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Abstract 

The Crenarchaeon Ignicoccus hospitalis lives in symbiosis with Nanoarchaeum equitans 

providing essential cell components and nutrients to its symbiont. I. hospitalis shows an 

intriguing morphology that points towards an evolutionary role in driving 

compartmentalization. Therefore, the bioenergetics of this archaeal host-symbiont system 

remains a pressing question.  To date, the only electron acceptor described for I. hospitalis, is 

elemental sulfur, but the organism comprises genes that encode for enzymes involved in 

nitrogen metabolism, e.g., one nitrate reductase and two octaheme  cytochrome c, Igni_0955 

(IhOCC) and Igni_1359. Herein we detail functional and structural studies of the highly 

abundant IhOCC, including an X-ray crystal structure at 1.7 Å resolution, the first three-

dimensional structure of an archaeal OCC. The trimeric IhOCC is membrane-associated and 

exhibits significant structural and functional differences to previously characterized 

homologues within the hydroxylamine oxidoreductases and octaheme cytochrome c nitrite 

reductases. The positions and spatial arrangement of the eight hemes are highly conserved, 

but the axial ligands of the individual hemes 3, 6 and 7 and the protein environment of the 

active site show significant differences. Most notably, the active site heme 4 lacks porphyrin-
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tyrosine cross-links present in the HAO family. We show that IhOCC efficiently reduces 

nitrite and hydroxylamine, with possible relevance to detoxification or energy conservation.  

Database 

Structural data are available in the Protein Data Bank under the accession number 4QO5. 

 

Introduction  

Multiheme cytochromes c (MCCs) constitute an important class of proteins that have received 

considerable attention in recent decades because of their central role in global nitrogen, sulfur 

and iron cycling [1, 2] and its impact on the climate system [3]. The poorly-characterized clade 

II of the octaheme cytochromes c (OCC) family is closely related to both the hydroxylamine 

oxidoreductase (HAO) and octaheme nitrite reductases (ONR) families. In aerobic ammonium-

oxidizing bacteria, the octaheme enzyme HAO is known to convert hydroxylamine (NH2OH) 

to nitrite (NO2
-), a four-electron oxidation (Equation 1) [4], whereas the ONR [5] and NrfA [6-

8] enzymes convert nitrite to ammonium (NH4
+), a six-electron reduction (Equation 2): 

(Eq. 1) NH2OH + H2O → NO2
- + 4 e- + 5 H+ 

(Eq. 2) NO2
- + 6 e- + 8 H+ → NH4

+ + 2 H2O 

Early structural insights were obtained for the hydroxylamine oxidoreductase from the 

aerobic ammonium-oxidizing bacterium Nitrosomonas europaea (NeHAO) [9]. Each subunit 

of the homotrimeric NeHAO harbors eight c-type hemes for catalysis and electron transfer. A 

characteristic feature of NeHAO are two covalent bonds between the catalytic heme center of 

one subunit and a tyrosine residue of the adjacent subunit within the trimer [10]. Recently a 

HAO homologue (KsHAO) purified from the anammox bacterium Kuenenia stuttgartiensis 

was functionally and structurally characterized, which is involved in hydroxylamine 

detoxification [11]. NeHAO and KsHAO share important structural features including the 
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spatial arrangement of the heme centers and the presence of the P460-type catalytic site; both 

use NH2OH as their substrate, but while NeHAO forms NO2
- as described in equation 1, 

KsHAO oxidizes NH2OH predominantly to NO (Equation 3): 

(Eq. 3) NH2OH → NO + 3 e- + 3 H+ 

The Crenarchaeon Ignicoccus hospitalis shows a pronounced compartmentalization 

unusual for a prokaryote. In has been suggested as a putative ancestor for mitochondrial 

evolution, a theory supported by its intimate association to the miniscule Archaeon, 

Nanoarchaeum equitans [12, 13]. Recent studies have focused on the physiological 

understanding of key respiratory enzymes within the different membranes of I. hospitalis and 

their bioenergetic roles.  

Ignicoccus hospitalis expresses two putative OCCs, Igni_0955 and Igni_1359, that 

share 29% identity in a global amino acid alignment [14]. BLAST search of Igni_0955 places 

this protein within the HAO family of MCCs [2] but more detailed analysis [15] favors its 

placement within clade II of the OCC family. Despite the importance of microbial MCCs only 

limited structural information is available on the archaeal homologues.  

This work represents the first detailed characterization of a member of the OCC family, 

Igni_0955 from I. hospitalis (IhOCC), which bears strong structural similarity to the HAOs, but 

with a reductive profile more similar to the ONRs. To date, all that is known about this enzyme 

is that it is associated both with the inner (cytoplasmic) membrane and the outer cellular 

membrane [14], and that it contributes to the deep red color of I. hospitalis. We present the 

IhOCC structure at 1.7 Å resolution: the first three-dimensional structure of an archaeal member 

of the OCC family, and the highest resolution achieved so far for an octaheme enzyme. Our 

structure reveals significant differences with regard to axial coordination of the individual 

hemes and the protein environment of the active site, compared with bacterial homologues. Our 

functional in vitro and spectroscopic studies document that IhOCC is a highly active nitrite and 
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hydroxylamine reductase. As such, IhOCC presents an evolutionary link between the HAO, 

ONR and NrfA protein families.  

