
	
	 	

An	Energy-Efficient	Multi-Cloud	Service	Broker	
for	Green	Cloud	Computing	Environment	

      
 

 
By Bandar Aldawsari 

 
 

 
 
 

 
A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University 

for the degree of Doctor of Philosophy 

 
 

 
 

October 2017 
 



 2 

Abstract 
The heavy demands on cloud computing resources have led to a substantial growth in energy 

consumption of the data transferred between cloud computing parties (i.e., providers, 

datacentres, users, and services) and in datacentre’s services due to the increasing loads on these 

services. From one hand, routing and transferring large amounts of data into a datacentre located 

far from the user’s geographical location consume more energy than just processing and storing 

the same data on the cloud datacentre. On the other hand, when a cloud user submits a job (in 

the form of a set of functional and non-functional requirements) to a cloud service provider (aka, 

datacentre) via a cloud services broker; the broker becomes responsible to find the best-fit 

service to the user request based mainly on the user’s requirements and Quality of Service (QoS) 

(i.e., response time, latency).  

Hence, it becomes a high necessity to locate the lowest energy consumption route between the 

user and the designated datacentre; and the minimum possible number of most energy efficient 

services that satisfy the user request. In fact, finding the most energy-efficient route to the 

datacentre, and most energy efficient service(s) to the user are the biggest challenges of multi-

cloud broker’s environment.  

This thesis presents and evaluates a novel multi-cloud broker solution that contains three 

innovative models and their associated algorithms. The first one is aimed at finding the most 

energy efficient route, among multiple possible routes, between the user and cloud datacentre. 

The second model is to find and provide the lowest possible number of most energy efficient 

services in order to minimise data exchange based on a bin-packing approach. The third model 

creates an energy-aware composition plan by integrating the most energy efficient services, in 

order to fulfil user requirements. The results demonstrated a favourable performance of these 

models in terms of selecting the most energy efficient route and reaching the least possible 

number of services for an optimum and energy efficient composition.	  



 3 

	
Introduction ........................................................................................................................... 9	

1.1	 Introduction .............................................................................................................. 10	
1.1.2	 Motivation: energy consumption reduction ................................................................... 12	
1.1.3	 Research Hypothesis ........................................................................................................ 13	
1.1.4	 Research Problem ............................................................................................................. 13	
1.1.5	 Novelty of the thesis .......................................................................................................... 15	
1.1.6	 Research Scope ................................................................................................................. 16	
1.1.7	 Aim and Objectives .......................................................................................................... 16	
1.1.8	 Methodology ...................................................................................................................... 18	
1.1.9	 Thesis Structure ................................................................................................................ 18	

Cloud Computing ............................................................................................................... 20	
2.1. Introduction ................................................................................................................... 21	

2.2. Cloud Computing .......................................................................................................... 21	
2.2.1. Deployment models of cloud computing ............................................................................ 23	
2.2.2. The main players in cloud computing ............................................................................... 25	

2.3. Cloud Computing Virtualization ................................................................................. 26	
2.3.1. Virtualization Forms ........................................................................................................... 27	
2.3.2. Categories of server virtualisation ..................................................................................... 28	

2.3.2.1. Hypervisor based virtualization: .................................................................................... 28	
2.3.2.2. Container based virtualization: ...................................................................................... 29	

2.4. Cloud Services ............................................................................................................... 30	
2.4.1. Cloud service models ........................................................................................................... 30	

2.4.1.1. Infrastructure as a Service (IaaS): .................................................................................. 30	
2.4.1.2. Platform as a Service (PaaS): ......................................................................................... 31	
2.4.1.3. Software as a Service (SaaS): ........................................................................................ 31	

2.4.2. New hybrid service models ................................................................................................. 32	

2.5. Cloud Service Brokerage .............................................................................................. 33	
2.5.1. Cloud Service Broker Architectures .................................................................................. 35	
2.5.2. Resource Management in Cloud Broker ........................................................................... 35	

2.6. Summary ........................................................................................................................ 37	
Network Routing and Energy Efficiency in Cloud Computing .................................. 38	

3.1. Introduction ................................................................................................................... 39	
3.1.1. Cloud broker problem ........................................................................................................ 39	

3.1.1.1. Load Balancing Algorithms ........................................................................................... 42	
3.1.2. Segment Routing .................................................................................................................. 44	

3.1.2.1 Traffic engineering .......................................................................................................... 47	
3.1.3. Routing algorithm to balance energy consumption ......................................................... 49	

3.2. Energy efficiency in cloud computing ......................................................................... 52	
3.2.1. Energy Consumption In Cloud Datacentres ..................................................................... 52	

3.2.1.1 The main factors leading to waste-to-energy .................................................................. 53	
3.2.1.2 Power saving strategies in Cloud .................................................................................... 54	

3.2.2 Energy Efficient Cloud Resources Allocation .................................................................... 57	
3.2.2.1 Resources Allocation ...................................................................................................... 57	
3.2.2.2 Cloud Resources Allocation ............................................................................................ 58	
3.2.2.3 On-demand resource allocation vs advanced resource reservation ................................. 60	
3.2.2.4 Static vs dynamic Cloud resources allocation ................................................................. 62	



 4 

3.2.3 Energy efficient service composition .................................................................................. 65	
3.2.3.1. Bin-packing approach .................................................................................................... 68	

3.3. Discussion and Requirements ...................................................................................... 69	
3.3.1. Requirements ....................................................................................................................... 71	

3.5. Summary ........................................................................................................................ 72	
An Energy Efficient Routing Algorithm ............................................................................ 73	

4.1. Introduction ................................................................................................................... 74	
4.2 Energy   Efficient   Routing ........................................................................................... 74	

4.2.1 Basics and Rules ................................................................................................................... 76	
4.2.2 Modelling power consumption of the network .................................................................. 77	
4.2.3 Modelling user connectivity to data centre ........................................................................ 78	
4.2.4 Formal analysis of network topology .................................................................................. 79	
4.2.5 Energy required for transportation .................................................................................... 81	
4.2.6 Time required for transportation ....................................................................................... 83	
4.2.7 Energy and time required for computation ....................................................................... 83	

4.3. Implementation ............................................................................................................. 83	
4.3.1. Linear programming formulation ..................................................................................... 83	
4.3.2. Goal programming formulation ........................................................................................ 86	
4.3.3. Dynamic programming approach ...................................................................................... 87	

4.4.	 Evaluation ................................................................................................................. 88	
4.4.1.	 Physical topology .......................................................................................................... 89	
4.4.2.	 Energy evaluation model and results ......................................................................... 91	

4.5. Summary ........................................................................................................................ 94	

Bin-Packing Based Energy-Efficient Service Provision ................................................... 95	
5.1. Introduction ................................................................................................................... 96	

5.1.1. Service Composition Energy Consumption ...................................................................... 96	

5.2. The System Model ......................................................................................................... 99	
5.2.1. Formal datacentre-broker model ....................................................................................... 99	
5.2.2. Formal datacentre-broker model ..................................................................................... 104	

5.3. Implementation ........................................................................................................... 105	
5.3.1. Algorithmic Design ............................................................................................................ 105	

5.4. Evaluation .................................................................................................................... 112	
5.4.1	 Experimental Settings .................................................................................................... 112	
5.4.2	 Experimental results ...................................................................................................... 113	

5.5. Summary ...................................................................................................................... 116	

Energy-Aware Service Composition Algorithm for Multiple Cloud ............................ 117	
6.1.	 Introduction ............................................................................................................ 118	

6.1.1.	 Service compositions .................................................................................................. 118	

6.2.	 Model design ........................................................................................................... 122	
6.2.1. User-broker model ............................................................................................................. 122	
6.2.2. Datacentre-broker model .................................................................................................. 124	

6.3. Implementation ........................................................................................................... 126	
6.3.1. Optimal service composition plan  .................................................................................. 126	



 5 

6.4	 Evaluation ............................................................................................................... 132	
6.4.1. Experimental settings ........................................................................................................ 132	
6.4.2 Results and analysis ............................................................................................................ 135	

6.5. Summary ...................................................................................................................... 140	
Conclusion and Future Work ........................................................................................... 141	

6.1.	 Conclusion .............................................................................................................. 142	
6.2.	 Contributions to knowledge .................................................................................. 143	

6.3.	 Future work ............................................................................................................ 145	
7.	 References ................................................................................................................... 147	

Appendix  1 ......................................................................................................................... 155	
Appendix  2 ......................................................................................................................... 156	

	
 
 
 
 
 
 
  



 6 

List of Figures 
 
Figure 2.1 Cloud Computing concept (F. Liu et al. 2011) ..................................................... 22	
Figure 2.2 number of isolated virtual servers to run on one single actual server (editor 2011)

........................................................................................................................................ 27	
Figure 2.3. Container based virtualization vs hypervisor based virtualization (Travostino et 

al. 2006) ......................................................................................................................... 28	
Figure 2.4 three types of classic cloud service models (Kubernetes 2017) ........................... 30	
Figure 2.5 cloud service brokerage roles to manage the broker ............................................ 33	
Figure 3.6 Resource Allocation (Nair and Porwal 2010) ...................................................... 59	
Figure 4.7 cloud elements, that contribute to the total energy consumption. ............. 75	
Figure 4.8 Network structure (user connectivity to data centre) ........................................... 78	
Figure 4.9 Hierarchal topology of an Italian ISP ................................................................... 89	
Figure 4.10 Path lengths of each route ................................................................................... 92	
Figure 4.11 Total energy of each route. ................................................................................. 93	
Figure 4.12 Average energy consumption per node of each route. ....................................... 94	
Figure 5.13 Conceptual representation of the proposed approach ....................................... 103	
Figure 5.14 Four main steps broker ..................................................................................... 107	
Figure 5.15  Running time and energy consumption to find requested service ................... 116	
Figure 6.16: Five separate web services. ............................................................................. 120	
Figure 6.17 : BPMN composition ........................................................................................ 120	
Figure 6.18 A conceptual representation of the proposed approach. ................................... 124	
Figure 6.19 % reduction in the number of examined atomic services. ................................ 138	
Figure 6.20 The average number of examined services. ..................................................... 138	
Figure 6.21 Number of combined clouds in multi-cloud based service composition plan π.

...................................................................................................................................... 139	
Figure 6.22 Running Time to achieve service composition plan π. .................................... 140	
 
  



 7 

List of Tables 
 
 Table 3.1 Proposed Broker Requirements ............................................................................ 72	
Table  Algorithm 4.1.:  Energy Efficiency Algorithm ........... Error! Bookmark not defined.	
Table 4.3: Route A network components .............................................................................. 90	
Table 4.4 Route B network components ................................................................................ 91	
Table 4.5: Route C network components ............................................................................... 91	
Table 4.6 Route D network components ................................................................................ 91	
Table 5.7 Multiple-cloud providers and Services ................................................................ 104	
Table 5.8 Multiple-cloud providers and Services sorted by energy consumption ............... 105	
Table Algorithm 5.1: Ordering the Cloud Providers in a descending order based on Total 

Energy Consumption ................................................................................................... 108	
Table  Algorithm 5.2: Finding an atomic service that matches the user request ................. 109	
Table  Algorithm 5.3:  Finding a predefined optimal composition plan 𝜋𝐵′ from a single 

provider ........................................................................................................................ 110	
Table  Algorithm 5.4:   Creating an optimal services composition from multiple providers

...................................................................................................................................... 111	
Table 5.13 Cloud provider’s composition set per MCP. ................................................. 112	
Table 5.14 Number of services per composition. ................................................................ 113	
Table 5.15:  CPs and energy consumption per MCPs, before listing in an ascending order. ........ 113	
Table 5.16: CPs and energy consumption per MCPs, after listing in an ascending order. .. 113	
Table 5.17:  CPs and number of () composition plans per MCPs ........................................ 114	
Table 6.18 Multiple-cloud providers and services. .............................................................. 127	
Table  Algorithm 6.1 discovering a predefined optimal composition plan 𝜋𝐵′ from a single 

provider. ....................................................................................................................... 130	
Table  algorithm 6.2 The creation of a dynamic optimal composition plan 𝜋𝐵′ from multiple 

providers. ..................................................................................................................... 131	
Table 6.21 Cloud providers composition set per multiple-cloud providers environment. .. 134	
Table 6.22 Number of services per composition plans ........................................................ 134	
Table 6.23 CPs and number of (π) composition plans per MCPs. .................................. 135	
Table 6.24 CPs and number of (π) composition plans per MCPs. ...................................... 136	
Table  Summary of notations used. ...................................................................................... 156	
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 8 

 
ACKNOWLEDGMENTS 

This thesis is the story of a journey throughout which I received help from many people, 

some of them helped me from outside and others gave me unforgettable internal motivation. 

I would like to thank my parents and my family for their love, patience and support at all 

times. I would like to thank my supervisor, Dr. Thar Baker for his intellectual guidance and 

continuous encouragement, which ensured the successful completion of this thesis. He 

always gave me freedom to think broadly and deeply into my research. The regular meetings 

conducted by him made me work more regularly and systematically. His endless amount of 

energy is really an inspiration for me to do better research. Also, I would like to thank Dr 

David England for his guidance and encouragement during my study. I would like also to 

thank Dr Martin Randles for his support. 

 

 
 
  



 9 

FIRST CHAPTER 

	
 
 
 
 
 
 
 

	
Introduction	

 
 
 
  



 10 

1.1 Introduction  
Thanks to its on-demand utility pricing model, cloud computing has grown considerably to 

support online services both for businesses and for individuals. The business model is 

deemed simple and powerful: providers, offer services, end-users find the service they want, 

and when they have subscribed, high-speed network connection is put in place between 

them to enable them to use the selected services. As an advanced technology, it has 

revolutionised the Information and Communications Technology (ICT) industry. In other 

words, cloud computing has changed the way that services are offered through the Internet. 

It provides computing resources such as hardware, application development platforms and 

computer applications available as services over the Internet. These services are commonly 

known, respectively, as Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and 

Software as a Service (SaaS). It represents a shift in the geography of computation, where 

the cloud resources’ physical location is not a barrier whatsoever for the users and providers. 

Therefore, the cloud computing resources can be accessed at anytime from anywhere in the 

world via the users’ machines that are connected to the Internet (Larumbe and Sansò 2012). 

Hence, on the one hand the users do not need to worry about where the resources/services 

are based and/or how they can be accessed and used. And on the other hand, cloud providers 

can offer their services/resources to anyone on the globe. Furthermore, cloud computing 

provides various benefits in terms of scalability, cost, maintenance and performance 

compared to the traditional computing (Baliga et al. 2011). 

Based on the above, the heavy demands on cloud computing resources has led to a 

substantial growth in the data transferred between cloud computing parties (i.e., providers, 

data centres, users, and services), network traffic and the energy consumed by the huge 

infrastructure of cloud computing, which is needed to meet the users’ requests quickly and 

effectively. The cloud network traffic is forecasted to increase about threefold between 2013 



 11 

and 2018 (Larumbe and Sansò 2012). Routing big data between the cloud computing parties 

requires a high bandwidth connection, which consumes larger amounts of energy (Chang 

Ge, Zhili Sun, and Ning Wang 2013)  than just processing and storing big data on cloud data 

centres, and thus, producing high carbon dioxide emissions. When transferring such 

amounts of data into a data centre located quite far from the users’ geographical location, 

this power consumption becomes significantly high. Generally, there are two main pillars 

for energy consumption of cloud computing that should be dealt with efficiently and equally 

to achieve the most energy-efficient cloud computing environment: (i) the amount of energy 

consumed at the computation and processing of each service at the data centre and (ii) the 

amount of energy consumed on transporting the data between the user and the cloud data 

centre. Hence, it has become a high necessity to locate the lowest energy consumption route 

between the user and the designated data centre, and services that match the user request, 

while making sure the users’ requirements are met. 

In its simplest form, one cloud provider provides all services required by a user. However, 

where this is not possible (i.e., more than one cloud provider is involved in producing the 

required service(s)) the service’s components/parts must be put together with care. A user’s 

request with a specification of the services required goes to the provider, who returns a reply 

to the user that contains the required services. When resource limitations or other constraints 

mean that a single service provider cannot meet all of the user’s needs, the model becomes 

more complex. Typically, this will be seen as composition of a number of services and the 

use of the model of broker-based cloud services (Aldawsari, Baker, and England 2015), with 

multiple cloud service providers collaborating in a multi-cloud environment so that the user 

can receive the desired service outcomes. The assumption must be that the various services 

coordinate their activities to avoid conflict in such matters as shareable resources and order 

dependencies, and also to avoid delays in communication. 



 12 

This presents a huge challenge due to the following points: 

• To meet environmental requirements as published in the 2011 report of PBL 

Netherlands Environmental Assessment Agency and JRC European Commission; 

(Jos G.J. Olivier, Greet Janssens-Maenhout, Jeroen A.H.W. Peters 2011). 

• To reduce energy consumption (Baer 2008) and lower the volume of CO2 

emissions by 15%-30% before 2020 to keep increases in global temperature 

below 2oC.  

• To integrate fewer services from cross-continental and scattered providers to 

fulfil user demand, meaning that there is less data exchanged, leading to a 

reduction in the carbon footprint of the multi-cloud IoT environment. Moving 

lots of data between services has an impact on energy. 

This thesis present three new models and their related algorithms to address the above issue. 

In the first one, the most energy efficient route between the user and cloud datacentre will be 

chosen in order to achieve the full green cloud computing. The second algorithm is based on 

a bin-packing approach and aimed at finding and integrate the lowest possible number of 

services in order to minimise data exchange. The last model focuses on the creation of 

energy-aware composition plan in order to fulfil user requirements, by searching for and 

integrating the most energy efficient services. 

 

1.1.2 Motivation: energy consumption reduction 

The Energy White Paper, published on 24 February 2003, sets out the government’s overall 

goals for the UK energy policy (Department for Transport 2003), and puts the UK on a path 

to cut CO2 emission by 60% by 2050. In addition, according to an IEEE Communication 

Survey (Chang Ge, Zhili Sun, and Ning Wang 2013), the global electricity demand of cloud 

data centres was 623bn kWh in 2007, 416.2 tWh in 2015, which was significantly higher 



 13 

than the UK’s total consumption of about 300 tWh, and is expected to rise up to 1963.74 

tWh by 2020. For instance, a data centre in North Carolina consumes as much as 100MW of 

power, which is equivalent to about 80,000 US homes or 250,000 EU homes (Baer 2008). 

As explained above, in a typical scenario in a cloud environment, a user submits a job to a 

cloud service broker explaining the requirements of the needed services. The broker should 

then find the appropriate service provider or set of providers that serve the request. Yet, 

finding the most energy efficient route to a data centre and locating the best fit and the most 

energy efficient service, or set of services, that matches the user needs are the most 

challenging tasks for the multi-cloud brokers. The state-of-the-art in this domain focuses on 

the power consumption of the datacentre and its equipment, including server, storage and 

network equipment as well as new cooling and power management technologies.  

Thus, this was the spark to conduct research in this area and find the best solution to solve 

the above-mentioned issues. 

  

1.1.3 Research Hypothesis  
The research hypothesis of this work is that, selecting the most energy efficient route to the 

cloud data centre alongside finding and integrating the lowest possible number of most 

energy efficient services from the least possible number of cloud providers can help in 

achieving a full green cloud computing environment, which eventually contributes to the 

energy saving goals by 2050. 

 
 
1.1.4 Research Problem 
Routing and transferring large amounts of data into a data centre located quite far from the 

users’ geographical location can consume larger amounts of energy than just processing and 

storing the same data on cloud data centres.  Hence, it became a high necessity to locate the 

lowest energy consumption route between the user and the designated data centre, while 



 14 

making sure the users’ requirements are met. On the other hand, when a cloud user submits 

a job (in the form of a set of functional and non-functional requirements) to a cloud service 

provider (data centre) via a cloud services broker; the broker is then responsible to find the 

best-fit service to the user request based on the user’s requirements. Finding the most 

energy-efficient route to the data centre, and best-fit service, in terms of energy 

consumption, to the user is the multi-cloud broker’s biggest challenge because: 

 

• When a user request is submitted, all routes towards the data centre do not consume 

the same amount of energy. Therefore, a routing solution is needed to find the most 

energy efficient route to the data centre. 

• In order to minimise the energy efficiency of cloud services (or resources), it is 

necessary to find and allocate suitable services, in terms of energy efficiency and 

power consumption, from lowest possible number of service providers. There has 

been a great deal of research into discovery and composition of cloud services, and 

tools have been developed with the power to serve users when they need it to use the 

services. A great deal of this research actually involved Infrastructure-as-a-Service 

(IaaS) layer and virtualisation types. However, searching for, allocating, and making 

provision plans for services that are energy efficient, is overlooked. 

• While a number of heuristic IaaS solutions have been put forward, algorithms that 

will allocate resources in the most energy efficient way are still lacking. As time 

goes on, there is a development of hybrid cloud solutions combining IaaS and 

Platform-as-a-Service (PaaS) in a single cloud (OpenStack Heat is an example), and 

these are attractive because they make it possible for infrastructure and applications 

to be deployed together, but there is still not sufficient attention given to the energy 

efficient allocation of resources. 



 15 

• There is no clear process for finding the most energy efficient services from multiple 

cloud providers that meet user needs.  

 
1.1.5 Novelty of the thesis   
This work makes a number of novel contributions, all of which have been, or are being, 

submitted to relevant research publications (Appendix I) and are summarised as follows: 

• Defining and formalising the user-to-broker and data centre-to-broker models so that, 

the interconnection between the cloud user and a data centre, will be formalised by 

using a situation calculus model to define the logical state of the network. Once the 

interconnection is established and formalised, then the energy required for the 

transportation will be calculated. 

• A high-end routing algorithm entitled Green Director (GreeDi), which acts as an 

intermediary bridge for directing the users’ requests to the green data centres based 

primarily on using the most energy efficient route.  

• An algorithm to rank cloud service providers by total energy consumption. 

• An algorithm to enable the broker to search for the best possible match by seeking a 

combination of individual atomic service and lowest energy consumption. 

• An algorithm to allow the broker to search predefined composition plans and their 

energy consumption in order to find the best possible match for user requirements. 

• An algorithm to allow the broker to build a new optimal composition plan by 

selecting the most energy efficient services from the smallest possible number of 

providers.  

• An algorithm to discover a predefined optimal composition plan from a single 

provider. 

• An algorithm to create a dynamic optimal composition plan from multiple providers. 



 16 

1.1.6 Research	Scope		
This research proposes novel support for achieving an energy efficient cloud, which is 

achieved by: 

• A high-end routing model to achieve the full green cloud computing environment 

ambition while making sure the users’ requirements, e.g. response time, are met. To 

create this model, we need to develop an algorithm that acts as an intermediary 

bridge for directing the user requests to the green data centres based primarily on 

using the most energy efficient route. 

• A bin-packing based energy-efficient service model to find and integrate, from the 

largest possible number of service providers, the smallest possible number of 

services offering the highest level of energy efficiency. To enable this model, we 

need to create four algorithms to (i) Rank the Cloud Providers in a descending order 

based on total Energy Consumption, (ii) Find an atomic service that matches the user 

request, (iii) Find a predefined optimal composition plan from a single provider

 and (iv) Create an optimal services composition from multiple providers.  

• A unique energy-aware multi-Cloud service composition model, which develops 

energy efficient composition plans through the integration of the fewest services 

globally from service providers. To achieve this model, we need to create two 

algorithms to (i) discover a predefined optimal composition plan from a single 

provider and (ii) to create a dynamic optimal composition plan from multiple 

providers. 

 

1.1.7 Aim and Objectives 
The aim of this work is to create and evaluate an energy efficient multi-cloud broker to 

address the gap mentioned in (Section 1.1.4). It acts as an intermediary bridge for directing 

users’ requests to the data centres based primarily on using the most energy efficient route. 



 17 

In addition, the broker manages the cloud services to find the most energy efficient 

service(s) that matches the user request; hence, achieving the most energy-efficient cloud 

computing environment. The primary objectives of this research include: 

• Perform an extensive literature study on the cloud brokerage systems, the available 

cloud services delivery platforms to extract the components and features of these 

platforms and enable the managing of cloud services in a multi-cloud environment 

and achieve the energy efficiency. 

• Create a new energy efficient services delivery algorithm that will be run in a multi-

cloud environment to act as an intermediary bridge for directing the user requests to 

the data centres based primarily on using the most energy efficient route. 

• Create an energy-efficient service algorithm to find and integrate the smallest 

possible number of services offering the highest level of energy efficiency based on a 

bin-packing approach. 

• Develop an energy-aware multi-Cloud service composition model, which develops 

energy efficient composition plans through the integration of the fewest services 

globally from service providers. 

• Test and evaluate the proposed algorithms against the well-known algorithms using 

network simulations.	

	

	

	



 18 

1.1.8 Methodology 
Objectives  Methodology  Chapters  

Extensive literature study on the 

brokerage systems and routing 

solutions in the cloud environment 

Conducting a literature review  Chapter Two 

and chapter 

three 

Create a new services delivery 

algorithm for directing the user 

requests to the data centres based 

primarily on using the most energy 

efficient route 

Using Situation Calculus model, 

Integer Linear Programming,  

Goal-oriented programing, 

and Dynamic programming 

approach 

Chapter Four 

Development of an Energy-Efficient 

Service Provision model to find and 

integrate the lowest possible number 

of services offering the highest level 

of energy efficiency. 

Bin-packing approach Using 

Integer Linear Programming and 

 

IBM ILOG CPLEX 

Optimization Linear Solver 

Chapter Five 

Development of a service 

composition model, which develops 

energy efficient composition plans 

through the integration of the fewest 

services from globally distributed  

providers. 

Using formal user requirements 

translation and transformation 

modelling and analysis 

 

Chapter Six 

	

1.1.9 Thesis Structure 
The second chapter starts with the explanation of the cloud computing concept and its main 

players. In addition, it introduces the cloud service brokerage systems and their architectures 

resource management. Moreover, this chapter explains the cloud services models, cloud 

computing virtualization and the virtualization forms and categories. Furthermore, it 

describes the energy efficiency in cloud computing, the energy consumption in data centres 

and the energy efficient cloud resources allocation. The third chapter introduces the network 



 19 

routing problem and the energy efficiency in cloud computing. It highlights the cloud broker 

selection problem and the energy consumpton issue in data centres and during the resource 

allocation.   

Moreover, the fourth chapter intends to focus on the design and implementation of the 

energy efficient routing model for big data on the cloud model, which includes discussion 

about the situation calculus used to analyse the network topology.  Moreover, linear, goal 

and dynamic programming modelling approaches will be discussed in this section. The fifth 

chapter presents the design and implementation of the bin-packing based multi-cloud model 

for energy efficient data-intensive applications and provides the main aim and objectives of 

this work. In addition, a detailed discussion on how the model works is presented in this 

chapter. The energy-aware service composition model and its design and implementation for 

multiple cloud applications, a detailed discussion of the proposed model and how it works is 

introduced in the sixth chapter. Finally, the research conclusion and the future work is 

presented in seventh chapter. 

  



 20 

SECOND CHAPTER 

	
 
 
 
 
 

	
Cloud	Computing	

 
 
 
 
 
 
	 	



 21 

2.1.	Introduction	
The development of the proposed energy efficient multi-cloud broker in this thesis was 

inspired by previous works and is based on a number of paradigms, concepts and 

technologies which exist in cloud computing. Thus, as a convenient approach for presenting 

the overall state-of-the-art and related work, the literature review is structured into four main 

areas:  

• Cloud computing environment: explaining the definition of the cloud computing 

concepts and its main players. 

• Virtualisation: focusing on the virtualisation forms and the categories of virtualised 

servers. 

• Cloud services: focusing on the classic cloud service models and the new hybrid one. 

• Cloud service brokerage: studying the architecture of existing cloud brokers and the 

management of the resources when using a broker.     

 

2.2.	Cloud Computing	
Cloud computing represents the fastest growing area in Information and Communication 

Technologies (ICT) at present. It gives users a cost-efficient way of obtaining different types 

of computing resources by paying only for what they use. The way cloud services are 

provided allows users and companies to outsource almost all ICT functions including 

hardware resources, services, and applications.  

 

 



 22 

 
Figure 2.1 Cloud Computing concept (F. Liu et al. 2011) 

The number and varieties of definitions of the cloud that can be found in the literature 

indicate, either explicitly or implicitly, the lack of a clear, complete and universally agreed 

definition of what this model comprises. Probably the most widely accepted one among the 

various definitions of cloud computing is the one put forward by NIST (National Institute of 

Standards and Technology) (F. Liu et al. 2011), which defines the cloud as:  

“a pay-per-use model for enabling convenient, on-demand network access to a shared pool 

of configurable computing resources such as networks, servers, storage, applications, and 

services. It can be rapidly provisioned and released with minimal management effort or 

service provider interaction”. 

