a given galaxy stellar mass, there appears to be no systematic offset between bulges in Coma and LDEs.

B/D ratio than galaxies in LDEs. A linear regression �t reveals a
clear offset inB/D for a given bulge index. Fig.7(b) indicates that
at a given bulge Śersic index the bulge luminosities in Coma and
LDEs are very consistent. Fig.7(c), on the other hand, shows a clear

offset in disc luminosity (�0.6 mag), indicating that differences in
B/D are due, at least in part, to outer disc size/luminosity.

From this investigation, we have learned of a reduction in the av-
erage sizes and luminosities in the outer discs of Coma galaxies that

MNRAS 441,3083–3121 (2014)

 at Liverpool John M
oores U

niversity on M
arch 17, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



TheHST/ACS Coma Cluster Survey – VII 3101

Figure 7. Shows a comparison of bulges in massive (5× 109 � M� � 6 × 1010 M� ) S0/spiral galaxies in LDEs from Gadotti (2009) versus galaxies in the
projected central 0.5 Mpc of Coma. See Section 4.4 and Fig.5 for extra details on the sample from Gadotti (2009). Bulges in Coma are divided into groups of
low Sérsic index (n� ndisc max) and high Śersic index (n > ndisc max). Panel (a) shows bulge-to-disclight ratio (B/D) versus bulge Śersic index. Panels (b)
and (c) show bulge and disci-band luminosity, respectively, versus bulge Sérsic index. In each panel, thesolid line represents the �t to Coma bulges of all
Sérsicn, and thedashed lineis the corresponding �t to bulges of all Sérsicn from LDEs. The offset inB/D in panel (a) appears to be driven, at least in part,
by the offset in disc luminosity in panel (c).

may translate into a lower mean outer disc stellar mass. This may
be explained in part by cluster environmental effects. We consider
this point further in Section 4.5.

4.5 Environmental processes in Coma

Many studies provide evidence for the action of environmental
processes in Coma. The predominantly intermediate or old stel-
lar populations in the centre of the cluster (e.g. Poggianti et al.
2001; Trager, Faber & Dressler2008; Edwards & Fadda2011)
are indirect evidence for the action of starvation. Furthermore, the

properties of Coma S0s display radial cluster trends that favour
formation processes that are environment mediated (Rawle et al.
2013, Head et al.2014). Several examples of ram-pressure strip-
ping have been directly observed in Coma (Yagi et al.2007,2010;
Yoshida et al.2008; Smith et al.2010; Fossati et al.2012). There is
also much evidence for the violent effects of tidal forces. The pres-
ence of a diffuse intracluster medium around Coma central galaxies
NGC 4874 and NGC 4889 has long been discussed (Kormendy &
Bahcall1974; Melnick, Hoessel & White1977; Thuan & Kormendy
1977; Bernstein et al.1995; Adami et al.2005; Arnaboldi2011). At
the cluster centre, the intracluster light represents up to 20 per cent
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3102 T. Weinzirl et al.

of the cluster galaxy luminosity (Adami et al.2005). This central in-
tracluster light is not uniform given the presence of plumes and tidal
tails (Gregg & West1998; Adami et al.2005), and debris �elds are
also found further outside the cluster centre (Gregg & West1998;
Trentham & Mobasher1998).

Below, we comment on how our results add to this picture.

(i) Reduced growth and truncations of outer disc in Coma
S0s/spirals. In Section 4.4, we found that at a given galaxy stellar
mass, the average half-light radius (re) of the outer disc in S0s/spirals
is �30–82 per cent smaller, and the average disci-band luminosity
is �40–70 per cent fainter in Coma than in LDEs (Fig.5). These
observations may be explained in part by cluster environmental
effects (e.g., strangulation, ram-pressure stripping, tidal stripping)
that suppress the growth of large-scale discs. Hot gas stripping
(strangulation) can plausibly suppress disc growth by limiting the
amount of gas that can cool and become part of the outer disc. Tidal
stripping via galaxy harassment is predicted (e.g. Moore et al.1999)
to be particularly ef�cient at removing mass from extended discs.
Ram-pressure stripping is most effective at removing HI gas in the
outskirts of a large-scale disc. The evidence (Yagi et al.2007,2010;
Yoshida et al.2008; Fossati et al.2012) suggests that ram-pressure
stripping happens quickly, and if so it should be effective at pre-
venting the growth of large-scale discs after the host galaxy enters
the cluster.

(ii) Low Śersic index in S0/spiral outer discs. Fig.8demonstrates
that the majority of outer discs have low Sérsic index (66.0±
8.2 per cent withn < 1 and 18.0± 12.8 per cent withn < 0.5). This
effect is not arti�cially driven by bars because the lown < 1 discs
include barred and unbarred galaxies to similar proportions, and
additionally, the discs are �tted separately from the bars in our work.
Similar examples have been found in Virgo. Kormendy & Bender
(2012) �nd several examples of Gaussian (n � 0.5) discs among
both barred and unbarred galaxies, which commonly occur in barred
galaxies (e.g. Kormendy & Kennicutt2004). Gaussian-like discs
among unbarred galaxies are much more surprising (Kormendy &
Bender2012). Fig.8 shows that the large fraction ofn < 1 outer
discs in Coma is not driven by barred galaxies alone. It is not
easy to compare the fraction of lown < 1 discs in Coma versus
LDEs because most work to date in LDEs (e.g. Allen et al.2006;
Laurikainen et al.2007,2010; Weinzirl et al. 2009) �t the outer disc
with a �xed n = 1 exponential pro�le.
Environmental processes could be creating the Gaussian-like discs.
Kormendy & Bender (2012) have suggested this and invoked dy-
namical heating. We could be seeing a stronger and/or different
manifestation in Coma. Ram-pressure stripping and tidal stripping
can plausibly reduce the Sérsicn by cutting off the outskirts of the
outer stellar/gaseous disc.

(iii) Bulge-to-disc ratio (B/D). The mean bulge Śersic index
rises with meanB/D light ratio in both the central part of Coma and
LDEs, consistent with the idea that the development of highB/D
ratio in galaxies is usually associated with processes, such as major
mergers, which naturally results in a highn. Such a correlation was
also found previously in �eld spirals (e.g. Andredakis, Peletier &
Balcells1995; Weinzirl et al.2009).
We also �nd that at a given bulge index, theB/D light ratio is higher
for Coma. This environmental effect appears to be due, at least in
part, to the fact that at a given bulgen, the bulge luminosity is similar
in Coma and LDEs, but the outer discs have lower luminosity by a
factor of a few in Coma (Fig.7). This reduced disc growth is likely
due to cluster environmental effects suppressing the growth of large-
scale outer discs. This conclusion for Coma nicely parallel studies

of ram-pressure stripping (Cayatte et al.1990,1994; Kenney, van
Gorkom & Vollmer 2004; Chung et al.2007,2009; Kenney et al.
2008) and dynamical heating (Kormendy & Bender2012) in the
less extreme Virgo cluster.

5 COMPARISON OF EMPIRICAL RESULTS
WITH THEORETICAL PREDICTIONS

5.1 Overview of the models

In this section, we compare our empirical results for Coma with
simulations of clusters. The simulated clusters are derived from
a semi-analytical model (SAM) based on Neistein & Weinmann
(2010). The SAM is able to produce reasonable matches (Wang,
Weinmann & Neistein2012) to the galaxy stellar mass function
determined by Li & White (2009) for massiveM� � 5 × 108 M�
galaxies at low redshift (0.001< z < 0.5) over all environments
(including Virgo and Coma) probed in the Northern hemisphere
component of SDSS Data Release 7 (DR7). A brief summary of
the SAM formalism is given below. Interested readers should see
Neistein & Weinmann (2010) and Wang et al. (2012) for additional
details.

The SAM uses merger trees extracted from the Millennium
N-body simulation (Springel et al.2005). Galaxies are modelled
as vectors of stellar mass, cold gas, and hot gas. Baryonic physics
are handled with semi-analytic prescriptions. In between merger
events, the ef�ciencies of quiescent evolutionary processes, such as
cold and hot gas accretion, gas cooling, SF, and supernovae feed-
back, are modelled as functions of halo mass and redshift only. The
star formation rate (SFR) is proportional to the amount of cold gas,
and the SF ef�ciency is a function of halo mass and redshift. In
the model, the baryonic mass (i.e. the sum of stellar and cold gas
mass) is used to de�ne major (M1/M 2 � 1/4) and minor (1/10 <
M1/M 2 < 1/4) mergers. As we will discuss in Section 5.4, the re-
sults are highly sensitive to whether the stellar mass ratio or baryonic
mass ratio are used.