 

Results and Discussion 

Molecular parameters, reactivity and spectroscopic properties of IhOCC 

IhOCC was purified aerobically from I. hospitalis membranes by a five-step procedure to 

homogeneity as verified by MALDI-TOF and SDS-PAGE (Fig. 1A). Multiangle light scattering 

(MALS) shows that the enzyme exists as a trimer in solution (Fig. 1B) in agreement with the 

theoretical mass of 184.2 kDa without signal peptides and 24 c-type hemes. The enzyme as 

isolated did not oxidize hydroxylamine or hydrazine in the presence of 2.5 mM ferricyanide or 

20 μM horse heart ferricytochrome c as electron acceptors, but catalyzed the reduction of 

hydroxylamine in the presence of methyl viologen (MVred) as electron donor (Fig. 2A). The 

corresponding apparent values of kcat = 91.9 ± 3.4 s-1, Km = 6.6 ± 0.6 mM and kcat/Km = 1.4 x 

105 M-1 s-1 were obtained by fitting the data to the Michaelis-Menten equation, where kcat is 

defined as the maximum rate of electrons transferred from MVred per second and trimer. We 

note that NeHAO also performs this reaction but with a lower specificity constant of kcat/Km = 

3.6 x 104 M-1 s-1 [16].  

IhOCC did not react with hydrazine, nitrate, or sulfite in the presence of either reduced 

methyl or benzyl viologen, but exhibited a high nitrite reductase activity with benzyl viologen 

(BVred) as electron donor with an apparent kcat of 18.07 ± 0.8 s-1
, Km of 0.2 ± 0.04 mM and 

kcat/Km = 9.0 x 105 M-1 s-1 (Fig. 2B), a specificity constant 100 times higher than that for the 

related NeHAO for the same reaction [16]. The activities for both substrates were highest at pH 

7.0 (data not shown); at this pH, the specificity constant was ~6.4 times higher for nitrite than 

for hydroxylamine.  
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We did not detect formation of ammonia during the reaction of IhOCC with either nitrite 

or hydroxylamine as substrate by the indophenol method [17], as previously observed for 

NeHAO [16]. During nitrite reduction, no intermediate hydroxylamine [18] could be detected 

by spectrophotometric assay or capillary electrophoresis. Nitric oxide (NO) was detected during 

both nitrite and hydroxylamine reduction at a final concentration of 0.2% and on the order of 

parts per thousand, respectively. It is worth noting that NO reacts with benzyl viologen in vitro 

[19], which would act to reduce measured concentrations of intermediate NO. Formation of NO 

from hydroxylamine is presumably the result of a disproportionation reaction, as previously 

discussed for NeHAO [16, 20]. The uncatalyzed process is very slow in neutral solutions, and 

no measurable NO production occurred in the absence of IhOCC.  Thus, the observed NO 

production is catalyzed in vitro by IhOCC under anaerobic conditions and high temperatures. 

For this catalytic disproportionation, two broad mechanistic possibilities exist: either two 

molecules of hydroxylamine react at a single active site within the course of a single catalytic 

cycle, which we consider unlikely due to spatial constraints, or hydroxylamine reduction at one 

active site is coupled via electron transfer to oxidation at another active site within the trimer. 

The distance between hemes of adjacent protomers (12.8 Å between Fe centers) supports the 

idea that this electron transfer should be possible. 

The enzyme was stored in an anaerobic tent with 5% H2 and UV/Vis spectra were 

recorded under anoxic conditions. The spectrum of IhOCC gave under these conditions the 

characteristic signature of c-type cytochromes in the reduced Fe(II) state with absorption 

maxima at 420 nm (Soret or γ-band), 524 nm (β-band) and 553 nm (α-band) (Fig. 3A) [21]. No 

absorption maximum around 460 nm was observed, which suggested that no P460 catalytic heme 

is present in IhOCC, as confirmed by the crystal structure (see below). Addition of excess 

hydroxylamine (Fig. 3A) or NO (not shown) revealed partial shifts of the γ-band to 409 nm 

(Soret, oxidized) and broad features of lower intensities between 500 and 600 nm, due to 

binding of these compounds at the heme centers. Upon addition of excess nitrite a complete 
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shift of the γ-peak to 409 nm and a new absorption maximum at 355 nm were observed (Fig. 

3A). 

The EPR spectrum (X-band, perpendicular mode, 4.3 K) of IhOCC as isolated revealed 

predominately resonances typical of low-spin Fe(III) centers (Fig. 3B) [22].  In particular, 

resonances at g = ~3.6, 1.84 and 1.56 are detected, which are similar to those reported earlier 

by a multifrequency EPR study of NeHAO [23] and were assigned to a pair of weakly coupled 

low-spin Fe(III) hemes. A resonance at g = 6 is also present, which is typical of high spin Fe(III) 

and likely to arise from the putative active site heme center (heme 4). Addition of an excess of 

nitrite, hydroxylamine and nitric oxide resulted in a reduction of the intensity of the low-spin 

Fe(III) features. The g = 6 resonance also changed in intensity indicating a change of 

environment at the catalytic heme site.  

