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ABSTRACT 

Background: It has been proposed that chronic exposure to prolonged strenuous exercise may 

result in maladaptation of the right ventricle (RV). The aim was to establish RV structure and 

function, including septal insertion points, using conventional echocardiography and 

myocardial strain (ԑ) imaging in a veteran population of ultramarathon runners (UR) and age 

and sex-matched controls.  

Methods: A retrospective study design provided 40 UR (>35 years old; mean  SD training 

experience: 18  12 years) and 24 sedentary controls whom had previously undergone 

conventional 2D, tissue Doppler and speckle tracking echocardiography to measure RV size 

and function. Peak RV ԑ and strain rate (SR) were assessed from the base, mid, and apical 

lateral wall. SR were assessed during systole (SRs’), early diastole (SRe’) and late diastole 

(SRa’). Regional assessment of RV insertion points were made at the basal inferoseptum and 

apical septum using left ventricular (LV) longitudinal ԑ, and at the anteroseptum and 

inferoseptum using LV circumferential and radial ԑ. 

Results: All structural indices of RV size were significantly larger in UR. RV regional and 

global peak ԑ were not different between groups whereas basal RV SR was significantly lower 

in UR. UR had significantly higher peak LV circumferential ԑ (anteroseptum: -26  8% vs -21 

 6%; inferoseptum: -25  6% vs -16  9%), and higher peak LV longitudinal ԑ (apical septum; 

-28  7% vs -22  4%) compared to controls. There was regional heterogeneity in UR that was 

not observed in controls with significantly lower longitudinal ԑ at the basal inferoseptal 

insertion point when compared to the global ԑ (-19  2% vs -22  4%).  

Conclusion: Myocardial ԑ imaging highlights no overt maladaptation in this cohort of veteran 

UR, although lower insertion point ԑ, compared to global ԑ, in UR may warrant further 

investigation. 
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List of Abbreviations: 

A’:   Late diastolic myocardial tissue velocity 

E’:  Early diastolic myocardial tissue velocity 

LV:  Left Ventricle 

PLAX:  Parasternal Long Axis view 

RV:  Right Ventricle 

RVDarea: Right ventricular end-diastolic area 

RVFAC: Right Ventricular Fractional Area Change 

RVOT:  Right Ventricular Outflow Tract 

RVSarea: Right ventricular end-systolic area 

ԑ:  Strain 

S’:  Systolic myocardial tissue velocity 

SD:  Standard Deviation 

SR:  Strain Rate 

SRa’:  Late diastolic strain rate 

SRe’:  Early diastolic strain rate 

SRs’:  Systolic strain rate 

STE:  Speckle Tracking Echocardiography 

TAPSE: Tricuspid Annular Plane Systolic Excursion 

UR:  Ultramarathon runners 
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INTRODUCTION 

Regular exercise has been shown to positively affect risk factors for cardiovascular disease [1].  

Despite this, the dose-response effect for exercise and cardiovascular health is controversial at 

high levels of training volume over many years [2,3]. There is evidence to suggest that a single 

bout of high volume endurance exercise can lead to a disproportionate wall stress on the right 

ventricle (RV), compared to the left ventricle (LV), that precipitates an RV dilatation and 

reduction in function in the acute post-exercise setting [4,5]. Typically, these changes are 

transient and physiological in nature [6] but the cumulative effect of lifelong exercise exposure 

of this nature is unknown [7].   

 

Chronic RV adaptation in endurance athletes has been well documented [8,9,10,11] however 

there is some evidence to suggest that competitive endurance athletes have reduced regional 

function at the base of the RV compared to non-athletes [11]. These findings have generally 

been attributed to the physiological remodelling of the chamber rather than any intrinsic 

dysfunction [12]. Other evidence demonstrating potential maladaptation in the RV of athletes 

has been reported and suggested to reflect repeated extreme exercise exposure and insufficient 

recovery time [13]. In this setting, the potential for an exercise induced RV cardiomyopathy 

has been postulated [14].  There are some case series data in endurance athletes documenting 

myocardial fibrosis in the inter-ventricular septum at the RV insertion points [15] specifically 

those with greater RV structural remodelling and a greater training experience [16]. In addition, 

animal studies have demonstrated a relationship between exercise-induced RV remodelling and 

a propensity for RV arrhythmias [17]. This area requires more empirical evidence initially in 
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those athletes who have undertaken the largest volumes of exercise training and competition.