Accepting this definition permits extraction of a number of key features of cloud computing, 

such as: 

• On demand automated resource provisioning and user self-provisioning (known as 

cloud self-service). 

• Access to resources from anywhere and anytime on the network. 

• Ability to pool resources, which can be assigned dynamically to suit each client's 

needs regardless of physical location. 



 23 

• Immediate scalability (a.k.a. scale up/down/out) so that peaks in demands can be 

dealt with. 

• Metering based resources used; similar to the other utility payment model enable the 

pay-per-use approach. 

 

2.2.1.	Deployment models of cloud computing	
There are four hosting deployment models of cloud computing dubbed private, community, 

public, and hybrid. These models represent the categories of cloud computing environment 

and are distinguished from each other by the purpose, size, and access way, as follows: 

Private cloud: 

A private cloud is an infrastructure that is owned and managed by one single company, is 

used in that company’s private network, and is not available to other users. It is also known 

as an internal cloud; the platform for cloud computing is implemented on a cloud-based 

secure environment that is safeguarded by a firewall, which is under the governance of the 

IT department that belongs to a particular corporate (Victories 2015). For example, a private 

cloud can be used by a financial company who will still need to benefit from some of the 

advantages of cloud computing and is required to store sensitive data internally. 

Community cloud: 

A community cloud is a type of cloud hosting in which the setup is mutually shared between 

many organisations that belong to a particular community, i.e. banks and trading firms. It is 

a multi-tenant setup that is shared among several organisations that belong to a specific 

group which has similar computing apprehensions. The community members generally 

share similar privacy, performance and security concerns. The main intention of these 

communities is to achieve their business related objectives. A community cloud may be 

internally managed, or a third party provider can manage it. Hence, it can be hosted 



 24 

externally or internally. The cost is shared by the specific organisations within the 

community, therefore, community cloud has a cost saving capacity (Victories 2015). An 

example of this cloud is that a few organizations might require a particular application that 

resides on one set of cloud servers. Instead of providing every organization their server in 

the cloud for this app, the hosting company shares their environment to allow multiple 

customers to connect and segment their sessions.  

Public cloud: 

A public cloud is a large, high-volume and high performance infrastructure owned by one or 

more companies and provides IT services through the Internet to a multiplicity of 

consumers. This model is a true representation of cloud hosting. In this model the service 

provider renders services and infrastructure to various clients all around the world. The 

customers do not have any distinguishability and control over the location of the 

infrastructure (Victories 2015). A good real life example of this cloud is Amazon Elastic 

Compute Cloud (EC2), IBM’s Blue Cloud, Sun Cloud, Google AppEngine and Windows 

Azure Services Platform 

Hybrid cloud: 

Hybrid clouds combine public and private clouds, with a company’s private cloud running 

those apps and/or managing that data that must be protected at all costs from external 

interference and from others among the company’s apps running on a public cloud. It can be 

an arrangement of two or more cloud servers, i.e. private, public or community cloud that is 

bound together but remain individual entities. Benefits of the multiple deployment models 

are available in a hybrid cloud hosting. A hybrid cloud can cross isolation and overcome 

boundaries by the provider; hence, it cannot be simply categorized into public, private or 

community cloud. It permits the user to increase the capacity or the capability by 

aggregation, assimilation or customization with another cloud package or service (Victories 



 25 

2015). An example of this type of cloud is an organisation that could deploy an on-premises 

private cloud to host critical or sensitive workloads, but use a third-party public cloud 

provider, such as Google Compute Engine, to host less-critical resources, such as test and 

development workloads. In addition, a hybrid cloud could also use Amazon Simple Storage 

Service to hold customer-facing archival and backup data. Moreover, it could use a software 

layer, such as Eucalyptus, to enable private cloud connections to public clouds, such as 

Amazon Web Services (AWS). 

 

2.2.2.	The main players in cloud computing	
Like in any other utility provisioning model (i.e., gas, electricity and water), cloud 

computing has three main players, which are: providers, brokers and users. Each of these 

players plays a specific role and has a certain purpose from cloud computing. This section 

provides further details and definitions of these players. 

Cloud Provider: 

A cloud provider is meant to provide cloud infrastructure, through which cloud services are 

hosted. All responsibility for managing, controlling and maintaining cloud resources and for 

handling users’ requests lies with the provider. A cloud computing provider’s typical goal is 

to maximize its revenues with its employed pricing scheme. The cost will usually be based 

on a per-use utility model. 

Cloud users: 

A user is defined as an account with permission to log into the cloud application to use cloud 

services. A named user with this permission is counted towards the user limit and it could be 

individuals, companies, groups in which pricing will differ from one another and their main 

goal is to obtain the highest level of quality of service (QoS) feasible for a reasonable price. 

 

 



 26 

Cloud Broker: 

The Broker acts on behalf of both cloud users and providers, distributing user requests 

between providers according to which provider is best suited to meet that particular request. 

In this sense, brokers are acting as travel agents; the user tells the broker which application 

(type of holiday) is needed and the broker decides which service providers (holiday 

companies) offer the best deal. This analogy cannot be carried too far – travel agents are 

responsible for the resort or other type of location to which they send their customers, while 

brokers have no responsibility for where the actual computer would be located. Further 

details about the existing brokers and the way the broker works are set out in the third 

chapter. 

2.3.	Cloud Computing Virtualization		
Server virtualisation has been used as a leading technology for sharing computing 

infrastructure for a while now. In fact, it was actually started back in the early 1960’s by 

companies such as General Electric, Bell Labs and International Business Machines (IBM) 

(editor 2011). In the same vein, virtualization technology is what makes cloud computing 

possible. It works through the abstraction of physical resources by multiplexing a number of 

virtual resources onto one physical one as shown in Figure 2.2 Virtualization provides 

flexibility, convenient management of resources, elasticity in resource management, and 

isolation, while also permitting the coexistence on the same hardware of a number of 

heterogeneous services. 

 



 27 

 
Figure 2.2 number of isolated virtual servers to run on one single actual server (editor 2011) 

2.3.1.	Virtualization Forms 
Virtualization can be used in different shapes and forms in cloud computing infrastructure, 

including: server virtualization; storage virtualization; and network virtualization. All three 

rest on the same principle of abstracting physical resource through partitioning. Cloud 

computing’s commonest method of resource abstraction is server virtualization, which – 

implemented in a variety of ways – permits a number of isolated virtual servers to run on 

one single actual server. Full virtualization, para-virtualization and OS-level virtualization 

are among the possible implementation methods. Full virtualization and para-virtualization 

both share the physical hardware by use of a hypervisor, but modify host and guest 

operating systems differently, as well as the way they interact among themselves, to make 

virtualisation happen. Virtualisation at the operating system level (OS-level), on the other 

hand, does not use a hypervisor; or virtual servers run the same host operating system, and 

this confers all functions that might otherwise be supplied by a hypervisor. It is therefore 

possible to divide server virtualisation into two types: virtualisation based on the hypervisor, 

and virtualisation based on the operating system or container. More information about this 

categorisation will be found in the next section. 



 28 

 

2.3.2.	Categories of server virtualisation  
As discussed in the previous section, the way that is chosen to virtualise resources in cloud 

computing can be categorised in either of two ways: through hosted virtualisation with a 

hypervisor, or through container-based virtualisation. 

2.3.2.1.	Hypervisor based virtualization:  
Hypervisor-based virtualisation was the way that virtualisation in the cloud was originally 

done. The hypervisor is a software layer tasked with managing physical server resources. 

Hypervisors in common use include: KVM (Kvm 2017), VMWare (VMware 2017), 

Microsoft Hyper-V (Hyper-v 2017), and Xen (Xen 2017). Virtual machines (VMs) can run a 

variety of operating systems including, but not limited to, Linux and Windows, whatever 

operating system may be run by the physical box that is hosting them. Introduction of an 

additional software layer by this type of virtualisation allows resource consolidation into 

virtualised servers (Srikantaiah, Kansal, and Zhao 2008) as well as providing live migration 

(Travostino et al. 2006) allowing VMs to be moved to other servers without being shut 

down. 

 
Figure 2.3. Container based virtualization vs hypervisor based virtualization (Travostino et al. 2006) 



 29 

2.3.2.2.	Container based virtualization:	
Container based virtualization is an easy-to-use alternative to using hypervisors (Soltesz et 

al. 2007) (Xavier et al. 2013). This technology operates at the level of the operating system, 

permitting one server to host a number of isolated virtual environments; they differ from 

other VMs in that, based on a single shared operating system, they all run the same 

operating system as the host and cannot run different OSs. The differences between these 

two forms of virtualisation are shown in Figure 2.3 Container-based solutions include: 

Docker (Docker 2017), Linux containers (LXC) (LinuxContainers 2017), Solaris Containers 

(SolarisContainers 2017), Virtuozzo Containers (VirtuozzoContainers 2017) and OpenVZ 

(OpenVZ 2017). 

In order to specify the best-fit virtualisation technology to use, it is important to study the 

desired system’s features to have. For example, where flexibility and greater security are 

needed, or where there is a need to run different operating systems (Scheepers 2014), 

hypervisor based virtualization recommends itself. Otherwise, if the most important factor is 

performance, then container-based virtualisation comes into its own, being more 

manageable and providing performance at close to native level. The consolidation ratio is 

also higher and, because it allows one host to support a large number of instances, resource 

usage is more efficient. Container-based virtualisation brings with it portability, transport, 

and isolation at the process level across hosts. 

The two categories of virtualisation do not exclude each other and they are increasingly 

being used together. Container-based virtualisation is frequently used to build PaaS 

environments, while IaaS cloud services really need hypervisors, so that having resort to 

both solutions means that complex services can be deployed over hybrid IaaS/PaaS cloud 

providers to bring together applications and the underlying infrastructure in such hybrid 



 30 

solutions as Proxmox (Proxmox 2017), which enable both technologies to be supported on 

one physical server. 

2.4.	Cloud Services 	
Cloud service models define the way in which services are provided to users. There are two 

model types: classic cloud service models and new hybrid ones. 

 

2.4.1.	Cloud service models	 	
There are three types of classic cloud service models as shown in Figure 2.4: Infrastructure 

as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). 

 

 
Figure 2.4 three types of classic cloud service models (Kubernetes 2017) 

 

2.4.1.1.	Infrastructure as a Service (IaaS):	
IaaS is the cloud services model that is easiest to understand, because in effect it sums up 

exactly what the cloud is about: provisioning and delivering such resources as virtual 

machines, physical servers, network and storage. Where companies previously invested in 



 31 

their own infrastructure, they usually have to buy more than, most of the time, what they 

need because of peaks in demand. However, with the cloud computing IaaS model, they can 

now rent resources on-demand, based on their use and need using the pay-per-use model. An 

IaaS user can access the lowest level in the stack directly and build an application 

environment from the ground up. One such IaaS Cloud is Amazon Elastic Compute Cloud 

(EC2) (Amazon 2017). 

 
2.4.1.2.	Platform as a Service (PaaS): 
PaaS is rather a more complex, higher level service than IaaS. In this level, software 

platform and an application development environment are provided, where users can build 

cloud applications and subsequently deploy and manage them without having to concern 

themselves with the details of the technology and infrastructure they are hosted on. Instead 

of waiting for time on an in-house machine to become available, developers can get on with 

the job straightaway, paying only for resources they use, as mentioned above. Well-known 

PaaS platforms include Google App Engine (GoogAppEngine 2017) and Microsoft Azure 

Services (MicrosoftAzure 2017). 

 
2.4.1.3.	Software as a Service (SaaS):	
The highest-level Cloud service model is SaaS. The work is done for the user and provided 

through the Internet. Not only do the providers manage the infrastructure; they also provide 

and run application software, which can be accessed by users in the same way as those 

would access a locally hosted application. It is not necessary for users to know anything 

about the cloud and its associated technology – they do not even need to know that they are 

running a cloud-based application, but rather they need to focus on how to use these 

application to achieve their tasks. Facebook and Salesforce.com, for example, are SaaS 

applications. Large numbers of other commercially available systems including Google 



 32 

Documents (GoogleDocs 2017) and Google Apps (G suite) (GSuite 2017), are some other 

examples. 

 
2.4.2.	New hybrid service models	
As the users request more flexibility and more control in order to deploy applications in the 

way they choose and with having the control on both infrastructure and programs, the classic 

three layer concept has often been a subject of discussion. The consolidation of IaaS and 

PaaS is expected, while there is a steady blurring of divisions between cloud services so that 

IaaS and PaaS increasingly work together and are presented as two sides of the same coin, 

while new hybrid Cloud providers are emerging to provide a way for users to bring together 

a variety of services. 

It is in the interests of such companies as Amazon, Microsoft and Google, as well as being 

clearly in the interests of users, but those users when requesting Cloud services, should not 

need to think about whether it is IaaS or PaaS that they need. One such emerging cloud 

service is Kubernetes (Kubernetes 2017), an offering from Google that combines IaaS and 

PaaS. The IaaS provider, Openstack (OpenStack 2017), is adding PaaS features in order to 

provide seamlessly combined IaaS-PaaS services by orchestrating Docker (Docker 2017) 

containers through the use of Openstack Heat. 

451 Research (Jay Lyman 2014), is a global analysis company with a particular interest in 

IT innovation at the enterprise level. It says ”Although it is maturing in technology and 

market, PaaS is getting squeezed between consolidation with IaaS and heavy use of SaaS. 

PaaS will most likely survive as a category, but not necessarily as we know it today”, which 

indicates the new category to combine IaaS and PaaS in order to enable users to create a 

single continuum of services. 



 33 

2.5.	Cloud Service Brokerage	
NIST and Gartner have provided a definition of Cloud Service Brokerage (F. Liu et al. 2011; 

Gartner 2013), which revolves around a three-pronged categorization. According to the two 

organisations, cloud broker refers to a middle entity, which oversees the negotiations and 

relationships between cloud consumers and cloud providers; and manages the use, 

performance and delivery of cloud services (Forrester 2012). The focus of Gartner 

customisation and NIST intermediation is on promoting the existing service. Gartner 

integration and NIST arbitration share a similarity that is a reflected integration of diverse 

systems and flexible mediation. As shown in Figure 2.5, there are three cloud service 

brokerage roles: 

 
Figure 2.5 cloud service brokerage roles to manage the broker 

Aggregation focuses on the delivering of two or more services to several customers. 

However, this does not involve provision of new customisation, integration, and 

functionality; but rather it focuses on providing central management of security and SLAs. 



 34 

Service aggregation models play an important role in the broker systems as they help to 

deploy customer applications across multiple cloud providers (L. Zhang, Fowley, and Pahl 

2014). Some jobs across multiple cloud providers that offer similar or different types of 

services can be aggregated to meet user requirements. Sometimes, consumers may have 

specific time and limited budget and need their application to be distributed across multiple 

cloud providers to meet their requirements, in which case the aggregation helps the broker to 

achieve this task. 

Customisation involves increasing or modifying capacities for improvement and promotion 

of service(s), alongside its analytics. Multiple services can be bundled and customised into 

one or more services that are contracted directly the cloud users. It enables the organisations 

to add more functionality using their own processes of choice rather than being limited by a 

vendor-specified approach. Moreover, customisation allows users to control the service 

based on their needs. 

Integration tackles the problems associated with the functioning of independent services in 

a combined manner. It usually involves combining processes, resources and/or services 

vertically across the same cloud provider, or horizontally across multiple cloud providers. 

Conventional methods such as orchestration, mediation and transformation offer solutions to 

compose these resources together. Generally, the integration process allows the 

communicated data and information to be integrated via a mediation technique where the 

cloud broker can build services on top of the services, such as management capabilities or 

additional security. In addition, service discretion plays an essential role in cloud brokerage 

systems especially in the integration process. It enables the system to discover, deploy, and 

manage multiple services (Sun, Dong, and Ashraf 2012). 

 



 35 

2.5.1.	Cloud Service Broker Architectures	
Cloud brokerage solutions are based on existing SaaS, PaaS, IaaS, cloud platform, and 

virtualisation. According to Fowley et al. (Fowley, Pahl, and Zhang 2013), there are three 

architectural patterns identified: 

Cloud Management: supports monitoring, providing, deployment, and designing cloud 

resources. For instance, using management portals; this constitutes an expansion of the 

central lifecycle management (LCM), incorporating tracking features and interactive 

graphical forms. Rudimentary characteristics for integrating compatible services may be 

offered. A management layer is usually located within cloud architecture to management, 

which enhances scalable and effective provisioning within the following platforms. 

Cloud Broker Platform: is used for supporting the types of broker activity such as 

integration, customisation, and aggregation that requires a specified language for description 

of services such as unified service description language (USDL) in a balanced manner and 

for definition of the integration mechanism. This originates from the common broker pattern 

in software design, applied on a cloud environment. To obtain the right solutions and to 

enable the customisation of applications in order to meet the end-user needs, each cloud 

service broker has a partnership with several computing platform providers. 

Cloud Marketplace: builds up on broker platforms and it brings customers and providers 

together. Additionally, description of service for integrated and core services are critical in 

enhancing technical and functionality quality features. The second aspect that requires 

facilitation is trust. Notably, apps marketplaces are ubiquitous, thus the marketplace pattern 

reflects future cloud-specific marketplaces. 

 

2.5.2.	Resource Management in Cloud Broker 	
The support of diverse service consumers by the cloud brokers is based on its ability to 

integrate resources from many cloud providers. The users access the Web services hosted by 



 36 

the cloud providers over the Web interface. Basically, the cloud provider aims at satisfying 

the SLA set with the client for the hosted services through the utilization of the minimal 

amount of hardware resources that is received from the cloud broker (Nair and Porwal 

2010). On the other hand, the cloud broker targets profits improvement through the leasing 

of the optimal percentage for the requested computing resources provided to the consumers. 

Additionally, the computing environment has unpredictable differences such as software and 

fees leading to an excess the arrival rate of web request more than the expected value. Thus, 

it becomes necessary for the cloud broker to be asked for additional resources by the 

consumers. Therefore, it is important for the consumers to negotiate with the cloud provider 

for the resources by relying on pricing schemes that support in maintaining the SLA as well 

as minimizing the cloud resources costs (Nair and Porwal 2010). Furthermore, additional 

resources may be required by the multiple consumers via the cloud broker. Thus, it may lead 

to competition over the limited resources by the cloud providers.  

 

The researchers now focus their attention towards the solutions addressing resource 

management challenges in data centres (Beloglazov and Buyya 2010). Mostly, the 

approaches fail to address the problems of management of resources within the framework 

of the organisation. The reliance on the cloud brokers helps in the integration of many 

resources from numerous cloud providers, which requires the exposure of the requirements 

to orchestrate and compose these resources. The recent literature has indicated that the 

efficient operation and management of the cloud computing environment is essential 

because the framework for federated cloud computing has increased in demand. Therefore, 

the cloud brokers provide the best hope for dealing with the multi-cloud environment 

complexities. In that regard, it emphasizes the need for efficient management and allocation 

of the resources in the model of relying on cloud brokers (Rogers and Cliff 2012). 



 37 

 

2.6.	Summary		
This chapter presented a literature review on a number of paradigms, concepts and 

technologies existing in cloud computing. It introduced cloud computing and explained the 

definition of the cloud computing concepts and its main players. Moreover, the cloud 

computing virtualisation and its forms and the categories of the servers were explained. In 

addition, this chapter highlighted the cloud services and their three classic cloud service 

models and the new hybrid one. Finally, the architecture of the cloud broker and the 

management of the resource when using the broker was explained. 

  



 38 

THIRD CHAPTER 

	

	
	

	
Network	Routing	and	Energy	

Efficiency	in	Cloud	
Computing	

 
 
  



 39 

3.1.	Introduction		
The main objective of the service brokers is to direct the user requests to the best datacentre 

that has optimum performance. For example, the service broker policy must choose a data 

centre taking into consideration multiple factors such as availability, cost, and time. Online 

services have encouraged service providers and data centres to offer hosting in every 

geographical region, which obviously resulted in a high increase in network traffic and a 

matching rise in the energy consumed by the vast infrastructure (e.g., servers, routers, and 

switches). This chapter discusses the following issues: 

• Network routing: presenting the routing problem in cloud computing when a broker 

selects a service. In addition, other techniques such as segment routing and sensor 

networks routing algorithms will also be discussed.  

• Energy efficiency in cloud computing: explaining the energy issues in the cloud and 

its resources.   

The chapter concludes with an outline of the main requirements for an energy efficient 

brokerage solution in multi-cloud environments, which paves the way to the design, 

development and evaluation of the proposed broker in following chapters. 

 
3.1.1.	Cloud broker problem		
As mentioned above, the service broker relies on defined routing policies to choose the best 

possible data centre to serve/execute the coming job(s). The three standard routing policies 

are: (1) network latency-based (i.e., service proximity based routing) (Limbani 

2012)(Sharma 2014), (2) response time-based (i.e., performance optimized) routing (Q. 

Zhang, Cheng, and Boutaba 2010) and (3) Dynamic load-based (i.e., dynamically 

reconfigure) routing (Rekha P.M. and Dakshayini 2014). In service proximity based routing, 

the broker selects the shortest path from the User Base (UB) to the data centre based on 

network latency, so transmission latency is considered by the service broker when routing 



 40 

the traffic to the closest datacentre. The result of this routing policy is the overloading of the 

nearest data centre and communication channel to it, as it does not consider the channel 

bandwidth. Whereas in performance optimised routing policy, the broker selects the best 

path based on performance of all datacentres, thus the traffic is directed to the datacentre 

based on the best response time. This will be generalised as the status of any other 

datacentre. As such, any data centre with a zero-current load, will not be chosen unless a 

specific amount of time is known (i.e., Cool-Off-Time). This might render the data centre 

“idle” with no jobs assigned to it even if it was the closest to the UB (i.e., least latency) and 

highest bandwidth network path available (Rani, Chauhan, and Chauhan 2015). 

Alternatively, the dynamically reconfigured routing has similarities with proximity based 

routing, however the broker scales application deployment is based on the load faced 

(Limbani 2012) (Wickremasinghe, Calheiros, and Buyya 2010)(Semwal and Singh Rawat 

2014). 

As can be seen above, there are some drawbacks that are shared among the three service 

broker policies. For example, in service proximity based routing, the service broker does not 

include network bandwidth or the request data size, which might cause a significant 

degradation in overall performance, particularly in the case of big data or where there are 

multiple requests which share bandwidth and the same communication channel (i.e. file or 

gaming servers) (Rekha P.M. and Dakshayini 2014). Alternatively, performance optimised 

routing has similar problems as the service proximity routing policy. It takes into 

consideration server load by referencing previously performed jobs and choosing them 

accordingly, irrespective of job size and network bandwidth (Sharma 2014) (Sarfaraz 

Ahmed 2012). Lastly, dynamically reconfigured routing is inefficient if region numbers and 

quantity of data centres are limited; as it scales application deployment based on current 

load (Rekha P.M. and Dakshayini 2014).  



 41 

Due to these issues, there has been additional research work aim at improving brokerage 

polices in terms of bandwidth, cost, workload, response time, and processing time. Limbani 

in (Limbani 2012) suggest a service broker policy which aims to choose the data centre with 

the lowest cost within the same UB region. Such a policy is not efficient in choosing the 

lowest cost data centre though. Yet, it still lacks competence as it does not consider work 

load, bandwidth, file size, and response time (Limbani 2012) (Rekha P.M. and Dakshayini 

2014). Thus, (Semwal and Singh Rawat 2014) suggested a new policy that selects the data 

centre with the highest configuration to optimise the response time. Although the goal was 

reached, however, it also increased overall cost if the data centres were processing huge 

quantities of data (Deepak Kapgate et al 2014) (Mishra, Kumar, and Sreenu Naik 2014) 

(Rekha P.M. and Dakshayini 2014) (Semwal and Singh Rawat 2014). 

Deepak et al. in (Deepak Kapgate et al. 2014) suggested a data centre selection algorithm 

based on how many times the data centre is selected in accordance with its memory 

requirement and processing capacity of the upcoming requests. The author focuses mainly 

on the reduction of the associated overheads and service response time whilst also 

improving overall performance. Given that the proposed algorithm can improve 

performance of the existing proximity algorithm, it still suffers an increase in the overall 

cost (Deepak Kapgate et al 2014). To get around this issue, Sharma, (2014) applies the 

Round-Robin load balancing policy so that the workload is distributed among multiple 

available data centres in the same region. The Round-Robin load balancing policies try to 

equalise the overall cost of the data centres. Vaishali Sharma results have shown resource 

utilisation efficiency under the proposed environmental simulation. But this might not 

necessarily be the case in all instances if the data centres have different configurations 

(Sharma 2014). As a consequence, Mishra, Kumar, and Sreenu Naik, (2014) suggested an 

extended Round-Robin service broker algorithm, which tries to distribute the coming 



 42 

requests based on data centre ratings to enhance overall cost with a minimal response time. 

The suggested method is an improvement upon the random selection algorithms. Yet, if 

there exist some data centres that are faster than others, they will be frequently selected, and 

therefore get overloaded (Mishra, Kumar, and Sreenu Naik 2014) (Sharma 2014). 

 
3.1.1.1.	Load Balancing Algorithms	
Appropriate load balancing techniques do not only assist in cost reduction, but also make 

enterprises meet user satisfaction (Nidhi Jain 2012) (Ali Alakeel 2012). Scalability is 

therefore a crucial feature of cloud computing, as cloud computing also gets affected by load 

balancing. Therefore, efficient load balancing, across multiple cloud data centres, helps in 

reducing energy consumption through improvement to resources utilization and hence 

overall distributed system performance. 

In a cloud computing environment, load balancing algorithms are usually divided in two 

categories: Static Load Balancing Algorithms and Dynamic Load Balancing Algorithms 

(Randles, Lamb, and Taleb-Bendiab 2010).  

 

Static Load Balancing Algorithm 

Static load balancing algorithms assign tasks to the nodes, based only on the node’s ability 

to process new requests. However, they do not take into consideration any dynamic changes 

(e.g., server load, server availability and distance between user and server) of these attributes 

at run-time. Additionally, the algorithms cannot adapt to load changes during run-time. This 

process is solely based on existing knowledge of a node’s storage capacity, memory, 

processing power, and the most recent known communication performance. Round Robin 

(RR) and Weighted Round Robin (WRR) are most the commonly used static load balancing 

algorithms used in cloud computing (Randles, Lamb, and Taleb-Bendiab 2010). Round 

Robin algorithm does not consider the distance between clients and servers, server load, 



 43 

server availability. In this algorithm, server selection for processing requests is done 

sequentially. The main problem with such an approach is inconsistencies in server 

performance, which can be overcome by WRR. In WRR, the weights are added to servers 

depending on the amount of traffic that is directed to servers. However, for long time 

connections it leads to load tilt (Randles, Lamb, and Taleb-Bendiab 2010). 

  

Dynamic Load Balancing Algorithm 

Dynamic load balancing algorithms consider both knowledge based on existing information 

gathered about network nodes in the cloud, and run-time properties which are gathered as 

the selected nodes process task components. The algorithms are given the tasks and might 

reassign them dynamically to the nodes based on the attributes gathered and calculated. Yet, 

they have accuracy and might result in greater efficiency of load balancing than the above 

static load balancing algorithm. 

Least Connection (LC) and Weighted Least Connection (WLC) (Randles, Lamb, and Taleb-

Bendiab 2010) are both commonly used dynamic load balancing algorithms. In the case of 

LC, the total number of connections on a server is identified at run time and the incoming 

requests are sent to the server with a smaller number of connections. But, LC does not take 

service capability into consideration, or the distance between clients and servers. Whereas 

WLC takes into consideration both the weight assigned to the service node W(Si) and the 

current number of connections of the service node C(Si) (Tian Shaoliang, Zuo Ming 2007) 

(Qi 2006). The issue with WLC is that, as time progresses the static weight cannot be 

subjected to correction, and the node will deviate from actual load conditions, which will 

result in imbalances in the load. 

 



 44 

Ren, Lin, and Zou, (2011) made a prediction-based algorithm called exponential smoothing 

forecast. This is based on Weighted Least-Connection (ESBWLC), which can deal with 

long-connectivity applications. In this algorithm, the server load is calculated from various 

parameters such as size of disk occupation, number of connections, memory usage, and CPU 

utilisation. The load per processor (Load/p) is then calculated and the algorithm uses 

(Load/p) as an historical training set, then establishes a prediction model and makes a 

prediction of the value of the next moment. However, the ESBWLC algorithm does not 

consider distance between servers and clients, network delay and other factors. Kapgate and 

Narnaware, (2013) suggested Extended-ESBWLC, which can overcome this limitation. The 

Extended-ESBWLC algorithm calculates directly the client-side response time. This 

response time is stored for future reference. The response time at time instance ‘t+1’ can be 

predicted by using the current response time at time instance ‘t’ and the previously predicted 

response time for time instance ‘t’. This static service broker algorithm provides an 

improvement in results in terms of reduction in data centre loading, reduction of data centre 

request timing, and cost reductions of VM and data transfer. The author improves upon the 

service broker algorithm, called the service proximity service broker. 