 

Overall structure of IhOCC 

Crystals of IhOCC diffracted to 1.7 Å and data were phased by multiwavelength anomalous 

dispersion (MAD) using intrinsic iron atoms. Structural refinement converged to Rwork and Rfree 

values of 16.5% and 19.9%, respectively, in a resolution range of 43.7-1.7 Å (Table 1). The 

refined model had 96% of the non-glycine and non-proline residues in the most-favored region 

of a Ramachandran plot [24, 25]. In the crystalline state IhOCC revealed a homotrimeric 

architecture (Fig. 4A,B) as see in solution, and as reported for NeHAO [9, 10] and KsHAO 

[11]. 

The protein is characterized by highly charged surface areas (Fig. 4C,D), with the 

bottom carrying mainly positive charges. The intra-trimeric contacts are mediated by a total of 

26 hydrogen bonds and 6 salt bridges; no covalent bonds are present. Comparison of the overall 

structures of IhOCC and NeHAO (4FAS [10]) reveals a root-mean-square deviation (r.m.s.d.) 

of 3.1 Å for 358 equivalent Cα positions, and an overall sequence identity of 23% (Fig. S1). The 
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sequence identity between IhOCC and KsHAO (kustc1061, 4N4J; [11]) is 21% and these 

structures superpose with an r.m.s.d. of 2.6 Å for 338 equivalent Cα positions. The first 28 

amino acids of IhOCC were not resolved, most likely due to N-terminal processing of the 

predicted signal sequence. A free cysteine (Cys179) was detected, which is very rare in c-

cytochromes except for the catalytic sites of octaheme tetrathionate reductases (OTR) [26] and 

ONR [27]. 

 

Heme arrangement and axial ligation   

A search for the classical Cys-x-x-Cys-His binding motif within the IhOCC amino acid 

sequence identified a total of eight putative c-type heme centers, which was confirmed by the 

crystal structure. The distances between adjacent heme iron atoms – ranging from 9.2 to 12.0 

Å - should allow for efficient electron transfer [28]. The heme centers were grouped into four 

different clusters (Fig. 5). In contrast to NeHAO and KsHAO, which both show overall bis-

histidine axial coordination at all hemes, in IhOCC hemes 1, 2, 5, and 8 have bis-histidinyl 

ligands, while the iron atoms of hemes 3 and 7 are His-Met coordinated, and the iron atom of 

heme 6 is coordinated by His-Lys. Heme 4, the putative active site, is axially coordinated by 

His-H2O (Fig. 6A-H and Table 2). 

In the diheme cluster I (Fig. 6A,B and Table 2), hemes 3 and 5 show a parallel 

arrangement. Heme 5 has axial ligands His247 and His334, and is linked by Cys243 and Cys246 

to the peptide backbone, with hydrophobic residues in close proximity to the porphyrin moiety 

(Fig. 6B). In heme 3, the iron is axially coordinated by His142 and Met71 (Fig. 6A and Table 

2). This His-Met coordination is absent in all known OCC and HAO homologues (Fig. S2) 

except in Ignicoccus islandicus. Again, heme 3 is embedded in a pronounced hydrophobic 

environment. 
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Diheme cluster II is the most conserved and shows strong similarities to the same cluster 

found in NeHAO and KsHAO. Heme 1 is covalently bonded by Cys51 and Cys54, and the Fe 

ligated by His55 and His124, with eight residues forming the hydrophobic pocket (Fig. 6C and 

Table 2). Heme 2 is held in place by Cys107, Cys110, His111 and His250, with four residues 

creating a hydrophobic environment (Fig. 6D and Table 2). 

The triheme cluster (Fig. 6E, F, G and Table 2) harbors the putative active site heme 4 

and hemes 6 and 7. Hemes 6 and 7 are surrounded as well by hydrophobic residues (Fig. 6F, G 

and Table 2). Interestingly, heme 6 is axially coordinated by Lys154 and His267, a coordination 

which is described here for the first time for a member of the MCC superfamily. This 

combination is conserved for OCCs from Archaea and anammox bacteria whereas in 

Desulfuromonas acetoxidans lysine is replaced by methionine (Fig. S2). Arg343, Pro354, 

His351 and His359 form a tight network of hydrogen bonds with several water molecules and 

the propionates from hemes 4 and 6, which acts to stabilize the porphyrin moieties (Fig. 7A). 

These interactions between hemes 4 and 6 are different in NeHAO where a proline (Pro202) is 

located near the corresponding guanidinium group of Arg343 and imidazole nitrogen of His359, 

which is inserted between the propionate residues of P460 and heme 6. Heme 7 shows a His-Met 

axial coordination with a distance of 2.4 Å from Met514 to the iron. A similar coordination is 

present for related members in the characterized group (Fig. S2). The single heme 8 is axially 

coordinated by His283 and His439 (Fig. 6H and Table 2). Five residues are forming the 

hydrophobic milieu of this heme.  