Immediately after a major merger, the remnant’s stellarB/T ratio
is always one. This is because the model assumes any existing stellar
discs are destroyed, and all stars undergo violent relaxation to form
a bulge/elliptical. After a major merger, an extended stellar disc
is rebuilt via gas cooling, causingB/T to fall. Any further major
mergers will resetB/T to 1. During a minor merger, the stellar
component of the satellite of baryonic massM1 is added to the
bulge.

During a major/minor merger, some fraction of cold gas is con-
verted to stars in a short induced starburst�10 Myr in duration.
The amount of merger-induced SF depends explicitly on the cold
gas mass. Stars formed inmajormerger-induced starbursts are con-
sidered part of the bulge (see Section 5.6). This is a reasonable
assumption given that (a) the bursts of SF are much shorter than the
overall duration of the mergers and (b) all existing starsfrom both
progenitorsare violently relaxed during �nal coalescence. It seems
less likely that the starburst stars induced in minor mergers should
be violently relaxed since minor mergers are not very ef�cient at
violently relaxing stars in the host galaxy. We consider this issue
further in Section 5.6. Therefore, in the model used in this paper, the
bulge stellar mass traces the mass assembled via major and minor
mergers. Galaxies without bulges have had no resolvable merger
history. The model does not build bulges through the coalescence
of clumps condensing in violent disc instabilities (Bournaud et al.
2007a; Elmegreen et al.2009).
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TheHST/ACS Coma Cluster Survey – VII 3103

Figure 8. The distribution of Śersic index for outer discs in S0/spiral galaxies. The vertical line represents the empirically determined upper limit,ndisc max,
in the Śersic index of outer barred discs, which can be considered unambiguous cases of outer discs due to the presence of a bar. The dash–dotted and dashed
lines show the distributions for barred and unbarred outer discs, respectively. See Section 3.3 and Appendix B2 for details.

Galaxy clusters impose additional environmental effects that
complicate modelling with SAMs. The SAM used here accounts for
stripping of hot gas (i.e. strangulation; Larson et al.1980) by assum-
ing that hot gas is stripped exponentially with a time-scale of 4 Gyr.
Other processes like ram-pressure stripping/disruption of stellar
mass (Moore et al.1996,1998,1999; Gnedin2003), dynamical
friction heating by satellite (El-Zant, Kim & Kamionkowski2004),
and gravitational heating by infalling substructures (Khochfar
& Ostriker 2008) are neglected. It is not clear how much the in-
clusion of ram-pressure stripping in the SAM would affect our re-
sults. While hydrodynamical simulations clearly demonstrate the
strong in�uence of ram-pressure stripping on gas mass, galaxy

morphology, and SF (e.g. Quilis, Moore & Bower2000; Ton-
nesen & Bryan2008,2009,2010), some SAMs (e.g. Okamoto &
Nagashima2003; Lanzoni et al.2005) suggest that accounting for
ram-pressure stripping has only a small affect. Tidal stripping cre-
ates a population of intracluster stars that can contribute between
10 and 40 per cent of the optical light in rich clusters (e.g. Bernstein
et al.1995; Feldmeier et al. 2004; Zibetti et al.2005). The inclu-
sion of tidal stripping in SAMs is important for addressing a wide
range of systematic effects (e.g. Bullock, Kravtsov & Weinberg
2001; Weinmann et al.2006; Henriques, Bertone & Thomas 2008;
Henriques & Thomas2010), but tidal stripping is not present in
this SAM.
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3104 T. Weinzirl et al.

5.2 The mass function and cumulative number density
in Coma

In order to compare galaxies in the simulations with those in the
centre of Coma, we �rst need to identify model clusters that best
represent Coma. We do this based on the global properties of Coma,
namely the halo mass and size, galaxy stellar mass function, and
radial pro�le of cumulative projected galaxy number density. As
the ACS coverage of Coma encompasses a fraction (19.7 per cent)
of the projected central 0.5 Mpc, we calculate these properties in
Coma with DR7 of the NYU Value-Added Galaxy Catalog (NYU-
VAGC; Blanton et al.2005), which provides full spatial coverage of
Coma. NYU-VAGC DR7 is based on SDSS DR7 data (Abazajian
et al.2009) and provides catalogues generated from an independent,
and improved, reduction of the public data (Padmanabhan et al.
2008).

We select Coma cluster member galaxies from NYU-VAGC as-
suming that Coma cluster galaxies have radial velocity in the range
vmin = 4620 km sŠ1 to vmax = 10 000 km sŠ1, which is the range
in radial velocity among spectroscopically con�rmed members in
the ACS survey. We also adopt the Coma virial radius and virial
mass to be 2.9 and 1.4 × 1015 hŠ1

70 M� , respectively, measured
by �okas & Mamon (2003) with a 30 per cent accuracy, where
hŠ1

70 = H0/70. For our adoptedH0 of 73, we scale these numbers by
(73/70)Š1, so that the virial radius and virial mass are 2.8hŠ1

73 Mpc
and 1.3× 1015 hŠ1

73 M� , respectively. We select galaxies with the
following criteria.

(i) Radial velocity in range 4620 to 10 000 km sŠ1.
(ii) Projected radius,Rp from the cluster centre (i.e. NGC 4874)

less than the virial radius.
(iii) Brightness exceeding the SDSS spectroscopic completeness

limit of r = 17.7 mag, orMr � Š 17.3 mag at the 100 Mpc distance
of Coma. This corresponds to a stellar mass of 1.3× 109 M�
assuming ag Š r colour of 0.67, which is the average among Coma
galaxies in the NYU-VAGC selected in this manner.

Panel (b) of Fig.9 shows the resulting projected galaxy density
pro�le for this set of Coma galaxies.

We next calculate the global galaxy stellar mass function within
the virial radius. Fig.9(c) shows the result. This mass function
includes normal massive galaxies (E, S0, spiral) as well as the two
cDs (NGC 4874 and NGC 4889). As described in Section 2.2, we
derive the stellar mass by applying equations (5) and (6) to SDSS
gr photometry.

Using the cD galaxy stellar masses as lower limits at the high-
mass end of the galaxy stellar mass function in Fig.9(c), we measure
a slope	 = Š 1.16 and characteristic massM	 = 1.25× 1011 M�
for the global galaxy stellar mass function of Coma inside the cluster
virial radius.

5.3 Global properties of model clusters versus Coma

Next, we compare the above global properties of the Coma cluster
with the simulated clusters in the theoretical model in order to
identify the model clusters that best represent Coma. We consider
all 160 friend-of-friend (FOF; Davis et al.1985) groups in the
Millennium simulation having a halo mass in the range 5× 1014–
1016 M� . We refer to the most massive halo, and its gravitationally
bound subhaloes, in each FOF group as a ‘cluster’.

To �nd potential matching clusters, we identify massive (M� �
109 M� ) member galaxies in each cluster in a way that is consistent
with the selection of Coma member galaxies in Section 5.2.

(i) Radial velocity matching the range in line-of-sight velocities
in thexy,xz, yzprojections of the cluster.

(ii) Projected radius,Rp, from the cluster centre less than the
cluster virial radius.

(iii) Luminosity brighter than the SDSS spectroscopic complete-
ness limit ofMr � Š 17.3 mag at the 100 Mpc distance of Coma.

To gauge how well the simulated clusters compare with Coma
in terms of global properties, we examine the match in cumulative
number density, mass function, and halo parameters (virial mass
and radius).

In Fig. 9, we gauge how the global properties of Coma compare
with those of all 160 cluster simulations. Fig.9(a) shows the com-
binations of virial radius and halo masses of the simulated clusters.
The Coma halo parameters (virial mass and radius) adopted in Sec-
tion 5.2 are well matched to the largest and most massive model
clusters.

Fig. 9(b) shows the radial pro�le of cumulative galaxy num-
ber density. The central galaxy number densities in the sim-
ulated clusters span three orders of magnitude from�10 4

to �4 × 105 MpcŠ3, overlapping with the high central density
in Coma (�3 × 104 MpcŠ3). The thick dotted line denotes the clus-
ter model with the best-matching halo parameters from Fig.9(a).
This halo model does a good job at matching the galaxy number
density pro�le of Coma at projected radiusRp > 0.7 Mpc, but not
at smaller projected radii. In comparison, the model with the best-
matching cumulative number density pro�le, shown as the open
circle in Fig. 9(a), is smaller by�60 per cent in halo mass than
Coma. The next nine best matches to cumulative number density
also differ in halo mass by�30 per cent or more from the halo mass
in Coma, which is estimated to be accurate to within 30 per cent
(Section 5.2).