  

 

Although a recent study reported ventricular adaptations in the lifelong male endurance athlete 

[18], they did not assess regional RV strain rate (SR) or circumferential and radial strain (ԑ) at 

the RV insertion points. Since fibrosis is predominantly localised to the insertion point regions 

in lifelong endurance athletes, it may prove to be of some significance to assess tissue 

deformation from multiple planes in these regions. Speckle tracking echocardiography (STE) 

can measure global and regional function, providing ԑ and SR of tissue deformation from 

multiple planes of motion over time [19] including the ability to assess ԑ at the RV insertion 

points. It would therefore be novel and pertinent to explore these myocardial segments in detail.   

Furthermore, most descriptions of the RV phenotype of athletes reflect young athletic 

populations and often those competing in team sports or endurance events <26 miles 

[20,21,22].  There is a paucity of data in ‘veteran’ (> 35 years of age with prolonged exposure 

to extreme training volumes) ultramarathon runners (UR). 

 

The aims of this study were to compare: 1) RV morphology and conventional measures of RV 

function 2) global and regional peak ԑ and peak SR of the RV lateral wall, and 3) peak regional 

ԑ in the interventricular septum at the segments where RV attachment occurs, between veteran 

UR and sedentary age and sex-matched controls. We tested the following hypotheses: 1) RV 

size will be larger in UR whilst conventional measures of RV function will be lower, 2) peak ԑ 

and SR across the RV lateral wall will be lower in UR, and 3) circumferential, radial and 

longitudinal ԑ, at the two RV insertion points, will be lower in UR. 
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METHODS 

Study Population and Study Design.  

The study utilised a cross-sectional, case-control design. Forty (33 men) retrospectively studied 

UR were recruited prior to undertaking one of three ultramarathons (2005 Comrades 87-km 

Run, Durban, South Africa; 2013 & 2014 161-km Western States Endurance Run, Squaw 

Valley, CA to Auburn, CA, United States). In addition, twenty-four (20 men) sedentary 

controls (defined as doing less than 2 hours structured exercise training per week) were 

recruited and assessed at the Research Institute for Sport and Exercise Science at Liverpool 

John Moores University. All participants were healthy non-smokers, aged between thirty-five 

and sixty-five, free from diabetes, hypertension, and any known cardiovascular, renal, liver, 

endocrinal, metabolic or respiratory disease. Participants were not currently taking any 

prescribed medication. The existence of pre-clinical coronary disease could not be excluded, 

but all participants self-reported no clinical symptoms and had no family history of premature 

coronary disease.  

 

Participants were assessed on a single visit having refrained from consuming caffeine or 

alcohol and undertaking any vigorous exercise in the preceding 24 hours. The testing session 

involved the completion of a health and training questionnaire, assessment of height and weight 

allowing the calculation of body surface area [23], assessment of left brachial artery blood 

pressure, a resting 12-lead electrocardiogram and a comprehensive 2D, Doppler, tissue Doppler 

and speckle tracking echocardiogram. All participants had a normal resting electrocardiogram 

with no evidence of non-training related abnormalities as determined by European Society of 
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Cardiology guidelines [24]. Likewise, there was no evidence of valve disease, pulmonary 

hypertension or coronary artery disease on the resting echocardiogram. All athletes and 

controls with non-training related changes on the ECG or were symptomatic as determined by 

a health questionnaire were excluded. In addition, participants were excluded if they had any 

abnormal non-training related anomaly seen on the echocardiogram. Participants provided 

written informed consent and the study was granted approval from the Liverpool John Moores 

University Research Ethics Committee. 

