

LJMU Research Online

Davies, MJ, Leach, AG and Riley, F

An Investigation into Drug Partitioning Behaviour in Simulated Pulmonary Surfactant Monolayers with Associated Molecular Modelling

http://researchonline.ljmu.ac.uk/id/eprint/7910/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Davies, MJ, Leach, AG and Riley, F (2018) An Investigation into Drug Partitioning Behaviour in Simulated Pulmonary Surfactant Monolayers with Associated Molecular Modelling. Surface and Interface Analysis. ISSN 1096-9918

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

1	An Investigation into Drug Partitioning Behaviour in Simulated Pulmonary Surfactant Monolayers
2	with Associated Molecular Modelling
3	
4	Michael J. Davies ^{a, *} , Andrew G. Leach ^a & Fatima Riley ^a
5	^a The School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
6	

7 Abstract

8 Drug delivery to the body via the inhaled route is dependent upon patient status, device use and respirable 9 formulation characteristics. Further to inhalation, drug-containing particles interact and dissolve within 10 pulmonary fluid leading to the desired pharmacological response. Pulmonary surfactant stabilises the alveolar 11 air-liquid interface and permits optimal respiratory mechanics. This material represents the initial contacting 12 surface for all inhaled matter. On dissolution, the fate of a drug substance can include receptor activation, 13 membrane partitioning and cellular penetration. Here, we consider the partitioning behaviour of salbutamol 14 when located in proximity to a simulated pulmonary surfactant monolayer at pH 7. The administration of 15 salbutamol to the underside of the surfactant film resulted in an expanded character for the two-dimensional 16 ensemble and a decrease in the compressibility term. The rate of drug partitioning was greater when the 17 monolayer was in the expanded state (i.e. inhalation end-point), which was ascribed to more accessible areas 18 for molecular insertion. Quantum mechanics protocols, executed via Gaussian 09, indicated that constructive 19 interactions between salbutamol and integral components of the model surfactant film took the form of 20 electrostatic and hydrophobic associations. The favourable interactions are thought to promote drug insertion 21 into the monolayer structure leading to the observed expanded character. The data presented herein confirm 22 that drug partitioning into pulmonary surfactant monolayers is a likely prospect further to the inhalation of 23 respirable formulations. As such, this process holds potential to reduce drug-receptor activation and / or 24 increase the residence time of drug within the pulmonary space.

- 25
- 26
- 27
- 28
- 29 Key words
- 30
- Pulmonary surfactant, Langmuir monolayers, inhaled drug delivery, salbutamol sulphate, molecular
 modelling, Gaussian 09.
- 33
- 34 Corresponding Author Details:
- 35
- 36 * To whom correspondence should be addressed:
- 37 Tel. (+44) 0151 231 2024
- 38 Email: <u>m.davies1@ljmu.ac.uk</u>
- 39 Fax. (+44) 0151 231 2170

40 **1. Introduction**

41

The respiratory system can be principally divided into two regions, namely the upper and lower 42 43 airways. The former marks the point of entry for atmospheric gases, respirable formulations and 44 environmental toxins, whilst the latter is the primary site for gaseous exchange and holds the potential 45 to be exploited for drug (i.e. insulin and analgesic) delivery to the systemic circulation [1]. Drug 46 deposition within the respiratory tract as a whole is dependent on a number of factors including for 47 instance inhaler technique, patient co-morbidities, device structure and function plus formulation 48 characteristics (i.e. drug particle size, shape, density, surface energetics and external chemistries) [2]. 49 Typically, the dose of medicine physically delivered to the lung on device activation is within the region 50 of 20% of that emitted at source [3]. At the early stage of the drug delivery process, the aerodynamic 51 particle size of the solid material heavily influences deposition patterns. For example, those particles 52 of diameter 5µm or less hold a good chance of deep lung deposition with drug particles of less than 53 3µm diameter able to reach the alveolar space [4]. Following delivery to the deep lung and related 54 interaction with the respective internal surfaces, individual drug-containing particles and solubilised 55 drug molecules must overcome a number of barriers (e.g. pulmonary surfactant and the lung epithelial layer) and processes (e.g. mucociliary clearance and partitioning) prior to local or systemic activity [5]. 56 57 A robust understanding of the fate of inhaled therapies, and of particular relevance to the work 58 presented herein drug partitioning within pulmonary surfactant monolayers, can inform the drug 59 design process and consequently lead to improved respirable formulations.

60 Pulmonary surfactant is central to effective respiratory mechanics. This endogenous material bathes 61 the alveolar air-liquid interface and preserves airway patency by reducing the work of breathing [6]. 62 In addition, the substance protects the lung from invading microorganisms, environmental toxins and 63 particles inhaled from the atmosphere by promoting the process of mucociliary clearance [7]. The 64 lipid element of pulmonary surfactant accounts for 90% of the blend and consists of several species 65 such as phosphatidylcholines (PC), unsaturated phosphatidylglycerols (POPG) along with cholesterol, 66 fatty acids and triglycerides plus palmitic acid (PA). Dipalmitoylphosphatidylcholine (DPPC) is the most abundant phospholipid within pulmonary surfactant, ranging from between 40% - 80% by weight [8]. 67 68 This particular species packs tightly at the interface and reduces surface tension to near zero values 69 from the maximum surface pressure of 70mN/m [8]. Surfactant specific proteins (SP) account for the remaining 10% of the mixture and include SP-A, SP-B, SP-C and SP-D; all differ in molecular weight, 70 71 size and function [7].