Fig. 9(c) compares the galaxy stellar mass function between
Coma and the simulated model clusters. All the model clusters
produce too many extremely massive (M� � 5 × 1011 M� ) galax-
ies. These very high mass galaxies are not devoid of ongoing SF
like ellipticals in Coma (Section 4.5). Rather, these galaxies have
present-day SFR of�10 M � yrŠ1. Furthermore, the cluster mass
functions show slopes that are marginally too steep (	 � Š 1.5
versus	 = Š 1.16) on the low-mass end (Section 5.2).

We note that when this SAM model was compared with SDSS
observations of galaxies averaged over all environments at low red-
shift (Wang et al.2012), the model galaxy stellar mass function
shows a similar, but less extreme, discrepancy with the galaxy stel-
lar mass function of Li & White (2009) in terms of producing too
many of the most massive galaxies. Fig.9(c) includes the galaxy
stellar mass function from Li & White (2009) as a dashed line for
comparison.

In Fig. 10 we make the comparison with three sets of model
clusters (a total of 30 model clusters) containing the 10 best matches
to Coma in terms of the cumulative galaxy number density, galaxy
stellar mass function, and halo parameters. Matching to one criterion
(e.g. cumulative number density) does not ensure a good match to
the other two criteria.

We are left with the sobering conclusion that the simulations
cannot produce a model cluster simultaneously matching multiple
global properties of Coma, our local benchmark for one of the
richest nearby galaxy clusters. The large discrepancy in the galaxy
stellar mass function between the model and Coma could be due to a
number of factors. The model currently does not include tidal strip-
ping/disruption of stars and ram-pressure stripping (Section 5.1),
which would reduce the stellar mass of galaxies on all mass scales.
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TheHST/ACS Coma Cluster Survey – VII 3105

Figure 9. Shows how the global parameters of the Coma cluster compare with all 160 clusters in the Millennium simulation having a halo mass in the range
5 × 1014Š1016 M� . The solid lines and black data points represent the simulated clusters. In panel (a), the virial mass and virial radius adopted for Coma
are 2.8hŠ1

73 Mpc and 1.3× 1015 hŠ1
73 M� (Section 5.2). The open circle is the model cluster having the best match to the projected galaxy number density of

Coma. In panels (b) and (c), the cumulative projected galaxy number density and the galaxy mass stellar function of Coma at projected radiusRp � Rvir are
based on data from the NYU-VAGC (Blanton et al.2005). In panel (b), the dotted line represents the cumulative galaxy number density of the model cluster
best matching the Coma halo parameters. In panel (c), for the Coma galaxy stellar mass function, we measure a slope	 = Š 1.16 and characteristic mass
M	 = 1.17× 1011 M� . The last mass bin in the global mass function for Coma contains the two cD galaxies, and the arrow on this bin indicates that the
adopted stellar masses for the cDs are lower limits. The simulations are based on a model that produces a reasonable match to the galaxy stellar mass function
of Li & White (2009) averaged over all environments at 0.001< z < 0.5 (dashed line). However, they cannot produce a model cluster that simultaneously
matches multiple global properties (halo properties, galaxy number density, and galaxy stellar mass function), of Coma, our local benchmark for oneof the
richest nearby galaxy clusters.

The importance of ram-pressure stripping is further discussed in
Section 5.5, where we �nd that the cold gas fraction in the model
galaxies is much higher in Coma galaxies.

5.4 Strong dependence of results on mass ratio used
to de�ne mergers

Merger history and galaxyB/T are highly dependent on the mass
used (stellar mass, baryonic mass, and halo mass) to de�ne merger

mass ratioM1/M 2. For a single representative cluster model, Fig.11
highlights the key differences that arise whenM1/M 2 is de�ned as
the ratio of stellar mass (Def 1, left-hand column) versus cold gas
plus stars (Def 2, right-hand column). This representative cluster
was selected because it is the best-matching cluster to the cumulative
galaxy number density distribution in Coma (Fig.10). The �rst row
of Fig.11shows the cumulative percentage of galaxies with a major
merger since redshiftz. In the second row of Fig.11, the histograms
show the percentage of galaxies with a last major merger at redshift
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3106 T. Weinzirl et al.

Figure 10. Shows the three sets of simulated model clusters (30 model clusters in total) chosen to best match, separately, the cumulative galaxy number
density (column 1), the galaxy stellar mass function (column 2), and halo parameters (halo mass and virial radius, column 3). The solid lines and solidcircles
in each panel represent the different simulated clusters. Rows 1, 2, and 3 show how the different simulated clusters compare with the global properties (halo
mass and radius, cumulative galaxy number density, and galaxy stellar mass function) determined with data from the NYU-VAGC (Blanton et al.2005) for
Coma in Section 5.2. No model cluster simultaneously matches all three global properties.

z. The third row shows the percentage of galaxies with a givenB/T
value, sorted by galaxies with and without a major merger. Finally,
the last row of Fig.11 gives the distribution of present-dayB/T
versus redshift of the last major merger.

In the following sections, we consider a model where the merger
mass ratioM1/M 2 depends on stellar mass plus cold gas, as this
ratio is understood to be the most appropriate de�nition (Hopkins

et al. 2009b). Traditionally, observers have tended to use stellar
mass ratios in identifying mergers (e.g. Lin et al.2004; Bell et al.
2006; Jogee et al.2009; Robaina et al.2010) as stellar masses are
readily measured for a large number of galaxies. However, with the
advent of the Atacama Large Millimeter Array (ALMA), it will be
increasingly possible to incorporate the cold gas mass for a large
number of galaxies.
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TheHST/ACS Coma Cluster Survey – VII 3107

Figure 11. Highlights the effect that the de�nition of the merger mass ratioM1/M 2 has on certain galaxy properties (merger history andB/T), for a
representative model cluster (see Section 5.4). Note we require a major merger to haveM1/M 2 � 1/4. The left-hand column is the manifestation of the model
cluster whenM1/M 2 refers to the stellar mass ratio, and in the right-hand column the merger mass ratio represents cold gas plus stars. The two mass ratio
de�nitions lead to vastly different merger histories and signi�cantly affect the resulting distribution ofB/T.
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3108 T. Weinzirl et al.

Figure 12. The top panel shows the ratio of cold gas to stellar mass (Mcold gas/M � ) for the best cluster model matched by cumulative galaxy number density
(see Fig.10, column 1). The error bars represent the 1� standard deviation around the mean value. The bottom panel shows the ratio of observed cold gas
(H I+H 2) to stellar mass (MH I+H 2/M � ) for galaxies studied by Boselli et al. (1997) that are part of or near the Coma cluster. The dashed line is the median
ratio (0.04) for Coma cluster galaxies, and the solid line is the median ratio (0.09) for the non-cluster galaxies. At 1010 � M� � 1011 M� , the model predicts
a cold gas to stellar mass ratio that is a factor of�25–87 times higher than the median value observed in Coma cluster galaxies.

5.5 Cold gas mass in Coma galaxies versus model galaxies

In the SAM used here, the cold gas fractionfgas (de�ned as the
ratio of cold gas to the baryonic mass made of cold gas, hot gas,
and stars) and the ratio (Mcold gas/M � ) of cold gas to stellar mass
are both overly high. The issue of high cold gas fraction in this
model was highlighted and discussed in Wang et al. (2012). Here,
we quantify how far off the model values are compared with what
is expected for a rich cluster like Coma.

Fig. 12 illustrates the degree to which the ratio (Mcold gas/M � ) is
overestimated by comparing with data from Boselli et al. (1997),
who measure atomic (MH I) and molecular gas (MH2) masses for
Coma cluster member galaxies and non-cluster galaxies. The top
panel shows that the average ratio of cold gas to stellar mass
(Mcold gas/M � ) ranges from�1 to 12 for a representative model
cluster. The bottom panel shows that the ratio ofMH I+H 2/M � for
Coma cluster galaxies from Boselli et al. (1997) is usually<0.1;
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TheHST/ACS Coma Cluster Survey – VII 3109

non-cluster galaxies are more gas rich, but the ratio ofMH I+H 2/M �

is still 
1. At 10 10 � M� � 1011 M� , the model predicts a cold
gas to stellar mass ratio that is a factor of�25–87 times higher than
the median in Coma cluster galaxies.

5.6 Data versus model predictions for stellar mass in
dynamically hot and cold components

We next proceed to compare the observed versus model pre-
dictions for the distribution of mass in dynamically hot and
cold stellar components. The following comparisons are made
in the projected central 0.5 Mpc of Coma and the model
clusters.

We �rst start by describing how the model builds bulges and
ellipticals. In the model, the total bulge stellar massM� , Bulge, model

consists of stellar mass accreted in major and minor mergers, plus
stellar mass from SF induced in both types of mergers.