 

Echocardiographic Assessment 

All echocardiograms were completed by a single highly experienced sonographer in 

accordance with American Society of Echocardiography guidelines using a commercially 

available ultrasound system (Vivid Q; GE Medical; Horten, Norway) and a phased-array 

transducer (1.5- to 4-MHz). Images were acquired with the participant in the left lateral 

decubitus position and exported to offline analysis software (EchoPac version 7.0; GE Medical) 

for subsequent analysis. Measurements were completed by a single experienced operator.  This 

was true for all participants regardless of when and where the assessments took place. 

 

Standard Echocardiography 

RV structure and function was assessed in accordance with American Society of 

Echocardiography guidelines [25] (see Supplementary Figures). Specifically, this included 

linear measurements of the RV outflow tract from a parasternal long-axis view (RVOTPLAX) 

as well as proximal (RVOT1) and distal (RVOT2) dimensions from a parasternal short-axis 

orientation. The inflow of the RV was assessed using a right sided modified apical 4-chamber 

view at the base (RVD1), mid cavity (RVD2), and apical to annular length (RVD3). In the 
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same modified apical 4-chamber view, a measurement of RV end-diastolic area (RVDarea) 

and RV end-systolic area (RVSarea) were made from manually tracing the endocardium 

providing a calculation of RV fractional area change (RVFAC). All structural data were scaled 

to BSA allometrically using the rule of geometric similarity (linear dimensions to Body Surface 

Area0.5; structural areas linearly to body surface area) as previously described [26]. Tricuspid 

annular plane systolic excursion (TAPSE) was assessed using M-mode and TDI was used to 

measure peak myocardial velocities through the cardiac cycle in systole (S’), early diastole (E’) 

and late diastole (A’).  All peak tissue Doppler data were scaled to RV length as previously 

recommended [27]. Due to the inability to obtain an adequate tricuspid regurgitant Doppler 

signal and its relatively poor accuracy for deriving pulmonary artery pressures [28] we chose 

to determine the probability of pulmonary hypertension based on a multifactorial assessment 

of echocardiographic signs as defined by European guidelines [29].  

 

Two-Dimensional Speckle Tracking Echocardiography 

To assess STE derived RV longitudinal ԑ and SR, a modified apical 4-chamber orientation was 

acquired. For all images, the frame rates were maintained as close to 90fps whilst the depth, 

frequency and the angle of insonation were kept consistent to reduce variability [19]. All ԑ and 

SR traces were assessed offline. A narrow region of interest was placed over the RV lateral 

wall from base to apex providing peak ԑ and peak SR in ventricular systole (SRs’), during early 

(SRe’) and late diastole (SRa’) from the 3 segments base, mid-level, and apex. A base to apex 

gradient was then calculated as (basal ԑ - apical ԑ). To assess LV circumferential and radial ԑ 

at the RV insertion points (see Figure 1), the parasternal short-axis view at the basal level was 

acquired. The region of interest was placed around the endocardium encompassing the whole 

of the myocardium and peak ԑ was calculated from the inferoseptum and anteroseptum. In 



9 
 

addition, an apical 4-chamber orientation focused on the LV was used to provide peak 

longitudinal ԑ from the basal inferoseptum and apical inferoseptum. The LV Global ԑ values 

were calculated as an average of the six segments in each plane of motion. 

 

Statistical Analysis 

Normality was tested by the Shapiro-Wilk test and by inspection of the graphical plots. An 

independent samples T-test was used to assess differences between groups (UR vs controls) 

using commercially available software (SPSS version 22, IBM, NY, United States) with 

statistical significance set at P < 0.05. In order to establish relative ԑ at the RV insertion points, 

the absolute values of circumferential, radial and longitudinal ԑ in these regions were compared 

to global LV ԑ in each group using a Paired Samples T-Test. Where data was not normally 

distributed, the appropriate non-parametric test was used. All data are presented as mean  

standard deviation (SD). 