73 Detailed discussion regarding the chemistries of key components of model pulmonary surfactant (i.e. 74 DPPC, POPG and PA) [9] has been provided elsewhere [10], hence consideration will be limited here. 75 In brief, the DPPC molecule exists as a zwitterion at physiological pH [11] and includes two saturated 76 acyl chains which assemble through hydrophobic interactions into gel-like condensed phases [12]. The 77 quaternary ammonium group that holds a permanent charge can act as a non-classical hydrogen bond 78 donor. In addition, a hydrogen bond acceptor is present within the molecule as a result of the 79 negatively charged phosphate group; unlike the positive charge, the negative charge is pH dependant. 80 Post compression, DPPC is unable to reform the monolayer rapidly as high surface pressures promote 81 the solid state. Therefore, additional lipid species are required to improve and facilitate material 82 respread during inspiratory phases [8] Indeed, this particular point has been highlighted by 83 Veldhuizen and co-workers who demonstrated that DPPC:PG mixtures increased adsorption activity 84 compared to single component mixtures alone [13]. In relation to this, it is widely acknowledged that 85 surfactant specific proteins are central in promoting material respread, adsorption and stabilisation 86 of the surface film during the breathing process [14]. The 1-palmitoyl-2-oleyl-phosphatidylglycerol 87 (POPG) molecule is an unsaturated anionic phospholipid that increases the fluidity of a two-88 dimensional surfactant film and enhances adsorption at the air-liquid interface post compression. This 89 fluidising agent has a similar chemical structure to DPPC, however the quaternary ammonium group 90 is replaced with two hydroxyl groups and bears one negative charge per molecule in the form of a 91 phosphate group [10]. Palmitic acid is composed of a 16-carbon acyl chain that makes up the fatty 92 acid component of some phospholipids and improves the surface properties of the surfactant, 93 especially DPPC. This particular molecule is a long chain saturated fatty acid with a terminal carboxylic 94 acid group. The species enhances the rigidity of a pulmonary surfactant monolayer at low surface 95 tensions and facilitates respreading; thus supporting its inclusion within model pulmonary surfactant 96 formulations considered in this work [9].

97 The application of Langmuir monolayer technology to study pulmonary surfactant relies upon the 98 careful arrangement of amphiphilic molecules across the surface of an aqueous subphase such that 99 the hydrocarbon chain components direct themselves towards the gaseous phase (i.e. air) and related 100 polar functionalities penetrate into the liquid phase (i.e. ultrapure water). Once established, scope 101 exists to apply lateral forces to the surfactant film either in isolation (i.e. Langmuir isotherm) or in 102 rapid succession (i.e. Langmuir isocycle) to probe structure-function activity. Interestingly, 103 opportunity also presents to hold the surfactant molecules in a fixed position at a particular target 104 pressure and observe the impact of molecular interactions on material dynamics over time.

Such Langmuir surface pressure – time plots, leading to penetration pressure – time data series, can be readily applied to better understand the interaction between drug molecules dissolved within the supporting subphase and the two-dimensional ensemble under investigation (i.e. to assist in the determination of drug partitioning behaviour within a simulated pulmonary space).

110 Drug partitioning is the distribution of therapeutic molecules between two immiscible phases, where 111 an aqueous solution is usually present [15]. The ability to achieve certain concentrations in different 112 phases underpins diffusion of molecules which is fundamental in the process of drug delivery to the 113 body and in particular drug absorption leading to a therapeutic response. Clearly, the degree to which 114 drug partitioning occurs is dependent on the properties of the surrounding phases and respective 115 chemical components. Most drug molecules may be ionised in solution resulting in either anionic, 116 cationic, zwitterionic or neutral forms; the extent of which depends on the acidity or basicity of the 117 drug and relative pH of the solution. Naturally, the ionisation state of a therapeutic molecule can 118 significantly impinge upon the partition index (i.e. in terms of lipid solubility within a surfactant film 119 moving from solvent water). Additional factors that may influence drug partitioning include the size, 120 shape and concentration of the drug molecule itself [16]. To date, relatively few studies have 121 considered drug (in the present case salbutamol sulphate) penetration into simulated pulmonary 122 surfactant monolayers and rationalised the resultant biological outcomes. This fact may be ascribed 123 to the inherent complexity of the systems involved [15]. However, applied research in this field is 124 possible with evidence emerging that drug partitioning within such a space can occur via unassisted 125 thermodynamic mechanisms. For example, in 1998 Krill and colleagues highlighted that initial 126 penetration and subsequent partitioning of a drug into a two-dimensional lipid film can be either 127 enthalpically or entropically driven, or indeed both [17].

128 Salbutamol sulphate is widely prescribed within the United Kingdom for the management of asthma 129 and chronic obstructive pulmonary disease (COPD) [18]. This therapeutic agent is a short acting β_2 -130 adrenergic receptor agonist that initiates relaxation of bronchial smooth muscle post administration 131 [3]. The onset of action following inhalation is typically 5 minutes and the therapeutic effect normally 132 remains for between 3 and 5 hours [18]. The recommended daily inhaled dose of salbutamol sulphate is usually 100mcg – 200mcg up to four times a day, as required [18]. The high selectivity for β_{2} -133 134 adrenoceptors may be ascribed to the N-t-butyl group within the molecule, as detailed in Figure 1 135 [19].

137

Figure 1. *The molecular structure of salbutamol.*

139 Salbutamol presents as a racemic mixture, where the R-isomer is pharmacologically active and holds 140 high affinity for β_2 -adrenoceptors as compared to the S-isomer [11]. The chemical stability of 141 salbutamol sulphate can be affected by pH, elevated temperatures and buffer solutions. As the 142 ionisation state of salbutamol varies with pH, the molecule can exist in either a zwitterionic or cationic 143 form having the two pKa values of 9.3 (i.e. amino) or 10.3 (i.e. phenolic), respectively [11, 20]. 144 Protonation of the nitrogen atom within the salbutamol structure can promote ionic bond formation 145 with negatively charged functionalities of neighbouring molecules (i.e. phosphate groupings available 146 within nearby DPPC and POPG surfactant species). Furthermore, hydrogen bonds may also form with 147 the phenolic groups in salbutamol.

148 Surface electrostatic potentials relating to therapeutic drug molecules of interest (i.e. salbutamol) and 149 the polar regions of amphiphilic molecules located at the alveolar air-liquid interface (i.e. DPPC, POPG 150 and PA) may be determined via the execution of quantum mechanics protocols. Indeed, such calculations have been successfully applied in recent studies conducted by Clark and co-workers 151 during 2007 [21] plus Davies and colleagues in 2017 [10]. The understanding gained can further our 152 appreciation of how interacting moieties arrange themselves when in close proximity to each other 153 154 and how such arrangement can dictate drug impact on system function and activity within the body. 155 Density functional theory can provide electrostatics of sufficient accuracy to explain drug-surface 156 interactions [22]. Accordingly, this approach will be applied to rationalise information obtained from 157 Langmuir monolayer studies such that deviations in isotherms / isocycles from the baseline can be mechanistically explained. 158

This study aims to investigate the partitioning behaviour of our model therapeutic agent salbutamol sulphate when injected to the underside of simulated pulmonary surfactant monolayers at pH 7. Associated molecular modelling will be conducted to rationalise key interactions at the molecular level. The results obtained will be related to the fate of drug entities on delivery to the respiratory tract.