Next, we discuss how to compare the model with the data. For
our sample of Coma galaxies (excluding the two cD systems) with
M� � 109 M� , we compute the ratioR1data as the stellar mass in
all components withn > n disc max to the sum of galaxy stellar mass.
The reasons for not including the cD systems were discussed in
Section 2.2. From Section 4.2,R1data is 57 per cent.

We next compare this ratio to the corresponding quantity in the
model. The comparison is not entirely straightforward as the model
does not give a Śersic index. We therefore have to associate compo-
nents in the model to the corresponding highn > n disc max classical
bulges/ellipticals in the data. The most natural step is to assume
that the stellar mass built during major mergers is redistributed into
such high-n components. We call the resultR2model. We �nd that
for M� � 109 M� , R2model has a wide dispersion:�35–79 per cent
for the 30 model clusters shown in Fig.10, with a median value
of �66 per cent. The representative cluster discussed in Section 5.4
and Figs11and12has a value of�72 per cent.

Guidance on the Śersic index of structures formed during minor
mergers can be gleaned from Hopkins et al. (2009b). In the general
case of an unequal mass merger, the coalescence of the smaller
progenitor (massM1) with the centre of the primary will destroy
(i.e. violently relax) the smaller galaxy and also potentially violently
relax an additional mass�M 1 in the primary. The stars that are
violently relaxed in the minor merger become part of the bulge in
the primary galaxy. Thus, we de�neR3model to beR2model plus the
stellar accretion from minor mergers. ForM� � 109 M� , R3model is
only slightly higher thanR2model by a few per cent.R3model ranges
from �35 to 82 per cent, with a median value of�71 per cent, and
the representative cluster (Section 5.4, Figs11 and12) has a value
of �71 per cent.

The comparison ofR1data with R2model and R3model is a global
comparison of the total stellar mass fraction within high-n compo-
nentssummed over allthe galaxies withM� � 109 M� . Next, we
push the data versus model comparison one step further by doing it
in bins of stellar mass, as shown in Fig.13.

The top panel of Fig.13 plots the mean ratio of stellar mass
fraction in dynamically hot components (f� , hot) as a function of
total galaxy stellar mass, for data versus model. For each stellar
mass bin shown in Fig.13, the value off� , hot is calculated foreach
galaxyasM� , hot/M � . In the data,M� , hot is taken as the stellar mass of
any highn > n disc max component in the galaxy. The model shown
here is the best cluster model matched by cumulative galaxy number
density (see Fig.10, column 1). For this model, two lines are shown:
the solid line takesM� , hot as the stellar mass accreted and formed

during major mergers, while the dotted line also adds in the stellar
mass accreted during minor mergers.

In the top panel of Fig.13 there is signi�cant disagreement be-
tween the fractions off� , hot for the Coma data and the model. As
shown by the second dotted model curve in Fig.13, adding in the
stellar mass accreted in minor mergers to the model only changes
the fraction by a few per cent. The values off� , hot are chie�y repre-
sentative of the contributions from major mergers.

The bottom panel of Fig.13 plots the analogous mean ra-
tio of stellar mass fraction in dynamically cold components
(f� , cold = M� , cold/M � ) as a function of total galaxy stellar mass.
In the model, the two lines show two different expressions for
M� , cold. For the solid line, we takeM� , cold to be the mass of the
outer discM�,Outer disc, which represents the difference between the
bulge mass (M�,Bulge, model) and the total stellar mass. One problem
with this approach is that it ignores small-scale nuclear discs formed
in the bulge region. We tackle this problem by de�ning a second
dotted model line that accounts for stars formed via induced SF
during minor mergers. It is clear in the bottom panel of Fig.13 that
the model overpredicts the mass in discs as a function of galaxy
stellar mass. Note that the contribution tof� , cold from minor merger
induced SF is� 17 per cent in a stellar mass given bin.

The main conclusion from Fig.13is that the best-matching cluster
model is underpredicting the mean fractionf� , hot of stellar mass
locked in hot components over a wide range in galaxy stellar mass
(109 � M� � 8 × 1010 M� ). Similarly this model overpredicts the
mean value forf� , cold. The effect of cosmic variance on our sample
(Section 4.2 and Appendix B5) means our measuredf� , hot is lower
than the true value by an estimated factor of 1.16. Therefore, the
underprediction off� , hot in the model is worse than what we are
citing. While the discussion in this section focused only on a single
model cluster, the results and conclusions would be similar if we
had analysed alternate simulated clusters, such as those matched to
the cluster galaxy stellar mass function (see Fig.10, column 2) or
halo parameters (see Fig.10, column 3).

There could be several explanations as to why the models are
underproducing the fraction of dynamically hot stellar mass (f� , hot)
and overproducing the fraction of dynamically cold stellar mass
(f� , cold). One possibility is that the absence of key cluster processes
(especially ram-pressure stripping and tidal stripping) in the mod-
els is leading to the overproduction of the model galaxy’s cold gas
reservoir (Section 5.5), compared to a real cluster galaxy, whose
outer gas would be removed. This means that in the models, SF
in gas that would otherwise be removed from the galaxy builds
additional dynamically cold stellar mass following the last major
merger. Another possibility is that the models ignore the produc-
tion of bulges via the merging of star-forming clumps (Bournaud
et al.2007a; Elmegreen et al.2009). It is still debated whether this
mode can ef�ciently produce classical bulges, but if it does, then
its non-inclusion in the models could lead to the underprediction
of f� , hot.

In summary, our comparison of empirical results to theoretical
predictions underscores the need to include in SAMs environmental
processes, such as ram-pressure stripping and tidal stripping, which
affect the cold gas content of galaxies, as well as more comprehen-
sive models of bulge assembly. It is clear that galaxy evolution is a
function ofbothstellar mass and environment.

6 SUMMARY AND CONCLUSIONS

We present a study of the Coma cluster in which we constrain galaxy
assembly history in the projected central 0.5 Mpc by performing
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3110 T. Weinzirl et al.

Figure 13. Top: the mean ratio of stellar mass fraction in dynamically hot components (f� ,hot = M� hot/M � ) is plotted as a function of total galaxyM� . In the
data,M� ,hot is taken as the stellar mass of any highn > n disc max classical bulge/elliptical component in the galaxy, excluding the cD galaxies (see Section 2.2).
The model shown here is the best cluster model matched by cumulative galaxy number density (see Fig.10, column 1). For this model, the solid line takes
M� ,hot as the stellar mass built during major mergers, namely major merger stellar accretion plus induced SF, while the dashed line further adds in minor merger
stellar accretion. Bottom: the mean stellar mass fraction in dynamically cold �attened components (f� ,cold = M� ,cold/M � ) is plotted as a function of total galaxy
stellar massM� . In the data,M� ,cold is taken as the stellar mass of any lown � ndisc max disc-dominated component in the galaxy. The model is represented by
the solid and dashed lines. With the solid line we takeM� ,cold to be the mass of theouterdiscM�, Outer disc, which is given by (M� Š M�, Bulge,model). For the
dotted line, we considerM� ,cold to be the massM�, all disc of inner and outer discs. We compute the latter mass asM�, Outer disc plus the mass of stars formed via
induced SF during minor mergers. In both panels, only the projected central 0.5 Mpc of the clusters is considered. The error bars represent the 1�standard
deviation on the mean. The mean values for Coma are slightly offset inM� for readability. The main conclusion is that the best-matching simulated clusters
are underpredicting the mean fraction off� ,hot and overpredictingf� ,cold over a wide range in galaxy stellar mass.

multicomponent structural decomposition on a mass-complete sam-
ple of 69 galaxies with stellar massM� � 109 M� . Some strengths
of this study include the use of superb high-resolution (0.1 arc-
sec),F814Wimages from theHST/ACS Treasury Survey of the
Coma cluster, and the adoption of a multicomponent decomposi-
tion strategy where no a priori assumptions are made about the
Sérsic index of bulges, bars or discs. We use structural decompo-
sition to identify the two fundamental kinds of galaxy structure –
dynamically cold, disc-dominated components and dynamically hot

classical bulges/ellipticals – by adopting the working assumption
that the Śersic indexn is a reasonable proxy for tracing differ-
ent structural components. We de�ne disc-dominated structures as
components with a low Śersic indexn below an empirically deter-
mined threshold valuendisc max � 1.7 (Section 3.1). Galaxies with
an outer disc are called spirals or S0s. We explore the effect of
environment by performing a census of disc-dominated structures
versus classical bulges/ellipticals in Coma. We also compare our
empirical results on galaxies in the centre of the Coma cluster
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with theoretical predictions from a SAM. Our main results are
summarized below.