 

A previous intra-observer reliability study based on repeated acquisitions undertaken in our 

laboratory demonstrated coefficient of variation for RV ԑ, SRs’, SRe’ and SRa’ of 7%, 13%, 

17%, 15% respectively [30]. 

 

RESULTS 

Participant demographics are presented in Table 1. UR and controls were matched for age 

(mean  SD: 46  8 vs 46  7 years) and sex (82.5% vs 83.3% men), respectively. There was 

no difference in height between groups but the controls were significantly heavier and had a 
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significantly larger body surface area than UR. Resting heart rate was significantly lower in 

UR.  

 

RV structural indices are presented in Table 2. UR had significantly larger linear dimensions 

throughout the RV outflow and inflow tracts as well as RVDarea and RVSarea compared to 

controls. None of the participants from both UR and controls had either an intermediate or high 

probability for pulmonary hypertension [29] 

 

Conventional RV functional data are presented in Table 3. UR had a significantly higher 

RVFAC, peak myocardial tissue velocity in systole (S’) and early diastole (E’) compared to 

controls. There were no between group differences in TAPSE or peak A’. 

 

All between group differences in regional and global peak ԑ for the RV lateral wall and septal 

insertion points are presented in Table 4. There were no differences in peak RV lateral wall ԑ 

at basal, mid, or apical levels or RV base-to-apex gradient between UR and controls. UR had 

significantly higher peak LV circumferential ԑ at the anteroseptum and inferoseptum compared 

to controls, but there were no differences in peak LV radial ԑ at either of the insertion points. 

Peak LV longitudinal ԑ at the apical septum was significantly higher in UR when compared to 

controls but this difference was not apparent in the basal inferoseptal segment. 

 

All regional SR data for the RV lateral wall are presented in Figure 2. Basal SRs’ (P=0.0001), 

SRe’ (P=0.017), and SRa’ (P=0.005) were all significantly lower in UR when compared to the 
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controls (see Figure 1a). Mid-level SRs’ (P=0.003) and apical SRa’ (P=0.012) were also 

significantly lower in UR whilst all other SR parameters were similar between groups. 

 

All within-subject comparisons in regional insertion point ԑ compared to the global ԑ are 

presented in Table 5. Peak LV longitudinal ԑ at the apical septum was significantly higher than 

the global LV ԑ in both groups, but to a greater magnitude in UR. Peak LV longitudinal ԑ at the 

basal inferoseptum was lower than global ԑ in UR. This finding was not seen in the control 

group. An example case of ԑ curves from each group is presented in Figure 3. In addition, 

radial ԑ was also lower at the inferoseptum and anteroseptum compared to global radial ԑ in 

both UR’s and controls. The magnitude of reduction was greater in the UR group for both the 

inferoseptum and anteroseptum respectively. However, circumferential ԑ at the inferoseptum 

was higher compared to global values in UR. This finding was not seen in the control group. 

Circumferential ԑ at the anteroseptum was significantly higher than the global circumferential 

ԑ in both UR and controls. 

  

 

DISCUSSION 

The main findings from this study are that veteran UR, compared with age and sex-matched 

sedentary controls, have 1) larger RV inflow and outflow dimensions, 2) normal global RV 

function and regional and global ԑ, 3) lower peak basal systolic and diastolic SR extending to 

the mid segment in systole, and the apical segment in late diastole, 4) higher values of insertion 

point ԑ, 5) regional heterogeneity of insertion point ԑ compared to global ԑ.  
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Right Ventricular Structural Adaptation 

RV enlargement has previously been documented in endurance athletes compared to non-

athletes with greater RV inflow dimensions, proximal and distal RVOT dimensions [8,31] and 

RV areas [30]. These findings have been substantiated when compared to published normative 

ranges of the non-athlete [10], with up to 50% of UR having abnormal RV inflow and outflow 

dimensions according to the American Society of Echocardiography guidelines [25]. A recent 

study has supported these findings in Olympic level athletes [32]. Our study extends the current 

empirical database to UR >35 years of age with a long history of training and competitive 

experience. Our data provide further support for chronic physiological RV enlargement in the 

endurance athletes but it is important to highlight that the magnitude of RV dimensions was 

not greater than those previously reported studies of endurance athletes per se. It could be 

postulated that absolute RV remodelling reaches a threshold, regardless of training longevity 

and accumulated volume.  