165 166

2. Materials and Methods

167 2.1 Materials

168

169 Salbutamol sulphate was purchased from BUFA Chemicals, Germany (Charge: 13K26-B07-296570. Art. Nr. 13010). The surfactants DPPC (BN: 160PC-319) and POPG (BN: 160-181PG-137) were obtained 170 171 from Avanti Polar Lipids, USA, whilst PA was acquired from Sigma-Aldrich, UK (BN: 087K1877). The 172 materials were of analytical grade and used as supplied. Chloroform (CHCl₃) was also of analytical 173 grade (≥ 99.9%) and purchased from Fischer Scientific, UK (BN: 1693191). This solution was employed 174 to dissolve the surface active material to form the Langmuir trough spreading solution and for all 175 cleaning procedures. Ultrapure water (Purite, UK), of resistivity 18.MΩcm, was used both during 176 cleaning procedures and as the aqueous subphase during all Langmuir monolayer work.

177

178 2.2 Method

- 179
- 2.2.1 Langmuir Monolayers
- 181 182

180

183 Simulated pulmonary surfactant monolayers were generated using a Langmuir trough (Model 102M, 184 Nima Technology, UK). Surfactant-free Kimtech tissues (Kimtech Science, Kimberley-Clark 185 Professional, 75512, UK) were soaked in chloroform and used to clean all the glassware and contacting 186 surfaces. Trough cleanliness was confirmed by application of surface pressure test runs, where a value 187 of 0.4mN/m (or less) at full barrier compression confirmed suitability. A chloroform-based spreading 188 solution composed of DPPC, POPG and PA in the ratio 69:20:11 was produced at a concentration of 189 1mg/ml [9]. Subsequently, a volume of $15\mu l$ of the spreading solution was applied to the surface of 190 the aqueous subphase by drop-wise addition and a period of 10 minutes allowed to enable monolayer 191 settling. The Langmuir trough barriers were set to move to the centre of the trough at a rate of 192 25cm²/min in the case of isotherm plots. With regard to Langmuir isocycle data, the barrier system 193 was programmed to operate at 100cm²/min. Surface pressure vs percentage trough area readings 194 under ambient conditions (i.e. $20^{\circ}C \pm 1^{\circ}C$) were collected using a Wilhelmy plate at the centre of the 195 compartment.

- 196
- 197
- 198

199 To examine the rate of drug partitioning with respect to time, the target pressures of 10mN/m (i.e. 200 inhalation end-point) and 50mN/m (i.e. exhalation end-point) were established and left to stand for 201 one hour. Here, the first 5 minutes were used to condition the monolayer and salbutamol sulphate 202 was then injected underneath the monolayer at the 5th minute, as detailed in the following section. Data was then acquired after the 10th minute to allow the monolayer to settle upon addition of the 203 204 drug. All data were acquired in triplicate and the standard error of the mean calculated accordingly. 205 The analysis of covariance was elucidated in order to test for significance within the time-based data 206 sets.

207 208 2.2.2 Salbutamol Sulphate Administration to Simulated Pulmonary Surfactant Monolayers

209 Initially, 2mg of salbutamol sulphate was accurately weighed and then dissolved in 1ml of ultrapure 210 water to obtain a stock solution of concentration 2mg/ml. This drug-containing solution was 211 subsequently diluted 5 times by removing 100µl of solution and adding this to 900µl of ultrapure 212 water. On completion of this process, the concentration of the final salbutamol sulphate solution was 213 0.02mcg/ml. Further to a period of 10 minutes for mixed surfactant monolayer spreading, the pre-214 prepared salbutamol-containing solution was delivered to the underside of the two-dimensional film 215 (i.e. to reflect drug availability post particle dissolution). Here, a volume of 500µl of the diluted 216 salbutamol solution was added to either side of the compartment underneath the trough barriers. On delivery a period of 10 minutes allowed the drug to distribute evenly within the supporting subphase 217 218 and interact within the simulated pulmonary surfactant monolayer. Langmuir isotherms, isocycles 219 and surface pressure - time data were then generated for each system under investigation. Each 220 investigation was repeated in triplicate with the standard error of the mean in turn calculated.

To investigate dose response effects, individual Langmuir isotherms and isocycles were obtained with concentrations of 0.01mcg/ml, 0.02mcg/ml and 0.04mcg/ml of salbutamol; where a total of 1mg, 2mg and 4mg were diluted 5 times as previously described. In this case, the dose conversion from 200mcg (i.e. two standard doses) to 0.02mcg/ml was calculated as a factor of the surface area of the Langmuir trough. Here, the Langmuir trough area was 70cm², whilst the surface area of the lung is recognised to be 70m² [23].

- 227
- 228
- 229
- 230

2.2.3 Langmuir Monolayer Analysis

- 233 2.2.3.1 Compressibility

The compressibility term relates to the ability of a surfactant film to reduce the surface tension term with minimal transformation to surface area [24]. An ideal lung surfactant should have a low compressibility value as this indicates the rigidness of the monolayer which represents *in vivo* conditions [25]. To calculate the compressibility term, Equation 1 was employed.

240 *Compressibility* =
$$\frac{1}{A} \chi \frac{1}{m}$$

Equation 1. *Calculation of the compressibility of the monolayer.*

244 Where A represents the relative surface area and m the slope of the isotherm. Here, 'm' was calculated 245 using 'm = $\frac{y^2 - y_1}{x^2 - x_1}$, between 50% and 80% of the Langmuir trough area.

- 247 2.2.3.2 Statistical Analysis

With respect to Langmuir surface pressure - time data, statistical analysis involved application of analysis of covariance using Minitab v17 [26]. This software was utilised to compare the mean of each data point with time and pressure. Here, a 'p' value of <0.05 was used to demonstrate significance.