 

Active site 

Unlike NeHAO, which comprises only one channel, IhOCC contains a branched 

channel that connects heme 4 in each subunit with the surface of IhOCC (Fig. 7B). One exhibits 

a pronounced positive electrostatic surface potential, presumably to attract a negatively charged 
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substrate such as nitrite (Fig. 4C and 7B). The other one is negatively charged, which we 

annotate as an exit channel and where the final products are presumably released.  

 Unlike all other HAOs, IhOCC does not exhibit an optical absorption around 460 nm 

characteristic of a P460 heme center in the reduced Fe(II) state (Fig. 3A). P460 heme center 

contain a conserved Tyr that is replaced by phenylalanine in IhOCC (Phe522) (Figs. 6E and 

7A, Fig. S2). Typical intersubunit cross-links to the catalytic heme formed by phenylalanine 

were observed in NeHAO and KsHAO [9-11]. In these bacterial homologues, Tyr is proposed 

to increase the stability of an Fe(III)NO intermediate by a connection of its aromatic ring with 

the P460 porphyrin moiety and the abstraction of two protons and two electrons [29]. 

The iron atom of heme 4 is axially coordinated by His199, at a Fe-N distance of 2.3 Å 

and as an water oxygen interpreted, which is hydrogen bonded to OD1 of Asp271 and the iron 

each with a distance of 2.5 Å (Figs. 6E and 7A). Notably, the catalytically relevant residues 

histidine and tyrosine found in NrfA (His282 and Tyr217) [30], ONR (His361 and Tyr303) [5] 

and NeHAO (His268 and Tyr358) [9, 10], are replaced by valine (Val272) and phenylalanine 

(Phe345) suggesting that catalysis by IhOCC may proceed via a different mechanism than in 

these homologues. Exchange of active-site tyrosine to phenylalanine in NrfA from W. 

succinogenes led to a nearly complete loss of nitrite reductase activity [31] and replacement of 

the heme-coordinating lysine to histidine decreased the activity to 35% [32].  

In NrfA from W. succinogenes, protons needed for the reduction of nitrite to ammonia 

(Equation 2) are thought to be delivered by Arg114 and His277 leading to energetically feasible, 

low-barrier protonation reactions [33]. In IhOCC, the protons for the reaction are most likely 

delivered via the Grotthuss mechanism by solvent molecules [34], present in a funnel appearing 

from the top running through the center of the trimer (Fig. 4). The Protons appeared to be first 

transferred to Asp518. In such a scenario, the side chain of Asp518 would flip toward the active 

site and displace the protons to Asp271. The electrons for IhOCC could be provided by an 
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unknown interaction partner with heme 1 of diheme cluster II as entry point and from the 

adjacent subunit (Fig. 7B).  

One striking feature of the IhOCC structure is the hydrophobic environment of heme 4. 

(Fig. 6E and Table 2). Such a hydrophobic environment would strongly disfavor that the 

product of the reduction of nitrite or hydroxylamine is the positively charged ammonium ion 

NH4
+, but more likely the neutral NH3. Here, we demonstrate the formation of the gaseous 

compound NO from both substrates in low amounts. The generation of other neutral gases from 

nitrite, such as N2 or N2O, is rather unlikely but cannot be excluded. In the case of 

hydroxylamine as substrate, the gene product Igni_0960, annotated as a hydroxylamine 

reductase based on sequence identity, might show a higher affinity to hydroxylamine and is 

therefore the preferred enzyme for this specific reaction. Further investigations will be needed 

to elucidate this point. 

 

Ca2+ and N-acetylglucosamine (NAG)  

Each protomer within the trimer shows the presence of a tightly bound Ca2+ ion in the proximity 

of heme 4 (Figs. 4A and 5, Fig. S3), which is not present in the structures of NeHAO and 

KsHAO. The Ca2+-Fe has a distance of 20.9 Å, which is almost double compared to other NrfAs 

and ONRs [27, 30, 35, 36], where in the latter a second Ca2+ ion is located near heme 3 and 4. 

The Ca2+ ion in IhOCC is bound with a coordination number of 7 and is located in the C-

terminal part of the enzyme. This type of coordination is formed by four oxygens of the carboxy 

groups from Asp490, Glu491 and Glu494, two peptide carbonyl oxygens of His479 and Thr487, 

and one water molecule (HOH59) (Fig. S3). In NrfAs, the Ca2+ ion is octahedrally coordinated 

by the carboxy group of a glutamate in a bidentate manner and by a glutamine, two carbonyl 

oxygens of a tyrosine and lysine residue, and two water molecules. All calcium-coordinating 

residues are strictly conserved for NrfAs. In OCCs, only Asp490, Glu491 and Glu494 are 

conserved, whereas the latter also can be found in CsHAO and NeHAO (Fig. S2).  
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A NAG molecule, a monosaccharide derivative of glucose, could be modeled into the 

electron density (Figs. 4A, 5 and 6E, Fig. S4), interacting with the amine group of Asp172. An 

unidentified density, emerging from the NAG might be attributed to a lipid moiety. One 

possibility would be monoglycosyl-archaeol, which is the main lipid in the outer cellular 

membrane of I. hospitalis and could have been co-purified from the membranes [37]. The 

presence of this lipid at this specific site points towards a potential entry site for electrons via 

the membrane, delivered by respiratory chain complexes (Fig. 7B) [14].  