 

The factors contributing to an enlarged RV in endurance and UR athletes have been discussed 

in detail previously [14,33]. La Gerche and colleagues measured a disproportionately larger 

increase in end-systolic stress on the RV during strenuous exercise [4] and suggested this could 

underpin evidence of disproportionate structural adaptation in the RV compared to the LV [10]. 

The relative elevation in wall stress in the RV is likely related to the lower compliance of the 

pulmonary vasculature compared to the systemic circulation [31]. It has also been suggested 

that the smaller mass of the thin walled RV has insufficient contractile reserve to cope with 

this increased demand [14]. If these mechanisms hold true, then RV adaptation is a normal 

physiological response to endurance exercise that is not exacerbated in the extremes of the 

athlete population.  
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Right Ventricular Functional Adaptation  

The current study demonstrated that UR had higher conventional indices of global RV function 

when compared to controls, but with similar global or regional peak ԑ. Previous findings are 

contradictory with no significant differences observed in RVFAC [12,34] or even a reduced 

RVFAC seen in elite endurance athletes compared to a non-athlete population [11]. A study 

directly targeting UR demonstrated significantly higher S’ [35] with these findings being 

reproduced in long distance swimmers [36]. More recently others have found no significant 

differences in S’ between veteran elite endurance athletes and sedentary age and sex-matched 

controls [18,35] and no differences between endurance athletes and non-athletes [31]. The 

disparity in the literature may well be reflective of the heterogeneous athlete populations that 

have previously been studied and / or the inherent limitations of conventional 

echocardiography. Doppler measures of systolic function are angle dependent and assume that 

a single segment represents global function of the RV [25]. It is therefore clear that further 

work should aim to better define global RV systolic function across a range of athlete 

demographics.  

 

We also noted a higher E’ in UR. Some studies have highlighted the positive impact of 

endurance training on RV early diastolic function in young athletes [37,38], however, more 

recent studies found no differences in diastolic function between veteran athletes and veteran 

non-athletes [18,39].  Taken together these data suggest that a lifetime of extreme endurance 

exercise does not adversely impact on myocardial relaxation.  
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Peak regional and global RV longitudinal ԑ was not different between UR and controls. The 

application of this technique highlights that the overall magnitude of contraction and relaxation 

is not enhanced or reduced in UR. These findings were not expected given the increase in RV 

size and higher RVFAC, and may suggest a greater contribution of non-longitudinal RV ԑ in 

UR. Regional SR at the base, mid and apex were different between groups with lower values 

observed in UR. Lower resting basal SRs’ in endurance athletes has been reported elsewhere 

[11,15]. Both these studies integrated an exercise stimulus to demonstrate enhanced contractile 

reserve demonstrating that the reduced resting basal SR is simply a physiological response to 

the increased size of the RV. This phenomenon is also compounded by slower heart rates which 

may, in part, contribute to the findings observed in this study. 3 

 

Strain at the RV Insertion Points  

A novel and primary outcome of this study was to assess the chronic effects of UR exercise on 

the functional mechanics of cardiac tissues at the RV insertion points, from multiple planes of 

motion. Our findings of an increased LV global and insertion point circumferential ԑ are at 

odds with a previous study that described a depression in regional LV circumferential ԑ 

occurring only at the anteroseptal and inferoseptal segments [40]. These contradictory findings 

may well be explained with the clear differences in population age (20  1 years vs 46  8 

years), training stimulus (rowers vs runners), or study design whereby the 90 days of 

unsupervised endurance training is not directly comparable to the lifelong veteran UR, and is 

more likely part of an acute adaptation.  