266 267 268	2.2.4 Molecular Modelling
269	In order to rationalise drug partitioning behaviour in proximity to simulated pulmonary surfactant
270	monolayers, system components were studied at the RHF/6-31G* level via Gaussian09 [27, 28, 29,
271	30]. Conformations of the key elements for molecular recognition at the underside of the surfactant
272	monolayer (i.e. excluding the more external hydrocarbon chain groupings) were generated using
273	omega [31]. Following geometry optimisation, the electron density was visualised in Gaussview [32].
274	Here, the electrostatic potential is projected onto a surface of constant electron density using default
275	values. Representations of the projected electrostatic potential were generated from two opposing
276	sides. The resultant output was the generation of a number of images that reflect all of the entities
277	that could potentially interact at the test interface.
278	
279 280 281	3 Results and Discussion
282	During this work we have applied a mixed surfactant monolayer composed of primary lipid species of
283	the lung (i.e. DPPC, POPG and PA) to represent the alveolar air-liquid interface within the laboratory
284	setting. Throughout, the dynamic interplay between constituents of the thin lipid films and drug
285	molecules was considered. The overarching intention was to determine the mechanism(s) of
286	salbutamol interaction with simulated pulmonary surfactant monolayers and hence better
287	understand drug partitioning behaviour further to delivery to the respiratory tract.
288	
289 290	3.1 Langmuir Isotherms
291	Langmuir pressure-area (π -A) isotherms of the mixed monolayer system following exposure to
292	increased concentrations of salbutamol sulphate are presented in Figure 2.
293	

Figure 2. Langmuir π -A isotherms for the mixed surfactant system supported on an ultrapure water subphase with increased concentrations of salbutamol sulphate at pH 7. In each case, a total of 3 repeats were acquired to enable the presentation of average values with error bars representing one standard error in the mean. All experiments were conducted at a temperature of $20^{\circ}C \pm 1^{\circ}C$.

299 On inspection of the data presented in Figure 2, it is evident that compression of the mixed monolayer 300 system led to an increase in the surface pressure term throughout. In all cases smooth traces are 301 apparent and are in line with previously acquired data [10]. Clear gradient changes within each curve 302 reflect phase transitions within the two-dimensional ensemble [33]. Baseline data confirmed that the 303 mixed surfactant film attained a maximum surface pressure of 49mN/m. However, this value 304 increased upon salbutamol sulphate addition to the supporting aqueous subphase; the maximum surface pressure was above 54mN/m, for all concentrations of salbutamol sulphate that were studied. 305 306 The apparent increase in the surface pressure term was attributed to the drug contribution at the air-307 liquid interface within the test zone.

308 Administration of salbutamol sulphate to the mixed surfactant monolayer caused a change to the 309 Langmuir isotherm shape when compared to the baseline. Here, expansion of the two-dimensional 310 ensemble is consistently demonstrated, being concentration dependent. The delivery of 0.01mcg salbutamol sulphate to the test zone resulted in monolayer expansion, with a maximum surface 311 312 pressure of 54.3mN/m recorded; a comparable value to the 0.02mcg/ml addition. Whilst the delivery of 0.04mcg/ml salbutamol sulphate to the supporting aqueous media resulted in an increase in the 313 314 surface pressure term to 55.1mN/m. This equates to a 1.5% increase in maximum surface pressure 315 from the addition of 0.02 mcg of salbutamol. The Langmuir isotherm data also indicate that as the 316 concentration of salbutamol sulphate increases, the curve plateau point is realised at an earlier stage.

For doses 0.01mcg, 0.02mcg and 0.04mcg the isotherm starts to plateau at trough areas of 35%, 40% and 50% which confirms a greater solid phase contribution to monolayer dynamics.

On consideration of the compressibility term, a decrease in the descriptor was evident on increasing salbutamol sulphate concentration as outlined in Table 1 (e.g. the addition of 0.04 mcg/ml caused an approximate 70% reduction from the baseline value). The clear reduction in this parameter confirms that as the number of drug molecules increase, the two-dimensional film becomes more rigid and less compressible.

324					
325	Surface	Baseline	Salbutamol	Salbutamol	Salbutamol
326	Area (%)	(Monolayer)	(0.01mcg)	(0.02mcg)	(0.04mcg)
	80	0.0268	0.0163	0.0101	0.0082
327	70	0.0306	0.0187	0.0115	0.0093
328	60	0.0358	0.0218	0.0135	0.0109
220	50	0.0429	0.0261	0.0162	0.0130

329

Table 1. *Compressibility values (mN/m) of the Langmuir surface pressure isotherms.*

331 Drug insertion into a surfactant film influences lipid packing and hence system dynamics. Here, the 332 addition of salbutamol sulphate to the underside of the pulmonary surfactant monolayer, plus related 333 molecular interaction, led to increased rigidity and a more rapid increase in the surface pressure 334 term. The net effect is the presentation of the condensed / solid phases at an earlier point in time. 335 This is due to an increase in the number of molecules over a constant surface area. The process by 336 which the drug molecule can partition into the monolayer and diffuse out can also be explained by the inhomogeneous solubility-diffusion mechanism [34]. This involves a three-step process by which 337 338 the molecule partitions in, diffuses within the structure and to an extent partitions out, which depends 339 on thermodynamic driving forces of the complete system under investigation.

On delivery of the drug-containing solutions (e.g. 0.02mcg/ml) to the supporting aqueous subphase, a further dilution took place in the average volume of 41ml (n=3) of ultrapure water held within the Langmuir trough. Upon addition of 1ml of the 0.02mcg, this would equate to a final concentration of 4.76x10⁻⁴ mcg/ml of salbutamol sulphate in the subphase. Furthermore, an addition of 0.01mcg and 0.04mcg would further dilute the drug to a concentration to 2.38x10⁻⁴ mcg/ml and 9.52x10⁻⁴ mcg/ml, respectively. This indicates that with highly diluted drug concentrations scope exists for partitioning into the monolayer, which is shown by translocation of the curves to the right. Indeed, this effect was reported by Jablonowska and Bilwicz during 2007 where the group demonstrated that ibuprofen diluted to concentrations of $2x10^{-5}$ - $2x10^{-4}$ M caused changes in the compressibility of a surfactant monolayer with partitioning still occurring at low concentrations [35].

351

352 *3.2 Langmuir Isocycles* 353

354

Average Langmuir compression-expansion cycles of the simulated pulmonary surfactant monolayer system at pH 7 pre- and post-salbutamol sulphate addition are presented in Figure 3. The data presented are averages of three replicates of the same.

358

Figure 3. Average Langmuir π -A isocycles for the mixed surfactant system supported on an ultrapure water subphase with a salbutamol sulphate concentration of 4.76×10^{-4} mcg/ml at pH 7. In each case, 3 repeats were acquired and points are the mean with error bars of one standard error in the mean. The experiments were conducted at a temperature of $20^{\circ}C \pm 1^{\circ}C$.