	
3.1.2.	Segment Routing	
Segment Routing (SR) is a network technology that offers a new method of packet 

forwarding that minimizes the need for keeping large numbers of network information states 

and therefore helps to overcome the TCAM deficiency problem (M.-C. Lee and Sheu 2016). 

A network makes use of an interior gateway protocol (IGP) for every pair of host 

communications within the same Software Defined Network (SDN) and Segment Routing 

(SDN/SR) domain. For example, the open shortest path first (OSPF) protocol allows, by 

default, routing to the destination. SR (Clarence Filsfils, Stefano Previdi 2017) uses a “node 

segment” which represents the activities a packet must follow to take whichever route is 



 45 

shortest. To put it another way, each node in the same SR domain retains a “node 

segment” information link to all of the other nodes in its forwarding table, this is because the 

default rules and the node segment signifies global awareness. Additionally, SR uses an 

“adjacency segment” so that it can control traffic. Adjacency segment represent the action, 

where the packet must transfer to a particular data link with an adjacent node. Hence, 

adjacency segment represents local awareness. Yet, different to the node segment, each of 

the nodes needs only to install its local adjacency segment rules in the forwarding table. The 

combined adjacency segments and node segments form a sequential list of labels which, 

using the SDN controller, are applied to the packet header; they are instantly reflected as the 

preferred traffic path. Thus, SR allows several orders of scaling gains, because it does not 

hold any state for the flows in the transitional devices. Yet, SR also presents another 

problem, as it uses multi-protocol label switching (MPLS) label field when placing the 

segment labels. Therefore, SR might need a larger packet header, which causes a reduction 

in the available bandwidth. 

The subsequent paragraphs show a summary of previous research related to the SR 

technology. Firstly, the authors in Bhatia et al., (2015) contemplate the issue of how to 

determine the optimal parameters for SR in online and offline cases. The authors suggest a 

traffic matrix oblivious algorithm for the offline case, and an alternative algorithm for the 

online case. In the online case, the network features a centralised controller, which uses an 

online method to answer the SR problem, as performed in the SDN-based environment. The 

authors provide formulae and linear programs which define the SR optimal parameters. The 

paper gives focus to the determination of the optimal parameters as traffic split values. Such 

values are applied to reduce as far as possible the worst-case link utilisation by taking into 

account equal-cost multi-path routing (ECMP) in offline cases. The traffic split values can 

also be used to minimise the number of request rejections in online cases. Yet, this research 



 46 

is devoted to the design of an efficient routing algorithm to ensure enhanced network 

performance (e.g., better network throughput and rejection rate) and to pay attention to 

seeking the shortest path without equal-cost multi-path routing (ECMP). This algorithm 

contemplates the link residual bandwidth and link criticality when evaluating the link 

weight. Additionally, it places a limit on the maximum route path length to lower bandwidth 

consumption by the network. 

The issue of energy consumption during deployment of large-scale distributed 

infrastructures was raised by the authors in (Carpa, Gluck, and Lefevre 2014). They have 

proposed that using SR-based energy-efficient traffic engineering can lower energy 

consumption of backbone networks. The network is able to selectively switch off a subset of 

links via the SDN approach. This technique was implemented by the authors in the 

OMNET++ simulator which decides dynamically the quantity of power-on links, which 

represents an energy saving. The objective of the authors is to find out network device 

status, irrespective of if there is a requirement to transfer data. However, the author intends 

to construct a bandwidth-satisfying path, which leads to an increase in total network 

throughput, and can lower the rate of request rejection, instead of energy consumption 

decrease. 

An architecture, which can integrate the SDN paradigm with SR-based traffic engineering, 

is introduced by the authors in (Davoli et al. 2015). They paid attention to the issues of 

mapping computed paths onto SR paths. They have suggested an SR path assignment 

algorithm which intends to discover the shortest list of segments which corresponds with the 

desired path.  

The authors in Lazzeri et al., (2015) propose a segment list-encoding algorithm to express a 

given path in order to minimise the segment list depth in SR-based networks. This algorithm 

provides a method for ECMP-aware shortest path computation, which is subjected to a 



 47 

considered set of multiple constraints. This research also takes into account the label stack 

depth (LSD), and suggests a routing algorithm, which will lower the additional packer 

header cost, as this is caused by label stack depth. Additionally, it take into consideration the 

balance of traffic load in our routing algorithm, with the intention of improving performance 

related to the rejection rate and network throughput. Subsequently, it focuses on the task of 

improving the routing algorithm instead of solving the segment list computation problem. 

The SR technology in (Sgambelluri et al. 2015) is applied to a multi-layer network test bed. 

The authors have designed an SDN-based SR solution, which controls network edge nodes 

for configuring the label stacks. The paper also shows scalability tests for varying label 

stacking conditions. The central issue featured in the work is the demonstration and 

implementation of SDN-based SR. The authors do not engage in discussion regarding the 

routing algorithm for the SDN controller to configure the route in edge nodes. 

3.1.2.1	Traffic engineering	
A lot of the existing work deals with traffic engineering as a vital tool for network 

performance upgrades, which works by direct traffic particularly through a finite 

competitive network resource. Traffic engineering works to configure the routing scheme so 

that traffic is controlled and routed across the network in order to efficiently use network 

resources and optimise network performance. It is crucial that traffic engineering’s methods 

can use the measured “traffic matrix” for the management and diagnosis of congestion on 

the network. The traffic matrix represents the traffic volume between sets of source-and-

destination pairs over a particular amount of time, and this element is a key factor in 

network planning. Traffic matrix estimation means simultaneously gathering information on 

routing and measurement of traffic flow. SDN permits network measurements, which are 

more dynamic and can also determine the precise and timely traffic matrix due to OpenFlow 

and the centralised controller (Malboubi et al. 2014)(Tootoonchian, Ghobadi, and Ganjali 



 48 

2010). Therefore, when studying traffic engineering, it is possible to obtain predictions of 

future traffic trends via the estimated traffic matrix, where we can also discover good 

routing configurations (Han and Moutarde 2012). 

In (G. Apostolopoulos,D. Williams,S. Kamat, Lucent et al. 1999)(Zheng Wang and 

Crowcroft 1996), the routing strategies employed include the shortest-widest path (SWP) 

and the widest-shortest path (WSP) algorithms. Path width represents total available 

bandwidth, and the length usually aligns with the number of hops. Thus, the aim of the WSP 

algorithm is to choose the shortest path, which consists of the largest quantities of residual 

bandwidth. The dominant result in the application of the WSP algorithm is network cost 

reduction, as the algorithm focuses on resource preservation by selecting the minimum hop 

count path. The  SWP algorithm selects the maximum amount of available bandwidth from 

the source node to the destination node. When there are multiple paths, which have similar 

maximum available bandwidth, the algorithm chooses the shortest path. Therefore, using the 

SWP algorithm results in load balancing, this is because path selection has the maximum 

available bandwidth along all possible paths for each of the requests. The use of the SWP 

algorithm brings a risk of increased network cost, because the widest path usually leads to a 

longer hop count path, this uses more resources and therefore lowers network throughput. 

(Kodialam and Lakshman 2000), the concept of interference was introduced by the authors, 

this takes into consideration that routing a flow along a specific path can lower the 

maximum flow between some of the other pairs. This concept advocates that a new routed 

connection can follow a path, which does not permit more interference to any of the other 

paths where the links might be vital to traffic demand for the other host pairs in the future, 

for the other host pairs. The authors have proven that the interference problem is NP-hard, 

and have suggested a heuristic minimum interference routing algorithm (MIRA) which 

maximises the minimum-maximum flow between all the other source-destinations. The 



 49 

authors have demonstrated that the MIRA’s rejection number is lower than the other 

algorithms which do not take into consideration minimum interference criteria. The MIRA 

also have some limitations. E.g., the intricacies of repeated maximum flow computation 

requires O(VE2), as well as the MIRA focuses on interference effects on only the critical 

links, therefore ignoring the non-critical links (where V is the number of switches and E is 

the number of links between switches). Thus, the length of the routing paths can be long 

enough to render a path all but unusable. 

3.1.3.	Routing algorithm to balance energy consumption	
A lot of research work has been conducted on multi-path routing protocols, but one of the 

main challenges for researchers is balancing energy within sensor networks. The technique 

of network flooding, which can find routes between nodes, is used in many of the proposed 

routing schemes for WSNs.  The authors in (Perkins, Charles E.,Elizabeth M. Belding-Royer 

2003) employed a flooding technique to discover the shortest route, however it is not always 

useful for energy consumption when the routes detected do not have enough energy to send 

data between source and destination. Else, it can be assumed that node energy capacity is a 

vital resource and needs to be consumed in such a manner as to ensure long network 

lifetime. 

In AlShawi et al., (2012), the authors have suggested a new routing method for Wireless 

Sensor Networks (WSNs) to increase the lifetime of the network by using both an A-star 

algorithm and fuzzy approach. The suggested method intends to take an optimal routing path 

from source of destination by favouring the lowest traffic load, minimum number of hops, 

and highest remaining battery power, and balancing them to extend the lifetime of the 

network as much as possible. But, such a method imposes a significant overhead in terms of 

computational complexity and communication. The methods in Montoya and Donoso (2013) 

have implemented a multi-path technique which balances power consumption to extend 



 50 

WSN lifetime. The suggested heuristic technique uses a mechanism which constructs a path, 

and chooses the next communicating sensor node according to Received Signal Strength 

Indicator (RSSI) level and distance. In addition, whilst a path is constructed, the algorithm 

can avoid cycles and therefore has the capability for path reconstruction when the 

discovering route has arrived at a leaf. When several paths from the same target arrive at a 

particular sink, then the node employs an energy balancing strategy which decides on the 

flow quantity to transmit to each path. 

Two approaches are presented by the authors in Kacimi, Dhaou, and Beylot, (2013). Firstly, 

a method of traffic load balancing is employed to optimise node energy consumption in a 

grid topology with a base station in one of the corners. Therefore, a distributed heuristic 

algorithm is suggested in order to combine transmission power control with load balancing 

to find ideal traffic proportions between the nodes, which ensures energy consumption is 

balanced. This method only works for a grid network. 

 The authors in Ming Lu and W. S. Wong, (2007) suggest that an Energy-Efficient Multi-

path Routing Protocol (EEMRP) can search multiple node-disjoint paths and uses a load 

balancing technique to allocate traffic over each of the paths. Both node residual energy 

level and the number of hops are taken into consideration and can be incorporated into the 

link cost function. This link cost function is employed by the node to choose the following 

hop in the path search phase. Further, because EEMRP is only responsible for data transfer 

delays, successful path reliability is frequently limited. 

In T. Liu, Li, and Liang, (2012), the authors suggest that an unequal Clustering Algorithm 

(EBCAG) and Energy Balancing can partition the nodes into clusters of unequal size, each 

of the sensor nodes keeps a gradient value, this is defined as the minimum hop count to the 

sink. Cluster size is determined by the cluster head gradient value, and the data obtained 

from all of the cluster members needs to follow the descending gradient decision so that it 



 51 

can reach the sink. Yet, such an approach is based on a WSN with uniform distribution. In 

real-world applications, the uniform sensor distribution approach might not be practical or 

practically possible. In a similar manner, the authors in Ducrocq et al., (2013) have used a 

technique of balancing energy consumption in clustered WSNs, a clustering algorithm 

which then selects a sensor as cluster head in regard to density, node degree, and remaining 

energy. The algorithm offers the chance for each of the sensors to become a cluster head 

which balances energy consumption in all of the sensors. The work presented in T. Liu, Li, 

and Liang, (2012) attempts to maximise the time for all nodes to remain alive so that 

application requirements can be satisfied. In Jemili, Tekaya, and Belghith, (2014), a 

proposal is made for a Fast Multi-path Routing Protocol for wireless sensor networks 

(FMRP). The idea is that selecting multiple paths avoids the effect of inter-path interference, 

without the need for a costlier step. The protocol proposed allows establishment of node 

disjoint paths between source nodes and the sink while at the same time reducing 

interference and collision impact. FMRP offers a mechanism for efficient route discovery, 

this permits the avoidance of selecting highly correlated paths. 

In Banimelhem and Khasawneh, (2012), the authors have suggested a Grid-based Multi-path 

with Congestion Avoidance Routing protocol (GMCAR), where they use the idea of 

dividing the sensor network field into grids. In each of the grids one of the sensor nodes is 

chosen as the master node, this has the responsibility of delivering generated data by any of 

the nodes in that particular grid, and the data routing from master nodes in neighbouring 

grids. For all of the master nodes, there are many diagonal paths which connect the master 

node to the sunk and the hop count is stored as a routing entry in the routing table of each 

node which uses them for routing decisions. The procedure is only effective for grid sensor 

networks. 

 



 52 

3.2.	Energy	efficiency	in	cloud	computing	
The increasing demands on cloud computing resources has led to a substantial growth in the 

data transferred between cloud computing parties (i.e., providers, data centres, users, and 

services), network traffic and the energy consumed by the huge infrastructure of cloud 

computing, which is needed to meet the users’ requests quickly and effectively. The cloud 

network traffic is forecasted to increase about threefold between 2013 and 2018 (Larumbe 

and Sansò 2012). Routing big data between the cloud computing parties requires a high 

bandwidth connection, which consumes larger amounts of energy (Chang Ge, Zhili Sun, and 

Ning Wang 2013)  than just processing and storing big data on cloud data centres, and thus, 

producing high carbon dioxide emissions. 

3.2.1.	Energy Consumption In Cloud Datacentres	
If energy efficiency is to be improved in the cloud, the way in which power is distributed in 

typical data centres and the actual power flow must both be understood. More than 50% of 

the electrical power consumed goes to feed the IT loads. 

A report submitted to Congress by the Environmental Protection Agency EPA on Server and 

Data Center Energy (Brown et al. 2007) said that 80% of total IT and 40% of the data 

centre’s total power consumption was consumed by servers, with the rest of the power going 

to transformers, air conditioners, cabling, pumps, lighting and other such devices. While 

power consumption by cooling equipment is significant, it is proportional to IT power 

consumption. Free cooling is among technologies that big companies such as Facebook and 

Google use due to their ability to reduce the amount of power that cooling consumes. For 

mechanical refrigeration methods, they substitute the use of naturally cool air or water, and 

this has resulted in a very large decrease in the amount of electrical power that cooling 

demands. In certain climates (Canada and north of Europe), there can be no refrigeration at 

all, so that the money saved reaches 100%. 



 53 

 

3.2.1.1	The main factors leading to waste-to-energy 	
As we have seen, the heaviest consumers of power in cloud data centres are servers. There 

are a number of reasons for this: 

Reduced utilisation of servers: 

As data centres grow larger, there is a steady and continual rise in the number of servers, and 

most data centre servers are used less than they could be. America’s Natural Resources 

Defense Council (NRDC) say that between the years 2006 to 2012 there was no growth in 

the average server utilisation (which averages somewhere between 12% and 18%) (Whitney 

and Delforge 2014). Nevertheless, the report also says that between 60% and 90% of peak 

power is taken by the servers. If virtual servers are consolidated on a reduced number of 

hosts, then the same applications can be run while consuming much less power. Increasing 

the utilisation of servers can greatly reduce both the number of servers needed and their 

overall power consumption. 

Idle power waste: 

Data centre servers spend 85% to 95% of their time idle (Naone 2009). That does not do 

much to improve power consumption, because even in its idle mode, an idle server still 

consumes about 70% of peak power (Naone 2009). Power waste on that scale is a major 

example of energy inefficiency, and idle datacentre servers, if turned off, would reduce the 

amount of energy consumption.  

No standard metric to measure energy efficiency of servers: 

If energy efficiency optimisations are to be realised, an energy efficiency metric for servers 

should be used to ascertain which are most energy-efficient so that scheduling algorithms 

can be used to decide which server to run. Choosing the best resources in this way will result 

in the maximum energy efficiency. While there are metrics that focus on IT efficiency 



 54 

(Blackburn et al. 2010), they do not offer an easy-to-use benchmark to drive energy 

efficiency optimisation (Whitney and Delforge 2014). 

There continues to be low adoption of energy efficient solutions: 

The NRDC report already referred to (Whitney and Delforge 2014) says that there are big 

Cloud farms that perform well in the matter of energy efficiency, but these are responsible 

for less than 5% of the total energy used globally by data centres. The remaining 95% of 

data centres, embracing small and medium sized corporate operations and multi-tenant 

operations are, on average, far less efficient. If energy efficiency best practices were more 

widely adopted in the small and medium-sized operations that are responsible for the total 

power consumption of all data centres, there would be a big improvement in overall data 

centre energy efficiency. 

 

3.2.1.2	Power saving strategies in Cloud	
Cloud data centres have three main policies for saving power: 

• Dynamic frequency voltage scaling (DVFS);  

• Powering down servers; and  

• VM consolidation. 

Dynamic frequency and voltage scaling (DVFS): 

Dynamic voltage frequency scaling (DVFS), also known as CPU throttling, reduces power 

consumption at times of low loading by dynamic scaling of CPU voltage and frequency. 

Activation of DVFS can be triggered by a number of policies; Linux kernel, for example, 

permits DVFS in: Performance, PowerSave, User-Space, Conservative, and OnDemand 

policies. The governor for each policy decides whether or not to update the frequency 

(Guérout et al. 2013). There is a price to pay for DVFS. It reduces the number of 

instructions executed by the processor when a program is run, causing longer run times for 



 55 

programs and a reduction in performance (Beloglazov et al. 2011). DVFS is also hardware-

dependent and not variable as needs change so that, when compared with the other methods, 

the power savings are low. 

It is also a fact that DVFS only acts at server level; even when doing nothing at all, an idle 

server still consumes up to 70% of power, so that the savings from DVFS are limited. 

Because of this, other solutions have been developed to consolidate workloads onto a 

reduced number of servers, and to switch idle hosts off or put them into a lower power 

consumption mode. 

Powering down servers: 

Powering down or switching-off servers that are not being used reduces energy 

consumption. The fact is that many datacentre servers spend most of their time idle and so 

can be switched off or transferred to sleep mode while they are not being used. Dynamic 

capacity provisioning or dynamic shutdown problem of this sort must be planned carefully 

because there are a number of factors to take into account when deciding which servers to 

power down. Dynamic On/Off programs that turn servers on and off to minimise energy use 

have been proposed a number of times (Q. Zhang et al. 2012), (Chen et al. 2008), (Guenter, 

Jain, and Williams 2011), (Kusic et al. 2008) and (ORGERIE and LEFEVRE 2011). Though 

complex, it is a technique that works well and is capable of reducing power consumption 

significantly. 

Energy-aware consolidation: 

Workload consolidation onto fewer servers has become a main power saving technique in 

Cloud data centres. The object is to select those servers that use energy in the most efficient 

way and thereby reduce energy consumption (Srikantaiah, Kansal, and Zhao 2008). 

Virtual Machines (VM) live migration makes possible Dynamic Optimization and even 

greater workload consolidation onto an even smaller number of servers and has therefore 



 56 

come to be seen as a necessary means to move virtual machines between hosts without the 

need to reboot the VM operating system. 

 

 

  



 57 

3.2.2	Energy Efficient Cloud Resources Allocation	
The cloud infrastructure faces the challenge of efficient allocation of resources as a service 

provider. Actually, the proposal of the research and academia communities suggests the 

utilization of diverse resource allocation techniques that help in maintaining the SLA. 

3.2.2.1	Resources Allocation	
The development of a dynamic method for resource allocation entails the considerations of 

the SLA between the Software-as-a-Service (SaaS) provider and the user during the resource 

allocation (Nair and Porwal 2010). The SaaS provider deals with the heterogeneity of the 

VMs, maps the requests of the customers to parameters of infrastructure levels, and manages 

the changes in requests of customers. The technique considers the QoS (Quality of Service) 

for the customer including the response time and the parameters of infrastructure levels. 

However, the major challenge for the IaaS cloud provider may be in the evaluation of the 

SLAs between the SaaS providers and the user especially with the large number of SaaS 

providers. The resource allocation technique that is based on priority is another approach to 

allocating the resources as presented in (K C Gouda, Radhika T V 2013), (Pawar and Wagh 

2012). These approaches are categorized into the resource priority based and the user 

priority based. Essentially, the approaches have bias considerations for the single service 

provider that supports in solving the problem of load balancing. The introduction of the 

resource allocation based on a neural network in (Dinesh, Poornima, and Kiruthika 2012) 

focuses on the maximization of the use of the resource through the strategy of allocating 

resources offered by a genetic algorithm. The technique focuses on the resource-abundant 

systems. In that regard, the users do not compete for the resources.  

The cloud resource allocation is the recent focus of the researchers who apply schemes of 

auctioning to the SaaS providers. Therefore, the requests of the SaaS providers are accepted 

by the IaaS cloud providers who auction the cloud resources to allocate the highest bidder. 

The majority of the researchers are focusing on the approaches of game theory studies to 



 58 

solve the complexities of allocating resources in evolutionary and dynamic environments. 

The mechanism of allocating the resources based on the game theory has been focused on 

cloud computing for addressing the problem of optimization of resource allocation (Jebalia 

et al. 2013).  However, according to the recent surveys, the techniques fail to consider the 

parameters such as resource reliability, execution efficiency, service deadline, resource 

availability, and fairness. Moreover, a combinatorial auction-based mechanism is 

investigated for the pricing and allocation of the VMs in the platforms of cloud computing. 

The approach relies on three schemes that are the greedy scheme, linear programming, and 

the fixed price scheme. The approach has the weakness of only considering the 

maximization of the user gains while limiting the allocation of the VM types to a value that 

is pre-determined (Zaman and Grosu 2013).  

3.2.2.2	Cloud Resources Allocation	
Resource allocation or scheduling counts among cloud computing’s most important tasks. It 

involves analysing every incoming user request, identifying the resources best suited to meet 

it, and then assigning those resources in order to meet both the requirements of the user and 

the cloud provider’s goals. Those goals are likely to include energy consumption or cost 

optimizing. Using information it holds about all resources, together with details of the 

incoming request and the goals the Cloud provider has, the resource scheduler allocates 

resources in a way illustrated in Figure 3.6. Schedulers can manage initial and static 

resource allocation after the arrival of each individual request, or may employ continuous 

resource management through static and dynamic resource allocation in order to achieve 

maximum optimisation – if that is the case, then previously received requests may need 

readjustment from time to time. 

 



 59 

 
Figure 3.6 Resource Allocation (Nair and Porwal 2010) 

As cloud computing and virtualization technologies have become ever more widely adopted, 

cluster sizes have grown and they may now be in the hundreds or even thousands of nodes 

for, respectively, small and large data centres. The rise in consumption of electricity 

resulting from this growth has been enormous and has brought with it an equally enormous 

rise in the costs of data centre ownership and in data centres’ carbon footprints, so that 

energy efficiency has become a matter of great importance for data centres and Clouds. 

A central issue is to optimise resource allocation in Cloud while achieving maximum energy 

efficiency. This issue is known as NP-hard, which has been extensively studied. The 

following section will review existing literature concerning energy efficient resource 

allocation in Cloud. 

 



 60 

3.2.2.3	On-demand resource allocation vs advanced resource reservation	
The two most significant provisioning plans that cloud providers can offer are: on-demand 

and reservation plans. On-demand plans means that users can have access to resources when 

they need them, while reservation plans require the resources to be reserved ahead of time in 

order to ensure that it is available and free when needed. 

On-demand resource allocation: 

The majority of Cloud providers allocate resources through such simple methods as 

immediate on-demand resource allocation, in which resources are allocated if they are 

available, and if they are not available then the request is scaled out to another provider. 

A number of authors (Srikantaiah, Kansal, and Zhao 2008), (Beloglazov and Buyya 2010), 

(Murtazaev and Oh 2011) and (Li et al. 2009) put forward energy-aware heuristic algorithms 

and policies with a view to saving energy by reducing to a minimum the number of servers 

running at any one time. This approach consolidates applications or tasks onto the smallest 

possible number of servers, with all of the service being switched off. The authors of 

Chimakurthi and D, (2011) introduced a nature-inspired VM consolidation algorithm that 

had been inspired by watching Colony Optimization of ants. That algorithm had the same 

objective: to save energy by reducing the number of machines in use. 

The work we’ve discussed so far studies ways to reduce consumption of energy by cloud 

data centres using on-demand and immediate algorithms for energy-efficient resource 

allocation. Theses algorithms are derived for these homogenous data centres with embedded 

probes and monitoring capabilities such as smart PDUs (power distribution units) or 

embedded tools for estimating power consumption. Today, most data centres are regarded as 

very large data centres comprising heterogeneous servers (Koomey 2007) but lacking the 

ability to monitor energy use. In the next section, we will provide details of algorithms for 



 61 

on-demand allocation of cloud resources, with division of solutions between static and 

dynamic. 

Advance resource reservation: 

What is called “advance resource reservation” simplifies future resource planning and raises 

the probability that it will be possible to allocate resources as they are demanded. There are 

many advantages in advance reservation of resources, and it remains the most used, among 

Cloud providers, on-demand resource allocation approach. 

Haizea scheduler (“Haizea - An Open Source VM-Based Lease Manager” 2017) is an open 

source resource lease manager supporting resource allocation policies of four different 

kinds: immediate, best-effort, advance reservation (AR) and deadline sensitive. Users ask 

for AR lease when they need to ensure the availability of infrastructure at lease start and end 

times which are fixed. Resource reservation is carried out through a mapping function in 

which there are two dimensions to a slot table: physical nodes; and duration. Resources 

requested are mapped to physical servers on the basis of availability revealed by the slot 

table for a specific time interval. Haizea determines how VMs are mapped to servers by use 

of a greedy algorithm which sorts servers according to loading from low to high after which 

it works through the node list trying to map the maximum possible number of lease nodes to 

each server before moving to the next node. Haizea’s scheduling algorithms are simple and 

greedy and do not take energy efficiency into account (Sotomayor, Keahey, and Foster 

2008). 

Nathani, Chaudhary, and Somani, (2012) and Loganathan and Mukherjee, (2013) put 

forward advance resource reservation algorithms for IaaS (Infrastructure as a Service). 

These algorithms are queue-based and work by checking whether or not sufficient resources 

will be available for the time period the user asks for. They are concerned with booking 

resources, and take no account of energy efficiency. 



 62 

 

3.2.2.4	Static	vs	dynamic	Cloud	resources	allocation	
The two types of resource allocation are static and dynamic allocation. The first of these, 

static resource allocation, takes place at the moment a request arrives, while dynamic 

resource allocation carries out continuous resource management, optimising and adjusting 

requests previously acted on as well as new requests. VM live migration manages allocation 

or consolidation of resource with the aim of reducing to a minimum the number of servers 

activated and in use. 

Initial Cloud resources allocation Energy efficient algorithms: 

Among the resource allocation mechanisms currently in operation in Cloud data centres are 

load balancing, round robin and greedy algorithms. OpenNebula (“OpenNebula” 2017), 

Eucalyptus (“Eucalyptus - Private / Hybrid Cloud Solution” 2017) and OpenStack 

(OpenStack 2017) Cloud managers use algorithms that are greedy or round robin based and 

take no account of energy efficiency. 

In T. V. Do, (2011), the authors suggest a simple form of energy-aware policy that would 

incorporate schemes allocating virtual servers to provide green computing. The allocation 

schemes considered include round-robin and first fit, and reduce energy consumption by 

setting to a state of reduced power consumption servers that are not hosting VMs. Under this 

policy, idle servers would be set to a state of low energy consumption, and returned to a 

fully functioning operating state when in use. A number of authors, (Mazzucco, Dyachuk, 

and Deters 2010), (Tien Van Do and Krieger 2009), (Mitrani 2011), (Mitrani 2013) and 

(Tien Van Do and Rotter 2012) all put forward policies that would provide dynamic on/off 

based on queuing models and heuristic-based methods. Von Laszewski et al., (2009) suggest 

an approach that would schedule virtual machines to reduce power consumption through 

Dynamic Voltage Frequency Scaling (DVFS). The energy efficient algorithms put forward 



 63 

by others (Beloglazov and Buyya 2010) and (Quan et al. 2011) use consolidation policies 

that minimise the number of servers in use while still accommodating all requested VMs. 

Heuristics were proposed in each case to solve the bin packing problem as algorithms for 

VMs consolidation. 

The authors of (Srikantaiah, Kansal, and Zhao 2008) consolidate all applications and tasks 

onto a smaller number of physical machines in order to be able to power off machines not 

being used. The heuristic they propose for multidimensional bin packing indicates that 

reduced energy consumption can come from using fewer physical hosts. In Y. Song et al., 

(2009), the authors propose a multi-tiered resource scheduling scheme providing on-demand 

capability to hosted services by way of resources moving between VMs and introducing a 

global resource flowing algorithm to produce the optimum allocation of resources among 

applications. Since both of these approaches operate at the task level, they would constitute 

a good fit for Platform as a Service (PaaS) and Software as a Service (SaaS). Allocation is 

static. 