Our findings of increased global and apical septum longitudinal ԑ are not supported by another 

study that found no significant differences in global or regional LV longitudinal ԑ at the RV 

insertion points between a veteran cohort of endurance athletes and sedentary controls [18]. 
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They also demonstrated no evidence of myocardial necrosis or fibrosis as determined by 

cardiac magnetic resonance imaging utilizing the late gadolinium enhancement technique. 

Fibrosis has been documented in highly trained animal models [17], and has previously been 

observed in a small number of highly trained veteran endurance athletes [41] and often 

confined to the inter-ventricular septum most frequently in the regions of RV attachment [4,15]. 

However, late gadolinium enhancement in ultra-endurance athletes may not necessarily 

represent fibrosis, and could be a reversible observation caused from the acute stress of 

prolonged exercise [42]. 

 

The finding that longitudinal ԑ in the UR at the basal inferoseptum was lower than global ԑ 

values in the same individuals may suggest the presence of subtle changes in regional function. 

Longitudinal fibers predominate in the subendocardium [43] which may be more susceptible 

to fibrosis in the lifelong endurance athlete. The greater magnitude of difference in radial ԑ at 

the insertion points compared to controls provides additional support for a measurable regional 

intrinsic dysfunction. We may speculate that increases in circumferential ԑ in the inferoseptum 

compared to global values, may partially compensate for the reduction in longitudinal ԑ. 

Overall, all regions of LV ԑ were still higher in UR than controls which may suggest enhanced 

LV performance and function. These differences may simply highlight a normal process of 

adaptation that occurs in the ventricle with long-term endurance training. It is well established 

that myocardial ԑ reduces with age and therefore the combination of ageing and endurance 

training may delay this natural decline. It is apparent that further work is required to elucidate 

the true nature of these findings.   

 

Clinical and Long-Term Implications 
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The veteran UR in our study presented with increased RV dimensions of both the inflow and 

outflow tract, with some of the UR above normal ranges reported by the American Society of 

Echocardiography [25]. This may have implications when screening these individuals. It is 

important to note that this is in the presence of normal conventional indices of RV function and 

global longitudinal RV ԑ. Reductions in regional RV SR can be expected from those individuals 

with enlarged RV’s. Our data suggest that regional myocardial contractility in the insertion 

points may be lower compared to global values in veteran UR, however this is in the presence 

of normal global function. Insertion point deformation was also increased above that of 

controls, however the within subject reductions in UR is worth consideration.  

 

Limitations 

There are several limitations associated with this study. This was a retrospective study which 

was based on data collection from 3 different ultraendurance events. This has the potential to 

introduce issues with information and selection bias, however all assessments were carried out 

by the same experienced sonographer and using the same equipment. In addition, we utilized 

EchoPac software that is not the current version. It is very likely that our findings will be 

reproduced using the most recent version but there is the potential that this may negatively 

impact on the external validity within this unique cohort.  

 

We did not utilize cardiac magnetic resonance imaging for late gadolinium enhancement and 

so have no direct measure of fibrosis. In addition, regional segments used are relatively large 

when compared to small areas of fibrosis that are often seen. Small areas of fibrosis may not 

affect the overall peak deformation of each insertion point segment. A modest sample size was 

used and therefore it is important to consider the limited generalizability.  
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Participants in this study were predominantly male and so caution should be taken when 

comparing raw data to other study populations where sex percentages may not match those of 

the present study. Sex-based differences in ventricular structure and function can only be truly 

alleviated when allometrically indexing to lean body mass [44]. We have provided data scaled 

to body surface area allometrically using the rule of geometric similarity in the hope that all 

future researchers adopt this feasible and validated approach [26], relieving the burden of body 

size differences.  