363

During Langmuir pressure – area isocycle generation, initial pre-conditioning inward and outward sweeps were executed (n=4). The purpose of this procedure was to prepare the conformation of the mixed monolayer system to best represent that noted within the (deep) human lung. Clearly, this approach differs from a single compression isotherm in that the constituent molecules are arranged more favourably and typical of the physiologically relevant scenario. This pre-conditioning stage and removal of associated early phase traces (n=4) results in the elimination of the solid phase plateau noted in single Langmuir pressure – area isotherms (i.e. those shown in Figure 2).

372 On monolayer cycling, the maximum surface pressure for the mixed surfactant system was 54.4mN/m. 373 However, on addition of salbutamol sulphate this value increased to 57.6mN/m; equating to a 6% 374 increase in the term. Once again, the data indicate that further to the addition of salbutamol sulphate 375 to the supporting aqueous media the monolayer becomes expanded in nature (i.e. the Langmuir π -A 376 isocycles translocate to the right). In a similar fashion to that outlined above, the compressibility term 377 also decreased following salbutamol sulphate administration. Here, the baseline value of 378 0.0288mN/m decreased to 0.0203mN/m, representing a 30% reduction in the parameter indicative of 379 reduced flexibility, compressibility and increased rigidity of the monolayer.

380 On completion of the Langmuir isocycle experiments, deviation in the gradient of the trace confirmed 381 amphiphilic molecule phase transitions (i.e. movement from the gaseous phase through to the 382 expanded and condensed phases and ultimately the solid phase). On moving from the gaseous phase 383 to the solid phase, there is a related increase in molecular order. As such, at low surface pressures 384 the monolayer exhibits a certain level of disorder with some spacing between constituent surface 385 active molecules. At the higher surface pressure, the monolayer is decidedly ordered and a tighter 386 molecular packing of DPPC, POPG and PA has occurred resulting in a solid phase transition [36]. Thus, 387 the very state of the surfactant film will govern the propensity of the dissolved drug molecules to 388 partition into the ensemble.

The injection of salbutamol sulphate (0.02mcg/ml) into the supporting aqueous subphase caused the gradient of the Langmuir isocycle to become steeper. The data indicate that the phase transitions occur at an earlier point in time, as compared to the baseline. The result can be attributed to an increase in the number of molecules across the two-dimensional plane (i.e. the insertion of drug molecules into the surfactant monolayer). It is the very presence of drug molecules within the system that leads to a more rapid phase transformation and resultant tighter packing at an earlier stage. Such packing causes the presentation of the solid phase sooner than compared to the baseline.

396

397

399 Monolayer collapse occurs where lipid components become unstable after maximum surface pressure 400 has been achieved [37]; naturally this situation should be avoided within the laboratory setting. In 401 terms of the Langmuir isotherm baseline data, the simulated pulmonary surfactant monolayer 402 collapsed at the maximum surface pressure of 49.5mN/m. However, typical collapse pressure for a 403 simulated pulmonary surfactant monolayer (i.e. Curosurf® [38]) would be approximately 70mN/m. 404 This parameter is influenced by factors such as the operating temperature and the lipid composition. 405 Thus, we suggest that the lower maximum surface pressure present herein was a combined function 406 of the operating temperature (i.e. 21°C), monolayer composition (i.e. only DPPC, POPG and PA), plus 407 monolayer pre-conditioning stages that involved four repeated compression – expansion events.

It is anticipated that to some extent drug partitioning within a surfactant film is reversible as respreading occurs on barrier expansion (i.e. representative of inhalation) [37]; particularly at the higher percentage trough areas. Excess lipid material is removed from the subphase into the surface associated reservoir during compression at exhalation. The material is usually composed of unsaturated lipid components where this phenomenon illustrates the molecules are being 'squeezed out' from the monolayer. As a result, saturated lipid components at the interface obtain low surface tensions *in vivo*.

415 3.3 Langmuir Surface Pressure – Time Analysis

416

417 During this work, consideration was given to how the physical state of a simulated pulmonary 418 surfactant monolayer (i.e. expanded or compressed) can influence drug partitioning behaviour. To 419 this end, Langmuir surface pressure – time plots were generated. The penetration pressure ($\Delta \pi$) [17, 420 39] data for both the expanded and compressed systems are presented in Figure 4.

421

422Figure 4. Average Langmuir penetration pressure – time plots for the systems under consideration. Each data423point arises from three repeats of the same experiment. Standard error of the mean bars have been included424within the plot, however visibility is limited due to low variability in the data sets. The surface pressure term has425an impact on the partitioning behaviour of salbutamol, with the lower surface pressure offering greater scope426for drug insertion into the two-dimensional film. All data are acquired at pH 7 and a temperature of $20^{\circ}C \pm 1^{\circ}C$.

427

428 The addition of salbutamol sulphate (0.02mcg) to the underside of the simulated pulmonary 429 surfactant monolayer caused an increase in the surface pressure term in both cases with respect to 430 time. Upon inspection of the data presented in Figure 4, it is evident that the change in surface 431 pressure ($\Delta \pi$) is greater in the case of the more expanded system (i.e. 10mN/m) and this directly aligns 432 with the relaxed physical arrangement of the surfactant molecules. Thus, there is a greater propensity for drug molecules to partition into the two-dimensional surfactant film at the lower surface pressure 433 (i.e. inhalation end-point). We emphasise that at the target pressure of 50mN/m, the rate of drug 434 435 partitioning was slower albeit still taking place (i.e. P=0.0014: Langmuir surface pressure - time data, 436 not shown). Whilst there would be tight molecular order at this pressure, absolute compression does 437 not occur and consequently there is still the opportunity for salbutamol to interact constructively with 438 and partition into the monolayer.

- 440
- 441

442 The data confirm that the physical state of the monolayer can have a significant bearing on the 443 partitioning behaviour of solubilised drug molecules within the underlying vicinity. Typically, the polar head groups of DPPC, POPG and PA are situated deep within the supporting aqueous media at low 444 445 surface pressures [40, 41]. Thus, a solubilised drug molecule (i.e. arising post drug particle dissolution) 446 can readily interact with the components of the surfactant monolayer and subsequently associate 447 with or penetrate into the two-dimensional structure. It is to be expected that the extent of drug 448 partitioning is likely to be greater at a lower surface pressure (i.e. the point of inhalation) due to the 449 increased likelihood of accessible regions [42, 43] for molecular insertion.