(i) Breakdown of stellar mass in Coma between low-n disc-
dominated structures and high-n classical bulges/ellipticals. We
make the �rst attempt (Section 4.2 and Tables7 and 8) at ex-
ploring the distribution of stellar mass in Coma in terms of
dynamically hot versus dynamically cold stellar components. After
excluding the two cDs because of their uncertain stellar masses,
we �nd that in the projected central 0.5 Mpc of the Coma clus-
ter, galaxies with stellar massM� � 109 M� have 57 per cent of
their cumulative stellar mass locked up in high-n (n � 1.7) classical
bulges/ellipticals while the remaining 43 per cent is in the form of
low-n (n � 1.7) disc-dominated structures (outer discs, inner discs,
discy pseudo-bulges, and bars). Accounting for the effect of cosmic
variance and colour gradients in calculating these stellar mass frac-
tions would not signi�cantly change this census (Appendices B5
and B6).

(ii) Impact of environment on morphology–density relation.
Using our structural decomposition to assign galaxies the Hubble
types E, S0, or spiral, we �nd evidence of a strong morphology–
density relation. In the projected central 0.5 Mpc of the Coma
cluster, spirals are rare, and the morphology breakdown of
(E+S0):spirals is (91.0 per cent):9.0 per cent by numbers and
(94.2 per cent):5.8 per cent by stellar mass (Section 4.1 and
Table6).

(iii) Impact of environment on outer discs. In the central parts
of Coma, the properties of large-scale discs are likely indicative of
environmental processes that suppress disc growth or truncate discs
(Section 4.5). In particular, at a given galaxy stellar mass, outer discs
are smaller by�30–82 per cent and fainter in thei band by�40–
70 per cent (Fig.5). The suggestion that outer discs in Coma are
more compact is consistent with the results of previous analyses of
disc structure in Coma (Aguerri et al.2004; Gutíerrez et al.2004).

(iv) Impact of environment on bulges. The ratioRof stellar mass
in high-n (n � 1.7) classical bulges to low-n (n � 1.7) discy pseudo-
bulges is 17.3 in Coma. We measureR to be a factor of�2.2Š2.7
higher in Coma compared with various samples from LDEs (Sec-
tions 4.2–4.3, Tables7–8). We also �nd that at a given bulge Sérsic
indexn, the bulge-to-total ratioB/D, and thei-band light ratio are
offset to higher values in Coma compared with LDEs. This effect
appears to be due, at least in part, to the above-mentioned lower
disc luminosity in Coma.

(v) Comparison of data to theoretical predictions. We compare
our empirical results on galaxies in the centre of the Coma cluster
with theoretical predictions based on combining the Millennium
cosmological simulations of dark matter (Springel et al.2005) with
baryonic physics from a SAM (Neistein & Weinmann2010; Wang
et al.2012).
It is striking that no model cluster can simultaneously match the
global properties (halo mass/size, cumulative galaxy number den-
sity, and galaxy stellar mass function) of Coma (Figs9 and10), and
the cold gas to stellar mass ratio in the model clusters are at least
25 times higher than is measured in Coma.
As suggested by Hopkins et al. (2009b), we �nd galaxy merger
history is highly dependent on how the merger mass ratioM1/M 2 is
de�ned. Speci�cally, there is a factor of�5 difference in merger rate
when the merger mass ratio is based on the baryonic mass versus
the stellar mass (Fig.11). Traditionally, observers have tended to
use stellar mass ratios in identifying mergers, but with the advent of
ALMA, it will be increasingly possible and important to incorporate
the cold gas mass.

For representative ‘best-matching’ simulated clusters, we compare
the empirical and theoretically predicted fractionf� , hot andf� , cold of
stellar mass locked, respectively, in high-n, dynamically hot versus
low-n, dynamically cold stellar components. Over a wide range of
galaxy stellar mass (109 � M� � 8× 1010), the model underpredicts
the mean fractionf� , hot of stellar mass locked in hot components by
a factor of� 1.5. Similarly, the model overpredicts the mean value
for f� , cold (Section 5.6 and Fig.13).
We suggest that this disagreement might be due to two main fac-
tors. First, key cluster processes (especially ram-pressure stripping
and tidal stripping), which impact that the cold gas content and
disc-dominated components of galaxies, are absent. Secondly, the
models ignore the production of bulges via the merging of star-
forming clumps (Bournaud et al.2007a; Elmegreen et al.2009).
These results underscore the need to implement in theoretical mod-
els environmental processes, such as ram-pressure stripping and
tidal stripping, as well as more comprehensive models of bulge as-
sembly. It is clear that galaxy evolution is not a solely a function of
stellar mass, but it also depends on environment.
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APPENDIX A: USING GALFIT

The proper operation ofGALFIT depends on certain critical inputs.
We brie�y describe below how these important inputs are handled.

(i) PSF.Accurate modelling of the PSF is essential in deriving
galaxy structural properties.GALFIT convolves the provided PSF
with the galaxy model in each iteration before calculating the� 2.
Because the PSF varies with position across the ACS Wide Field
Camera chips, it is ideal to separately model the PSF for each galaxy
position. We use the grid of model ACS PSFs in theF475Wand
F814W�lters from Hoyos et al. (2011). This grid of PSFs was
created withTINYTIM (Krist 1995) andDRIZZLYTIM .6

For a given set of multidrizzle parameters,DRIZZLYTIM transforms
x Š y coordinates in the �nal science frames back to the system of
individually distorted �at-�elded (FLT) images.DRIZZLYTIM invokes
TINYTIM to create a PSF with the speci�ed parameters (e.g. posi-
tion and �lter) and then places the PSF at the appropriate position
in blank FLT frames. The FLT frames are passed throughMUL-
TIDRIZZLE with the same parameters as the science images. Finally,
a Charge Diffusion Kernel is applied to the PSFs in the geomet-
rically distorted images. The grid of ACS PSFs from Hoyos et al.
(2011) models a PSF for every 150 pixels in thex- andy-directions.

6 DRIZZLYTIM is written by Luc Simard.
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For each galaxy in our sample we select the model PSF closest in
proximity to the galaxy.

(ii) Sigma images.A sigma image is the 2D map of the 1�
standard deviations in pixel counts of the input image.GALFIT uses
the sigma image as the relative weight of pixels for calculating
the goodness of �t. Achieving a reduced� 2 � 1 with a successful
model �t requires that the sigma image be correct. A sigma image
can either be provided, orGALFIT can be allowed to calculate one
based on the properties of the data image (image units of counts or
counts per second, effective gain, read noise, number of combined
exposures). We choose the latter option and allowGALFIT to calculate
the sigma images.

(iii) Background subtraction.While it is possible forGALFIT to
freely �t the background sky, this is not recommended (Peng et al.
2002). In a multiple-component �t to a galaxy with at least two
components, freely �tting the sky can exaggerate or suppress the
wings of the central Śersic pro�le and incorrectly measure the bulge
half-light radius and Śersic index. To avoid this, for each galaxy the
background sky is measured and held �xed during the �t. The
sky background is based on ellipse �tting with theIRAF/ELLIPSE
task. Ellipses are �t to the galaxy and the surrounding area, with
the ellipses in the surrounding area being �xed to the shape and
orientation of the galaxy. The gradient along the semimajor axis
is calculated, and the sky is estimated as the mean of elliptical
annuli over a span in semimajor axis where the gradient reaches a
prescribed small value. In each case, the area �tted by the ellipses
exceeds the area subtended by the galaxy. Visual inspection of the
ellipse �ts shows that the perceived �at gradient corresponds to
empty sky and not an extended galaxy outer pro�le with a very
small gradient.

(iv) Image thumbnails and masks.Thumbnail cutouts of the
intermediate-mass galaxies are made to lessen the computational
time for �tting. Following Hoyos et al. (2011), square image thumb-
nails centred on the target galaxy are made using the output from
SEXTRACTOR. Image size in pixels is determined with

size= 4 × A IMAGE × KRON RADIUS. (A1)

The image units are transformed from counts per second to counts
by multiplying by the exposure time. Image masks are based on the
segmentation images provided from SEXTRACTOR. The segmentation
images are modi�ed to unmask the background and target galaxy
being �tted. Any bright sources that visibly overlap with the tar-
get galaxy are also unmasked so that overlapping sources can be
�tted simultaneously. Masks for relatively bright sources that do
not overlap with the galaxy being �tted are expanded in semimajor
axis by a factor of 1.5. We visually check by blinking the data im-
age and modi�ed segmentation image to verify that the unmasked
region encompasses all of the target galaxy, including those with
large diffuse haloes that SEXTRACTOR does not capture (Hoyos et al.
2011).

APPENDIX B: DETAILS OF STRUCTURAL
DECOMPOSIT ION

This appendix contains the full details concerning the structural
decomposition scheme outlined in Section 3.2.