 

It has been well documented that an acute bout of prolonged strenuous exercise has a negative 

impact on RV structure and function [6]. Based on this, it is possible that the UR in the current 

study may have some cardiac lag from previous training. That aside previous data has 

demonstrated that the acute changes are of a lower magnitude and more transient in UR’s that 

are more experienced. Based on the current training volume and duration it is sensible to 

assume that the UR’s in our study were at the threshold of adaptation and less likely to ‘suffer’ 

from these acute changes. In addition, we ensured that our participants had refrained from 

training for 24 hours prior to examination with most data suggesting any transient adaptation 

to acute training will revert to baseline within 6 hours of cessation of exercise.  

 

Conclusion 

Veteran UR over the age of 35 years and with 18  12 years of training and competition, 

presented with structural remodeling of the RV inflow and outflow tracts in the presence of 

normal / enhanced global systolic and diastolic function and absolute peak ԑ. These athletes 
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presented with lower regional SR which may be related to the chronic adaptation in RV size. 

Global LV and insertion point ԑ were enhanced in UR, however there was some evidence of 

lower insertion point deformation, compared to global deformation in the same individuals, 

and this requires further study. 
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FIGURE AND TABLE LEGENDS 

Table 1. Participant demographics 

Table 2. Conventional Echocardiographic Structural Indices – Absolute and Scaled 

Table 3. Conventional Echocardiographic Functional Data 

Table 4. Regional and global strain from the RV free wall and RV insertion points  

Table 5. Within-subject regional RV insertion point strain compared to global strain 

Figure 1. Diagrammatic representation of RV insertion point locations (IS = 

inferoseptum, AS = anteroseptum) 

Figure 2. Regional strain rates from the RV free wall at a) basal level, b) mid-level, and 

c) apical level. 

RV, right ventricle; SR, strain rate; SRs’, systolic strain rate; SRe’, early diastolic strain rate; 

SRa’, late diastolic strain rate. 

Figure 3. Exemplar regional and average LV longitudinal strain curves from a) control, 

and b) UR. This figure shows lower basal inferoseptum strain compared to global strain 

in UR, but not controls. 
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Table 1. Participant demographics 

PARAMETER ULTRARUNNERS 

(Mean  SD) 

CONTROLS 

(Mean  SD) 

P-VALUE 

Age (years) 46  8 46  7 0.99 

Sex (% men) 82.5% 83.3% 0.93 

Height (cm) 177  8 174  7 0.11 

Weight (kg) 71  10 85  14 0.0002 

BSA (m2) 1.87  0.16 2.02  0.19 0.002 

Ultramarathon 

Training (years) 

18  12 - - 

Training (hrs/week) 11  4 - - 

Number of races  

> 50 miles 

61  80 - - 

Resting Heart Rate 

(beats.min-1) 

58  8 68  10 0.0002 

Systolic Blood 

Pressure (mmHg) 

125  12 128  13 0.357 

Diastolic Blood 

Pressure (mmHg) 

80  11 78  10 0.572 

BSA: body surface area 
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Table 2. Conventional Echocardiographic Structural Indices 

PARAMETER ULTRARUNNERS 

(Mean  SD) 

CONTROLS 

(Mean  SD) 

P-VALUE 

RVOTPLAX Index 

(mm/(m2)0.5) 

23  3 21  3 0.043 

RVOT1 index 

(mm/(m2)0.5) 

24  3 21  3 0.0005 

RVOT2 index 

(mm/(m2)0.5) 

18  2 16  2 0.004 

RVD1 Index 

(mm/(m2)0.5) 

31  4 26  4 < 0.0001 

RVD2 Index 

(mm/(m2)0.5) 

21  3 16  3 < 0.0001 

RVD3 Index 

(mm/(m2)0.5) 

64  5 55  6 < 0.0001 

RVD area index 

(cm2/m2) 

13  2 9  2 < 0.0001 

RVS area index 

(cm2/m2) 

7  2 5  2 0.0002 

RV: right ventricular; RVOTPLAX: RV outflow tract from parasternal long axis view; 