450 Indeed, when we consider the two-dimensional arrangement of the components of a model lung 451 surfactant (i.e. DPPC, POPG and PA) throughout the course of compression and expansion, there is 452 high level of certainty that 'accessible regions' will present to in turn promote drug partitioning. At 453 this juncture, it is appropriate to refer to the work conducted by Bringezu and colleagues in 2003 who 454 probed the impact of environmental tobacco smoke on the primary lipid species of lung surfactant 455 [9]. During the work, the group applied fluorescence microscopy to observe the changes in monolayer 456 structure as lateral compression was applied across the plane. With regard to their pristine system 457 (i.e. identical to that applied during this work), low surface pressures were linked to the presentation 458 of condensed or tightly packed DPPC / PA regions within expanded or more relaxed DPPC / POPG areas 459 consistently visible throughout the surfactant film as a whole. The fluorescent dye applied during the 460 work preferentially distributed itself into the disordered DPPC / POPG regions. As the surface pressure 461 was ramped towards the collapse point, the number of solid phase domains increased. Thus, at the 462 higher surface pressures the monolayer structure became much more ordered. The data presented 463 within the piece confirmed that a surfactant monolayer composed of primary lipid species exhibits 464 non-uniform packing throughout, a feature to be anticipated at the alveolar air-liquid interface within 465 the body.

The apparent lack of homogeneity across a lung surfactant film does lend strong support to the concept of 'accessible areas' to promote drug partitioning, as detailed by Vilallonga and Phillips in 1978 [39]. This work considered how the anthracycline glycoside antibiotic doxorubicin associated with phospholipid monolayers located at the air-liquid interface. On application of the accessible area calculation (i.e. $a = A - NA_m$) it was established that the condensed monolayer had an average 7% region of access for dissolved drug molecules, as compared to the less condensed monolayer of 33% availability for the same.

The net effect was a greater increase in the surface pressure term for the more relaxed monolayer system (i.e. there was more area accessible for drug partitioning and as such more drug molecules were able to penetrate into the structure and increase the surface pressure). The group also demonstrated an increase in the surface pressure term in all cases following the injection of drug substance beneath the monolayer structure. The result was ascribed to the 'osmotic approach' leading to an increase in the number of molecular entities at the interface.

480 A similar principle was applied by Krill and co-workers in 1998 who considered the partitioning 481 behaviour of various β -antagonists (e.g. propranolol, oxprenolol, metoprolol and nadolol) when 482 environment beneath Langmuir monolayers composed placed in an aqueous of 483 dimyristoylphosphatidylcholine [17]. Within the study, clear reference was made to the fact that all 484 molecules demonstrated surface activity, irrespective of solution concentration. Importantly, 485 movement into condensed phases of the monolayer structure was noted, which links with the findings 486 presented herein (i.e. a notable change in the presented penetration pressure at the higher value of 487 50mN/m). Thus, throughout tidal breathing one would expect therapeutic entities to associate with 488 and partition into lung surfactant at the alveolar air-liquid interface, irrespective of the surface 489 pressure placed on the endogenous material at any one time. The propensity of this process heavily 490 depends upon the chemical properties of the administered molecule(s). For instance, Krill and 491 colleagues demonstrated that propranolol exhibited the greatest degree of monolayer penetration 492 followed by metoprolol, oxprenolol and finally nadolol. Thermodynamic aspects are central to drug 493 insertion into a surfactant film. For example, Krill noted that propranolol partitioning into the 494 monolayer structure was enthalpically and entropically driven, and this contrasted sternly with 495 nadolol which was mainly enthalpically driven whilst being strongly entropically hindered. It would 496 appear that two key aspects dominate the interaction as a whole; namely, modification to the 497 monolayer structure across the plane plus the physical movement of drug molecules into the lipid 498 layer.

Variation in the monomolecular structure results further to drug partitioning with either the drug causing expanded regions to become more condensed in nature via insertion within accessible areas or direct interaction between drug molecule and surfactant components, as modelled herein. Such modification to the surfactant film in the (deep) lung can influence structure-function activity [10], however in general terms the surfactant film appears robust and resilient to external stressors (i.e. drug substances and environmental toxins [43]) and this allows it to fulfil its crucial biological function.

505

507 *3.4 Molecular Modelling*

509 3.4.1 Salbutamol Interaction with Surfactant Film Components

510

508

511 The electrostatic potential surfaces (EPSs) of the polar head groups associated with each surfactant molecule (i.e. DPPC, POPG and PA) along with salbutamol were calculated via the quantum mechanics 512 513 software package Gaussian09. The hydrophobic tails were abbreviated to a methyl group, to avoid studying conformations that would not be relevant to the monolayer conditions. A set of up to 10 514 515 conformations of each molecule was created by omega and each was optimized with RHF/6-31G*. 516 The lowest energy conformation was then identified and its electrostatic potential projected onto a 517 surface of the molecule (the total electron density cut at 0.0004 electrons/ $Å^3$). In these electrostatic potential maps, red indicates strongly negative regions, yellow less negative regions, blue strongly 518 519 positive regions and cyan less positive regions. Regions coloured green have an approximately neutral 520 electrostatic potential. To aid analysis we provide arrows to highlight important regions of interaction 521 and place the linkage to the hydrophobic tails at the top of each figure.

In the case of salbutamol, one end of the molecule is generally hydrophobic (the aromatic ring) and this is assumed to prefer contact with the hydrophobic tails of the monolayer and so is also placed at the top of the figure. The EPSs for salbutamol are shown for the molecule in its predominant cationic form. Similar images for the zwitterionic form, in which the phenol is deprotonated, were also generated but represent only a small contribution (i.e. <1%) to the population of molecules and so are not shown here.

Figure 5. EPS calculations of salbutamol and DPPC (front and rear views provided) with key interaction sites
determined for pH 7.

533 When in proximity to DPPC, the predominant component of the monolayer, the two are likely to 534 interact in a way that maximises both electrostatic and hydrophobic interactions. As shown in Figure 535 5, when the major interacting face of salbutamol presents a large positively charged patch in such a way that it can interact with the negatively charged patch to the major interacting face of DPPC, this 536 537 naturally places the hydrophobic aromatic ring in proximity with the hydrophobic tails of DPPC. When 538 the molecules are paired like this, it can be seen that the opposite face of each molecule are also 539 complementary, albeit with less extreme electrostatic components. When the interactions with the 540 other components of the monolayer are considered, as shown in Figure 6, it is clear that there are a 541 range of positions that salbutamol can adopt to allow it to maximise beneficial interactions with the molecules around it, regardless of which molecules those are. The optimum position in each case 542 543 involves a different degree of penetration into the monolayer.