VMs migration Energy efficient algorithms: 

Other  authors (Issarny, Schantz, and Neogi 2008) put forward a power-aware server 

consolidation framework, which they call pMapper. It optimises VM placement 

continuously in order to reduce power consumption to a minimum, relying on greedy 

heuristics for bin packing problem and introducing VM migration cost, but with no 

indication about how this is calculated. Hermenier et al., (2009)] propose a similar 

framework, in this case called Entropy, which acts as a resource manager for homogeneous 

clusters and carries out dynamic consolidation based on constraint programming while 

taking account of the migration overhead. 

Policies for dynamic VMs reallocation using VMs migration according to CPU performance 

requirements are put forward in Beloglazov and Buyya, (2010). The most effective of these 



 64 

ideas is a double threshold policy based on the setting of maximum and minimum use 

thresholds for hosts and keeping between those extremes total CPU utilisation by all the 

VMs. When a host’s CPU utilization exceeds the top limit, VMs are migrated to its back in 

order; where the lower threshold is exceeded, all hosted VMs would migrate. 

Ferreto et al., (2011) deal with consolidating VMs in a server by migrating VMs that have 

capacity needs that are both stable and steady. An exact formulation was proposed on the 

basis of a linear program that was described by too small a number of valid inequalities so 

that problems that involve the allocation to a number of bins or servers a large number of 

items or VMs cannot be solved. To find a way around this and propose solutions for large 

sizes, a heuristic was proposed that would use a static and a dynamic consolidation of VMs 

in order to reduce energy consumption by hosting nodes and servers. 

Other authors (Murtazaev and Oh 2011) proposed a server consolidation (Sercon) algorithm 

that works by reducing to a minimum the number of nodes used in a data centre and also 

reducing to a minimum the number of simultaneous migrations. Comparing this algorithm 

with the heuristic FFD (First-Fit Decreasing) Coffman et al., (1999) used for solving the 

Bin-Packing problem showed Sercon to be efficient at consolidating VMs and minimising 

migrations, but the fact is that Sercon is not always able to find the optimum solution. 

The authors of Li et al., (2009) outlined what they called EnaCloud to execute dynamic live 

placement in a cloud platform while taking due account of energy efficiency. Their proposal 

was for an energy-aware heuristic algorithm that would save energy by reducing to a 

minimum the number of servers running. Chimakurthi and D, (2011) presented another 

dynamic resource allocation study, in which the VM consolidation algorithm was based on 

observations of optimisation in an ant colony and aims to save energy by reducing the 

number of physical machines in use. 



 65 

Other authors (Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu 2011) put forward two 

heuristic algorithms for energy-aware virtual machine scheduling and consolidation. These 

algorithms were based in the one case on a dynamic round-robin approach (DRR) and in the 

other on a hybrid approach combining DRR and First-Fit. A different VM consolidation 

power-saving method for data centres relying on the First-Fit bin packing heuristic was 

suggested in Takeda and Takemura, (2010). In this approach, VMs would migrate on the 

basis of server ranks, where “rank” is the selection priority the server has, is unique, and is 

assigned to each server. 

3.2.3	Energy efficient service composition	
There was a good deal of research into improving energy efficiency even before the cloud 

began to become important. At that time, the attention was on reducing the energy 

consumed by computing devices, especially battery driven devices such as laptops and 

mobile phones, so that their batteries would last longer (Lecue and Mehandjiev 2011; Taleb 

et al. 2015), as well as making CPUs, drives and monitors more energy-efficient. These 

measures transferred to the cloud, but the cloud presents greater challenges because of the 

enormous number of servers and the fact that a cloud datacentre must provide immediate 

response to user requests, notwithstanding the wild swings that those requests can represent.  

Several strategies have been proposed to reduce the amount of power consumed by cloud 

system servers. For example, anumber of authors (Y. C. Lee and Zomaya 2012)(Ching-Chi 

Lin, Pangfeng Liu, and Jan-Jan Wu 2011)(Liang Luo et al. 2012)(Uchechukwu, Li, and 

Shen 2012)(Pinheiro et al. 2001) put forward early suggestions concerning datacentre level 

power management, and those suggestions led to techniques that minimised the 

consumption of power in computing node clusters supporting multiple applications. 

Foremost among these techniques was keeping the number of physical nodes at the smallest 

level needed to handle the workload at that moment, with other nodes being switched off. To 



 66 

set against this, there is a trade-off between power and performance, with a drop in 

performance and the failure to provide the promised QoS resulting from fluctuations in 

workload. Two methods were suggested by Ching-Chi et al. (Ching-Chi Lin, Pangfeng Liu, 

and Jan-Jan Wu 2011): Dynamic Round-Robin; and Hybrid. These approaches save energy 

by the scheduling and consolidation of virtual machines. Developing a migration model and 

a power model made it easier to estimate what power would be consumed for the execution 

of the workload and through VM migration.  

Liang Luo et al., (2012) tracked the relationship between online infrastructure elements and 

power consumption, and examined ways in which task types could be matched and power of 

each element adjusted, resulting in an algorithm to govern resource scheduling in the cloud 

that focuses on optimisation of energy consumption. Yamini and Vetri Selvi, (2010) went 

the whole hog with a virtualised cloud to resolve problems of energy consumption and 

global warming, using a small number of servers to provide service for multiple devices. 

 

Service composition automation seeks to resolve situations where the user’s needs cannot be 

met by a single service, and combines a number of services into one large application. 

Hence, a number of different approaches have been proposed in this domain, including 

(Lemos, Daniel, and Benatallah 2015)(Cheng et al. 2015)(Garriga et al. 2015). There are 

several other open source tools for service composition and execution, such as Sword (S. 

Ponnekanti 2002), ZenFlow (Martínez et al. 2005), and Flow Editor (Pi et al. 2012). It 

remains true that there has been little work on optimising energy consumption by the 

compositions that result. The purpose of service composition optimisation is to choose the 

service components that will meet user needs while providing optimum overall quality. This 

overall quality embraces a number of metrics including: energy efficiency; performance; 



 67 

cost; and trust (Yamini and Vetri Selvi 2010)(Lecue and Mehandjiev 2011). Despite this 

combination, standard algorithms pay relatively little attention toenergy efficiency.  

Other authors (Wajid, Marin, and Karageorgos 2013) extend an existing approach (Lecue 

and Mehandjiev 2011) and analyse its performance examined for optimised service 

composition and for the streamlining of resource usage which would lead to greater energy 

efficiency. Both non-functional and functional criteria are used to assemble an array of 

cloud services in an energy-efficient configuration. Bartalos and Blake, (2012) examine how 

difficult it is to measure a web service’s overall power consumption. Eunjeong Park and 

Heonshik Shin, (2008) introduced middleware based on SOA for two purposes: to give 

control over the quality of service provided for mobile applications; and to graph the energy 

efficiency of a service composition.  

Luo, Zhou, and Wu, (2009) chose the composite service that offered best QoS at lowest cost. 

This approach rests on the Dijkstras search path and assumes an additive quality in such 

elements of QoS as duration and throughput, but in Hang, Kalia, and Singh, (2012) Hang 

intimated that it is on the composite service’s nature that the additive aspect depends. So, for 

example, if the services making up a composite service bar are called in parallel, then 

overall duration is not found by adding individual durations. The approach suggested by 

Elshaafi and Botvich, (2012) in trustworthiness collaboratively, taking account of practical 

aspects in determining how trustworthy a component is, based on its environment. 

Trustworthiness is calculated on the basis of consumer feedback as to a service’s reliability 

and the satisfaction it offers. 

Building a service composition that is optimal in QoS terms will frequently be inefficient 

due to the inclusion of redundant functionalities and/or services. QoS is directly affected by 

how many services are in a composition. Rodriguez-Mier et al., (2012), for example, 

suggested the possibility that bringing to a minimum a composition’s number of services 



 68 

will also help to minimise total response time while maximising throughput. X. Wang et al., 

(2009) suggested minimising the number of services a composition would require during the 

life of a persistent query through a greedy algorithm that would minimise transmission costs 

and routing update costs. Rodriguez-Mier, Mucientes, and Lama, (2012) suggest that the 

biggest disadvantage of methods of service composition currently in use is poor 

performance for example, when no priority is placed on keeping the number of services to a 

minimum and the number of services together with their interaction in I/O terms is high. 

 

3.2.3.1.	Bin-packing approach	
One survey (Wolke et al. 2015) debates on the usefulness of bin packing for dynamic 

resource allocation in cloud data centres. Another work (W. Song et al. 2014) proposed a 

practical bin packing resource allocation algorithm that uses virtualization technology to 

allocate data centre resources dynamically and support green computing by optimizing the 

number of servers actively used. Cloud management tools such as OpenStack (OpenStack 

2017) and Eucalyptus (“Eucalyptus - Private / Hybrid Cloud Solution” 2017) are commonly 

used in many IaaS cloud environments for resource allocation, and utilize bin packing 

heuristics for placing incoming VMs on servers (Wolke et al. 2015). In J. Wang et al., 

(2013), the authors developed a heuristics approach which integrates the classical bin 

packing algorithm to address the problem of scheduling independent tasks in a 

computational grid with different priorities and deadline constraints. 

 Various work existing in the literature consolidated the multi-dimensional bin-packing 

problem for allocating and minimizing migrating workloads to achieve energy optimal 

operations. However, there exists no previous work, which uses the bin packing approach 

for the optimization of the resulting composition in the multi-cloud environment. Given the 

large number of cloud resources available from multiple clouds, we achieve energy 

efficiency by using searching and integrating the smallest possible number of services, from 



 69 

the smallest possible number of service providers and directing the user requests to the data 

centres based primarily on using the most energy efficient route. 

3.3.	Discussion	and	Requirements	
Based on the above sections, Finding the most energy-efficient route to the data centre, and 

best-fit service, in terms of energy consumption to the user is the multi-cloud broker’s 

biggest challenge. Therefore, and as outlined in the first chapter, the aim of this work is to 

create and evaluate a multi-cloud broker to address this issue as explained in the problem 

section. This will be based on the development of holistic algorithms that is able to find the 

most energy efficient route, and integrate the most energy efficient services from the 

smallest possible number of cloud data centres in order to minimise the data exchange 

among participating parties. 

As stated in the first chapter, there are two main pillars for energy consumption of cloud 

computing that should be dealt with efficiently and equally to achieve the most energy-

efficient cloud computing environment: (i) the amount of energy consumed on transporting 

the data between the user and the cloud data centre and (ii) the amount of energy consumed 

at the computation and processing of each service at the data centre. 

The cloud network traffic is forecasted to increase about threefold as stated in chapter 1. 

Routing big data between the cloud computing parties requires a high bandwidth connection, 

which consumes larger amounts of energy than just processing and storing big data on cloud 

data centres, and thus, producing high carbon dioxide emissions. When transferring such 

amounts of data into a data centre located quite far from the users’ geographical location, 

this power consumption becomes significantly high. Hence, it has become a high necessity 

to locate the lowest energy consumption route between the user and the designated data 

centre, and services that match the user request, while making sure the users’ requirements 

are met 



 70 

On other hand, in a multi-cloud environment, where one cloud provider is not enough, 

service composition is a crucial. Essentially, a user request will traverse the route to service 

providers, and get a reply traversed back from the providers to the user. This scenario 

increases in complexity as the number of required providers, increase, to perform users’ task 

that one service provider cannot process alone due to resource limitations, or when only a 

sub-part of the requested services is available. This is typically manifested in services 

composition and the broker-based cloud service model that necessitates collaboration among 

a number of cloud service providers, which formulates what is so-called multi-cloud 

environment, whether explicitly, or implicitly to yield the service outcomes and end results 

to the user. We assume that web services from separate businesses coordinate their activities 

in such a way that any conflict (such as sharable resources, order dependencies, or 

communication delays) is avoided 

As the number of cloud providers and services increase, the composition of many services 

from different providers becomes a more complicated task in a real multi-cloud 

environment. This would require a massive amount of data interchange among all service 

participants and will consequently lead to high levels of energy consumption. The brokers 

and service providers tend to priorities QoS metrics, such as service security, availability, 

response time, as these factors attract clients. The communication cost, and sending and 

receiving data among the composite Web services from different cloud providers can be 

expensive, and time and energy consuming. Finding the required services from the 

minimum number of cloud service providers is as important as finding the services 

themselves. However, what continues to be a challenging and an under-investigated issue is 

to find the most energy efficient service composition plan, which should have the least 

possible number of composite services from a minimum number of cloud service providers 



 71 

that fulfils the user request. This becomes even more challenging as the number of the cloud 

service providers increased, which is the main challenge that this work tackles.  

3.3.1.	Requirements		
As such, a set of functional requirements is identified as essential for the development of the 

proposed brokerage approach. These requirements are detailed below and summarised in 

Table.1, as below: 

R1. Standard-based: The proposed broker must take advantage of existing standards and 

well-established principles such as, Cloud computing principles and existing models of 

services development. This requirement will enhance reusability, minimise the effort, and 

facilitate the broker integration with different target contexts. It is also important that the 

proposed broker complies with the network topologies and standards to allow it to be easily 

integrated with the existing networks using R.2.  

R2. Energy efficient routing to act as an intermediary bridge for directing the user requests 

to the green data centres (ranked via R3) based primarily on using the most energy efficient 

route. 

R3. Ranking algorithm to rank cloud service providers based on the total energy 

consumption. The algorithm sorts the cloud data centres in ascending order based on their 

energy consumption requirements. This way allows examining the data centre that consumes 

least energy first.  

R4. Atomic service algorithm to enable the broker to search for the best possible atomic 

services, in terms of matching the incoming request and energy saving target. . 

R5. Predefined composition plan algorithm to allow the broker to search all predefined 

composition plans created by service providers, and check their energy consumption in order 

to find the best possible match for user requirements. 



 72 

R6. Optimal composition plan to allow the broker to build a new optimal composition plan 

by selecting the most energy efficient services (based on R4 and R5) from the smallest 

possible number of energy efficient providers using R3 results. 

 
Table 3.1 Proposed Broker Requirements  

Number Requirements  Reference  

1 Standard-based R.1 

2 Energy efficient routing R.2 

3 Ranking algorithm R.3 

4 Combination algorithm R.4 

5 Energy consumption predefined composition plan R.5 

6 Optimal composition plan R.6 

 

3.5.	Summary	
To conclude, while many aspects of delivering web services through the cloud are very well 

developed, there is still very little research into composing such services in an energy-

efficient way. So far as we have been able to establish, no previous research into prioritising 

energy efficiency as the key metric when optimising composition has been carried out. 

Considering how large the number of available cloud resources is, energy efficiency is 

achieved by bringing together the most energy-efficient services from the smallest possible 

number of providers that will meet requirements of the user. 

This chapter discussed network routing and presented the routing problem in cloud 

computing when selecting a service. Some techniques were presented such as segment 

routing and sensor networks routing algorithms. Moreover, it introduced the energy 

efficiency in cloud computing and the energy issue within the cloud and its resources. The 

chapter concluded with an outline of the main requirements for the new energy efficient 

brokerage solution in multi-cloud environments. 

 



 73 

FOURTH CHAPTER 

	

	

	

	
 

An	Energy	Efficient	Routing	
Algorithm	

  



 74 

4.1.	Introduction	
The increasing demand for web services has encouraged service providers and data centres 

to offer bases in every geographical region, which has resulted in a massive increase in the 

network traffic and consequent energy consumed by the vast infrastructure. It should be 

noted that even more energy is consumed at the data transfer between designated server and 

user than is needed for data processing and data storage produce. The greater the distance 

that data must be transferred around the world, the greater will be the resulting power 

consumption. If, for example, a UK-based user is accessing a Google datacentre in Hong 

Kong, simply transferring the data will have a significant impact on power consumption. A 

higher carbon footprint (Aldawsari, Baker, and England 2015) is also created by the high 

network speeds and bandwidth needed to accommodate the amount of network traffic and to 

speed up the process of data transformation. Thus, the above results in a huge challenge to: 

• achieve the environmental requirements as published in the 2011 report of PBL 

Netherlands Environmental Assessment Agency and JRC European Commission; 

(Jos G.J. Olivier, Greet Janssens-Maenhout, Jeroen A.H.W. Peters 2011) and  

• reduce energy consumption (Baer 2008) and lower the volume of CO2 emissions 

by 15%-30% before 2020 to keep increases in global temperature below 2oC.  

Energy consumption and CO2 emissions from cloud computing are, therefore, an 

environmental concern. 

This chapter presents an algorithm aimed at finding the most energy efficient route between 

the user and cloud datacentre in order to achieve the full green cloud computing. 

4.2	Energy   Efficient   Routing	
The model suggested in this chapter is designed to find the route to the datacentre in a multi-

cloud environment that gives the best combination of energy efficiency and QoS (Quality of 

Service). This objective is chosen to reduce the level of energy consumption in broker-based 



 75 

systems while providing high QoS in accordance with the Service Level Agreement (SLA) 

set with the user. However, the route to the selected cloud data centre should be chosen 

carefully as exchanging data with the cloud data centre may consume more energy than 

processing the service/job in the data centre itself. Hence, there is a need for a cloud 

computing route selection approach. Energy consumption by data centres has been the 

subject of a great deal of study, but the study of energy consumption by a cloud computing 

network has not had much attention. To achieve the most energy-efficient cloud computing 

environments, attention must be paid to following factors:  

1. Service energy consumption within the data centre; and  

2. Energy consumption involved in data transfer between user and the cloud.    

 

 
Figure 4.7 cloud elements, that contribute to the total energy consumption. 

 
Most of the work that is being done on cloud computing energy consumption focuses on 

energy consumed by data centres IT equipment (e.g., servers) and non-IT equipment (e.g., 



 76 

light bulbs), without considering the energy consumption by the (alternative) routes to the 

data centres. Hence, the purpose of this chapter is to develop and evaluate a routing 

algorithm to bridge the above-mentioned gap. The new algorithm should be capable of 

routing user requests to the most energy-efficient data centres by selecting, from among 

various possible routes, the one that is most energy efficient, so that green environment 

ambitions can be achieved while meeting such user requirements as response time. For this 

purpose, it is necessary to model the cloud network, taking power consumption into account, 

in order to establish a workable algorithm. As the network is highly distributed and does not 

necessarily possess global knowledge of its own state, it is thus necessary to apply a 

formalism to define the logical state of the user’s network that does not rely on explicit state 

enumeration. For this a situation calculus model will then be used to define the network’s 

logical state in order to confirm the cloud user to green data centre connection. When the 

connection has been formally established, we calculate both time taken and energy 

consumed for data transfer and computation. Thereafter, an integer linear programming 

technique will then be used to model the algorithm. Figure 4.7 shows various elements that 

contribute to the total energy consumption in cloud environments. 

 

4.2.1	Basics and Rules	
As per the literature, there has been a massive amount of research effort in the area of 

building, or achieving the energy efficient cloud data centres, by reducing the energy 

required by the data centre infrastructure and/or other data centre necessary equipment. The 

previous studies in this domain have helped in making the following assumption in 

connection with a proposed brokerage system: 

There are n “green” data centres to which a user machine can be connected through the 

Internet, to accomplish a certain task. 



 77 

An available green data centre(s) will therefore be used, and must be capable of being 

accessed by the route that is selected as the most energy-efficient. Simply put, there are 

many routes to a green data centre, and the one chosen by the proposed algorithm must be 

the most energy-efficient among them all.  

 
4.2.2	Modelling power consumption of the network	
Understanding the power consumption of the cloud network is deemed essential for 

modelling the proposed algorithm. A widely accepted way of modelling power consumption 

by massively distributed infrastructures is based on figures for equipment inventory in 

telecommunications together with historical sales figures, allowing calculation of energy 

consumption from knowledge of what type of equipment is in the network, and how many 

of them are available. This on its own, though, is not enough to determine the actual network 

architecture and structure. Therefore, to identify the required components and calculate the 

energy consumption, the network architecture should be known. 

A network-based telecommunications model is also required. The network is segmented 

into: access; metro/edge; core; network; and data centre. Figure 4.8 shows first-cut of a 

massively distributed network model, and therefore lacks a great deal of the detail of a 

network’s topology and structure, though, it is useful for showing the outline or skeleton of 

the network architecture as well as the required components in order to calculate energy 

consumption via using data obtained from the manufacturers on energy consumption of used 

components. Combining the two approaches (telecommunications equipment inventory 

statistics based approach and network-based telecommunications) as outlined above, the 

entire network’s power consumption can be calculated using actual infrastructure 

components. Furthermore, this model also enables power consumption growth to be 

predicted. 

 



 78 

 
Figure 4.8 Network structure (user connectivity to data centre) 

 
 
4.2.3	Modelling user connectivity to data centre	
The interconnection between a user machine 𝑖 and a data centre 𝐷𝐶', via the proposed 

algorithm, is based on the public cloud structure shown in Figure 4.8 above, which will be 

formalised as a graph. Thus, between any 𝑖 and a 𝐷𝐶', we assume that we have an 

interconnection graph 𝐺' = (𝑉', 𝑇', 𝑃', 𝐶', 𝐸', 𝐿', 𝐵') 

Where 𝑉' gives a list of all possible nodes available between any 𝑖	and  𝐷𝐶'; and 𝑇𝑖	 ∶ 	 𝑉' 	→

{1, … ,6} states the nodes’ types, which are six different types of nodes available. Therefore, 

as shown in Figure 4.8, each node 𝑣, where 𝑣	𝜖	𝑉', might be: an ethernet switch (𝑇(𝑣) 	=

	0), a broadband gateway router (𝑇(𝑣) 	= 	1), a data centre gateway router (𝑇(𝑣) 	= 	2), a 

provider edge router (𝑇(𝑣) 	= 	3), a core router (𝑇(𝑣) 	= 	4), and a high capacity 

Wavelength Division Multiplexed (WDM) transport equipment/links (𝑇(𝑣) 	= 	5), to 

interconnect the core routers, part of the public Internet.  



 79 

𝑃'	(𝑣) and 𝐶'	(𝑣) states the power consumption and the capacity of a node 𝑣	𝜖	𝑉', 

respectively. 𝐸' ⊆ 𝑉'×𝑉'	defines the interconnection nodes; 𝐿' ∶ 𝐸' → ℕ gives the latency 

between connected nodes 𝐸'	; and finally 𝐵'	denotes to the bandwidth. 

 
4.2.4	Formal analysis of network topology	
As at first conceived, the network is massively distributed and may not be in possession of a 

global understanding of its own condition, so a formalistic approach is needed to define the 

users’ network and its logical state without explicit enumeration of the state. To enable this 

to happen, we propose a calculus of situations as in (Levesque, Pirri, and Reiter 1998), 

which takes the history of previous actions to be a situation. In other words, situation (s) is 

transformed to another situation through the application of action (a) to situation (s), such 

that do (a, s) represents this transformation. The system’s logical state is then determined 

from the initial conditions, effect axioms, frame axioms and qualification axioms. As 

Levesque, Pirri, and Reiter, (1998) explain, it is often possible to deal with the frame 

problem through a combination of frame and effect axioms into successor state axioms. In 

this way, the fitness of a node 𝑣 ∈ 	𝑉' in a user 𝑖’s network may be given by: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠	(𝑣, 𝑑𝑜(𝑎, 𝑠)) 

= 	𝐹 ⇔ 	𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣, 𝑠 = 𝐹 ∧ 𝑎 ∉ 	𝐴 𝑣  

∨ ∃𝑚[	𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑣, 𝑠) = 𝐹 −𝑚 ∧ 	𝑣𝑎𝑙𝑢𝑒(𝑎, 𝑠) = 𝑚] 
 

where 𝐴(𝑣) is the action set of node 𝑣 and value is a function from the set of actions to the 

integers, mapping each action to a reward (positive integer), cost (negative integer) or no 

effect (0). This approach makes it possible to define a fairly simple value system so that the 

choice of components can be optimised from discovery of the datacentre network that is 

most energy-efficient for this user. As an example, a situation term is added to a node’s 

capacity and power measures: 



 80 

 

𝑣𝑎𝑙𝑢𝑒(𝑎𝑑𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑣), 𝑠) 	= 	𝑟	 ≡ 	𝑃'(𝑣, 𝑠) 

>	𝑃'	(𝑣, 𝑑𝑜(𝑎𝑑𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑣), 𝑠) 	∧ 	𝑟	 = 	50	 ∨ 𝐶'	(𝑣, 𝑠) 

< 𝐶	'(𝑣, 𝑑𝑜(𝑎𝑑𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑣), 𝑠) 	∧ 	𝑟	 = 	100	 ∨ 	 [𝑃'	(𝑣, 𝑠) 

>	𝑃'	(𝑣, 𝑑𝑜(𝑎𝑑𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑣), 𝑠)) 	∨ 	(𝐶'	(𝑣, 𝑠) 

> 𝐶'	(𝑣, 𝑑𝑜(𝑎𝑑𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑣), 𝑠)) 	∧ 	𝑟	 = −10] 

 

Thus, for each node: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑑𝑜(𝑎, 𝑠)) = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠) + 𝑣𝑎𝑙𝑢𝑒(𝑎, 𝑠). In addition, 

probabilities can be assigned to reflect the likelihood of success for network operations. 

Thus, it can be stated that for any node, the likelihood of connecting/routing to another node 

𝑣, is dependent on the fitness of that node: 

𝑝𝑟𝑜𝑏(𝑎𝑑𝑑𝐿𝑖𝑛𝑘(𝑣b), 𝑠) 	=
cde	fde
∈ghd cdfd

                                                                            (4.1) 

 

Alternatively, for any 𝑣	 ∈ 	𝑉' this is the probability that (𝑣, 𝑣b) 	 ∈ 	𝐸'. Thus, in order to 

maintain connectivity: 

 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑣, 𝑑𝑜(𝑎, 𝑠)) 	= 	𝑁 ⇔ [(𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑣, 𝑠) 	= 	𝑁) 

∧ 	𝑎	 ≠ 	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑛𝑠	𝑓𝑒𝑟] 	∨ 	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑣, 𝑠) 

= 	𝑁	 − 𝑚 ∧	∃𝑣b(	𝑓𝑎𝑖𝑙𝑒𝑑(𝑣b, 𝑠) 	∧ 	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑣b, 𝑠) 	= 	𝑚) 

×	𝑝𝑜𝑠𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛mnopq𝑓𝑒𝑟, 𝑠 ⇒ ∃𝑣′𝑓𝑎𝑖𝑙𝑒𝑑(𝑣′, 𝑠) 
 

So, if v is the existing node that acquires the connections of a failed node, and 𝑣b is the 

failed unit and 𝑣bb is a newnode created, then: 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑣, 𝑑𝑜(𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑛𝑠	𝑓𝑒𝑟, 𝑠)) 

= 	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑣, 𝑠) + 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑣b, 𝑠) − 𝑚ssb 

−	ℎssb𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑣bb, 𝑑𝑜(𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑎𝑛𝑠	𝑓𝑒𝑟, 𝑠)) 

= 	1 − − − [𝐴] 
 



 81 

where ℎssb 	= 	1 if 𝑣 was connected to 𝑣b, and 0 otherwise, and 𝑚ssb is the number of nodes 

with mutual links to 𝑣 and 𝑣b:  

𝑚ssb 	= ℎ𝑣𝑢ℎ𝑣′𝑢
𝑢

 

For instance, a neighbour node of any particular node is likely to have greater connectivity 

than that node (Cohen, Havlin, and ben-Avraham 2002)(Thar Baker et al. 2013). In this way, 

a strategy of ascertaining a green network overlay can be pursued based on identifying only 

key nodes in the network and routing over these. 

 
4.2.5	Energy required for transportation	
For any user’s job to be processed, we assume that we have: the quantity of Flops that it 

requires 𝑤v; the amount of input bits 𝑖𝑛v to be processed; the amount of output bits 𝑜𝑢v  to 

be returned.  

Therefore, if we need an energy of 𝐸𝑇qwpf	(𝑖) for sending a bit from the user to the data 

centre and 𝐸𝑇nwxs(𝑖) for the inverse sending, the total energy transportation cost required for 

processing 𝐽v is: 𝑖𝑛v. 𝐸𝑇qwpf(𝑖) 	+ 𝑜𝑢v. 𝐸𝑇nwxs(𝑖). To model 𝐸𝑇qwpf(𝑖) and 𝐸𝑇nwxs(𝑖), we 

assume that data sent from a user machine to a data centre is always routed on a path that is 

based the two points connection (the shortest path). In using the formulas proposed in 

(Baliga et al. 2011), the energy required for sending one bit from a user to a data centre is: 

 

𝐸𝑇qwpf 𝑖 = 6({|}~
h

�}~h
+ 	

|��
h

���
h + |�h

��h
+ �|�}h

��}h
+ ��|�h

��h
+ �|�h

��h
)                          (4.2) 

 
 
where in this case, 𝑃wq' , 𝑃��' , 𝑃�', 𝑃�w' , 𝑃x' and 𝑃�'  represent the power consumed by the nodes 

types listed in subsection 4.2.3., Ethernet switches, broadband gateway routers, data centre 

gateway routers, provider edge routers, core routers, and WDM transport equipment, that are 

located on the path used for routing a user’s job to a 𝐷𝐶' .  𝐶wq' , 𝐶��' , 𝐶�' , 𝐶�w' , 𝐶x' and 𝐶�'  are the 



 82 

capacities of the corresponding equipment in bits per second. The values 𝑃' and 𝐶' depend 

on the nodes used. 