B1 Single Śersic �ts

We �rst �t all galaxies with a single Śersic pro�le before attempting
the multicomponent �ts. This step is useful for measuring the total
luminosity of a galaxy as well as measuring the centroid (Weinzirl

et al.2009). The Śersic pro�le has seven free parameters: centroid,
luminosity, half-light radiusre, Sérsic indexn, axis ratio, posi-
tion angle, and disciness/boxiness. We �x the disciness/boxiness
so that the �tted structures are perfect ellipses. We estimate the
other six parameters based on the parameters in SEXTRACTOR and
allow them to optimize in the �t. The detailed image prepara-
tion and inputs for the proper operation ofGALFIT are described in
Appendix A.

Fig. B1 compares our results for the single Sérsic �ts (with no
point source) with those of Hoyos et al. (2011), who also perform
single Śersic �ts with GALFIT andGIM2D using Coma ACS Treasury
Survey data. Note that the galaxies in our sample requiring one
Sérsic pro�le are distinguished in Fig.B1. With the exception of
COMAi125935.698p275733.36 (NGC 4874), our results for these
sources requiring one Sérsic pro�le well match those derived by
Hoyos et al. (2011). For NGC 4874, we measure there andn of
NGC 4874 to be 17.3 kpc and 3.05, respectively, while Hoyos et al.
(2011) measurere andn to be 3.2 kpc and 1.3.

For sources requiring more than one Sérsic pro�le, our single
Sérsic magnitudes agree well in general with those of Hoyos et al.
(2011), except for one case (COMAi13051.149p28249.90) where
Hoyos et al. (2011) underestimate the magnitude by�5.5 mag.
There are also outliers in bothre andn. In 10 (5) instances (including
COMAi13051.149p28249.90), the difference inre (n) exceeds a
factor of 1.5.

There are two key differences in our �tting methodology (see
Appendix A) compared with Hoyos et al. (2011). Most impor-
tantly, we entirely unmask the target galaxy and background in the
segmentation-based masks so thatGALFIT �ts to pixels beyond what
SEXTRACTOR associates with each galaxy. Hoyos et al. (2011) con-
�ne a galaxy to a customized mask generated based on the output
of SEXTRACTOR. This approach misses a �nite fraction of the �ux
in the target galaxy. This may explain why in Fig.B1 we measure
brighter magnitudes and largerre for more extended galaxies, where
SEXTRACTOR does not detect all of the light in the galaxy. Secondly,
we measure and �x the background sky while Hoyos et al. (2011)
keep the sky as a free parameter. Allowing the sky background
to freely vary in our �ts fails to account for most of the scatter
between our results and those of Hoyos et al. (2011). Rather, the
disagreement appears to mainly be the result of differences in image
masking.

B2 Multicomponent �ts

For the Stage 2 Śersic+ Sérsic �ts, we model the ‘inner’ and ‘outer’
components (C1 and C2) with Sérsic pro�les that can represent
physically different components (see Section 3.2).

Sensible initial guess parameters for Stage 2 are determined from
a combination of the data image, Stage 1 model, and Stage 1 residu-
als. Guesses for the inner Sérsic component (C1) are usually based
on the Stage 1 model. The centroid of the Sérsic components (and
nuclear point source if present) are �xed to the best-�tting centroid
from the single Śersic model. During the �ts, we allow all other
parameters (luminosity,re, n, axis ratio, and position angle) to vary
for the inner and outer components without a priori �xing the nature
of these components.

With one exception, the� 2 in Stage 2 is always lower compared
with � 2 in Stage 1 due to the extra Sérsic component. While the
rare increase in� 2 from Stage 1 to Stage 2 is an indication that the
latter model is not reliable, the almost universal decrease in� 2 is
not necessarily a sign that the Stage 2 �t is meaningful because, in
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TheHST/ACS Coma Cluster Survey – VII 3115

Figure B1. Compares our results for the single Sérsic �ts (with no points source) with those obtained by Hoyos et al. (2011) usingGALFIT on the same data.
The sources in our sample requiring one Sérsic component are labelled separately from sources requiring two or three Sérsic pro�les. Our derived magnitudes,
re, and nfor the sources requiring one Sérsic pro�le agree well with the parameters from Hoyos et al. (2011), with the one exception being cD galaxy NGC
4874 (COMAi125935.698p275733.36) withn � 3. Note that cD galaxy NGC 4889 requires only one Sérsic pro�le but it is not included here as it is not in the
Hoyos et al. (2011) sample. See Appendix B1 for additional details.

principle, such a decrease in� 2 could be driven by the extra free
model parameters. We consider a Stage 2 multicomponent model to
be superior to the Stage 1 �t if (i)� 2 drops, (ii) the Stage 2 model
parameters are well behaved (i.e. not unphysically large or small),
and (iii) the Stage 2 residuals are deemed by visual inspection
to show a reduction in coherent structure relative to the Stage 1
residuals.

Fig. B2 provides examples where a single Sérsic model fails
to model the entire galaxy well and leaves behind coherent struc-
ture in the residuals. Such coherent structure is indicative of addi-
tional components such as compact central structures, rings, annuli,
and extended components, and bars/ovals. We illustrate in FigsB3
andB4 how some of these examples are best �tted by models with
multiple Śersic components.

If a galaxy does not require a Stage 2 model, or if the Stage 2
model fails to meet the above criteria, then the galaxy is described
by a single Śersic pro�le+ point source, if present. Six galaxies are
best represented by Stage 1. Two (COMAi13017.683p275718.93
and COMAi13018.093p275723.59) cannot be �tted with multi-
ple Śersic models because they are interacting. In the third case,
(COMAi125931.103p275718.12), the� 2 increases from Stage
1 to Stage 2. The �nal three cases (NGC 4874, NGC 4889,
and COMAi125909.468p28227.35) show evidence of a core (see
Appendix C).

Galaxies for which the Stage 2 model is deemed an improvement
are interpreted as follows. Since the outer component C2 could
represent a disc, we must specify criteria for identifying an outer
disc. The outer component C2 is a disc if it satis�es at least one
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3116 T. Weinzirl et al.

Figure B2. Shows examples C1 to C6 where a single Sérsic model (plus point source if needed) does not provide a good �t to coherent galaxy structure
that is best modelled with one or more additional Sérsic pro�les. Such residual structure includes central compact structures (C2, C3, C4, C5, C6), rings
(C3, C4), annuli and extended components (C1, C4), and bars/ovals (C5, C6). These systems are better �tted by models with multiple Sérsic components
(see FigsB3 and B4). Columns 1 and 3 show the inputI-band images. Columns 2 and 4 show the residuals after subtracting the best single Sérsic
�t. Note C1=COMAi125931.893p275140.76, C2=COMAi125935.286p275149.13, C3=COMAi13021.673p275354.81, C4=COMAi13014.746p28228.69,
C5=COMAi13027.966p275721.56, and C6=COMAi125930.824p275303.05.

of the following. (i) The galaxy is highly inclined such that C2 has
a low axis ratiob/a � 0.25 that is below the axis ratios found for
ellipticals. (ii) The galaxy is moderately inclined and C2 shows disc
signatures (e.g. bars, rings, or spiral arms) in the data images and/or
Stage 2 residuals. (iii) For moderately inclined galaxies without disc
features that do not satisfy (i) or (ii), we require Sérsicn be less
than the threshold valuendisc max.

Theoretical considerations show that pure discs haven = 1, sug-
gesting the threshold should ben � 1. However, real galaxy discs
are not �tted perfectly by Śersic pro�les. We determine the value
empirically from the maximum disc Śersic index in galaxies satis-
fying (i) and (ii). Highly inclined discs show a range in Sérsic index
of 0.48–0.86. Moderately inclined galaxies identi�ed as having spi-
ral arms but no bar have outer discs with Sérsic index 0.63–1.20.
Note that some of the highly inclined galaxies could be barred,
and this may account for the small difference in average Sérsic
index between the highly inclined and moderately inclined barred
galaxies.

In order to accurately model the outer disc of moderately inclined
barred galaxies, a triple Sérsic pro�le (see below) is required. After
taking this extra step, the outer disc Sérsic index among moderately
inclined barred galaxies is 0.25–1.66. The maximum Sérsic index
among outer discs in galaxies satisfying requirement (i) and (ii) is
1.66, and we therefore setndisc max to this value. Thus, outer discs

span the range 0.25–1.66 in Sérsic index and have a mediann of
0.84. Fig.B5shows the galaxy (COMAi125950.105p275529.44) on
which we base our measurement ofndisc max. Appendix D discusses
the uncertainties in the adopted value ofndisc max.