 

Evolutionary analysis and conservation of IhOCC  

Our molecular, functional and structural analyses in this present study showed that 

IhOCC belongs to clade II of the OCC family suggesting an evolutionary relationship and a 

link between HAO, ONR and NrfA. Thus, IhOCC represents an intermediate not only in a 

phylogenetic sense but also in terms of structural and functional characteristics, with a high 

structural similarity to the HAO family but reductive properties more similar to ONR. 

In addition to the conservation of the functional residues and secondary structure, there is a high 

sequence identity of 45% between the archaeal IhOCC and bacterial KsOCC (kuste2435) from 

K. stuttgartiensis (Fig. S2). Similar to IhOCC, the cross-linked tyrosine in the C-terminus is 

absent, which is thought to facilitate reductive catalysis [38]. Beside kuste2435 nine different 

paralogues are encoded in the K. stuttgartiensis genome, suggesting an important physiological 

role for these proteins in the anammox metabolism. 

This is not the only similarity between Ignicoccus species and anammox bacteria. 

Planctomycetes comprises proteins as a major outer membrane constituen [39], a feature that is 

observed in the outer cell membrane of Ignicoccus, too. The outer cell wall is densely packed 

with membrane-bound and membrane-embedded proteins. Planctomycetes also show 

compartmentalized cell architecture similar to Ignicoccus [40]. In Planctomycetes, intracellular 

membranes divide the cytoplasm into different compartments, while in Ignicoccus the 
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intermembrane compartment and the cytoplasm represent two different compartments, with the 

cytoplasm of the associated Nanoarchaeum representing a third compartment.  

 

Can IhOCC work also as a sulfite reducer? 

Our structural and activity data indicate that NO2
- is the preferred substrate of IhOCC. 

Hydroxylamine is also a substrate but is converted with a significantly lower affinity. MCC 

enzymes, such as pentaheme NrfAs, not only transform NO2
- to NH4

+, which is the key reaction 

in respiratory nitrite ammonification, but also converts NO, NH2OH, H2O2, and SO3
2-, although 

with lower activity [31]. Additionally, S. deleyianum assembles NrfA at high levels when grown 

on elemental sulfur, indicating a physiological role for this protein´s reaction [41]. Although I. 

hospitalis has been reported to be a strict sulfur-reducing organism, the membrane-associated 

octaheme enzyme IhOCC did not convert sulfur compounds, such as sulfite and sulfide, under 

our experimental conditions [42]. The possibility remains that IhOOC1 could also reduce sulfur 

compounds in vivo, i.e., at high pressure and temperature above 80 ˚C.  

 

Detoxification or utilization of nitrite: a putative role of IhOCC in I. hospitalis 

In context of its nitrite reductase activity, possible roles of IhOCC are detoxification of the 

intermediate nitrite or for respiratory energy conservation. In methanotrophic bacteria a crucial 

role for HAO-like proteins for nitrogen oxide metabolism and detoxification was suggested, 

which could either oxidize hydroxylamine to nitrite or NO or alternatively reduce nitrite to NO 

[43, 44]. Moreover, a putative role of IhOCC in the respiratory chain of I. hospitalis will become 

important under growth conditions where no sulfur is available. A pathway of respiratory nitrite 

reduction during the anaerobic growth of I. hospitalis when nitrate or nitrite is available as an 

electron acceptor is plausible and supported by our structure function study. The presence of 

genes encoding for proteins/enzymes involved in nitrogen energy conservation is a strong 



14 
 

argument taken into account that I. hospitalis comprises the smallest genome of all independent 

organisms discovered so far, and assuming that all genes in the genome being essential [45]. 

.  

Experimental procedures 

Cultivation of I. hospitalis 

Type strain I. hospitalis KIN4/IT (DSM 18386) was obtained from our culture collection at the 

Institute of Microbiology and Archaeal Center, University of Regensburg. Cells were grown 

routinely in 1/2 SME-Ignicoccus medium at 90 °C as described previously [13, 42] with H2-

CO2 (80/20 [vol/vol], 250 kPa) as gas phase, thereby using hydrogen as an electron donor and 

elemental sulfur as an electron acceptor. Batch cultures were grown in 300-liter enamel-

protected fermenters at 90 °C, pH 5.5 to 6.0. To reach final cell densities of ~108 cells ml−1, a 

flow rate of 60 liters of the gas mixture H2/N2/CO2 (15:65:20 [vol/vol/vol]) min−1 was applied. 

The cells were harvested by centrifugation (Padberg, Germany), shock-frozen in liquid 

nitrogen, and stored at -80 °C until use. 