Since the above equation does not take into account the power consumption of the other 

overheads in the cloud network, hence, the entire equation is multiplied by the left factor 

(six). The factor of six stands precisely for the power requirements for cloud redundancy 

(factor of 2), cooling equipment and other overheads (factor of 1.5), and the fact that today’s 

network typically operates at under 50% utilisation while still consuming almost 100% of 

maximum power (factor of 2). The factor of three for Ethernet switches is to include the 

Ethernet switches in the metro network as well as the Ethernet switches in the LAN inside 

the data centre. The factor of two for provider edge routers is to include the edge router in 

the edge network and the gateway router in the data centre, and in the same vein for the 

other factors in the equation. 

Let’s consider that 𝐺' comprises the set of paths 𝑃𝑡ℎ	 = 	 {𝑝𝑡ℎ�, . . . 	𝑝𝑡ℎ�} from a user 

machine 𝑖 to the data centre 𝐷𝐶'. Then, if the path 𝑝𝑡ℎ� was used for sending data, we will 

have: 

 

𝑝wq' 	= Σ(𝑢, 𝑣) ∈ 𝑝𝑡ℎ�|𝑇(𝑣) = 0	𝑃'(𝑣)  and 
𝑐wq' 	= Σ(𝑢, 𝑣) ∈ 𝑝𝑡ℎ�|𝑇(𝑣) = 0	𝑐'(𝑣) 

 

And in the same vein, for the other nodes’ types. For example, for the broadband gateway 

router, 𝑝wq'  and 𝐶wq'  will consecutively be:  

 

𝑝wq' = Σ(𝑢, 𝑣) ∈ 𝑝𝑡ℎ�|𝑇(𝑣) = 1	𝑃'(𝑣)  and 
𝑐wq' = Σ(𝑢, 𝑣) ∈ 𝑝𝑡ℎ�|𝑇(𝑣) = 1	𝑐'(𝑣) 

 



 83 

4.2.6	Time required for transportation	
We assume a simple communication model, Store and Forward, where each node waits for a 

complete reception of the data before processing it. The approximate time required for 

sending 𝛼 bits on a link 𝑒	𝜖	𝐸'  is equal to: max {𝐿'(𝑒), [ �
�(})
h ]	. 𝐿'(𝑒)}. 

where, as mentioned in subsection 4.2.3 above that, 𝐿' ∶ 𝐸' → ℕ gives the latency between 

connected nodes 𝑒	𝜖	𝐸'; and 𝐵' denotes to the bandwidth. The idea behind it is that either, 

the bandwidth can contain the bits to send or, we must divide the data to send it in various 

blocks based on the bandwidth. Finally, we assume that the paths 𝑝𝑡ℎ� and 𝑝𝑡ℎ�’		𝜖	𝑃𝑡ℎ 

were used for sending user data in both directions; then, the total time required for the 

transportation of a Job 𝐽v in both directions is equal to: 

 

𝑇𝑟 𝑢, 𝑖 = 	 max	{𝐿'(𝑒), [
𝑖𝑛v
𝐵(w)'

]	. 𝐿'(𝑒)}
w�	�m��	

+ 	 max	{𝐿'(𝑒), [
𝑜𝑢v
𝐵(w)'

]	. 𝐿'(𝑒)}
w��m��e

 

 
(4.3) 

4.2.7	Energy and time required for computation	
We assume that each job 𝐽v will be processed by a single machine in the data centre. We 

also assume that each data centre 𝐷𝐶' is made of a finite set of homogeneous machines that 

consume 𝐸𝑃(𝑖) for processing one flop. Therefore, for processing a job 𝐽v, the data centre 

𝐷𝐶' will consume 𝑤v: 𝐸𝑃(𝑖). Finally, any machine in a data centre 𝐷𝐶' needs 

approximatively 𝜇(𝑖) time units for processing one flop. The job 𝐽v can then be processed in 

approximatively 𝑤v. 𝜇(𝑖) times units. 

4.3. Implementation 
 
4.3.1. Linear programming formulation	
The proposed Green Director (GreeDi) algorithm will be used to direct users’ jobs. It routes 

users’ jobs to subscribed green data centres by the route that is most energy-efficient, so that 

both energy consumption and Service Response Time (SRT) are minimised. This gives rise 



 84 

to a computational problem requiring resolution: m users’ jobs 𝐽�, . . . , 	𝐽� have been 

submitted to the framework gateway, which is shown here as a server connected to each data 

centre 𝐷𝐶' by an interconnection graph 𝐺'. On submission, each user’s job is accompanied 

by an intention file providing such non-functional SLA requirements such as the maximum 

response time expected by the user for the processing of that job. A capacity qi stating the 

maximal number of jobs that GreeDi algorithm can route on it is associated with each data 

centre 𝐷𝐶'. Negotiations between framework and cloud provider set this parameter. 𝑞' is 

also important in ensuring that the response time for dealing with users’ requests is minimal. 

For each job 𝐽v , a data centre must be chosen by the gateway in such a way that total energy 

consumption both for data transfer and for processing is minimised, while data is processed 

within the minimal response time contained in the intention file for that user. This is a linear 

programming formulation in which the decisional variable 𝑥(𝑖, 𝑢) 	∈ 	0, 1 defines whether or 

not data centre 𝐷𝐶'	will process job 𝐽v. If the Maximal Service Response Time for job 𝐽v (as 

defined in user’s intention file) is MSRTu, then the following mixed integer linear 

programme is a way of representing the problem: 

𝑴𝒐𝒅𝒆𝒍		𝐿𝑃�   : 

 

Minimise     𝑍 = 	 𝑥 𝑖, 𝑢 . [𝑤vp
'¤�

�
v¤� . 𝐸𝑃 𝑖 + 𝑖𝑛v	. 𝐸𝑇qwpf 𝑖 +	𝑜𝑢v	. 𝐸𝑇¥wxs(𝑖)] 

Subject to: 
1. ∀𝐽v, 	𝐷𝐶':	𝑥(𝑖, 𝑢) ∈ {0, 1}  

2. ∀𝐽v ∶ Σ'¤�p 	𝑥(𝑖, 𝑢) = 1 

3. ∀𝐽v ∶ Σ'¤�p 	𝑥(𝑖, 𝑢) 	 · 	 [𝑤v · 	µ(𝑖) + 𝑇𝑟(𝑢, 𝑖)] 	≤ 	𝑀𝑆𝑅𝑇v 

4. ∀𝐷𝐶𝑖 ∶ Σv¤�� 	𝑥(𝑖, 𝑢) 	≤ 	 𝑞' 
 

Any 𝐿𝑃� solution states to route job 𝐽v towards the data centre 	𝐷𝐶'	𝑖𝑓	𝑥(𝑖, 𝑢) = 1. In this 

model, constraint 3 is set to the maximal response time that users expect. It is only possible 

to guarantee this maximum if the maximal number of jobs allowed to be processed in 



 85 

parallel at any data centre is limited, and therefore we have constraint 4, where the maximal 

number of jobs is denoted by 𝑞'. 

We assumed that in the case of 𝐿𝑃� that two paths, 𝑝𝑡ℎ� and 𝑝𝑡ℎ�e, would be used to send 

user data in both directions. Different values for 𝑍 might be produced by different path 

selection. There are two options that allow this inclusion:  

• Include it in 𝐿𝑃�, in which case it would be difficult to avoid non-linear equations; or  

• Execute the linear program a number of times with different path choices each time 

until the program returns the answer needing to minimise 𝑍. 

This approach is more efficient since we remain with a linear model. Algorithm 1 below 

summarises 𝐿𝑃�. 

Algorithm 4.1. Energy Efficiency Algorithm 

Algorithm 4.1  𝑳𝑷𝟏Input, Output, Steps 

INPUT: Jobs 𝑱𝟏, . . . , 	𝑱𝒎  with workloads, inputs and outputs 

data, and intention files; Data centres 𝑫𝑪𝟏, … ,	𝑫𝑪𝒏 with 

energy consumption per flop and frequency; Interconnection 

graphs 𝑮𝟏…𝑮𝒏 

OUPUT: Return the best solution on 𝒁 

STEPS: 

1. Define, for each  , a set of paths C𝒑𝒕𝒉𝒊 that can be used for 

sending and receiving data. 

2. For each i, choose a pair of paths (𝒑𝒕𝒉𝒑 , 𝒑𝒕𝒉𝒑e)	𝝐	𝑪𝒑𝒕𝒉𝒊 

3. Compute the resulting values of 𝑬𝑻𝒔𝒆𝒏𝒅(𝒊) and 𝑬𝑻𝒓𝒆𝒄𝒗(𝒊) 

(equation 2); 

4. For any job 𝑱𝒖 and data centre 𝑫𝑪𝒊 compute 𝑻𝒓(𝒖; 	𝒊) (equation 

3) 

5. Run  𝑳𝑷𝟏 and obtain 𝒁; if it is the best obtained value then it 

will be kept. 

6. If there is possible combination (𝒑𝒕𝒉𝒑 , 𝒑𝒕𝒉𝒑e) that has not 

been explored, go to 2 

 



 86 

 
Where 𝑪𝒑𝒕𝒉𝒊 is defined by taking the shortest paths on the bandwidth (a special case), we 

do not loop in this algorithm. Users’ intents for maximal response time may make it 

impossible to realise 𝐿𝑃�, in which case a goal programming formulation will be used. 

 

4.3.2. Goal programming formulation	
For any job 𝐽v, we introduce two real deviation variables 𝑑vÄ and 𝑑vÅ. A job 𝐽v can be put on 

data centre 𝐷𝐶' if: 

𝑤v 	 · 	µ(𝑖) + 𝑇𝑟(𝑢, 𝑖) + 𝑑vÅ − 𝑑vÄ = 	𝑀𝑆𝑅𝑇v 

 

Getting close to user’s intents demands that we minimise 𝑑vÄ (the difference between the 

actual SRT and the user’s aspiration). The objective here is to minimise both:  

• Deviation from user requirements; and  

• Total energy consumption.  

To find one function capable of handling both of these objectives involves the assumption 

that a preference factor 𝛽v exists, that it is defined by the user for each job, and that it 

indicates the relative importance of minimising SRT over energy consumption. Now it 

becomes possible to derive the following model LP2: 

Model 𝐿𝑃� 

 

Minimise  

1 − 𝛽v

�

v¤�

	
𝐸v

𝐸v +	𝑑vÄ
+ 𝛽v 	

𝑑vÄ

𝐸v +	𝑑vÄ
 

Subject to: 

1. ∀𝐽v, 𝐷𝐶':	𝑥(𝑖, 𝑢) 	 ∈ 	 {0, 1} 

2. ∀𝐽v, ∶ 	 𝑥 𝑖, 𝑢 = 1p
'¤�   

3. ∀𝐽v ∶ 	 𝑑𝑢
−, 𝑑𝑢

+ ≥ 	0 

4. ∀𝐽v, ∶ 	 𝑥 𝑖, 𝑢p
'¤�  . 𝑤v 	 · 	µ(𝑖) + 𝑇𝑟(𝑢, 𝑖) + 𝑑vÅ − 𝑑vÄ = 	𝑀𝑆𝑅𝑇v 



 87 

5. 𝐸v, ∶ 	 𝑥 𝑖, 𝑢 	p
'¤� . [𝑤v · 	𝐸𝑃(𝑖) + 𝑖𝑛v 	 · 	𝐸𝑇Èwpf(𝑖) + 𝑜𝑢v 	 · 	𝐸𝑇¥wxs(𝑖)]  

6. ∀𝐷𝐶', ∶ 	 𝑥 𝑖, 𝑢 ≤ 	𝑞'�
v¤� 	  

 

This modelling embraces goals of two types: user goals, which are submitted by way of an 

intention derived from an SLA; and minimising energy consumption. In this formulation, we 

have reduced user intents to a threshold for SRT in accordance with MSR T constraint 4 in 

LP2. It would be sensible, however, to consider extending the model so that other 

requirements can be included; these might, for example, include such things as maximal 

price and minimal security level for data. It is also important to note that both energy and 

goal deviation have been normalised to make it possible to compare them, and there is a 

disadvantage to this in that the objective function becomes non-linear. We will therefore 

propose the use of dynamic programming in order to compute fast LP2 solutions. 

4.3.3.	Dynamic	programming	approach 
In this solution, we maintain a two-dimensional array ∈ 𝑅p	×	� . Each 𝑍	(𝑖, 𝑙) corresponds to 

an assignment of the jobs 𝐽�, . . . 	𝐽�Å�  to data centres in which 	𝐽� is associated with the data 

centre 𝐷𝐶'. At the beginning of the algorithm, we compute: 

 

𝑍(𝑖, 1) 	= 	 (1 − 𝛽�)	
𝐸�(𝑖)

𝐸� 𝑖 + 𝑑�Ä(𝑖)
	+ 𝛽� 	 · 	

𝑑�Ä(𝑖)
𝐸� 𝑖 + 𝑑�Ä(𝑖)

 

for any data centre 𝐷𝐶'. Here,  

 

𝐸�(𝑖) = 	𝑤� · 	𝐸𝑃(𝑖) + 𝑖𝑛� 	 · 	𝐸𝑇Èwpf	(𝑖) + 𝑜𝑢� · 	𝐸𝑇¥wxs(𝑖) 

and 

𝑤� 	 · 	µ(𝑖) + 𝑇𝑟(1, 𝑖)] + 𝑑�Å(𝑖) − 	𝑑�Ä(𝑖) 	= 	𝑀𝑆𝑅𝑇�	

 

For the computation of 𝑍	(𝑖, 𝑙), 𝑙	 > 	1, we proceed as follows: 

1. We consider the different assignments 𝑍	(1, 𝑙 − 	1). . . 𝑍(𝑛, 𝑙 − 1) in which the 

number of Jobs assigned to 𝐷𝐶' is lower than 𝑞'. We will refer to these assignments 

as (𝑖, 𝑙) compatible ones. 



 88 

2. If there are no (𝑖, 𝑙) compatible assignments, we set 𝑍	(𝑖, 𝑙) 	= +∞ 

3. Otherwise, we choose the (𝑖, 𝑙) compatible assignment with the smallest objective 

value and sum this value in 𝑍	(𝑖, 𝑙), with the cost required for assigning 𝐽� to the data 

centre 𝐷𝐶'. In a formal manner, this cost is 

 

𝑍	(𝑖, 𝑙) 	= 	 (1 − 𝛽�)	
𝐸�(𝑖)

𝐸� 𝑖 + 𝑑�Ä(𝑖)
	+ 𝛽� 	 · 	

𝑑�Ä(𝑖)
𝐸� 𝑖 + 𝑑�Ä(𝑖)

 

 

At the end, we have the values of 𝑍	(𝑖, 𝑛), computed for each data centre 𝐷𝐶'. We then 

select the assignment that leads to the smallest objective value. The Bellman rule of this 

modelling can be resumed as follows: the optimal assignment of Job 𝐽� on the data centre 

𝐷𝐶' is obtained from the optimal assignment of Jobs 𝐽�, . . . 	𝐽�Å� in which the capacity used 

for the data centre 𝐷𝐶' is lower than 𝑞'. The optimality of this rule can be influenced by the 

way we sort the jobs. We propose for this to use the user’s submission ordering. That is: 𝐽� is 

the first submitted Job, 𝐽� is the second, etc. The advantage of this ordering is that implicitly 

the first user will have the best services. 

4.4. Evaluation 
In this section, we set out a scenario designed to illustrate the total energy involved in 

routing a user request to a subscribed green data centre. First, we present the physical 

network topology used to evaluate energy efficiency, and then we will indicate the types of 

nodes by route in the topology and calculate energy consumption to enable the results to be 

compared. 

 



 89 

 
Figure 4.9 Hierarchal topology of an Italian ISP 

4.4.1. 	Physical topology  
This network topology makes use of the hierarchal design used by an Italian Internet Service 

Provider (ISP) (Panarello et al. 2010). This topology has four node levels: core, backbone, 

metro, and access nodes, with the core nodes as the top level. Central Points-of-Presents 

(POP’s) are mostly to be found in big cities, and this is where the core nodes are located. 

There is a pair of core nodes in every Central POP, and these core nodes are connected to 

each other and also to core nodes in adjacent cities. To protect against failure, there will 

usually be two links for each node-node connection. Internet connection is provided by a 

high-capacity Internet peering router connected to the core nodes, though it might prove 

necessary to traverse a number of court nodes before a connection to the Internet is made 

through a Central POP. The topology’s second level comprises the backbone nodes, each of 

which is connected to two Central POPs.  



 90 

 

The physical location of backbone nodes is in the larger POPs, or Chief POPs, distributed 

among large cities. On the other side from the Central POP connection, the backbone nodes 

connect to metro nodes, each of which has separate connections to two backbone nodes in 

case of failure. Location of both Metro and backbone nodes is within the same Chief POP. 

Access nodes form the lowest level of the topological hierarchy and connect to Digital 

Subscriber Line Access Multiplexers (DSLAMs). Users connect to these DSLAMs through 

DSL, FTTN, or PON. The purpose of access nodes is to aggregate traffic from users located 

within the same area. Each access node is dual-homed to the pair of metro nodes closest to it 

so that, as Figure 4.9 shows, if any intermediate node should fail, then the user’s job will be 

rerouted to a live node connected to the failed node, depending on the topological level at 

which failure occurred. It follows that each route’s potential power consumption may vary 

and it is necessary to know energy consumption of each piece of equipment (together with 

its capacity) on all possible routes beginning from the access node level and continuing all 

the way to the Internet and then, in a cloud scenario, to the data centre. For this purpose, we 

will use the power and capacity specification of actual network equipment as given by the 

equipment manufacturers and apply this information to the topology described. The data in 

question is shown in Tables 4.3 to 4.6. 

 

Table 4.2: Route A network components 

Type Equipment Capacity Power consumption 
Ethernet switch (small) Cisco 4507R-E 64 Gbps 0.658 kW 

Ethernet switch Cisco 6509-E 180 Gbps 2.279 kW 
BNG Juniper E320 320 Gbps 3.347 kW 

Provider edge Cisco 12816 160 Gbps 4.21 kW 
Core router Juniper T640 640 Gbps 6.283 kW 

WDM (800 km) Fujitsu 7700 40 Gbps 136 W/channel 
 
 



 91 

Table 4.3 Route B network components 

Type Equipment Capacity Power consumption 
Ethernet switch (small) Cisco 4503 64 Gbps 0.474 kW 

Ethernet switch Cisco 6509 160 Gbps 3.8 kW 
BNG Juniper E120 120 Gbps 1.638 kW 

Provider edge Cisco 12816 160 Gbps 4.21 kW 
Core router Cisco CRS-1 640 Gbps 10.9 kW 

WDM (800 km) Fujitsu 7700 40 Gbps 136 W/channel 
 
 
Table 4.4: Route C network components 

Type Equipment Capacity Power consumption 
Ethernet switch (small) Cisco 4503 64 Gbps 0.474 kW 

Ethernet switch Cisco 6509 160 Gbps 3.8 kW 
BNG Cisco ASR 9001-S 60 Gbps 3.3 kW 

Provider edge Cisco 12816 160 Gbps 4.21 kW 
Core router Cisco CRS-1 640 Gbps 10.9 kW 

WDM (800 km) Fujitsu 7700 40 Gbps 136 W/channel 
 
Table 4.5 Route D network components 

Type Equipment Capacity Power consumption 
Ethernet switch (small) Cisco 4503 64 Gbps 0.474 kW 

Ethernet switch (Route A) Cisco 6509-E 180 Gbps 2.279 kW 
Ethernet switch (Route B) Cisco 6509 160 Gbps 3.8 kW 

BNG Juniper E120 120 Gbps 1.638 kW 
Provider edge Cisco 12816 160 Gbps 4.21 kW 
Core router Juniper T640 640 Gbps 6.283 kW 

WDM (800 km) Fujitsu 7700 40 Gbps 136 W/channel 
 

4.4.2. Energy evaluation model and results 
The scenario we have chosen has three standard routes to a green cloud datacentre, and each 

of these routes is structured differently depending on which Chief POP and Central POP are 

used in the routing, in the matter of the number of nodes traversed, their power, and their 

capacity. This may be summarised as follows: 

1. In Table 4.3, Route A comprises 8 core routers/nodes, 52 edge routers, 52 access 

routers, 260 residential switches, and 260 end hosts, giving a total count of 632 

nodes. 



 92 

2. In Table 4.4, Route B has fewer intermediate nodes than route A, comprising: 6 core 

routers, 48 edge routers, 47 access routers, 245 residential switches, and 260 end 

hosts, for a total count of 606 nodes. 

3. In Table 4.5, Route C has the smallest number of intermediate nodes: 5 core routers, 

45 edge routers, 45 access routers, 230 residential switches, and 260 end hosts, 

totalling 585 nodes. 

 

 
Figure 4.10 Path lengths of each route 

 

Failure of a node can occur at any time while data is being sent and received, and a node 

failure means that a different route must be chosen and switched to for transmission to be 

completed. Take the red-crossed node in Figure 4.9, which is a Central POP node forming 

part of Route A. Should this node experience hardware failure, the backbone nodes will 

switch to a different Central POP by following the yellow path in the same figure to obtain 

an Internet connection – and that path is part of Route B. This means that the new yellow 

route has now become Route D for the purposes of our example and Route D requires three 

times the number of Central POPs that the original route does. Application of ETsend on the 

new route will show energy consumption might be less than that of the original route, and 

might be more. Route D (Table 4.6) comprises 8 core routers (all from Route A), 52 edge 



 93 

routers (all from Route A), 251 residential switches (150 from Route A and 101 from Route 

B), 47 access routers (all from Route B), and 260 end hosts (all from Route B), giving a total 

of 618 nodes.  

 

 
Figure 4.11 Total energy of each route. 

 

Figure 4.10 shows, for each of the four routes we have described, the total number of 

intermediate nodes on the way to the datacentre. Figure 4.11 and 12 show that the total 

energy transportation cost for Route A is less than that of any of the other three routes, 

notwithstanding the fact that Route A covers more nodes than any of the others. The reason 

lies in the capacity and power consumption of equipment used in the four routes. The values 

given in Figure 4.11 depend on ETsend calculations for the routes, and this is very close to 

the results from ETrecv, where the same route is used for inverse sending. It is therefore 

clear that the most energy efficient route is Route A, and that – purely from the perspective 

of energy consumption – this is the most energy-efficient. Route B offers a compromise, 

combining shortest path possible with energy consumption. Route D may be considered as a 

recovery route. Figure 4.12 shows results based on the average consumption of energy by 

each node. Route A, although it is the longest path, has the lowest consumption of energy 



 94 

per node as well as being overall the lowest consumer of energy. Route B has better overall 

energy consumption than Route C and is shorter than Route A, but is inefficient in her node 

energy consumption and its overall energy advantage cannot counterbalance the cost of 

energy consumed by its additional nodes. It would therefore appear that, from an energy 

efficiency point of view, the most favourable route is Route A. 

 

 
Figure 4.12 Average energy consumption per node of each route. 

 
 

4.5.	Summary	
This chapter proposed and evaluated a multi-cloud broker model to act as an intermediary 

bridge for directing users’ requests to the green data centres using the most energy efficient 

route. In addition, this model aims to achieve the full green cloud computing network 

ambition. The GreeDi algorithm dealt with the energy efficiency of cloud routing rather than 

data centres’ energy consumption, and proposed and evaluated a new energy efficient 

routing framework. It was evaluated on a physical Italian ISP topology that has three 

different routes to a green cloud data centre. From the example results shown in this chapter, 

the shortest path approach is different from the energy efficient one, and thus, the energy 

efficient path is used to conform to the environmental objectives.  



 95 

FIFTH CHAPTER 

	

	

	
 
 
 

	

Bin-Packing	Based	Energy-
Efficient	Service	Provision	

	



 96 

		

5.1.	Introduction	
Cloud computing on-demand utility pricing model has grown considerably to support online 

service delivery, both for businesses and for individuals. The business model is both simple 

and powerful: providers offer services, end-users find the service they need, and when they 

have subscribed, high-speed network connection is established between them. In its simplest 

form, all services required by the user are provided by one cloud provider, but where this is 

not possible, and more than one cloud is in use, the service must be put together with care. A 

user request goes to a provider, who returns a reply to the user. When resource limitations or 

other constraints mean that a single service provider cannot meet all of the user’s needs, the 

model becomes more complex. Typically, this will be seen in composition of services and 

the use of the model of broker-based cloud services (Aldawsari, Baker, and England 2015), 

with multiple cloud service providers collaborating in a multi-cloud environment so that the 

user can receive the desired service outcomes. The assumption must be that the various web 

services coordinate their activities to avoid conflict in such matters as shareable resources 

and order dependencies, and also to avoid delays in communication. 

The chapter presents a new energy-aware multi-cloud service selection broker, based on the 

notion of the bin-packing approach, that generates improved composition plans by searching 

for and integrating the most energy efficient services, or service compositions, from the 

smallest possible number of competing service providers. 

 

5.1.1.	Service Composition Energy Consumption	
Cloud computing service composition involves putting together of a set of services that will 

provide the functionality the user requires. That set of services will be arranged without 

concern about where the providers’ servers are physically located or what level of energy 

efficiency can be maintained. It is also possible for the service either to be accessed directly 



 97 

by the user or to be incorporated in other service compositions. Putting together the model 

of service composition makes use of service-oriented architecture (SOA) and, for this to 

happen, the following points must be in place:  

• Service providers must publish a description of their services including functional 

and non-functional properties;  

• A service composer must construct a suitably able service composition for offer 

to users; and 

• Service discovery must facilitate the matching of user requirements with 

published descriptions. 

Normally, users will pay little attention to where the service is actually being provided from, 

number of providers involved, or the amount of energy consumed. Rather, their attention 

will be on speed of the service delivery, response times, and cost.  

Research into ways in which energy consumption of the cloud can be reduced is overlooked, 

whilst finding an energy-efficient cloud computing solution is essential in the pursuit of 

environmental sustainability. The literature offers quite a number of possible approaches 

(Luo, Zhou, and Wu 2009)(X. Wang et al. 2009)(Rodriguez-Mier, Mucientes, and Lama 

2012) designed to select the optimum mix of service components to combine a suitable 

environmental approach with such QoS metrics as availability, security, trust, performance, 

and cost. However, energy efficiency has not been highly prioritised in the process of 

choosing service components that will offer the most efficiency.  

The traditional multi-cloud model involves submitting a request by the user to a service 

broker setting out the specification of the services required, with the broker then finding a 

service provider or mix of providers capable of satisfying the request. Finding the best-fit 

service for the user is, at present, seen as the multi-cloud broker’s biggest challenge due to 

the following reasons: 



 98 

a) In order to maximise the energy efficiency of cloud services (or resources), it is 

necessary to find and allocate resources suitable for each incoming request so that 

the smallest possible number of allocated resources are used to meet user needs, and 

they are drawn from the smallest possible number of service providers.  

b) While a number of heuristic IaaS solutions have been put forward, (Beloglazov, 

Abawajy, and Buyya 2012)(Kumar et al. 2015) algorithms that will allocate 

resources in the most energy efficient way are still lacking. As time goes on, there is 

a development of hybrid cloud solutions combining IaaS and Platform-as-a-Service 

(PaaS) in a single cloud (OpenStack Heat is an example), and these are attractive 

because they make it possible for infrastructure and applications to be deployed 

together, but there is still not sufficient attention to the energy efficient allocation of 

resources. 

c) There is as yet no clear and understood process for finding services that meet user 

needs and are energy efficient, and nor is it possible for a broker, when drawing 

together (composing) multiple services, to do so in an energy-efficient way when no 

single services are available to meet the user request. 

d) There is as yet also no way for the broker to compare resources from different clouds 

in such a way that it would be possible to compose the most energy-efficient plan 

from the minimum number of clouds. 