Galaxies that satisfy any of the requirements (i), (ii), or (iii) are
deemed to have an outer disc. Galaxies without an outer disc are
considered photometric ellipticals.

We test all galaxies having an outer disc for the presence of a
large-scale bar/oval in Stage 3 by �tting a triple Sérsic pro�le +
point source, if present. Bars/ovals are modelled with an elongated,
low Sérsic index (n � 0.5) pro�le (Peng et al.2002; Weinzirl et al.
2009). In the text, we do not distinguish between bars and ovals,
and we use ‘bar’ to describe both.

The initial guesses for the three-component models come from
the best Stage 2 model combined with visual inspection. The Sérsic
index for the bar is initially guessed to be 0.5, and the shape and
position angle of the bar are visually estimated using the data image
or the residuals of the Stage 2 �t. When selecting between the
Stage 2 and Stage 3 �ts, we applied the same constraints described
above for the behaviour of� 2. An additional complication is that
in galaxies with unbarred outer discs,GALFIT may �t a ‘bar’ to any
existing spiral arms, rings, or clumpy disc structure. Stage 3 �ts in
these cases could be discarded by noting the resulting discrepancies
in appearance between the galaxy images and the Stage 3 model
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TheHST/ACS Coma Cluster Survey – VII 3117

Figure B3. Shows how some of the galaxies (C2=COMAi125935.286p275149.13 and C4=COMAi13014.746p28228.69) poorly �tted by a single Sérsic
model (plus point source if needed) in Stage 1 can be better �tted by two Sérsic models (plus point source if needed) in Stage 2. Each row shows the data,
residual after Stage 1, and the residual after Stage 2. Galaxy C2 is best �tted as having an inner disc (n = 0.31) and an outer elliptical structure (n = 2.08).
Galaxy C4 is best �tted with an inner bulgen = 3.68 and an outer disc (n= 0.47).

images. Fig.B4 shows examples of two disc galaxies where adding
the third Śersic component removes the bar signature from the
residuals.

B3 Nuclear point sources

Nuclear point sources are found in galaxies of all Hubble types.
The frequency of nuclear point sources is very sample dependent
and is particularly sensitive to range of galaxy luminosity.HST
studies of early-type galaxies (e.g. Ravindranath et al.2001; Ĉoté
et al.2006) have measured nucleation rates of 50 per cent or more.
Ravindranath et al. (2001) �nd that about half of early-type (E, S0,
S0/a) galaxies have nuclear point sources. Côté et al. (2006) show
that the frequency of nucleation in ACS images of the Virgo clus-
ter is at least 66 per cent in galaxies withMB � Š 15. Graham
& Guzmán (2003) discuss 13/15 examples of dwarf ellipticals
in the Coma cluster showing evidence for nucleation. Balcells,
Graham & Peletier (2007a) measure a frequency of 58 per cent
for S0 to Sbc galaxies. B̈oker et al. (2002) measure the frequency
of point sources to be 75 per cent in spirals with Hubble types
Scd to Sm.

Although nuclear point sources account for a small percentage
(<1 per cent) of a galaxy’s light, it is important to include them dur-
ing multicomponent structural decomposition. Neglecting nuclear
point sources can have a signi�cant effect on derived parameters
of bulges (Balcells et al.2003; Weinzirl et al.2009). We assess

the presence of nuclear point sources with visual inspection. If a
compact light source is visible by eye in the residuals of the single
Sérsic �t, the galaxy is �agged as having a potential point source.
With this procedure, 49/69 galaxies in sample S2 have a potential
nuclear point source.

Galaxies having a potential nuclear point source are �tted with
an extra nuclear point source component in the best-�tting single
or multicomponent model.GALFIT models the point source with
the user-input PSF. More than half (38/69, 55.1± 6.0 per cent)
of objects in sample S2 have a nuclear point source in the �nal,
best-�tting structural decomposition. Fig.B6 shows examples of
residual galaxy images with point sources.

Fig. B7 shows that the derived point source luminosities cor-
relate with total galaxy magnitude such that more luminous point
sources are found in brighter galaxies. Similar results have been
found in earlier work (e.g. Graham & Guzmán2003; Balcells et al.
2007a).

B4 cD galaxies

cD galaxies are de�ned by having extra light on cluster-sized
(�1 Mpc) scales with respect to the outward extrapolation of the
Sérsic pro�le �t to the inner (�100 kpc) portion of the galaxy. Such
galaxies are luminous and are found in regions of high galaxy num-
ber density (Binney & Merri�eld1998). Of the three cD galaxies in
Coma, two (NGC 4874 and NGC 4889) lie in the projected central
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3118 T. Weinzirl et al.

Figure B4. Shows two examples of barred galaxies (C5=COMAi13027.966p275721.56 and C6=COMAi125930.824p275303.05) poorly �tted by a Stage 1
single Śersic model that are better �tted by a Stage 3 triple Sérsic (plus point source if needed) model. Column 1 shows the data images while columns 2 and
3 show the residuals after the Stage 1 and Stage 3 model, respectively.

Figure B5. Shows the decomposition of moderately inclined, barred galaxy COMAi125950.105p275529.44, in which we measure the highest outer disc
Sérsic indexn = 1.66. Thus, this galaxy sets the empirically determined upper limit on disc Sérsic index,ndisc max = 1.66. Column 1 shows the data images
while columns 2 and 3 show the residuals for the Stage 2 and Stage 3 model, respectively. The bar signature is clearly present in the residuals.

0.5 Mpc and are therefore in our sample. The third cD (NGC 4839)
lies in the outer southwest region of Coma and is not part of this
study.

De�nitive proof that NGC 4874 and NGC 4889 are cDs is the
detection of intracluster light in Coma (Kormendy & Bahcall1974;
Melnick et al. 1977; Thuan & Kormendy1977; Bernstein et al.
1995; Adami et al.2005; Arnaboldi2011).

The single Śersic indices reported in Appendix B and Table3 for
the these cD galaxies aren � 3Š4.4 because the decompositions
also include the central core. The central core is a clear deviation
from the inward extrapolation of the Sérsic pro�le that characterizes
the outer galaxy structure. For this reason, masking the core regions
(i.e. the central�2 arcsec) is more physically motivated and would
yield higher single Śersic indicesn � 8. This is demonstrated in
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TheHST/ACS Coma Cluster Survey – VII 3119

Figure B6. Compares residuals after �tting a single Sérsic model (top row) versus the best-�tting double Sérsic+ nuclear point source model (bottom row)
for an elliptical (COMAi13030.954p28630.22), S0 (COMAi13021.673p275354.81), and spiral (COMAi13041.193p28242.34). The nuclear point source is
visible in the residuals in the top row.

Appendix C and Table2. We note that both approaches (masking or
not masking the core during the 2D decomposition) lead us to the
same conclusion that all of the cD light is associated with structures
of n � ndisc max (Appendix C). Note in Table5 we list the cD
galaxies and the structure parameters from the 2D decomposition
where the core is masked.

The highn � ndisc max values in the cD galaxies are due to the
extended wings in the Śersic pro�le resulting from the extended
low surface brightness envelope of the cD. This extended enve-
lope is likely made up of intracluster light and the cumulative de-
bris from galaxies, consistent with the view that cD galaxies arise
from repeated bouts of galactic cannibalism and tidal stripping of
satellite galaxies in a cluster (Ostriker & Tremaine1975; Aragon-
Salamanca, Baugh & Kauffmann1998; De Lucia & Blaizot2007).

B5 Cosmic variance

The Coma ACS data only cover 19.7 per cent of the projected cen-
tral 0.5 Mpc radius of Coma. The relative fractional numbers of
E+S0:spiral, or speci�cally the ratio of E/S0s, we derive from this
data may not be representative of the full region in the projected
central 0.5 Mpc radius of Coma due to the incomplete sampling and
cosmic variance. In order to assess the effect of incomplete sam-
pling and cosmic variance on our results, we perform the following
test.

First, we de�ne the region covered by ACS in the projected central
0.5 Mpc radius of Coma asR1, and the full area in the projected

central 0.5 Mpc radius of Coma asR2. We use the Hubble MT from
the GOLD Mine data base7 (Gavazzi et al.2003) to compute the
fraction of E+S0:spiral galaxies in regionR1 andR2 with M� �
4.4 × 109 M� , the mass limit of the Coma GOLD Mine sample.
The MT reported by GOLD Mine are sourced from the literature.
If we take the visual MT from GOLD Mine at face value then we
draw the following conclusions.

(i) The effect cosmic variance causes the ratio of E/S0 within the
GOLD Mine MT to vary by a factor of 1.11 between regionR1 and
R2 for M� � 4.4× 109 M� .