544 With POPG, the interactions are likely to be best when the salbutamol penetrates deeply into the 545 monolayer whereas with PA, the opposite is the case. This differing behaviour will cause different 546 effects on the monolayer. When amongst the head groups (as with PA), the salbutamol is promoting 547 the movement apart of the hydrophobic tails and making the monolayer more like the gas phase. 548 Whereas, when the salbutamol penetrates amongst the tail groups (as with POPG and DPPC), it 549 compresses those groups making the system more like the solid phase.

552 Figure 6. EPS calculations of salbutamol, POPG and PA with key interaction sites determined for pH 7.

553 These hydrophobic and electrostatic forces of attraction explain the consistent shift of the Langmuir 554 isotherm and isocycle data as compared to the baseline, which relates to expansion of the monolayer. 555 The spontaneous movement of drug molecules into the monolayer and the formation of molecular 556 interactions between the molecules encourage and facilitate drug partitioning and insertion. Thus, the 557 monolayer is less compressible and highly rigid resulting in an expanded character.

- 558 4. Conclusion
- 559

560

561 This study has considered the partitioning behaviour of salbutamol (sulphate) when in close proximity 562 to fundamental components of endogenous pulmonary surfactant. The work confirms the suitability 563 of Langmuir monolayers to serve as model interfaces to further current understanding within this 564 relatively under-researched field. The data indicate that the drug molecule of interest impacted upon 565 the activity of simulated pulmonary surfactant during compression and expansion phases; reflective of the human breathing cycle. The injection of salbutamol sulphate to the underside of the lipid film 566 (i.e. to reflect drug availability post particle dissolution) caused general expansion of the surface active 567 material and decreased the compressibility term. Drug partitioning behaviour was highly dependent 568 569 on the physical state of the surfactant monolayer, where the rate of partitioning was greater at the 570 lower surface pressure that represented greater molecular disorder.

572	therapeutic advantage. The sustained presence of a drug molecule(s) in the pulmonary space could					
573	be of clear benefit of the patient in reducing the frequency of daily dosing. Indeed, this approach may					
574	be viewed as an advanced modified release strategy (i.e. non-classical) that is solely dependent on					
575	chemical complementarity between all species involved.					
576						
577		5. Acknowledgements				
578	MJD w	ould like to thank LJMU for supporting this research effort. Special thanks go to Dr Phil Rowe				
579	and Mr	Geoffrey Henshaw for the support provided throughout.				
580						
504						
581		6. References				
582						
583	1.	Patton, K.Y., Thibodeau G.A. Structure and Function of the Pulmonary System. Anatomy &				
584		Physiology, Ed 8, St Louis, 2013 .				
585	2.	Davies, M.J., Brindley, A., Chen, X., Doughty, S.W., Marlow, M., Shrubb, I. & Roberts, C.J.				
586		Characterization of Drug Particle Surface Energetics and Young's Modulus by Atomic Force				
587		Microscopy and Inverse Gas Chromatography. Pharmaceutical Research. 2005, 22(7): 1158 -				
588		1166.				
589	3.	Tena, F., Clara P.C. Deposition of Inhaled Particles in the Lungs. Archivos de Bronconeumología				
590		(English Edition). 2012 , 48(7): 240–246.				
591	4.	Chrystyn, H. Methods to identify drug deposition in the lungs following inhalation. British				
592		Journal of Clinical Pharmacology. 2002, 51(4): 289-299.				
593	5.	Labiris, N., Dolovich, M. Pulmonary drug delivery. Part I: Physiological factors affecting				
594		therapeutic effectiveness of aerosolized medications. British Journal of Clinical Pharmacology.				
595		2003 , 56(6): 588-599.				
596	6.	Griese, M. Pulmonary surfactant in health and human lung diseases: State of the art.				
597		European Respiratory Journal. 1999, 13(6): 1455-1476.				

Naturally, potential exists to exploit the drug partitioning process in lung surfactant films for

571

- 7. Hohlfeld, J. The role of surfactant in asthma. *Respiratory Research.* **2002**, 3(1): 4. 598
- 599 8. Zasadzinski, J.A., Ding J., Warriner H.E., Waring A.J., Bringezu F. The physics and physiology of 600 lung surfactants. *Current Opinion in Colloids and Interface Science*. **2001**, 6(5-6): 506–513.

- Bringezu, F., Pinkerton, K.E., Zasadzinski, J. Environmental tobacco smoke effects on the
 primary lipids of lung surfactant. *Langmuir*. 2003, 19: 2900-2907.
- 10. Davies, M.J., Leach, A.G., Fullwood, D.L., Mistry, D., Hope, A. The pH dependent interaction
 between nicotine and simulated pulmonary surfactant monolayers with associated molecular
 modelling. *Surface and Interface Analysis*. 2017, DOI: 10.1002/sia.6244.
- 606 11. Drugbank.ca. Salbutamol. Available at: <u>www.drugbank.ca/drugs/DB01001</u>. Accessed January
 607 2017.
- Pinheiro, M., Lucio, M., Reis, S., Giner-Casares, L., Lima, J.L.F.C, Caio J.M, Moiteiro, C., MartinRomero M.T., Camacho, L. Molecular interaction of rifabutin on model lung surfactant
 monolayers. *Journal of Physical Chemistry B.* 2012, 116(38): 11635–11645.
- 611 13. Veldhuizen, R., Haagsman, P.H. The role of lipids in pulmonary surfactant. *Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease*. **1998**, 1408(s 2–3): 90–108.
- 613 14. Goerke, J. Pulmonary surfactant: Functions and molecular composition. *Biochim Biophys Acta*.
 614 **1998**, 1408: 79-89.
- 615 15. Moynihan, H, Crean, A. The physicochemical basis of pharmaceuticals, 1st Ed. 2009. Oxford:
 616 Oxford University Press, UK.
- 617 16. Aulton, M.E., Taylor, K.M.G. Aulton's Pharmaceutics: The Design and Manufacture of 618 Medicines, 4th Ed. **2013**. Churchill Livingstone, China.
- 619 17. Krill, S., Lau, K., Plachy, W., Rehfeld, S. Penetration of dimyristoylphosphatidylcholine
 620 monolayers and bilayers by model β-blocker agents of varying lipophilicity. *J Pharm Sci.* 1998,
 621 87(6): 751-756.
- 622 18. BNF 72: British National Formulary 72, 2016. British Medical Association & Royal
 623 Pharmaceutical Society of Great Britain.
- 19. Lemke, T.L., Williams, D.A., Roche, V.F., Zito, S.W. Foye's principles of medicinal chemistry.
 Philadelphia, PA: Lippincott Williams & Wilkins. 2013. 1314–1320.
- 62620. Chemistry Review Data Sheets Center for Drug Evaluation and Research (FDA). Available at:627www.accessdata.fda.gov/drugsatfda_docs/nda/2011/021747Orig1s000ChemR.pdf.
- 628 Accessed January 2017.
- Clark, T., Hennemann, M., Murray, J.S., Politzer, P. Halogen bonding: the σ-hole. *Journal of Molecular Modelling*. 2007, 13: 291-296.
- 631 22. Hunter, A.C. Quantifying Intermolecular Interactions: Guidelines for the molecular recognition
 632 toolbox. *Angew. Chem. Int. Ed.* 43. 2004, 5310-5324.
- 633 23. Sherwood, L., Human Physiology: From Cells to Systems. 7th Ed. 2010. Brooks / Cole Cengage
 634 Learning, United States of America.