The steady increase in the number of cloud providers and the number of services makes 

composing a multi-service plan in a multi-cloud environment ever more difficult. To do so 

would require that all parties involved exchange data on a huge scale and that, in itself, 

would increase energy consumption levels. There is a tendency for service providers and 

brokers to prioritise such QoS metrics as response time, security and availability, because 

these are the things that attract clients. The cost of transferring data in composite Web 



 99 

services between more than one cloud provider is high, not only in money terms but also in 

the time it takes and the energy demands. Optimising required services by locating the 

smallest possible number of cloud service providers is important, but doing this in the way 

that consumes the least total energy does not receive enough attention. As the number of 

cloud service providers increases, so does the difficulty of minimising energy consumption, 

and that challenge is the central purpose of this study. 

5.2.	The System Model	
In order to formulate the problem and the proposed solution in this thesis, we need to 

identify the main cooperating parties and their interconnectivity with each other. Fig.13 

shows a conceptual representation of the user, broker and cloud service providers. The next 

subsections formalise the interrelationship among those parties, and show how the new 

broker works.  

5.2.1.	Formal datacentre-broker model	
 

When composing a service from a multi-cloud, services requested by the user may be 

provided by a number of commercial cloud providers. These services are integrated for 

combined use to communication protocols. The Multiple Cloud service Providers (MCP) is 

a cloud provider grouping, such that 𝑀𝐶𝑃	 = 	 {𝐶𝑃', 𝐶𝑃'Ä�, … , 𝐶𝑃�} such that (1 ≤ 	𝑖	 ≤ ℎ) 

represents a CP unique identification number. Because the total energy consumed plays a 

major role in the algorithm we propose, service providers are expected to provide Total 

Energy Consumption (TEC) of all services they make available to brokers. The broker then 

describes each service provider in a 2-tuple 𝐶𝑃�,ÊË�	. As an example, 𝐶𝑃{,�Ì�	 would indicate 

that all services available from cloud provider 3 had a total power consumption of 174kW. 

The formulation 𝜋Í(𝐶𝑃�,ÊË�Î	) is used to describe a pre-defined composition plan (𝑗) created 

by cloud provider (ℎ) with total energy of (TEC). 



 100 

 

The algorithm we propose is a benefit of bin-packing and includes, as a constraint, a valid 

condition. The algorithm’s principle is to pack items (which, for this purpose, means finding 

services) into the smallest possible bin set (the minimum possible number of data centres), 

as indicated by the data centres’ total consumption of power. It is also possible to describe 

this as packing services requested by the user into the smallest possible number of data 

centres. In pursuit of this objective, the key decision variable 𝐶𝑃' for each cloud provider 𝑖 is 

set to 1 if cloud provider 𝑖 is selected as a service provider; if not, the value is set to 0. 

Finding a way to obtain all services requested by the user from the smallest possible number 

of cloud providers can be expressed as follows: 

 (5.1) 

min 𝐼 = 𝐶𝑃'

�

'¤�

 

 
The set of web services offered by each cloud service provider is defined as 𝑆, where 

𝑆 𝐶𝑃' = {𝑆Ó, 𝑆ÓÄ�, 𝑆�} in which (1	 ≤ 𝑘	 ≤ 𝑚); 𝑘 is the unique identification number of 

each of the 𝑚 atomic services of 𝐶𝑃'. To enable us to meet the user’s request from the 

smallest possible number of services, another decision variable, 𝑠Ó, is used, and is set to 1 

for a service that has been selected; a value of 0 indicates that the service has not been 

selected. 

 

(5.2) 

min𝐾 = 𝑠Ó

�

Ó¤�

|{∀	𝑠 ∶ 𝑠ÕÖ×ØÙÚ		 ∈ 𝑆 ∈ 	𝐶𝑃'} 

 

To meet the aims of this research project, the following assumptions underlie the 

proposed algorithm: 

 



 101 

1. Information is provided by every service provider on the total energy consumption of 

all atomic services at the datacentre (TEC), as well as the number of atomic services, 

the actual pre-defined composition plans 𝜋	(𝐶𝑃), and a list of atomic services 

𝑠'; 	𝐸𝐶 , where EC is the energy consumption of service 𝑠'.  

2. Cloud providers are listed in ascending order of total energy consumed at that 

provider by all that provider’s atomic services (𝑙𝑇𝐸𝐶), so that the first providers to 

be examined will always be those that consume least energy (Algorithm 5.1). 

3. Brokers begin with an examination of atomic services from providers, beginning 

with the one whose total energy consumption is lowest and ascending in order until 

finding the first capable of meeting the user’s request from a single provider 

(Algorithm 5.2). 

4. If a number of atomic single services are found to meet the user’s request, their 

energy consumption is compared so that the service with minimum power 

consumption can be selected (Algorithm 5.2). 

5. Only if no single provider is found to meet the user’s request, then the broker 

examines predefined composition plans for all providers in ascending order of 

energy consumption (Algorithm 5.3). 

6. If no predefined composition plan that meets the user’s request is found, the broker 

will create one by use of Algorithm 5.4, such that 

 
𝜋� = 	 𝑠𝑖, 𝐸𝐶 𝑠𝑖 , 𝐶𝑃𝑃 	∪	 𝑠𝑗, 𝐸𝐶 𝑠𝑗 , 𝐶𝑃𝑞 	∪,… ,∪ 𝑠𝑘, 𝐸𝐶 𝑠𝑘 , 𝐶𝑃𝑟  

 
is a set of services either from the same provider, or from a number of providers, 

subject to: 

 

 

 



 102 

 

𝑚𝑖𝑛𝐶𝑜𝑛𝑠	 𝐸𝐶(𝑠') 	 ∀	𝑠 ∶ 𝑠	 ∈ 𝑆	 ∈ 	 𝐶𝑃nÓ
'¤�                                           (5.3) 

 

 

𝐶𝑃' =
1, 𝑖𝑓	𝑡ℎ𝑒	𝑐𝑙𝑜𝑢𝑑	𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟	𝑢𝑠𝑒𝑑;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.																																		                             (5.4) 

 

 

𝑠Ó =
1, 𝑖𝑓	𝑡ℎ𝑒	𝑠𝑒𝑟𝑣𝑖𝑐𝑒	𝑘	𝑢𝑠𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         (5.5) 



 103 

 
Figure 5.13 Conceptual representation of the proposed approach 

 

Figure 5.13 shows interaction of the four algorithms in the Broker Layer. Algorithm 5.1 is 

the first step; providers who have subscribed to the broker cloud are reordered on the basis 

of their total energy consumption. After that, in algorithm 5.2 the broker checks atomic 

services individually by first cloud provider; if a match is found, the broker replies to the 

user request to say so, if not the broker will use, Algorithm 5.3 to enable the broker to 



 104 

examine each provider’s predefined compositions to see whether such a composition from a 

single provider exists to meet the user requirement. Should there still be no match, the 

broker uses Algorithm 5.4 to build a composition plan that is optimal in terms of energy 

consumption. 

5.2.2.	Formal	datacentre-broker	model	
As discussed in (Section 5.2.1), the optimal service or optimal composition plan satisfies the 

three decision variables in Equations 5.1, 5.2, and 5.3. The optimal plan well, therefore, be:  

• An atomic service; 

• A predefined composition plan from a subscribed provider; or 

• That combination of atomic services, whether from the same provider or from a 

mix of providers, that combines the lowest possible number of providers with the 

smallest amount of energy consumed for each selected service. 

As an example, take a multi-cloud environment in which the broker negotiates with four 

cloud providers: 𝐶𝑃�, 𝐶𝑃�, 𝐶𝑃{,	𝐶𝑃� . A set of atomic services is available from each 

provider, and this set is a subset of the services 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , and a set of 𝜋(𝐶𝑃), as shown 

in Table 5.7. 

On receipt of a user request (USR), the broker re-lists the providers in ascending order, 

producing Table 8 from Algorithm 5.1, and then examines all of the atomic services in row 

2 with the aim of finding the most energy efficient to meet the user’s needs while consuming 

the lowest amount of total energy. 

 
Table 5.6 Multiple-cloud providers and Services 

Cloud providers 	𝑪𝑷𝟒,𝟐.𝟔𝟎𝟏  
 

	𝑪𝑷𝟏,𝟐.𝟑𝟓  	𝑪𝑷𝟐,𝟏.𝟎𝟒  	𝑪𝑷𝟑,𝟏.𝟔𝟓  

Atomic services a, b, c, e a, b, c c, d, e c, d 
EC (kW)  0.52, 0.8, 0.721, 0.56  0.65, 0.5, 1.2  0.72, 0.32  1.2, 0.45 
TEC (kW) 2.601  2.35 1.04 1.65 
𝝅(𝑪𝑷) {𝑎, 𝑒}, {𝑏, 𝑐, 𝑒}, {𝑐, 𝑒}, {𝑏, 𝑒} {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐} {𝑑, 𝑒} {𝑐, 𝑑} 
 



 105 

It starts first with the service provider that would consume the least total energy, which is 

𝐶𝑃�,�.ã�  in the case of Table 5.8. For instance, if the user requests services 𝑐, then service 

𝑐  from 𝐶𝑃�  will be chosen given that it consumes less energy than any service c from any 

other service provider 

 
Table 5.7 Multiple-cloud providers and Services sorted by energy consumption 

Cloud providers 	𝑪𝑷𝟐,𝟏.𝟎𝟒  	𝑪𝑷𝟑,𝟏.𝟔𝟓  	𝑪𝑷𝟏,𝟐.𝟑𝟓  	𝑪𝑷𝟒,𝟐.𝟔𝟎𝟏  
 

Atomic services c, d, e c, d a, b, c a, b, c, e 
EC (kW) 0.72, 0.32 1.2, 0.45 0.65, 0.5, 1.2  0.52, 0.8, 0.721, 0.56 

TEC (kW) 1.04 1.65 2.35 2.601 
𝝅(𝑪𝑷) {𝑑, 𝑒} {𝑐, 𝑑} {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐} {𝑎, 𝑒}, {𝑏, 𝑐, 𝑒}, {𝑐, 𝑒}, {𝑏, 𝑒} 
 
 
If no match is found,  the subscribed service providers’ predefined composition plans are 

tested. If, for example, the user needs services b; c; e, then the order in which the providers 

will be examined will be: 𝐶𝑃�, 𝐶𝑃{, 𝐶𝑃�,	𝐶𝑃�. The broker checks each composition from 

each cloud provider to ascertain whether one exists that meets the User Request (USR). If 

the available matches on more than one, the broker selects the one that consumes the least 

energy. In this case, since 	𝐶𝑃� has a predefined composition plan that meets user 

requirements, the need for the smallest possible number of providers in the competition 

matched with the lowest possible level of energy consumption is satisfied. 

5.3. Implementation  
5.3.1. Algorithmic Design			
There are four main steps by which the broker deals with the request from the user as shown 

in Figure 5.14. They are based on the multi-cloud environment, subscribed providers, 

available services and the pre-defined composition plans, where:  

a) Step 1, Algorithm 5.1 ranks cloud service providers by total energy 

consumption. 



 106 

b) Step 2, Algorithm 5.2 enables the broker to search for the best possible 

match by seeking a combination of individual atomic service and lowest 

energy consumption. 

c) Step 3, Algorithm 5.3 allows the broker to search predefined composition 

plans and their energy consumption in order to find the best possible 

match for user requirements. 

d) Step 4, Algorithm 5.4 allows the broker to build a new optimal 

composition plan by selecting the most energy efficient services from the 

smallest possible number of providers. 

 



 107 

 
Figure 5.14 Four main steps broker 

 
 

 

 

 

 

 
 
 
 



 108 

Algorithm 5.1: Ordering the Cloud Providers in a descending order based on Total Energy Consumption 

Algorithm 5.1: Ordering the Cloud Providers in a descending order based on Total Energy 

Consumption 

input : number of cloud providers (nCP), Total Energy Consumption 
 {𝑻𝑬𝑪 𝑪𝑷𝒊 	|	∀𝒊 ∶ 𝟎 < 𝒊		 ≤ 𝒏𝑪𝑷} 
output : a descending ordered list of cloud providers 
 

 
1   
2   
3   
4   
5   
6   
7   
8   
9   
1 0   
1 1   
1 2   

 

 
𝐺𝑒𝑡	(𝑛𝐶𝑃, {𝑇𝐸𝐶 𝐶𝑃𝑖 	|	∀𝑖 ∶ 0 < 𝑖		 ≤ 𝑛𝐶𝑃} 
𝒇𝒐𝒓𝒆𝒂𝒄𝒉	 𝑖	¬1	𝒕𝒐	𝑖	 ≤ 𝑛𝐶𝑃− 	1	𝑠𝑡𝑒𝑝	1 do 
 𝑙𝑇𝐸𝐶	 ← 𝑖 
 𝒇𝒐𝒓𝒆𝒂𝒄𝒉	𝑗 = 𝑖 + 1	𝒕𝒐	 ≤ 𝑛𝐶𝑃	 do 
  if 	𝐸𝐶 𝑗 	< 𝐸𝐶 𝑖 		then  
   𝑙𝑡𝑒𝑐	 ← 𝑗 
  end 

end 
 𝑇𝑒𝑚𝑝 ← 𝐸𝐶(𝐼) 
 𝐸𝐶(𝐼) ← 𝐸𝐶(𝑙𝑇𝐸𝐶) 
 𝐸𝐶 𝑙𝑇𝐸𝐶 ← 𝑇𝑒𝑚𝑝 
end 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 109 

Algorithm 5.2: Finding an atomic service that matches the user request 

Algorithm 5.2: Finding an atomic service that matches the user request  

Input 
 
output 

user service request (USR), number of multiple cloud providers (nCP) 
 
most energy efficient service from most “possible” energy efficient 
data centre (𝑺𝒆𝒓𝒌(𝑪𝑷𝒊

,

𝒍𝑻𝑬𝑪)), actual energy consumption of the 
selected service (minCons) 
 

1 	
2 	
3 	
4 	
5 	
6 	
7 	
8 	
9 	
10 	
11 	
12 	
13 	
14 	
15 	
16 	
17 	
18 	
19 	
20 	
21 	
22 	
23 	
24 	
25 	
26 	
27 	
28 	
29 	
30 	
31 	
32 	
33 	
34 	
35 	
36 	
37 	

	

Get	(USR,	nCP	)	
𝒇𝒐𝒓𝒆𝒂𝒄𝒉	 𝑖	¬1	𝐭𝐨	𝑖	 ≤ 𝑛𝐶𝑃	𝑠𝑡𝑒𝑝	1 do	 
 select (𝐶𝑃',�ÊË�) 
 𝐺 𝑒𝑡	#(𝑆𝑒𝑟(𝐶𝑃',�ÊË�)) 
 𝑗		 ← 	#(𝑆𝑒𝑟(𝐶𝑃',�ÊË�)) 
 foreach 𝑘 ← 1	𝐭𝐨	𝑘	 ≤ 	𝑗	𝑠𝑡𝑒𝑝	1	𝐝𝐨 
  if ((𝑆𝑒𝑟𝑘(𝐶𝑃𝑖

;

𝑙𝑇𝐸𝐶) 	∩ 	𝑈𝑆𝑅) 	== 	Ø) then 
   go	to	26	
	 	 else	
	 	 	 𝐢𝐟	(𝑘 == 1)	𝐭𝐡𝐞𝐧 	
	 	 	 	 𝑚𝑖𝑛𝐶𝑜𝑛𝑠 ← 𝐸𝐶(𝑆𝑒𝑟Ó(𝐶𝑃',�ÊË�))	
	 	 	 	 return	𝑆𝑒𝑟𝑘(𝐶𝑃𝑖,𝑙𝑇𝐸𝐶), 𝑚𝑖𝑛𝐶𝑜𝑛𝑠	
	 	 	 	 go	to	6	
	 	 	 else	
	 	 	 	 if					(𝐸𝐶(𝑆𝑒𝑟𝑘(𝐶𝑃𝑖,𝑙𝑇𝐸𝐶)) 	< 	𝑚𝑖𝑛𝐶𝑜𝑛𝑠)	then	
	 	 	 	 		 		𝑚𝑖𝑛𝐶𝑜𝑛𝑠 ← 𝐸𝐶(𝑆𝑒𝑟𝑘(𝐶𝑃𝑖,𝑙𝑇𝐸𝐶))	
	 	 	 	 	 		return 𝑆𝑒𝑟𝑘(𝐶𝑃𝑖,𝑙𝑇𝐸𝐶), 𝑚𝑖𝑛𝐶𝑜𝑛𝑠	
   go	to	26	
    else	
        go	to	26	
	 	 	 	 end	
	 	 	 end	
   return 𝑆𝑒𝑟𝑘(𝐶𝑃𝑖,𝑙𝑇𝐸𝐶), 𝑚𝑖𝑛𝐶𝑜𝑛𝑠 
   go	to	6	
	 	 end	
	 	 if (𝑘 == 𝑗)  then	
	 	 	 go	to	2	
	 	 else	
	 	 	 go	to	6	
	 	 end 
	 end	
	 if		(𝑖 == 𝑛𝐶𝑃	)	then	
	 	 go	to	37	
	 else	
	 	 go	to	2	
	 end	
end	
 

 
 
 
 
 



 110 

 
 
 Algorithm 5.3:  Finding a predefined optimal composition plan 𝜋�b  from a single provider 

Algorithm 5.3:  Finding a predefined optimal composition plan 𝝅𝑩b  from a single provider 

Input 
 
Output 
 
Assumption 

User service request (USR), multiple cloud providers (MCP), largest number of 
composition plan 𝑚. 
Optimal composition plan 𝜋�b  
 
Cloud providers are stored in decreasing order based on the number of composition plans  
 

1  
 

2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  

Beginalgorithmic [1] USR ←  Ø; 𝜋�b  NULL; minCons   NULL; m   largest number of 
composition plan;                                                                                            ▷Initialise 
Get USR 𝐼, 𝐺  
Select (𝐶𝑃�)                   ▷ CP that contains the largest number of composition plans m 
𝑖 ← 𝑚 
if (𝑖 is True) then 
						𝑓𝑜𝑟𝑒𝑎𝑐ℎ	 𝑗	¬1	to	𝑗 ≤ 𝑖	𝑠𝑡𝑒𝑝	1 do  
            if (𝜋Í(𝐶𝑃') ∩ 𝑈𝑆𝑅 == ∅	𝑡ℎ𝑒𝑛  
                    if (𝑗 = 𝑖)  then 
  go to 35 
      else 
                          go to 6 
       end 
             else   
      if (𝑗 = 1)  then  
                               𝑚𝑖𝑛𝐶𝑜𝑛𝑠	 ← 	𝐸𝐶(𝜋Í(𝐶𝑃')) 
 else 
  if  (𝐸𝐶(𝜋Í(𝐶𝑃')) 	< 	𝑚𝑖𝑛𝐶𝑜𝑛𝑠) then 
   𝑚𝑖𝑛𝐶𝑜𝑛𝑠	 ← 	𝐸𝐶(𝜋Í(𝐶𝑃')) 
  else 
             go to 6  
 end 
 end 
 end 
     end 
     return 𝑚𝑖𝑛𝐶𝑜𝑛𝑠 
     if (𝑖 = 𝑚)  then 
             𝜋�b 	← 𝑚𝑖𝑛𝐶𝑜𝑛𝑠  
     else 
             if (	𝑚𝑖𝑛𝐶𝑜𝑛𝑠 < 	𝜋�b )  then 
                        𝜋�b 	← 𝑚𝑖𝑛𝐶𝑜𝑛𝑠 
 end 
     end 
     return 𝜋�b                                                                    ▷ Optimal composition plan 
end 
𝑖 = 𝑖 − 1    
if (𝑖 ≥ 1)  then 
       select (𝐶𝑃') 
       go to 5                             ▷ So that other CPs will be checked in a decreasing order 
else      
invoke algorithm 5.2 
end        

 



 111 

	
	
Algorithm 5.4:   Creating an optimal services composition from multiple providers 

Algorithm 5.4:   Creating an optimal services composition from multiple providers 

Input 
Output 
 
 

 user service request (USR ), number of multiple cloud providers (nCP ) 
 most energy efficient service from most “possible” energy efficient data centre 
(𝑆𝑒𝑟Ó	(𝐶𝑃'�ÊË�	)), actual energy consumption of the selected service (minCons ) 
 

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  

   𝑠𝑒𝑟𝐿𝑖𝑠𝑡		 ← 	Ø; 	𝑐𝑙𝑑𝐿𝑖𝑠𝑡	 ← 	Ø; 	𝑚𝑖𝑛𝐶𝑜𝑛𝑠	 ← 	Ø; 	𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑠	 ← 	Ø 
   Get (USR, 𝑛𝐶𝑃 ) 
   𝑓𝑜𝑟𝑒𝑎𝑐ℎ 𝑖 ← 1	𝑡𝑜	𝑖	 ≤ 𝑛𝐶𝑃 Step 1 do 
   Select (𝐶𝑃',�ÊË�	) 
   Get #(𝑆𝑒𝑟(𝐶𝑃',�ÊË�	)) 
    j ← # (𝑆𝑒𝑟(𝐶𝑃',�ÊË�	)) 
   𝑓𝑜𝑟𝑒𝑎𝑐ℎ k ←1 to k ≥ 𝑗	𝑠𝑡𝑒𝑝	1	𝑑𝑜 
       if (𝑆𝑒𝑟Ó	 𝐶𝑃',�ÊË�	 ∩ 𝑈𝑆𝑅) − 𝑠𝑒𝑟𝐿𝑖𝑠𝑡 == ∅)	then  
            if (𝑆𝑒𝑟Ó	 𝐶𝑃',�ÊË�	 ∩ 𝑈𝑆𝑅) ∈ 𝑠𝑒𝑟𝐿𝑖𝑠𝑡 == 𝑡𝑟𝑢𝑒) then 
                    if 𝐸𝐶(𝑆𝑒𝑟Ó	 𝐶𝑃',�ÊË�	 ∩ 𝑈𝑆𝑅) − 𝑠𝑒𝑟𝐿𝑖𝑠𝑡) < 𝐸𝐶(𝑆𝑒𝑟Ó	 𝐶𝑃',�ÊË�	 ) ∈ 	𝑠𝑒𝑟𝐿𝑖𝑠𝑡))	𝑡ℎ𝑒𝑛 

                         Swap 
                      𝑚𝑖𝑛𝐶𝑜𝑛𝑠 ← 	𝐸𝐶((𝑆𝑒𝑟Ó	 𝐶𝑃',�ÊË�	 ∩ 𝑈𝑆𝑅) − 𝑠𝑒𝑟𝐿𝑖𝑠𝑡) 
                     𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑠 ← 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑠  ←	minCons 
 go to 7 
           else 
 go to 7 
           end 
  else 
            go o 7 
  end 
    else 
          𝑚𝑖𝑛𝐶𝑜𝑛𝑠 ← 	𝐸𝐶((𝑆𝑒𝑟Ó	 𝐶𝑃',�ÊË�	 ∩ 𝑈𝑆𝑅) − 𝑠𝑒𝑟𝐿𝑖𝑠𝑡) 
          𝑠𝑒𝑟𝐿𝑖𝑠𝑡	 ← ← 	𝑠𝑒𝑟𝐿𝑖𝑠𝑡	 ∪ ((𝑆𝑒𝑟Ó	 𝐶𝑃',�ÊË�	 ∩ 𝑈𝑆𝑅) − 𝑠𝑒𝑟𝐿𝑖𝑠𝑡) 
         𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑠 ← 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑠  ←	minCons 
          go to 7 
          end 
    end 
    if 𝑖 < 𝑛𝐶𝑃  then 
         𝑖	 = 	𝐼	 + 	1 
         go to 4 
    else 
          go to end 
    end 
end 
       

	
	
 
 
 
 



 112 

5.4.	Evaluation			
When evaluating the proposed algorithm’s performance and efficiency gains that may result 

from it, there is an advantage in comparing its results against those of established benchmark 

algorithms so that the potential for reducing energy consumption can be measured. This 

comparison was carried out using five existing algorithms used in evaluating combinations 

of cloud services: (All Clouds, Base Cloud, Smart Cloud (Zou et al. 2010), COM2 (Kurdi et 

al. 2015), and DC-Cloud (Lu et al. 2015)). 

 

5.4.1 Experimental Settings 
To accomplish a systematic evaluation, we used the same simulation parameters of the listed 

methods. The basis of the experimental data was a default web service test set included in 

the OWL-S XPlan package (Karunamurthy, Khendek, and Glitho 2012). Developing a 

dedicated simulator allows performance assessments to be conducted and a comparison to 

be made. Java EE 8 is the programming language used to implement the algorithm, with 

IBM ILOG CPLEX Optimization Linear Solver (“IBM ILOG CPLEX Optimization Studio” 

1AD) acting as the simulated running environment. The hardware was an Apple iMac 

(Retina display, 2.8 GHz Intel Core i7, and 16 GB 2133 MHz DDR3). 

Our simulation starts from an assumption that the broker deals with four cloud providers: 

CP1, CP2, CP3, and CP4. Each provider has a set of pre-defined composition plans: 

𝜋�, 𝜋�, 𝜋{, 𝜋�, 𝜋+ based on the Multi-Cloud Providers (MCP) environment in Table 5.13. 

 
Table 5.8 Cloud provider’s composition set per MCP. 

MCPS CP1 CP2 CP3 CP4 
MCP1 𝜋�, 𝜋�, 𝜋{ 𝜋�, 𝜋+ 	𝜋{, 𝜋� 𝜋�, 𝜋�, 𝜋{, 𝜋+ 
MCP2 𝜋�, 𝜋� 	𝜋{ 	𝜋�, 𝜋+ 𝜋�, 𝜋�, 𝜋+ 
MCP3 𝜋�, 𝜋{, 𝜋+ 	𝜋+ 𝜋�, 𝜋� 	𝜋{, 𝜋� 
MCP4 𝜋�, 𝜋{, 𝜋+ 	𝜋{, 𝜋� 𝜋�, 𝜋�, 𝜋{ 𝜋�, 𝜋+ 
MCP5 𝜋�, 𝜋� 	𝜋�, 𝜋{ 𝜋{ 𝜋�, 𝜋�, 𝜋+ 

 
 



 113 

Table 5.14 shows {2, 3, 8, 3, 3} which represent the number of web services in the 

composition plans. 

 
Table 5.9 Number of services per composition. 

Composition plan 𝝅𝟏 𝝅𝟐 𝝅𝟑 𝝅𝟒 𝝅𝟓 

Number of services 2 3 8 3 3 
 
 
 
The list of cloud providers will be presented in ascending order of total energy consumption 

(TEC) for the available set of services, as per proposed Algorithm 5.1 Table 5.15. This order 

will be different in each MCP for the same provider Table 5.16. Thus, CP4 is the most 

efficient provider in MCP1 and the least efficient in MCP4. 

 
Table 5.10:  CPs and energy consumption per MCPs, before listing in an ascending order. 

MCPS CP1 CP2 CP3 CP4 
MCP1 𝐶𝑃�,�.Ì  𝐶𝑃�,{.�  𝐶𝑃{,{.+  𝐶𝑃�,�.�  
MCP2 𝐶𝑃�,�.,  𝐶𝑃�,�.,  𝐶𝑃{,�.-  𝐶𝑃�,�.Ì  
MCP3 𝐶𝑃�,�.�  𝐶𝑃�,�.�  𝐶𝑃{,�.�  𝐶𝑃�,�.+  
MCP4 𝐶𝑃�,�.+  𝐶𝑃�,�.�  𝐶𝑃{,�.Ì  𝐶𝑃�,{.Ì  
MCP5 𝐶𝑃�,�.�  𝐶𝑃�,�.�  𝐶𝑃{,{.+  𝐶𝑃�,�.�  

 
Table 5.11: CPs and energy consumption per MCPs, after listing in an ascending order. 

MCPS Sorting order of CPs ascendingly 
MCP1 𝐶𝑃�,�.�  𝐶𝑃�,�.Ì  𝐶𝑃�,{.�  𝐶𝑃{,{.+  
MCP2 𝐶𝑃�,�.Ì  𝐶𝑃�,�.,  𝐶𝑃{,�.-  𝐶𝑃�,�.,  
MCP3 𝐶𝑃�,�.�  𝐶𝑃{,�.�  𝐶𝑃�,�.+  𝐶𝑃�,�.�  
MCP4 𝐶𝑃�,�.+  𝐶𝑃{,�.Ì  𝐶𝑃�,�.�  𝐶𝑃�,{.Ì  
MCP5 𝐶𝑃�,�.�  𝐶𝑃�,�.�  𝐶𝑃�,�.�  𝐶𝑃{,{.+  

 

 
5.4.2 Experimental results  
The Results for all five benchmark algorithms, the All Clouds in Table 5.17.a, the Base 

Cloud in Table 5.17.b, the Smart Cloud in Table 5.17.c, COM2 in Table 5.17.d and DC-

Cloud in Table 5.17.e are all consistent with previously published results in (Zou et al. 