 

Purification of IhOCC from I. hospitalis 

All protein concentrations were determined with a BCA Protein Assay Kit (Thermo Scientific, 

Germany) and all purification steps were performed aerobically. 20 g cells were thawed, 

suspended in hypotonic buffer A (5 mM KH2PO4, 1 mM EDTA-Na2, 1.4 mM MgSO4, 1 mM 

PMSF, pH 4.4) and disrupted by a glass potter homogenizer. Remaining cells and cell debris 

were removed by centrifugation (5,000 x g at 4 °C for 20 min), followed by ultracentrifugation 

(Beckman Optima XPN-100 45 Ti rotor, 138,000 x g, 2 h, 4 °C). The pellet was suspended in 

25 mM MOPS/NaOH pH 7.2, 50 mM NaCl and 3 mM MgCl2 (buffer B). The membranes were 

solubilized in dodecyl maltoside (DDM) (Glycon, Germany) with a final concentration of 1.0% 

for 1 h at room temperature by applying the ratio 4 mg detergent to 1 mg protein. Insoluble 
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components were removed by ultracentrifugation (Beckman Optima XPN-100, 45 Ti rotor, 

138,000 x g, 30 min, 4 °C) and the supernatant was applied to a chromatographic step using a 

HiTrap Q FF column (GE Healthcare, USA). The flow through was collected and loaded on a 

HiTrap SP FF column (GE Healthcare, USA). The flow through was concentrated by 

ultrafiltration (Amicon Ultra-4, 100 kDa cut-off; Millipore, Germany), adjusted to a protein 

concentration of 10 mg/ml and loaded onto a Superdex 200 pg HiLoad 16/600 gel filtration 

column (GE Healthcare, USA) equilibrated with buffer B supplemented with 0.05% DDM. 

Proteins eluted in four peaks with the majority of the heme-containing proteins eluting within 

the second and third peaks as determinated by UV/Vis spectroscopy. These fractions were 

pooled, concentrated to approximately 10 mg/ml (Amicon Ultra-4, 100 kDa cut-off; Millipore, 

Germany) and dialyzed against a buffer containing 10 mM K-phosphate pH 7.0 and 0.05% 

DDM (buffer C). The protein solution was applied to a Hydroxyapatite type II 0.2 μm column 

(Bio-Rad, Germany) and eluted in a stepwise K-phosphate gradient (20 mM, 70 mM, 140 mM 

and 1 M) at 70 mM K-phosphate pH 7.0. The combined fractions were concentrated by 

ultrafiltration, adjusted to a protein concentration of 10 mg/ml and loaded onto a Superdex 200 

10/300 GL gel filtration column (GE Healthcare, USA) equilibrated with 20 mM Tris-HCl pH 

7.0 (buffer D). Eluted protein was concentrated to 6 mg/ml and stored at 4 °C for further use.  

 

Enzyme assays and end product analysis 

Enzyme activities were routinely determined at 80 °C under strictly anaerobic conditions. 

Protein was quantified with the Bio-Rad protein assay using ovalbumin as standard. 1.5 ml 

anoxic SUPRASIL UV cuvettes from Hellma containing 1.0 ml assay mixture were sealed by 

boiled and autoclaved butyl rubber stoppers from Deutsch & Naumann. Components were 

added anoxically by Hamilton syringes (Bonaduz, Switzerland). The standard mixture 

contained 50 mM K-phosphate pH 7.0, 0.25 mM sodium dithionite and 1.0 mM methyl 
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viologen or benzyl viologen. The reaction was started with addition of 7.5 μM - 10 mM 

hydroxylamine or 2.5 μM - 2 mM nitrite, respectively, and 1.25 μg enzyme after a 1-min prior 

incubation at 80 °C. The reaction was monitored spectrophotometrically at 578 nm (ϵ = 8.6 

mM−1 cm−1) for benzyl viologen and 600 nm (ϵ = 13.7 mM−1 cm−1) for methyl viologen. Primary 

plots of initial rate against substrate concentration fit to the Michealis-Menten equation were 

created and analyzed by non-linear regression using SigmaPlot (version 12.5; Systat Software 

Inc).  

Nitric oxide was quantified by a chemiluminescence gas analyzer (CLD 790 SR, 

ECOPHYSICS, Switzerland, limit of detection (LOD): LODNO ≈ 10 ppt). The measurement 

frequency was 8 Hz allowing for high time resolution. The headspace of the sample vials was 

flushed with nitrogen (1.5 · 10-5 m3 s-1), further diluted with nitrogen (1.4 · 10-5 m3 s-1) outside 

of the vial and supplied to the analyzer.  

 

Spectroscopy 

The enzyme for UV/Vis measurements was stored under anoxic conditions for several days and 

incubated with either 20 mM nitrite or hydroxylamine up to 15 hours. UV/Vis spectra (300-750 

nm) were recorded with a Cary 50 spectrometer (Varian, Germany) in quartz cells (5.0 mm path 

length) at 22 °C. 