(ii) The partial ACS coverage of the projected central 0.5 Mpc
and associated cosmic variance thus causes our study based on
regionR1 to

(a) overestimate the ratio of S0/E in the ACS sample forM� �
4.4× 109 M� by a factor of 1.4 and

(b) overestimate the fractionfcold of dynamically cold stellar mass
(43 per cent) by a factor of 1.27 (Section 5.6) forM� � 109 M� .
We note that the overestimation offcold is not by the same factor
as in (a) because S0s have a signi�cant fraction of their mass in
dynamically hot bulges.

(iii) Currently, our conclusion in Section 5.6, based on region
R1 is that the hierarchical models are overpredicting the empirical

7 http://goldmine.mib.infn.it/
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Figure B7. Shows the relation between total galaxy luminosity and point source luminosity for objects having a nuclear point source in the �nal, best structural
decomposition.

fractionfcold. It is clear from (ii) (b), that correcting for partial ACS
coverage and cosmic variance would only strengthen this conclusion
further.

B6 Galaxy colour gradients

In Section 4.2 we suggest that galaxy colour gradients should not
bias our conclusions concerning the distribution of dynamically hot
and cold stellar mass. Here, we explicitly test this idea.

For a subset of 10 galaxies spanning types G3 to G5 and
matching the morphology distribution of the mass-selected sample
(E+S0:spiral= 2+7:1) in Table6, we re-evaluated the fractional
mass in hot and cold components based on combining structural
decompositions of both theF814WandF475Wimages. The new
F475W-band decompositions were performed identically to the ex-
isting F814Wdecompositions, except that the position angle and
axis ratio of the galaxy structures were �xed to their values from
the F814W-band decompositions. Stellar masses of the structural
components were calculated according to Into & Portinari (2013)
after converting theF475WŠ F814Wcolour and theF814Wlumi-
nosity into aB Š I colour andI-band luminosity, respectively, using
the procedure in Section 2.2.

In the newF475Wdecompositions for this subset of galaxies,
the half-light radii and Śersic n are similar to the corresponding

values in theF814Wband. The average offset is 5.4 per cent with
a standard deviation of 5.6 per cent. Furthermore, the fractional
hot stellar mass inferred from a constant globalF814W M/L ratio
is 53.4 per cent. After calculating the stellar mass of each galaxy
component from theB Š I colour, the fractional hot stellar mass
is found to be 50.5 per cent. Thus,M/L gradients within a galaxy
do not appear to have a signi�cant effect on the fractional masses
measured in cold versus hot components.

APPENDIX C: IDENTIFYING CORE
ELLIPTICALS

While elliptical galaxies are remarkably well �tted by Sérsic pro�les
over large dynamic ranges, giant elliptical galaxies contain cores, or
‘missing light’ at small radii that constitute a downward deviation
from the inward extrapolation of the outer Sérsic pro�le (Graham
et al.2003; Trujillo et al.2004; Kormendy et al.2009). Such cores
are hypothesized to form from scouring induced by binary black
holes during dry, dissipationless mergers.

Because cores, which have traditionally been identi�ed with 1D
radial light pro�les, are not an obvious feature of the galaxy’s
2D light distribution, global Śersic �ts will encompass any ex-
isting core. This is potentially problematic for at least two reasons.
Including the core in the Śersic �t will lower the global Śersic
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index. This is of concern in this paper where the Sérsic index plays
a key role in interpreting galaxy structure (Section 3.1). Secondly,
�tting the core region may produce features in the residuals that
prompt addition of extra nuclear components that have no physical
justi�cation.

We systematically search for cores in all sample galaxies. For
this task, we use 1D light pro�les generated from ellipse �tting of
deconvolved images. The ACS images were deconvolved using a
simulated PSF (Appendix A for details) and 40 iterations of Lucy–
Richardson deconvolution with theIRAF task LUCY(Lucy 1974;
Richardson1972). Our approach uses the criteria for identifying
core galaxies from Trujillo et al. (2004) by �tting Sérsic and core-
Sérsic pro�les (Graham et al.2003) to the 1D light pro�les.

For simplicity, we use the version of the core-Sérsic pro�le that
assumes an in�nitely sharp transition between the outer Sérsic and
inner power-law regions, namely

I (r ) = I b[(r b/r )� u(rb Š r ) + eb(rb/r e)1/n
eŠb(r/r e)1/n

u(r Š rb)]. (C1)

Here, rb denotes the division between the outer Sérsic and inner
power-law pro�les, Ib is the intensity at this radius,� is the in-
ner power-law slope, andu(x Š a) is the Heaviside step function.
Parametersn andre refer to the shape and half-light radius of the
outer Śersic pro�le. Additionally, b is a constant that depends on
several free parameters (rb, � , re, andn).

We require a core galaxy to meet the following criteria: (1) the
core-Śersic model provides a better �t than the Sérsic pro�le; (2) the
cores are well resolved so that the break radiusrb is greater than
the second innermost data point in the pro�le; (3) the inner power-
law slope� is less than the logarithmic slope of the Sérsic pro�le
(1/n) in the core region.

Three sample galaxies meet the above criteria for having a core.
Two of these are the central cD galaxies NGC 4874 and NGC 4889.
Table2 summarizes therb and� measured from the core-Sérsic �t.

We further explore the best way to handle these cored galaxies in
the 2D luminosity decompositions. Two natural approaches are to
�t the whole galaxy, including the core, or to mask the galaxy over
r � rb. Masking is more physically motivated because the central
core is a clear deviation from the inward extrapolation of the Sérsic
pro�le that characterizes the outer galaxy structure. We try both ap-
proaches and summarize the results in Table2. Applying a mask ver-
sus no mask has a nominal effect on COMAi125909.468p28227.35,
but there is a signi�cant increase in there andn of the cD galaxies
when their larger core regions are masked.

Performing the 2D �t with the core masked is more physically
motivated, and we consider these models to represent the best �ts
for the cD galaxies. It is worth noting, however, that our result from
Appendix B4 that 100 per cent of the mass in the cDs is associated
with structures ofn � ndisc max remains unchanged irrespective of
which approach (mask or no mask) we take.

APPENDIX D: SYSTEMATICS OF ndisc max

Our effort in this paper to make a census (Section 4.2) of dynami-
cally cold versus dynamically hot stellar mass depends fundamen-
tally on the upper limit,ndisc max (Section 3.1), measured for the
Sérsic index of a disc. In our approach, all structures with Sérsic
index n � ndisc max are considered disc dominated, while all other
structures with higher Śersic index are considered classical compo-
nents built in mergers.

The value ofn � ndisc max is set by the moderately inclined barred
galaxy (COMAi125950.105p275529.44) having the highest outer
disc Śersic index. The accuracy ofndisc max depends on how repre-
sentative the sample is as well as the robustness of the multicompo-
nent structural decompositions. Fig.B5 shows for this galaxy the
data image and residuals of the multicomponent decompositions.
While this galaxy was identi�ed as an ambiguous E/S0 galaxy in
�g. 2 of Marinova et al. (2012), the barred nature of this galaxy
seems clear based on the image residuals produced by our improved
method (Sections 3.2 and 3.3) of structural decomposition.

The value ofndisc max is subject to sky subtraction errors because
it is measured from the outermost Sérsic pro�le of disc galaxies,
and this is likely the dominant systematic effect onndisc max. As
described in Appendix A, we measure the background sky value
with a robust method and hold the sky �xed at this value dur-
ing the �t. To test the importance of the sky subtraction, we re�t-
ted COMAi125950.105p275529.44 while adjusting the mean sky
background by±1� . This produces a range in outer discn of
n � 1.57Š1.77, which spans�0.1 above and below the adopted
ndisc max value of 1.66. Based on the narrow error bars forndisc max,
we do not expect the uncertainty to have a signi�cant impact on our
conclusions.

For completeness, we explore for an alternate value ofndisc maxthe
relative stellar mass fractions that would be interpreted as belong-
ing to cold versus hot stellar components. The valuendisc max = 2 is
in line with estimates of the Śersic index of small-scale discs (e.g.
Fisher & Drory2008; Weinzirl et al. 2009) yet is still above the an-
ticipated range inndisc max due to sky subtraction errors in this study.
With this higherndisc max, we would �nd that�51 per cent stellar
mass is in disc-dominated components while�49 per cent is still
in classical bulges/ellipticals assembled in major and minor merg-
ers. These values are somewhat different from the corresponding
values (43 per cent in disc-dominated structures versus 57 per cent
in non-discs) derived in Section 4.2 excluding the two cD galax-
ies. Choosing a higherndisc max would increase the importance of
disc-building processes relative to processes that build classical
bulges/ellipticals.

This paper has been typeset from a TEX/LATEX �le prepared by the author.
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