2010),(Kurdi et al. 2015),(Lu et al. 2015). Table 5.17.f lists the evaluation results for the 



 114 

new broker so that this broker can be compared with those already discussed. In the first 

experiment of this chapter the following performance measures were evaluated: 

• The number of cloud providers involved in the final composition 𝐶𝑃 . 

• The number of services checked before reaching the final composition 𝑆 . 

 

Table 5.17 shows that our algorithm was successful in improving performance in 

comparison with other algorithms by keeping the number of examined services and 

composite clouds low. Services examined 𝑆 	did not exceed 38, and the number of 

combined clouds was as low as two clouds and never exceeded three. Also, of all 

approaches, ours examined the smallest total number of services (152) and clouds (11), and 

this directly affects time spent on determining the final composition. 

 
 

Table 5.12:  CPs and number of () composition plans per MCPs 

(a) All Clouds Algorithm 

Performance CP involved 𝑪𝑷  𝑺  
 MCP1 CP1, CP2, CP4 3 46 
MCP2 CP1, CP2, CP3, CP4 4 27 
MCP3 CP1, CP3, CP4 3 32 
MCP4 CP1, CP2, CP3, CP4 4 44 
MCP5 CP1, CP2, CP3, CP4 4 32 

TOTAL  18 181 
 

(b) Based Cloud Algorithm 

Performance CP involved 𝑪𝑷  𝑺  
 MCP1 CP1, CP2 2 65 
MCP2 CP1, CP2, CP4 3 148 
MCP3 CP3, CP4 2 128 
MCP4 CP2, CP3 2 68 
MCP5 CP2, CP4 2 112 

TOTAL  11 521 
 

 

 

 

 



 115 

(c) Smart Cloud Algorithm 

Performance CP involved 𝑪𝑷  𝑺  
 MCP1 CP1, CP3  2 70 
MCP2 CP1, CP2, CP4 3 48 
MCP3 CP3, CP4 2 48 
MCP4 CP2, CP3 2 140 
MCP5 CP1, CP2, CP4 3 56 

TOTAL  12 362 
 

(d) COM2 Algorithm 

Performance CP involved 𝑪𝑷  𝑺  
 MCP1 CP4, CP2 2 35 
MCP2 CP4, CP2, CP3 3 45 
MCP3 CP1, CP4, CP3 3 50 
MCP4 CP1, CP3, CP2 3 49 
MCP5 CP2, CP4 2 30 

TOTAL  14 209 
 

 

(e) DC-Clouds Algorithm 

Performance CP involved 𝑪𝑷  𝑺  
 MCP1 CP4, CP2 2 46 
MCP2 CP4, CP2, CP3 3 27 
MCP3 CP1, CP4 2 29 
MCP4 CP1, CP4 2 44 
MCP5 CP2, CP3, CP4 3 32 

TOTAL  12 178 
 

(f) Our Broker 

Performance CP involved 𝑪𝑷  𝑺  
 MCP1 CP4, CP2 2 35 
MCP2 CP4, CP1, CP2 3 26 
MCP3 CP1, CP3 2 29 
MCP4 CP1, CP3 2 38 
MCP5 CP1, CP3 2 24 

TOTAL  11 152 
 
 
 
Further validation of our algorithm in terms of gains in time and efficiency came from a 

second experiment that measured the running time and energy consumption of the five 

algorithms in order to find the requested composition and then compared those results with 

the time and energy expended by our broker to produce the same composition. The results, 



 116 

in terms of actual running time, are shown in Fig 5.15.a. For our broker, results are obtained 

using a list of clouds pre-sorted in decreasing order of TEC. As Fig 5.15.b shows, this new 

broker consumed less energy than any of the other approaches. 

 
 

 
Figure 5.15  Running time and energy consumption to find requested service 

5.5.	Summary	
This chapter presented a novel multi-cloud service computing approach, focusing on the 

selection of energy-efficient services and service composition plans that meet user 

requirements. In particular, a Bin-packing based service composition algorithm that 

determines the minimum number of composite services based on an effective combination 

of cloud services’ providers that satisfy the user needs. Our approach therefore addresses the 

increasing need for optimising energy consumption associated with the rise in complex (or 

real-world) cloud based services and user request scenarios, which are characterised by a 

large number of cloud providers and services. The proposed approach was evaluated against 

five established service computing algorithms for multiple cloud environments and the 

simulation results demonstrated that our algorithm produces significant relative performance 

improvements in terms of both running time and energy consumption.  

   



 117 

SIXTH CHAPTER 

	

	

	

	
 

Energy-Aware	Service	
Composition	Algorithm	for	

Multiple	Cloud	
 
 	



 118 

6.1. Introduction   
In many cases, when a single service is not enough to complete the business requirement; a 

composition of web services is carried out. These composed web services are expected to 

collaborate towards a common goal with large amounts of data exchange and various other 

operations. Massive data sets have to be exchanged between several geographically 

distributed and scattered services. The movement of mass data between services influences 

the whole application process in terms of energy consumption. One way to significantly 

reduce this massive data exchange is to use fewer services for a composition, which needs to 

be created to complete a business requirement. Integrating fewer services can result in a 

reduction in data interchange, which in return helps in reducing the energy consumption and 

carbon footprint. 

This chapter aims at creating an energy-aware composition plan by searching for and 

integrating the smallest possible number of services, in order to fulfil user requirements. The 

algorithm proposed here is different from the one proposed in the fifth chapter as this 

algorithm checks cloud providers in descending order based on the number of predefined 

composition plans, while the previous chapter checked in ascending order based on the 

energy consumption. 

 

6.1.1. Service compositions  
In the more conventional multi-cloud environment scenarios, the user submits a request to a 

service broker declaring the required services specifications. Then the broker needs to find 

the appropriate service(s) and a service provider who can meet the request. Presently, 

finding the service that best fits user needs, broker aims, and environmental targets is a 

challenging task for multi-cloud brokers for the following fact: how might the broker use 

multiple services to meet the requests, particularly when there is not a single service, which 

can match the request? 



 119 

To illustrate further the above issues, the following five different web services with their 

Web Service Description Language (WSDL) code and a potential composition will be 

considered throughout this chapter, as shown in Figure 6.16 and Figure 6.17 respectively: 

• Given the street address/name as input, geoCoding type service, returns the 

associated geographical coordinates. In this paper, this is denoted as service a. 

• Given the geographical coordinates, pointOfInterest type service returns the places 

that end users might be interested in. In this paper, this is denoted as service b. 

• Given the geographical coordinates, weatherForecast returns the information about 

the weather observations at the station closest to the end user. In this paper, this is 

denoted as service c. 

• Given the geographical coordinates, map type service returns a map showing the 

position of the end user. In this paper, this is denoted as service d. 

• A webPageInfoCollector type service takes a set of information related to a location 

as input and returns a web page that shows it. In this paper, this is denoted as service. 

Service a 

< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑔𝑒𝑜𝐶𝑜𝑑𝑖𝑛𝑔_𝑅𝑒𝑞𝑢𝑒𝑠𝑡’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑠𝑡𝑟𝑒𝑒𝑡𝑁𝑎𝑚𝑒’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑔𝑒𝑜𝐶𝑜𝑑𝑖𝑛𝑔_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑔𝑒𝑜𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/> 

Service b 

< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ′𝑝𝑜𝑖𝑛𝑡𝑂𝑓𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡_𝑅𝑒𝑞𝑢𝑒𝑠𝑡’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑔𝑒𝑜𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
										< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑡𝑦𝑝𝑒𝑂𝑓𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑝𝑜𝑖𝑛𝑡𝑂𝑓𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑛𝑎𝑚𝑒𝑠𝑂𝑓𝑃𝑜𝑖𝑛𝑡𝑠’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/>	

Service c 

< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ′𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡_𝑅𝑒𝑞𝑢𝑒𝑠𝑡’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑔𝑒𝑜𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑡𝑒𝑚𝑝𝑟𝑎𝑡𝑢𝑟𝑒’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑤𝑖𝑛𝑑𝑆𝑝𝑟𝑒𝑒𝑑’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/> 
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑤𝑖𝑛𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/> 



 120 

Service d 

< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ′𝑚𝑎𝑝_𝑅𝑒𝑞𝑢𝑒𝑠𝑡’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑔𝑒𝑜𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑚𝑎𝑝_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/> 

Service e 

< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ′𝑤𝑒𝑏𝑃𝑎𝑔𝑒𝐼𝑛𝑓𝑜𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟_𝑅𝑒𝑞𝑢𝑒𝑠𝑡’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑤𝑒𝑏𝑃𝑎𝑔𝑒𝐼𝑛𝑓𝑜𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒’ >	
									< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑛𝑎𝑚𝑒 = ’𝑤𝑒𝑏𝑝𝑎𝑔𝑒’			𝑇𝑦𝑝𝑒 = ”’𝑥𝑠𝑑: 𝑠𝑡𝑟𝑖𝑛𝑔”/>	
< 𝑥𝑠𝑑: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡/> 

 
Figure 6.16: Five separate web services. 

 
 

 
 

Figure 6.17 : BPMN composition 

 

Now, consider these requests received by the broker: 

• Request 1: find the Geographical Coordinates of Byrom Street in Liverpool. 

• Request 2: find the location of Big Ben in the centre of London and the weather 

forecast in that area, and on the map show directions from the current location to Big 

Ben. 

Request 1 can be fulfilled by invoking service (a); passing the street name to obtain 

geographical coordinates. But the second request needs services composition, as the request 

cannot be satisfied by any of the five services individually. Thus, a new service is used, 

called Information Service (IS), which returns location-based information services (e.g., the 

current weather or a map showing various Points-of-Interests (PoI) based on the current GPS 

coordinates of a mobile device, or after an address is entered). Each of the services in the IS 



 121 

composition is linked to a real remote web service which runs in the background and is 

registered with a marketplace. Once the street address of the user is provided as input, the 

composite service returns a web page with user location-based information. Therefore, the 

second request can be reached by two methods: 

a) Invoking the pointOfInterest service, pass the geoCoordinates and the 

pointOfInterest as an input, to get the directions to Big Ben; then invoke the 

weatherForecast to find the temperature and other weather activity. 

b) Compose the weatherForecast and map web services to fulfil the same request. 

The example above clearly shows the composition problem in a “web services composition” 

domain. Nonetheless, as the number of services and service providers increases, different 

providers’ services become increasingly complicated in a real multi-cloud environment. This 

needs large amounts of data exchanged between all service participants, which subsequently 

leads to a higher level of energy consumption. 

As mentioned above, usually a cloud user submits a job as a set of functional and non-

functional requirements to a cloud service provider (datacentre) through a broker’s web 

interface. Then the broker finds the service which best fits the user’s request, and ensures 

that they comply with the user Service Level Agreement (SLA). A large amount of research 

has taken place in the areas of cloud service discovery and composition, together with tools 

and techniques which the consumer relies upon to discover and use the services, such as 

(Nair and Porwal 2010), (L. Zhang, Fowley, and Pahl 2014), (K C Gouda, Radhika T V 

2013), (Dinesh, Poornima, and Kiruthika 2012). However, there are still the following 

limitations in that research area which require immediate attention: 

 



 122 

a) They presume that all requested “composed” services reside within a single cloud. 

Hence, the provider is responsible to integrate these services together to build up the 

requested one. 

b) They do not consider how many services are involved in the composition, which 

directly impacts on energy consumption and amount of data exchange among 

services and providers. 

QoS metrics are a concern for service providers and brokers, for example service security 

(Chang, Kuo, and Ramachandran 2016), availability, response time, as these tend to be the 

aspects of the service which attract clients. The cost of communication, and the sending and 

receiving of data between composite web services from different cloud providers is 

expensive and consumes a lot of time and energy. Therefore, this remains a main challenge 

that this chapter tries to address. 

 

6.2. Model design 
 
To frame the problem and solution, the main parties in the multi-cloud environment must be 

identified, which are: users, a broker, and service providers. The following sections show 

how the interrelationship among those parties is formalised, and demonstrates how this new 

Energy Efficient Cloud Computing service composition algorithm (E2C2) works 

when identifying and selecting the most energy efficient service composition plan. 

 

6.2.1.	User-broker model 

The user-broker model is the service request model, which a user sends to a broker to 

determine the required service. A web service s is syntactically described by two sets of 

parameters as shown in Fig.18 : 𝑠' = {𝐼1, 𝐼2, … } as input obtained from the service request, 

and 𝑠4 = {𝑂1,𝑂2,… } as output for the service response. Therefore, the user needs to submit 



 123 

a service request in a 2-tuple format 〈𝐼, 𝐺〉 where, 𝐼 is the initial interface indicating the 

request such that 𝐼 ⊇ 𝑠'		; and 𝐺 is a goal interface, which indicates the ultimate response the 

user wants to get, such that 𝐺 ⊆ 𝑠4. This makes it an easy route by which to find a single 

web service matching the user’s needs, if and only if   𝐼 = 𝑠'  		and  𝐺 = 𝑠4. But should there 

be a user request where a single web service is unable to meet the request, there then needs 

to be a composition plan implemented. Thus, in this section the focus is on creating a 

composition plan for multiple web services in a multi-cloud providers’ environment. This 

algorithm should check cloud providers in descending order based on the number of 

predefined composition plans.  

Once the user request is received, the broker defines the service composition using a four-

tuple model 〈𝐼, 𝐺, 𝑆, 𝜋�〉 where 𝐼 and 𝐺 already user defined as previously mentioned, 𝑆 is 

a set of candidate web services that are identified by the broker which match with the 

outcome based on 𝐺; and 𝜋�  is a composition plan that is a sequence of ordered web services 

such that 𝜋� ⊆ 𝑆. By applying each service in 𝜋�, the resulting interface is a superset of 𝐺.  

 



 124 

 
Figure 6.18 A conceptual representation of the proposed approach. 

  

6.2.2. Datacentre-broker model	
Each of the requested services could be originated from different commercial cloud 

providers in a multi-cloud environment.  These services can be combined and used 

together via mutual communication protocols to satisfy a complex service 

request. Therefore, the Multiple Cloud service Providers (MCP) is a set of cloud providers, 

such that: 



 125 

 𝑀𝐶𝑃 = {𝐶𝑃𝑖. 𝑚, 𝐶𝑃𝑖 + 1. 𝑚, … , 𝐶𝑃𝑛. 𝑚}. 

Each 𝐶𝑃 in 𝑀𝐶𝑃 is identified by 2 numbers 𝑖 and 𝑚 such that (1 ≤ 𝑖 ≤ 𝑛) represents a CP 

unique identification number; and 𝑚 is the number of pre-defined/developed composition 

plans provided by each specific CP. For purposes of illustration, the 𝐶𝑃3.6 relates to the 

Cloud Provider 3 that provides 6 composition plans, in addition to the atomic 

services. Additionally, 𝜋𝑗(𝐶𝑃𝑛.𝑚) denotes to the pre-defined composition plan (𝑗) available 

at (𝐶𝑃𝑛.𝑚).  

Because service computation requires energy, this is included in the algorithm, it is thought 

crucial that service providers provide the broker with each service’s energy consumption 

variable, which allows the broker to decide upon which is the most energy efficient. 

Therefore, a service s is described by its provider in a 3-tuple format 〈𝑠', 𝑠4 , 𝑠wx〉, 

where 𝑠wx  is the energy required for the service computation at the hosting datacentre. The 

proposed algorithm makes the following assumptions:  

  

1 The broker creates a composition plan, denoted as (𝜋�) which includes services from 

either the same or a different provider.  

2 Each of the service providers will send the number of its pre-defined composition 

plans (𝑚), the actual composition plans 𝜋(𝐶𝑃), and a list of atomic services in the 

form of 〈𝑠', 𝑠4 , 𝑠wx〉.  

3 Cloud providers are listed in the proposed algorithm in descending order based on 

(𝑚). This means the cloud provider, which has the largest number of composition 

plans will be first in the list. This procedure helps to create a final composition plan, 

which contains the lowest possible number of service providers.  

4 The broker first begins to examine the pre-defined composition plans of the provider 

that hosts the largest number of composition plans to attempt to find one. If no match 



 126 

is found, the broker will continue the process until a match with the user request is 

found, as shown in (Algorithm 6.1).  

5 If there are no matches to the user request, then individual services, which may be a 

subset of a pre-defined composition plan, will then be checked, as shown in 

(Algorithm 6.2).  

Figure 6.18 shows how the proposed algorithm works via a high-level conceptual 

representation, where the root of Broker Layer is the final web service composition 

plan	(𝜋�). If 𝜋� = 𝜋Í(𝐶𝑃𝑛.𝑚), then 𝜋�  is the optimal composition plan that 

contains the same provider’s services, this is also the most energy efficient one amongst 

all of the composition plans available. Alternatively, the broker creates a composition 

plan as per the following section Table 6.18. 

6.3. Implementation  
6.3.1. Optimal service composition plan 	
 
As in the above mentioned, 𝑆 is a collection of candidate web services, which will be firstly 

identified and titled by the broker to meet the needs of the user. Thus, S can be viewed as 

S = 	 {〈sÙ, CP6〉,〈s7, CP8〉, … ,〈s9, CP:〉} in a way that applying the web services 

results in a sequence in an interface 𝑅, where 𝐺 ⊆ 𝑅. The wanted output o of each service s 

in 𝑆 will both result in (𝑠�4 ∪ 𝑠�4 ∪ …∪ 𝑠Ó4). By accounting for the minimum energy 

efficiency condition of the proposed algorithm, the broker optimal composition will be a 

sequence of: 

 〈s′, CP′,EC(s′)〉, such that: 

 

𝜋�b =
min	{ 𝑠'b, 	𝐶𝑃�b, 𝐸𝐶 𝑠'b , 𝑠Íb, 	𝐶𝑃<b, 𝐸𝐶 𝑠Íb , … , 𝑠Ób , 	𝐶𝑃nb, 𝐸𝐶 𝑠Ób }

⊆ 𝑆,				𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 1 	𝑏𝑒𝑙𝑜𝑤:
𝜋Í 𝐶𝑃p.�

 

 



 127 

𝑚𝑖𝑛𝐶𝑜𝑛𝑠 	 {𝐸𝐶 𝑠'b }
Ó

'¤�
𝑠' ∈ 𝜋�b 		  

(6.1) 

 

Therefore, the optimal composition plan 𝜋�b 	needs to be either a set of atomic services from 

a different or the same cloud provider that guarantees the minimum number of services 

possible involved with the minimum energy required to compute each service selected, or a 

pre-defined composition plan by one of the subscribed cloud providers. In regard to the 

example in Section 6.1, the same scenario which has been used in Section 5.2.2 of Chapter 

five is used here to differentiate the approaches explicitly. Assume there is a multi-cloud 

environment with four cloud providers {𝐶𝑃�, 𝐶𝑃�, 𝐶𝑃{, 𝐶𝑃�} for a broker to deal with. Shown 

below in Table 6.19, every one of the providers offers a set of atomic services, these are 

subsets of services {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, and a set of pre-defined composition plans 𝜋(𝐶𝑃). 

 
Table 6.13 Multiple-cloud providers and services. 

Cloud providers C P 4 . 4  C P 1 . 3  C P 2 . 1  C P 3 . 1  
Atomic services a, b, c, e a, b, c c, d, e c, d 

EC (kW) 0.52, 0.8, 0.721, 0.56 0.65, 0.5, 1.2 0.72, 0.32 1.2, 0.45 
π ( C P )  { a , e } , { b , c , e } , { c , e } , { b , e }  { a , b } , { a , c } , { b , c }  { d , e }  { c , d }  

 

When the user request (𝑈𝑆𝑅 =〈𝐼, 𝐺〉) is received, the broker begins to examine the four 

subscribed service providers’ composition plans. Beginning with the first one, which has the 

greatest number of composition plans, shown above in Table 6.19 as 𝐶𝑃�.�. For example, if a 

user requests services 𝑏, 𝑐, 𝑒, the providers are then checked in the order 

𝐶𝑃�.�, 𝐶𝑃�.{, 𝐶𝑃�.�, 𝐶𝑃{.�.  

 

Therefore, as 𝐶𝑃�.�	has previously laid out the definition of the requested composition plan, 

this then satisfies the fewest providers’ condition to have involvement in the composition. 

The broker continues to check the other cloud providers’ compositions to discover if there is 



 128 

another predefined composition plan, which has lower energy consumption and can also 

satisfy the USR. The suggested E2C2 algorithm brings structure to the multi-cloud 

environment, the services and any pre-defined composition plans which are available as a 

four-level tree format, as shown in Figure 6.18, so that: 

 

a) Level 1: The Root, this is the preferred service composition plan by E2C2. 

b) Level 2: This re-orders the CP in a descending order based on the number of the pre-

defined composition plans by each subscribed CP. 

c) Level 3: Lists actual services composition plan(s) by each subscribed provider, 

together with total energy consumption by each composition plan. 

d) Level 4: This is atomic web service in each of the composition plans (e.g., a, b, etc.) 

 

In this instance, the E2C2 algorithm starts (𝑈𝑆𝑅 =〈𝐼, 𝐺〉) in line 2 of Algorithm 6.1. 

From there, the algorithm then selects (in line 3) and checks (in line 6–24) the first CP, 

which contains the largest number of (m) pre-defined composition plans. This particular 

method of sorting can help to rapidly find the cloud provider which has the larger number of 

composition plans, this could be a composition plan which satisfies the request received (as 

shown in line 14–22). But, it is worth noting that clouds are organised not necessarily in an 

order such as this in real-life scenarios. When all clouds are arranged and listed, then there is 

an examination of all composition plans. Should a composition plan be found, the energy 

that the plan needs is stored in the (𝑚𝑖𝑛𝐶𝑜𝑛𝑠) buffer. Inside the 𝑚𝑖𝑛𝐶𝑜𝑛𝑠 the values stored 

are used whenever there is a matching composition plan in order to make a comparison 

between consumption and the one saved in the 𝑚𝑖𝑛𝐶𝑜𝑛𝑠. On the other hand, if a 

composition plan cannot be identified from the initial provider, then in turn the next provider 

is checked (as shown in line 35), this continues until the correct cloud provider is reached. 



 129 

There is also the chance that the predefined composition plan, which has been identified 

becomes dynamic at runtime (for example it is a failed or unavailable service(s) needs hot-

plugging); in a case such as this Algorithm 6.1 restarts efforts to discover an alternative 

predefined composition (line 35), or else Algorithm 6.2 begins at line 40 to build an atomic 

service based dynamic composite plan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 130 

Step 1:  
Algorithm 6.1 discovering a predefined optimal composition plan 𝜋�b  from a single provider. 

Algorithm 6.1:  Finding a predefined optimal composition plan 𝝅𝑩b  from a single provider 

Input 
 
Output 
 
Assumption 

User service request (USR), multiple cloud providers (MCP), largest number of 
composition plan 𝑚. 
Optimal composition plan 𝜋�b  
 
Cloud providers are stored in decreasing order based on the number of composition plans  
 

1  
 

2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  

Beginalgorithmic [1] USR ←  Ø; 𝜋�b  NULL; minCons   NULL; m   largest number of 
composition plan;                                                                                            ▷Initialise 
Get USR 𝐼, 𝐺  
Select (𝐶𝑃�)                   ▷ CP that contains the largest number of composition plans m 
𝑖 ← 𝑚 
if (𝑖 is True) then 
						𝑓𝑜𝑟𝑒𝑎𝑐ℎ	 𝑗	¬1	to	𝑗 ≤ 𝑖	𝑠𝑡𝑒𝑝	1 do  
            if (𝜋Í(𝐶𝑃') ∩ 𝑈𝑆𝑅 == ∅	𝑡ℎ𝑒𝑛  
                    if (𝑗 = 𝑖)  then 
  go to 35 
      else 
                          go to 6 
       end 
             else   
      if (𝑗 = 1)  then  
                               𝑚𝑖𝑛𝐶𝑜𝑛𝑠	 ← 	𝐸𝐶(𝜋Í(𝐶𝑃')) 
 else 
  if  (𝐸𝐶(𝜋Í(𝐶𝑃')) 	< 	𝑚𝑖𝑛𝐶𝑜𝑛𝑠) then 
   𝑚𝑖𝑛𝐶𝑜𝑛𝑠	 ← 	𝐸𝐶(𝜋Í(𝐶𝑃')) 
  else 
             go to 6  
 end 
 end 
 end 
     end 
     return 𝑚𝑖𝑛𝐶𝑜𝑛𝑠 
     if (𝑖 = 𝑚)  then 
             𝜋�b 	← 𝑚𝑖𝑛𝐶𝑜𝑛𝑠  
     else 
             if (	𝑚𝑖𝑛𝐶𝑜𝑛𝑠 < 	𝜋�b )  then 
                        𝜋�b 	← 𝑚𝑖𝑛𝐶𝑜𝑛𝑠 
 end 
     end 
     return 𝜋�b                                                                    ▷ Optimal composition plan 
end 
𝑖 = 𝑖 − 1    
if (𝑖 ≥ 1)  then 
       select (𝐶𝑃') 
       go to 5                             ▷ So that other CPs will be checked in a decreasing order 
else      
invoke algorithm 6.2 
end        

 



 131 

Otherwise, the algorithm can also cope with a situation when a single pre-defined 

composition plan which satisfies the user’s need is not available, Algorithm 6.2 begins to 

check available composition plans’ services to see if any match a subset of services 

requested by the user, defined in USR and shown in line 6 of Algorithm 6.2. Additionally, 

providers’ atomic services are checked and any that match the user’s request are combined, 

as shown in line 16. The number of providers collaborating in the final composition (line 15) 

is also calculated, and then total energy consumption of the final composition is calculated, 

displayed in line 14. 

Step 2:  
algorithm 6.2 The creation of a dynamic optimal composition plan 𝜋�b  from multiple providers. 

1   Get (USR, 𝑰, 𝑮  
2   Select (𝑪𝑷𝒎	) 
3   𝒊 ← 𝒎 
4   if (𝒊 is True) then 
5      𝒇𝒐𝒓𝒆𝒂𝒄𝒉	𝒋 ← 𝟏	𝒕𝒐	𝒋 ≤ 𝒊  step 1 do 
6            if 𝝅𝒋 𝑪𝑷𝒊 ∩ 𝑼𝑺𝑹 ⊂ 𝑼𝑺𝑹 then 
7                   if (𝒊 = 𝒎) then 
8       𝒆𝒏𝒆𝑪𝒐𝒏𝒔	 ← 𝑬𝑪(𝝅𝒋 𝑪𝑷𝒊 ) 
9 else 
10        if (𝑬𝑪 𝝅𝒋 𝑪𝑷𝒊 < 𝒆𝒏𝒆𝑪𝒐𝒏𝒔 then 
11 𝒆𝒏𝒆𝑪𝒐𝒏𝒔	 ← 𝑬𝑪(𝝅𝒋 𝑪𝑷𝒊 ) 
12            end 
13                 end 
14          𝒎𝒊𝒏𝑪𝒐𝒏𝒔	 = 	𝒎𝒊𝒏𝑪𝒐𝒏𝒔	 + 	𝒆𝒏𝒆𝑪𝒐𝒏𝒔 
15    𝒑𝒓𝒐𝑳𝒊𝒔𝒕	 = 	𝒑𝒓𝒐𝑳𝒊𝒔𝒕	 + 	𝑪𝑷𝒊 
16    𝒔𝒆𝒓𝑳𝒊𝒔𝒕	 = 	𝒔𝒆𝒓𝑳𝒊𝒔𝒕 ∪ ( 𝝅𝒋 𝑪𝑷𝒊 ∩ 𝑼𝑺𝑹 )  
17          else 
18                if 𝝅𝒋 𝑪𝑷𝒊 ∩ 𝑼𝑺𝑹 == ∅ then 
19                     if (𝒋 = 𝒊) then 
20 go to 27 
21                     else 
22  go to 5 
23                     end 
24               end 
25         end 
26   end 
27 else 
28   𝒊 = 𝒊 − 𝟏 
29   if (𝒊 ≥ 𝟏) then 
30          Select 𝑪𝑷𝒊  
31          go to 4 
32   else 
33          exit 
34   end 
35 end 



 132 

Functionality of the resources is described and published by the service registry; they are 

presented to possible customers bundled as web services. Our proposed algorithm can be 

used by a service broker to create an optimal composition plan by searching for and locating 

the service registry for the most energy efficient services. Matching users’ functional 

requirements is not the only purpose of service discovery, energy efficiency is also 

considered to help in achieving the green cloud environment. A cloud carrier (Mell and 

Grance 2011) provides connectivity between cloud entities by ensuring seamless 

provisioning. In this instance, Internet is one of the better methods by which to access and 

use cloud services. The purpose of cloud auditors (Mell and Grance 2011) can be included 

into the suggested framework to perform a design time verification of the energy efficient 

composition which is generated and is then evaluated for how adaptable it is toward runtime 

changes. At this point, the cloud auditor’s role is considered beyond this paper’s scope. 