Samples for EPR measurements (as isolated and 2 mM substrate each) were transferred 

to calibrated 3.0 mm quartz tubes and frozen in liquid nitrogen. Continuous-wave EPR spectra 

were recorded at 9.4 GHz (X-band) on a Bruker EMX spectrometer with a Super-high-Q 

rectangular cavity and an Oxford ESR-900 liquid helium cryostat. The operating conditions 

were: 4.3 K, 4.0 G modulation amplitude at 100 kHz, and microwave power of 0.3 mW. Spectra 

were recorded using 20 scans and plotted using OriginPro (version 8.5.1; OriginLab). 
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Light scattering 

Oligomerisation of IhOCC was analyzed by MALS (multi angle light scattering) using Viscotek 

TDA 305 from Malvern Instruments, UK. Approximately 100 l of the protein sample with a 

concentration of 2 mg ml-1 was injected into equilibrated and calibrated Viscotek TDA 305 

through an ÄKTA system (GE Healthcare, USA). The molecular weight of the protein was 

determined using the Conjugate method from Malvern Instruments. 

 

Crystallization and X-ray data collection 

Initial crystals were obtained at 18 °C with the hanging-drop method using the Hampton PEGRx 

HT sparse-matrix screening setup. Further optimization led to a drop content of 1l enzyme 

solution (6 mg ml-1) and 1 l reservoir solution (100 mM Tris-HCl pH 8.0, 100 mM sodium 

malonate pH 8.0 and 28% PEG 1000). Crystals diffracted to 7 Å and further optimization was 

performed in meso. The mesophase was prepared by mixing monoolein as host lipid and protein 

using the two syringe method as previously described [46]. The meso phase with protein was 

prepared as a 3/2 by volume mix of lipid and protein solution and dispensed in a 96-well 

crystallization plate using a mosquito LCP from TTP Labtech, UK. Crystallization trials were 

performed with 50 nl protein/lipid dispersion and 1 l precipitant solution at 20 °C.  

Crystals in meso were grown in the space group R 3 2 :H with unit cell parameters of 

a=136.44 Å, b=136.44 Å, c=214.9 Å, α=β=90° and γ=120° with one subunit in the asymmetric 

unit (VM = 3.22 Å3Da-1, solvent content 61.8%). In meso crystals were tiny and diffracted to a 

resolution of 1.1 Å. Data from several crystals were merged and scaled to get sufficient 

anomalous signal and completeness. Merged data with a final resolution of 1.7 Å were used for 

structure solution. The data were collected at 100 K at the beamline PXI of the Swiss Light 

Source (SLS) at the Paul Scherrer Institute in Villigen, Switzerland and processed using the 

XDS program suite (Table 1) [47]. 
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Phase determination and refinement 

The irons of hemes c were found using SHELXD [48]. Model building was performed by the 

program COOT [49]. Refinement was brought to convergence using REFMAC and PHENIX 

[50, 51]. The refinement statistics are given in Table S1. The quality of the model was checked 

with PROCHECK [24] and MolProbity [25]. Figures were generated with PYMOL (The 

PyMOL Molecular Graphics System, Schrödinger, LLC.). 
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Fig. 1. Purification to homogeneity and multiangle light scattering (MALS) of IhOCC. (A) 

Proteins from each purification step was analyzed on 12% SDS-PAGE. (1) molecular weight 

markers, (2) membrane fraction, (3) solubilisate, (4) flow-through Q-Sepharose, (5) flow-

through SP-Sepharose, (6) after Superdex 200, and (7) after hydroxyapatite. The arrows 
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indicate the monomeric and trimeric state of IhOCC. The presence of the trimeric state in the 

SDS-PAGE arises from the hyperthermophilic properties of the protein. (B) Chromatogram 

from a size exclusion experiment of IhOCC. Molecular weight calculated from MALS is 

presented in black, UV absorbance in purple, refractive index in red and RALS (right angle 

light scattering) in green. 

 

  

Fig. 2. Reactivity of IhOCC towards hydroxylamine (A) and nitrite (B).  Enzyme activities 

were routinely determined at 80 °C under strictly anaerobic conditions in 50 mM K-phosphate 

pH 7.0. The solid lines through the data points are the fits to the Michaelis-Menten equation 
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using non-linear regression; insets show the dependence of hydroxylamine- and nitrite-reducing 

activity on the concentration 0.125 - 2.5 μg ml-1 of IhOCC. 

 

 

Fig. 3. UV/Vis and EPR spectra of IhOCC. (A) As purified (black) and with addition of either 20 

mM nitrite (red) or hydroxylamine (green); inset shows enlargement of the (reduced minus 

oxidized) difference spectra around the α and β peaks. UV/Vis spectra were recorded in 50 mM 

K-phosphate pH 7.0 at 22 °C under anoxic conditions. (B) Enzyme as isolated in 50 mM K-

phosphate pH 7.0 (black), and after addition of either 2 mM nitrite (red) or hydroxylamine 

(green); continuous-wave EPR spectra, perpendicular mode, were recorded at 9.4 GHz (X-
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band) microwave frequency, 100 kHz modulation frequency, 4.0 G modulation amplitude, and 

0.3 mW microwave power.  