- 635 24. Shah A.R, Banerjee R. Effect of D-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) on
 636 surfactant monolayers. *Colloids Surf B*. 2011, 85: 116-124.
- 637 25. Subramaniam, S., Bummer, P., Gairola, C.G. Biochemical and Biophysical Characterization of
 638 Pulmonary Surfactant in Rats Exposed Chronically to Cigarette Smoke. *Fundamental and* 639 Applied Toxicology. 1995, 27:63-69.
- 640 26. Minitab v17. Available at: <u>www.minitab.com</u>. Accessed January 2017.
- 641 27. Roothaan, C.C.J. New developments in molecular orbital theory. *Reviews of Modern Physics.*642 **1951**, 23: 69.
- 643 28. Hall, G.G. In the molecular orbital theory of chemical valency. VIII. A method of calculating
 644 ionization potentials. Proceedings of the Royal Society of London A: Mathematical, Physical
 645 and Engineering Sciences; *The Royal Society*. **1951**, 205: 541-552.
- 646 29. Hariharan, P.C., Pople, J.A. Influence of polarization functions on MO hydrogenation energies.
 647 *Theor. Chim. Acta.* 1973, 28: 213-222.
- 648 30. Gaussian 09, Revision C.01. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, 649 J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. 650 Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. 651 Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, 652 T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. 653 Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. 654 Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, 655 656 J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. 657 658 Fox. Gaussian, Inc., Wallingford CT, 2009.
- 659 31. Omega, Version 2.5.1.4, OpenEye Scientific Software, Inc., Santa Fe, NM, USA,
 660 www.eyesopen.com, 2010.
- 661 32. GaussView, Version 5, Dennington, Roy; Keith, Todd; Millam, John. Semichem Inc., Shawnee
 662 Mission, KS, 2009.
- 33. Matti, V., Saily, J., Ryhanen, S.J., Holopainen, J.M., Borocci, S., Mancini, G., Kinnunen, P.K.
 Characterization of mixed monolayers of phosphatidylcholine and a dicationic gemini
 surfactant SS-1 with a Langmuir balance: Effects of DNA. *Biophys J.* 2001, 81(4): 2135-2143.
- 34. Boggara, M., Krishnamoorti, R. Partitioning of nonsteroidal antiinflammatory drugs in lipid
 membranes: A molecular dynamics simulation study' *Biop J.* 2010, 98(4): 586-595.

- 668 35. Jabłonowska, E., Bilewicz, R. Interactions of ibuprofen with Langmuir monolayers of 669 membrane lipids *Thin Solid Films*. **2007**, 515(7-8): 3962-3966.
- 36. Davies, M.J., Kerry, T.D., Seton, L., Murphy, M.F., Gibbons, P. Khoo, J. & Naderi, M. The crystal
 engineering of salbutamol sulphate via simulated pulmonary surfactant monolayers. *International Journal of Pharmaceutics.* 2013, 446: 34-45.
- 673 37. Faller, R., Jue, T., Longo, L.M., Risbud, H.S. Biomembrane Frontiers Nanoparticles, Models
 674 and the Design of Life, Structure and dynamics of lipid monolayers: theory and applications.
 675 Chapter 4 (2). 2012, Humana Press, Online.
- 676 38. Curosurf. Available at <u>www.curosurf.com</u>. Accessed January 2017.
- 677 39. Vilallonga, F.A., Phillips, E.W. Interaction of doxorubicin with phospholipid monolayers.
 678 *Journal of Pharmaceutical Sciences*. **1978**, 67(6): 773 775.
- 40. Davies, M.J., Seton, L., Tiernan, N., Murphy, M.F., Gibbons, P. Towards crystal engineering via
 simulated pulmonary surfactant monolayers to optimise inhaled drug delivery. *International Journal of Pharmaceutics*. 2011, 421: 1–11.
- 41. Minones, J., Patino, J.M.R., Conde, O., Carrera, C., Seoane, R. The effect of polar groups on
 structural characteristics of phospholipid monolayers spread at the air–water interface. *Colloids Surf. A: Physicochem. Eng. Aspects.* 2002, 203: 273–286.
- 42. McGregor, M.A., Barnes, G.T. The equilibrium penetration of monolayers. *Journal of Colloid and Interface Science*. **1978**, 65(2): 291 295.
- 43. McGregor, M.A., Barnes, G.T. Equilibrium penetration of monolayers VI: Cholesterolcetrimonium bromide system. *Journal of Pharmaceutical Sciences*. **1978**, 67(8): 1054 1056.
- 44. Davies, M.J., Birkett, J.W., Kotwa, M., Tomlinson, L., Woldetinsae, R. The impact of cigarette/e cigarette vapour on simulated pulmonary surfactant monolayers under physiologically
 relevant conditions. *Surface and Interface Analysis*. **2017**, DOI: 10.1002/sia.6205.
- 692
- 693
- 694
- 695
- 696
- 697
- 698