RVOT1 and 2: RV outflow tract 1 (proximal) and 2 (distal); RVD: RV dimensions 1 (base) 2 

(mid) 3 (longitudinal); RVD & RVS area: RV diastolic and systolic area 
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Table 3. Conventional Echocardiographic Functional Data 

PARAMETER ULTRARUNNERS 

(Mean  SD) 

CONTROLS 

(Mean  SD) 

P-VALUE 

RVFAC (%) 50  9 44  8 0.013 

TAPSE (mm) 24  4 23  4 0.32 

TDI S’ (cm/s) 17  3 13  2 < 0.0001 

S’ Index (cm/s)/cm) 1.95  0.39 1.71  0.27 0.011 

TDI E’ (cm/s) 15  3 12  3 0.0001 

`E’ Index (cm/s)/cm) 1.83  0.46 1.54  0.40 0.015 

TDI A’ (cm/s) 16  4 13  3 0.016 

A’ Index (cm/s)/cm) 1.85  0.55 1.69  0.40 0.25 

RVFAC: RV fractional area change; TAPSE: tricuspid annular plane systolic excursion; TDI: 

tissue doppler imaging during ventricular systole (S’) and during early (E’) and late (A’) 

ventricular diastole. 
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Table 4. Regional and global strain from the RV free wall and RV insertion points  

PARAMETER ULTRARUNNERS 

(Mean  SD) 

CONTROLS 

(Mean  SD) 

P-VALUE 

RV Basal ԑ (%) -27  5 -29  4 0.22 

RV Mid ԑ (%) -28  4 -30  5 0.17 

RV Apical ԑ (%) -32  4 -32  5 0.82 

RV Base to apex 

GRADIENT (%) 

4.3  5.4 3.2  5.0 0.40 

LV Circumferential - - - 

Global ԑ (%) -21  4 -16  3 <0.0001 

Basal Anteroseptum ԑ 

(%) 

-26  8 -21  6 0.006 

Basal inferoseptum ԑ 

(%) 

-25  6 -18  5 <0.0001 

LV Radial - - - 

Global ԑ (%) 51  19 43  13 0.04 

Basal Anteroseptum ԑ 

(%) 

39  19 34  17 0.162 

Basal Inferoseptum ԑ 

(%) 

43  19 38  18 0.141 

LV Longitudinal - - - 

Global ԑ (%) -22  4 -19  2 <0.0001 

Basal Inferoseptum ԑ 

(%) 

-19  3 -18  2 0.12 

Apical Inferoseptum ԑ 

(%) 

-28  7 -22  4 < 0.0001 

ԑ indicates strain; RV, right ventricular; LV, left ventricular 
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Table 5. Within-subject regional RV insertion point strain compared to global strain 

LV Longitudinal - - - 

GROUP Apical Inferoseptum 

ԑ (%) 

Global ԑ (%) P-VALUE 

UR -28  7 -22  4 <0.0001 

Control -22  4 -19  2 <0.0001 

GROUP Basal Inferoseptum ԑ 

(%) 

Global ԑ (%) P-VALUE 

UR -19  3 -22  4 < 0.0001 

Control -18  2 -19  2 0.141 

LV Circumferential - - - 

GROUP Inferoseptum ԑ (%) Global ԑ (%) P-VALUE 

UR -25  6 -21  4 0.001 

Control -18  5 -16  3 0.076 

GROUP Anteroseptum ԑ (%) Global ԑ (%) P-VALUE 

UR -26  8 -21  4 0.0001 

Control -21  6 -16  3 0.0002 

LV Radial - - - 

GROUP Inferoseptum ԑ (%) Global ԑ (%) P-VALUE 

UR 43  19 51  19 <0.0001 

Control 38  18 43  13 0.008 

GROUP Anteroseptum ԑ (%) Global ԑ (%) P-VALUE 

UR 39  19 51  19 <0.0001 

Control 34  17 43  13 <0.0001 

ԑ indicates strain; LV, left ventricular; UR, ultramarathon runner 

 