 

 

Fig. 4. Three dimensional structure of IhOCC from I. hospitalis. Each subunit is shown in a 

different colour (red, blue, gray). (A) represents the top and (B) the bottom view of IhOCC. 

Hemes represented in stick mode are coloured orange. The Ca2+ ion and N-acetylglucosamine 

(NAG) are shown as spheres in green and yellow, respectively. (C) and (D) are electrostatic 

potential surface maps of the corresponding top view and bottom view calculated by the 

program APBS at kT/e levels -5 and +5, respectively [52]. The arrows indicate the two channels 

presented in each protomer. 
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Fig. 5. Stereoview showing a single subunit of IhOCC. The diheme heme clusters I & II (cyan 

and black), the triple heme (pink) cluster and the single heme cluster (blue) are shown as stick 

models. The Ca2+ ion and NAG are represented as spheres in green and yellow, respectively. 
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Fig. 6. Heme environment from a single subunit. The hydrophobic residues surrounding the 

hemes are shown in light red. The hemes and NAG are represented as stick model. The diheme 

heme cluster I includes heme 3 (A) and heme 5 (B) which are represented in cyan. The diheme 

heme cluster II includes heme 1 (C) and heme 2 (D) are illustrated in black. The triple heme 

cluster includes heme 4 (E), heme 6 (F) and heme 7 (G) are represented in pink. The single 

heme 8 (H) is shown in blue. 
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Fig. 7. Active site and proposed electron transfer pathway. (A) The active site of IhOCC is 

shown in light red and superposition of NeHAO is in light gray. Water molecules and iron 

atoms are represented in red and brown spheres, respectively. (B) Hemes, colored in light red 

and represented as stick models, belong to a single subunit while the grays colored hemes are 

located in the adjacent subunit and presumed interaction partner. The solid black line indicates 

the proposed major electron flow and the dashed black lines the electron flow through a 

proposed discriminator pathway [9]. The blue arrow indicates the proton transfer from the 

central funnel and the green arrows indicate the putative branched channel, respectively. The 

channels are colored with respect to their electrostatic surface potential. NAG is shown as stick 

model. 
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Table 1. Data collection and refinement statistics. 

 Native Fe peak 1.7 Å 

Data collection 

Wavelength (Å) 

 

1.0 

 

1.7 

Space group R 3 2 :H R 3 2 :H 

Cell dimensions  

a, b, c (Å) 

α β  () 

 

136.44, 136.44, 214.90 

90, 90, 120 

 

136.23, 136.23, 214.30 

90, 90, 120 

Resolution (Å) 43.73-1.70 (1.758-1.697)* 49.30-2.86 

Total reflections 

Unique reflections 

168637 (15991) 

84428 (8058) 

174864 

18012 

Rmerged 0.035 (0.39) 0.151 

I / σ(I) 10.99 (1.62) 14.80 

Completeness (%) 99.54 (95.97) 99.90 

Redundancy 2.0 (2.0) 9.7 

 

Refinement statistics 

Resolution (Å) 

 

 

43.73-1.70 (1.758-1.697)* 

 

Rwork / Rfree (%) 0.1645/0.1994  

Wilson B-factor 21.10  

Av. B-factor (Å2) 30.30  

No. Atoms 

Protein 

Ligands  

Water 

4824 

4054 

359  

411 

 

Bond-lengths deviation (Å) 0.010  

Bond-angles deviation () 1.52  

PDB code 4QO5  

*Values in parentheses are for highest-resolution shell. 
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Table 2. Heme ligands, binding cysteines and hydrophobic residues surrounding the 

corresponding hemes. 

Heme 

cluster 

Heme 

number 

Heme axial 

ligands 

Cys 

involved in 

thioether 

bonds 

Hydrophobic residues around 

heme 

Double 

heme 

cluster I 

Heme 3 His142 & 

Met71 

Cys138 & 

Cys141 

Pro76, Ala79, Val89, Ile96, 

Leu100, Val105, Leu113 

Heme 5 His 247 & 

His334 

Cys243 & 

Cys246 

Val146, Ile254, Ala257, Ala313 

Double 

heme 

cluster II 

Heme 1 His55 &  

His124 

Cys51 & 

Cys54 

Val58, Phe125, Phe127, Ile 129, 

Ile216, Val218, Leu220, Val221 

Heme 2 His111 & 

His250 

Cys107 & 

Cys110 

Ile62, Pro131, Val133, Phe252 

Triple 

heme 

cluster  

Heme 4 His199 & 

HOH75 

Cys198 & 

Cys195 

Leu161, Leu170, Val171, 

Val272, Phe345, Leu347, 

Pro394, Phe489, Leu502 

Heme 6 His267& 

Lys154 

Cys263 & 

Cys266 

Val231, Val336, Leu340 

Heme 7 His316 & 

Met514 

Cys312 & 

Cys315 

Leu344, Ala274 

Single 

heme 

Heme 8 His283 & 

His439 

Cys435 & 

Cys438  

Phe307, Pro303, Pro310, Ile434, 

Ala309 

  