6.4 Evaluation 
To evaluate E2C2 performance and efficiency, it is crucial to build a comparison of the 

results against well-established benchmark algorithms so that the potential for reducing 

energy consumption can be measured. This comparison was carried out using some of the 

existing algorithms used in evaluating combinations of cloud services: (All Clouds, Base 

Cloud, Smart Cloud (Zou et al. 2010) and COM2 (Kurdi et al. 2015). 

 

6.4.1.	Experimental settings 
As mentioned above, for our comparative evaluation purposes we adopted four different 

algorithms for selecting the cloud services combination: (All Clouds, Base Cloud, Smart 

Cloud (Zou et al. 2010) and COM2 (Kurdi et al. 2015). The first algorithm, All Clouds, 

suggests that all clouds should be inputs for the composition and all available solutions 

should be determined. The algorithm assists in the location of a service composition 



 133 

sequence, which has the smallest execution time, without minimising the number of clouds 

in the final composition. All possibilities of cloud combination are repeatedly enumerated by 

the Base Cloud algorithm, in increasing order or until an ideal solution is found.  

The process starts by the analysis of all singleton sets of clouds, it ceases if the combination 

needed is discovered utilising a single cloud, alternatively it will extend the search to cloud 

sets of size two, then three, up until the point that the required combination is discovered. It 

produces the best composition solution from the fewest clouds. The Smart Cloud algorithm 

was produced to find a near optimal composition plan based on an approximation algorithm. 

A multiple cloud environment is considered a tree, which then searches the tree to identify a 

minimum demand set. 

A near-optimal solution is located by the Smart Cloud at a lower cost while using a reduced 

cloud set. Kurdi et al., (2015) suggested that a unique combinatorial optimisation algorithm 

could consider multiple clouds and perform a service composition with the fewest clouds 

and with the shortest execution time, this has the benefit of a reduction in communication 

costs. 

In the E2C2 simulation a comparative evaluation was performed using the aforementioned 

algorithms and identical simulation parameters of the four algorithms. The data from the 

experiment was inspired by the default web service test-set provided in the OWL-S XPlan 

package (Klusch and Gerber 2006)(Karunamurthy, Khendek, and Glitho 2012), along with 

high-level semantic and syntactic declarative descriptions of service properties (Nacer and 

Aissani 2014) in terms of 〈𝐼, 𝐺〉 to find out if the desired services are compostable. The 

experiments used an Apple iMac (Retina 5 K display, 3.2 GHz Intel Core i5, and 8 GB 1867 

MHz DDR3). The prototype development platform and the simulation running environment 

was NetBeans as the Integrated Development Environment (IDE), and Java EE 8 was used 

as the programming language to implement the proposed algorithm.  



 134 

 

There are four cloud providers in our simulation	{CP�, CP�, CP{, CP�}. Each provider gives a 

set of pre-defined composition plans, each of which are subsets of {𝜋�, 𝜋�, 𝜋{, 𝜋�, 𝜋+}, and 

are based on the Multi-cloud providers (MCP) environment as shown in Table 6.21. The 

same scenario used in Section 5.4.1. of Chapter 5 is used here to demonstrate the difference 

of listing the cloud providers discerningly based on number of composition plans. 

 
Table 6.14 Cloud providers composition set per multiple-cloud providers environment. 

MCPS CP1 CP2 CP3 CP4 

MCP1 𝜋�, 𝜋�, 𝜋{ 𝜋�, 𝜋+ 𝜋{, 𝜋� 𝜋�, 𝜋�, 𝜋{, 𝜋+ 

MCP2 𝜋�, 𝜋� 𝜋{ 𝜋�, 𝜋+ 𝜋�, 𝜋�, 𝜋+ 

MCP3 𝜋�, 𝜋{, 𝜋+ 𝜋+ 𝜋�, 𝜋� 𝜋{, 𝜋� 

MCP4 𝜋�, 𝜋{, 𝜋+ 𝜋{, 𝜋� 𝜋�, 𝜋�, 𝜋{ 𝜋�, 𝜋+ 

MCP5 𝜋�, 𝜋� 𝜋�, 𝜋{ 𝜋{ 𝜋�, 𝜋�, 𝜋+ 

 

 

Additionally, {2,3,8,3,3} represents how many web services are involved in each of the 

composition plans respectively, as shown in Table 6.22. 

 
Table 6.15 Number of services per composition plans 

Composition plan π1 π2 π3 π4 π5 
Number of services 2 3 8 3 3 

 

The list shows the cloud providers listed in descending order, based on the total number of 

pre-defined composition plans provided. This can assist in getting a final composition plan 

with the fewest providers and services involved, should there not be a single pre-defined 

composition plan, which satisfies the request. It should be said that the order of this is 

different in each MCP environment, for the same provider, dependent upon the quantity of 

composition plans, demonstrated in Table 6.23.b. As an example, CP4 comes first in MCP1 



 135 

because there are four composition plans, but it comes last in MCP4 with only 2 

composition plans. 

 

 
Table 6.16 CPs and number of (π) composition plans per MCPs. 

(a) Before descending order of CPs 

MCPS CP1 CP2 CP3 CP4 

MCP1 CP1.3 CP2.2 CP3.2 CP4.4 

MCP2 CP1.2 CP2.1 CP3.2 CP4.3 

MCP3 CP1.3 CP2.1 CP3.2 CP4.2 

MCP4 CP1.3 CP2.2 CP3.3 CP4.2 

MCP5 CP1.2 CP2.2 CP3.1 CP4.3 

 

 

 
(b) After descending order based on number of π 

MCPS Sorting order of CPs 

MCP1 CP4.4 CP1.3 CP2.2 CP3.2 

MCP2 CP4.3 CP1.2 CP3.2 CP2.1 

MCP3 CP1.3 CP3.2 CP4.2 CP2.1 

MCP4 CP1.3 CP3.3 CP2.2 CP4.2 

MCP5 CP4.3 CP1.2 CP2.2 CP3.1 

 

6.4.2	Results and analysis	
The results gained from simulating the four benchmark algorithms confirm to the previously 

published results, All Clouds in Table 25.a, the Base Cloud in Table 6.24.b, the Smart Cloud 

in Table 6.24.c and COM2 in Table 6.24.d. (Zou et al. 2010) (Kurdi et al. 2015). The results 

are listed in Table 6.24.e, showing E2C2 performance, so that they can be compared with 

the aforementioned approaches. As in previous studies, the same cloud simulation 

environment and simulation parameters were used. In the experiments we conducted, the 

three performance measures considered are: 

a) The number of cloud providers which are featured in the final composition |CP|. 



 136 

b) The number of services checked before the final composition was achieved |S|. 

c) The running time, measured in seconds, it took the algorithm to run until an 

appropriate composition is achieved. 

 
Table 6.17 CPs	and	number	of	(π)	composition	plans	per	MCPs. 

(a) All Clouds Algorithm 
Performance CP involved | C P |  | S |  

MCP1 CP1 CP2 CP4 3 46 
MCP2 CP1 CP2 CP3 CP4 4 27 
MCP3 CP1 CP3 CP4 3 32 
MCP4 CP1 CP2 CP3 CP4 4 44 
MCP5 CP1 CP2 CP3 CP4 4 32 
Total  18 181 

 

(b) Based Cloud Algorithm 
Performance CP involved | C P |  | S |  

MCP1 CP1 CP2 2 65 
MCP2 CP1 CP2 CP4 3 148 
MCP3 CP3 CP4 2 128 
MCP4 CP2 CP3 2 68 
MCP5 CP2 CP4 2 112 
Total  11 521 

 

(c) Smart Cloud Algorithm 
Performance CP involved | C P |  | S |  

MCP1 CP1 CP3 2 70 
MCP2 CP1 CP2 CP4 3 48 
MCP3 CP3 CP4 2 48 
MCP4 CP2 CP3 2 140 
MCP5 CP1 CP2 CP4 3 56 
Total  12 362 

 

(d) COM2 Algorithm 
Performance CP involved | C P |  | S |  

MCP1 CP4 CP2 2 35 
MCP2 CP4 CP2 CP3 3 45 
MCP3 CP1 CP4 CP3 3 50 
MCP4 CP1 CP3 CP2 3 49 
MCP5 CP2 CP4 2 30 
Total  13 209 

 

 

 



 137 

(e) E2C2 Algorithm 
Performance CP involved | C P |  | S |  

MCP1 CP4 CP2 2 35 
MCP2 CP4 CP1 CP2 3 26 
MCP3 CP1 CP3 CP4 3 29 
MCP4 CP1 CP3 CP2 3 38 
MCP5 CP4 CP2 2 24 
Total  12 152 

 

In Table 6.24 the results show that the E2C2 algorithm was successful in surpassing all of 

the other algorithms in keeping a lower number of composite clouds and examined services. 

This can also be directly related to the execution time, which is much less than the execution 

time of the best of the four algorithms, which is COM2. The number of atomic services 

which were examined |S| was not more than 38. The top result, relating to the difference in 

the number of examined services in E2C2 and the best algorithm in each of the five 

environments, have been reached in MCP4 and MCP5. There were 6 fewer atomic services, 

which were examined by E2C2 in comparison to All Clouds in MCP4, and the same (6 

fewer atomic services) between E2C2 and COM2 in MCP5. Figure 6.19 details a 

comparison of the % reduction in the number of examined atomic services (relative to the 

baseline case for each MCP) by E2C2, All Clouds, Base Cloud, Smart Cloud, and COM2. 

Each MCP’s baseline relates to the case of the maximum number of atomic services, which 

were examined for that specific MCP. When calculating the percentage reduction, this can 

be used as a reference point. Figure 6.20 compares the average number of atomic services 

examined in E2C2 across all MCPs, which is 30 services, in comparison to the average 

number of examined services of all of the other algorithms. 

 

 



 138 

 
Figure 6.19 %	reduction	in	the	number	of	examined	atomic	services. 

 

 

 

 
Figure 6.20 The	average	number	of	examined	services. 

 

 

In our E2C2 algorithm the number of combined clouds occasionally reached as low as two 

clouds but was never more than three in the worst case, as shown in Figure 6.21. Even 

though Table 6.24.b demonstrates that the Base Cloud algorithm is the best in terms of the 



 139 

number of combined clouds, it is weak because of the high costs in execution time and 

number of examined services, this can be over 3 times the number of services in the 

projected E2C2 algorithm. We get these results from a pre-sorted list of cloud providers 

which are in decreasing order based on the number of composition plans. Compared to 

COM2 there was a substantial performance improvement in E2C2 execution time, as shown 

in Figure 6.22, of the four algorithms examined in each MCP, this is the best. Figure 6.22 

displays results that show the execution time of E2C2 did not exceed 173 seconds in the best 

scenario (in MCP5), and did not exceed 298 seconds in the worst scenario (in MCP4). 

 

 
Figure 6.21 Number	of	combined	clouds	in	multi-cloud	based	service	composition	plan	π. 

 

 



 140 

 
Figure 6.22 Running	Time	to	achieve	service	composition	plan	π.	

	

6.5.	Summary		
This chapter introduced a unique multi-cloud service composition algorithm named E2C2. 

This algorithm highlighted energy awareness during searches for optimum composition 

plans, which meet the specified requirements of the user. It conducted a search for and then 

integrated the fewest services which satisfy user requests in an energy efficient way. This 

algorithm was evaluated based on the systematic performance comparison with existing 

alternative algorithmic solutions, such as All Cloud, Base Cloud, Smart Cloud and COM2, 

using a benchmark example. The chapter concludes with the simulation results that 

demonstrated a favourable performance of E2C2 algorithm in terms of achieving the least 

number of services searched to arrive at an optimum and energy efficient composition. 

 

  



 141 

SEVENTH CHAPTER 

	

	

	
 
 
 
 
 

Conclusion	and	Future	Work	
  



 142 

6.1. Conclusion   
The growing demand of cloud services, and the increase in service providers and data 

centres to offer and host cloud application across every geographical region have led to 

significant increases in network traffic and the associated energy consumed by the huge 

infrastructure (e.g., extra servers and switches) required to respond quickly and effectively 

to user requests. Moreover, transporting data between data centres and users can consume 

even larger amounts of energy than just processing and storing the data on the datacentre 

itself. Therefore, energy efficiency has become a high priority aim in cloud network 

environment.  This power consumption is particularly significant when transferring data into 

a datacentre located relatively far from the user geographical location. In this research of this 

we presented and demonstrated numbers of algorithms that help to achieve the aim of this 

thesis to select the most energy efficient route to the cloud data centre alongside finding and 

integrating the lowest possible number of the most energy efficient services from the least 

possible number of cloud providers which can help in achieving a full green cloud 

computing environment, which eventually contributes to the energy saving goals by 2050. 

 

In this research, we propose and evaluate a multi-cloud broker to act as an intermediary 

bridge for directing users’ requests to the green data centres using the most energy efficient 

route. In addition, the broker manages the cloud services to achieve the full green cloud 

computing network ambition. The GreeDi algorithm dealt with the energy efficiency of 

cloud routing rather than data centres’ energy consumption, and proposes and evaluates a 

new energy efficient routing framework. It was evaluated on a physical Italian ISP topology 

that has three different routes to a green cloud data centre. From the example results shown 

in this research, the shortest path approach is different from the energy efficient one, and 

thus, the energy efficient path is used to conform to the environmental objectives. 



 143 

A novel multi-cloud service computing approach is presented, focusing on the selection of 

energy efficient services and service composition plans that meet user requirements. In 

particular, our Bin-packing based service composition algorithm determines the minimum 

number of composite services based on an effective combination of cloud services providers 

that satisfy the user needs. Our approach therefore addresses the increasing need for 

optimising energy consumption associated with the rise in complex (or real-world) cloud 

based service and user request scenarios, which are characterised by a large number of cloud 

providers and services. The proposed approach was evaluated against five established 

service computing algorithms for multiple cloud environments and the simulation results 

demonstrated that our algorithm produces significant relative performance improvements in 

terms of both running time and energy consumption. 

E2C2 is a unique multi-cloud service composition algorithm, its development aimed to 

highlight energy awareness during searches for optimum composition plans which meet the 

specified requirements of the user. This algorithm conducts a search for and then integrates 

the fewest services which satisfy user requests in an energy efficient way. The algorithm 

was evaluated based on the systematic performance comparison with existing alternative 

algorithmic solutions, namely All Cloud, Base Cloud, Smart Cloud and COM2, using a 

benchmark example.  

6.2. Contributions	to	knowledge		
The main contribution of this work is the development of a multi-cloud broker and 

associated algorithms and models to achieve the most energy-efficient cloud computing 

environment. To this end, this work makes a number of novel contributions, all of which 

have been, or are being, submitted to relevant research publications (Appendix I). 

Contributions of this work are summarised as follows: 



 144 

• Collation of researches relevant to understanding the fundamental requirements to 

enable the managing of cloud services in a multi-cloud environment and achieve the 

most energy-efficient cloud computing environment.  

• Design, and development of a high-end routing algorithm entitled Green Director 

(GreeDi), which acts as an intermediary bridge for directing the users’ requests to the 

green data centres based primarily on using the most energy efficient route to 

achieve the full green cloud computing network ambition while making sure the 

users’ requirements, e.g. response time, are met.  

• Defining and formalising the user-to-broker and data centre-to-broker models so that, 

the interconnection between the cloud user and a data centre, will be formalised by 

using a situation calculus model to define the logical state of the network. Once the 

interconnection is established and formalised, then the energy required for the 

transportation will be calculated. 

• Design, and development of a bin-packing based energy-efficient service selection 

algorithm that operates by way of Integer Linear Programming (ILP). The aim of this 

model is to find and integrate, from the largest possible number of service providers, 

the smallest possible number of services offering the highest level of energy 

efficiency. To achieve this approach, the following algorithms should be designed: 

i. An algorithm to rank cloud service providers by total energy 

consumption. 

ii. An algorithm to enable the broker to search for the best possible 

match by seeking a combination of individual atomic service and 

lowest energy consumption. 



 145 

iii. An algorithm to allow the broker to search predefined composition 

plans and their energy consumption in order to find the best possible 

match for user requirements. 

iv. An algorithm to allow the broker to build a new optimal composition 

plan by selecting the most energy efficient services from the smallest 

possible number of providers.  

• Design, and development of a unique energy-aware multi-Cloud service composition 

algorithm called (E2C2) which develops energy efficient composition plans through 

the integration of the fewest services globally from service providers. Therefore, this 

work has the objective of addressing an emerging and key issue that adopts an 

energy efficient approach for cloud-based services and applications. 

• Evaluation of the above algorithms supported by experiments and case studies, and 

comparison against renowned competitors. To achieve this approach, the following 

algorithms should be designed 

i. An algorithm to discover a predefined optimal composition plan from 

a single provider. 

ii. An algorithm to create a dynamic optimal composition plan from 

multiple providers. 

 

6.3. Future work  
The future work will be to extend this work and develop potential energy efficiency gains in 

the cloud computing and will be more focusing on following:  

• Putting together these algorithms in one model so that we can test and evaluate the 

whole system.  



 146 

• Future extensions to the GreeDi algorithm include analysing and taking into account 

the time required for transportation, and energy and time required for computation, 

between the data centres and users and among the data centres themselves, in order 

to establish and evaluated how the proposed algorithm performs in terms of 

computation consumption.  

• Developing solutions in other application domains (e.g., the applicability/viability of 

GreeDi used in underwater routing, and comparison against Fast Multi-path Routing 

Protocol for wireless sensor networks (FMRP)) using our GreeDi to examine to what 

extent GreeDi is applied for.  

• Evaluating our Bin-packing based service composition algorithm using other 

complex service selection scenarios and assessing its applicability and performance 

in key application domain such as smart cities and mobile commerce.  

• Also, we consider evaluating the other case of Bin-packing where it orders the cloud 

providers in a descending way based on the total energy consumption of their 

corresponding services. 

• Exploration of modifications to the E2C2 algorithm, by testing the algorithmic 

performance using more elaborate topologies.  

• Other paths for future research include examining the potential benefit of heuristic 

optimization search techniques for selecting service compositions and evaluating the 

potential energy efficiency gains in various application domains such as mobile 

commerce, smart government and disaster recovery scenarios.  

 

  



 147 

7. References		
Aldawsari, Bandar, Thar Baker, and David England. 2015. “Towards a Holistic Multi-Cloud Brokerage 

System: Taxonomy, Survey, and Future Directions.” In 2015 IEEE International Conference on 
Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, 
Autonomic and Secure Computing; Pervasive Intelligence and Computing, 1467–72. IEEE. 
doi:10.1109/CIT/IUCC/DASC/PICOM.2015.219. 

Ali Alakeel. 2012. “A Fuzzy Dynamic Load Balancing Algorithm for Homogenous Distributed Systems.” 
International Journal of Computer, Electrical, Automation, Control and Information Engineering 6 (1). 
http://waset.org/publications/15228/a-fuzzy-dynamic-load-balancing-algorithm-for-homogenous-
distributed-systems. 

AlShawi, Imad S., Lianshan Yan, Wei Pan, and Bin Luo. 2012. “Lifetime Enhancement in Wireless Sensor 
Networks Using Fuzzy Approach and A-Star Algorithm.” IEEE Sensors Journal 12 (10): 3010–18. 
doi:10.1109/JSEN.2012.2207950. 

Amazon. 2017. “Elastic Compute Cloud (EC2) – Cloud Server ; Hosting – AWS by Amazon.” Accessed 
March 15. https://aws.amazon.com/ec2/. 

Baer, Paul. 2008. “Exploring the 2020 Global Emissions Mitigation Gap Analysis for the Global Climate 
Network.” http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.505.7686&rep=rep1&type=pdf. 

Baker, T., B. Al-Dawsari, H. Tawfik, D. Reid, and Y. Ngoko. 2015. “GreeDi: An Energy Efficient Routing 
Algorithm for Big Data on Cloud.” Ad Hoc Networks, June. doi:10.1016/j.adhoc.2015.06.008. 

Baker, Thar, Yanik Ngoko, Rafael Tolosana-Calasanz, Omer F. Rana, and Martin Randles. 2013. “Energy 
Efficient Cloud Computing Environment via Autonomic Meta-Director Framework.” In 6th 
International Conference on Developments in eSystems Engineering, 198–203. IEEE. 
doi:10.1109/DeSE.2013.43. 

Baliga, J, R W A Ayre, K Hinton, and R S Tucker. 2011. “Green Cloud Computing: Balancing Energy in 
Processing, Storage, and Transport.” Proceedings of the IEEE 99 (1): 149–67. 
doi:10.1109/JPROC.2010.2060451. 

Banimelhem, Omar, and Samer Khasawneh. 2012. “GMCAR: Grid-Based Multipath with Congestion 
Avoidance Routing Protocol in Wireless Sensor Networks.” Ad Hoc Networks 10 (7): 1346–61. 
doi:10.1016/j.adhoc.2012.03.015. 

Bartalos, Peter, and M. Brian Blake. 2012. “Engineering Energy-Aware Web Services toward Dynamically-
Green Computing.” In , 87–96. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-31875-7_10. 

Beloglazov, Anton, Jemal Abawajy, and Rajkumar Buyya. 2012. “Energy-Aware Resource Allocation 
Heuristics for Efficient Management of Data Centers for Cloud Computing.” Future Generation 
Computer Systems 28: 755–68. doi:10.1016/j.future.2011.04.017. 

Beloglazov, Anton, and Rajkumar Buyya. 2010. “Energy Efficient Resource Management in Virtualized Cloud 
Data Centers.” In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid 
Computing, 826–31. IEEE. doi:10.1109/CCGRID.2010.46. 

Beloglazov, Anton, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya. 2011. “A Taxonomy and Survey 
of Energy-Efficient Data Centers and Cloud Computing Systems.” ADVANCES IN COMPUTERS 82. 
doi:10.1016/B978-0-12-385512-1.00003-7. 

Bhatia, Randeep, Fang Hao, Murali Kodialam, and T.V. Lakshman. 2015. “Optimized Network Traffic 
Engineering Using Segment Routing.” In 2015 IEEE Conference on Computer Communications 
(INFOCOM), 657–65. IEEE. doi:10.1109/INFOCOM.2015.7218434. 

Blackburn, Mark, Dan Azevedo, Andy Hawkins, Zeydy Ortiz, Roger Tipley, and Dr. Sven Van Den Berghe. 
2010. “The Green Grid Data Center Compute Efficiency Metric: DCcE | The Green Grid.” 
https://www.thegreengrid.org/en/resources/library-and-tools/240-The-Green-Grid-Data-Center-
Compute-Efficiency-Metric%3A-DCcE. 

Brown, Richard, Eric Masanet, Bruce Nordman, Bill Tschudi, Arman Shehabi, John Stanley, Jonathan 
Koomey, et al. 2007. “Report to Congress on Server and Data Center Energy Efficiency.” 
https://eetd.lbl.gov/sites/all/files/pdf_4.pdf. 

Carpa, Radu, Olivier Gluck, and Laurent Lefevre. 2014. “Segment Routing Based Traffic Engineering for 
Energy Efficient Backbone Networks.” In 2014 IEEE International Conference on Advanced Networks 
and Telecommuncations Systems (ANTS), 1–6. IEEE. doi:10.1109/ANTS.2014.7057272. 

Chang, Victor, Yen-Hung Kuo, and Muthu Ramachandran. 2016. “Cloud Computing Adoption Framework: A 
Security Framework for Business Clouds.” Future Generation Computer Systems 57: 24–41. 
doi:10.1016/j.future.2015.09.031. 

Chang Ge, Zhili Sun, and Ning Wang. 2013. “A Survey of Power-Saving Techniques on Data Centers and 
Content Delivery Networks.” IEEE Communications Surveys & Tutorials 15 (3): 1334–54. 



 148 

doi:10.1109/SURV.2012.102512.00019. 
Chen, Gong, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and Feng Zhao. 2008. “Energy-

Aware Server Provisioning and Load Dispatching for Connection-Intensive Internet Services.” 
Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation. 
USENIX Association, 337–50. http://dl.acm.org/citation.cfm?id=1387613. 

Cheng, Jiujun, Cong Liu, MengChu Zhou, Qingtian Zeng, and Antti Yla-Jaaski. 2015. “Automatic 
Composition of Semantic Web Services Based on Fuzzy Predicate Petri Nets.” IEEE Transactions on 
Automation Science and Engineering 12 (2): 680–89. doi:10.1109/TASE.2013.2293879. 

Chimakurthi, Lskrao, and Madhu Kumar S D. 2011. “Power Efficient Resource Allocation for Clouds Using 
Ant Colony Framework,” February. http://arxiv.org/abs/1102.2608. 

Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. 2011. “Energy-Efficient Virtual Machine Provision Algorithms 
for Cloud Systems.” In 2011 Fourth IEEE International Conference on Utility and Cloud Computing, 
81–88. IEEE. doi:10.1109/UCC.2011.21. 

Clarence Filsfils, Stefano Previdi, Bruno Decraene. 2017. “Segment Routing Architecture, Internet-Draft.” 
Coffman, Edward G., Edward G. Coffman, Jr., János Csirik, and Gerhard J. Woeginger. 1999. “Approximate 

Solutions to Bin Packing Problems.” WOE-29, INSTITUT FR MATHEMATIK B, TU GRAZ, 
STEYRERGASSE 30, A-8010. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.6304. 

Cohen, Reuven, Shlomo Havlin, and Daniel ben-Avraham. 2002. “Efficient Immunization Strategies for 
Computer Networks and Populations,” July. doi:10.1103/PhysRevLett.91.247901. 

Davoli, Luca, Luca Veltri, Pier Luigi Ventre, Giuseppe Siracusano, and Stefano Salsano. 2015. “Traffic 
Engineering with Segment Routing: SDN-Based Architectural Design and Open Source 
Implementation,” June. http://arxiv.org/abs/1506.05941. 

Deepak Kapgate et al. 2014. “Efficient Service Broker Algorithm for Data Center Selection in Cloud 
Computing.” International Journal of Computer Science and Mobile Computing 3 (1): 355–65. 
https://www.academia.edu/5847314/Efficient_Service_Broker_Algorithm_for_Data_Center_Selection_i
n_Cloud_Computing. 

DepartmentforTransport. 2003. “Our Energy Future - Creating a Low Carbon Economy.” 
http://webarchive.nationalarchives.gov.uk/+/http:/www.berr.gov.uk/files/file10719.pdf. 

Dinesh, K., G. Poornima, and K. Kiruthika. 2012. “Efficient Resources Allocation for Different Jobs in 
Cloud.” International Journal of Computer Applications 56 (10): 30–35. doi:10.5120/8928-3005. 

Do, T. V. 2011. “Comparison of Allocation Schemes for Virtual Machines in Energy-Aware Server Farms.” 
The Computer Journal 54 (11). Oxford University Press: 1790–97. doi:10.1093/comjnl/bxr007. 

Do, Tien Van, and Udo R. Krieger. 2009. “A Performance Model for Maintenance Tasks in an Environment of 
Virtualized Servers.” In Proceedings of the 8th International IFIP-TC 6 Networking Conference, 931–
42. Springer-Verlag. doi:10.1007/978-3-642-01399-7_73. 

Do, Tien Van, and Csaba Rotter. 2012. “Comparison of Scheduling Schemes for on-Demand IaaS Requests.” 
Journal of Systems and Software 85 (6): 1400–1408. doi:10.1016/j.jss.2012.01.019. 

Docker. 2017. “Docker - Build, Ship, and Run Any App, Anywhere.” Accessed March 15. 
https://www.docker.com/. 

Ducrocq, Tony, Michaël Hauspie, Nathalie Mitton, and Nathalie Mitton. 2013. “Balancing Energy 
Consumption in Clustered Wireless Sensor Networks.” ISRN Sensor Networks 2013 (November). 
Hindawi: 1–14. doi:10.1155/2013/314732. 

editor. 2011. “History of Virtualization | Everything VM.” http://www.everythingvm.com/content/history-
virtualization. 

Elshaafi, Hisain, and Dmitri Botvich. 2012. “Trustworthiness Inference of Multi-Tenant Component Services 
in Service Compositions.” In , 301–12. Springer, Dordrecht. doi:10.1007/978-94-007-5699-1_31. 

“Eucalyptus - Private / Hybrid Cloud Solution.” 2017. Accessed March 16. 
http://www8.hp.com/us/en/cloud/helion-eucalyptus.html. 

Eunjeong Park, and Heonshik Shin. 2008. “Reconfigurable Service Composition and Categorization for 
Power-Aware Mobile Computing.” IEEE Transactions on Parallel and Distributed Systems 19 (11): 
1553–64. doi:10.1109/TPDS.2008.107. 

Ferreto, Tiago C., Marco A.S. Netto, Rodrigo N. Calheiros, and César A.F. De Rose. 2011. “Server 
Consolidation with Migration Control for Virtualized Data Centers.” Future Generation Computer 
Systems 27 (8): 1027–34. doi:10.1016/j.future.2011.04.016. 

Forrester. 2012. “Cloud Brokers Will Reshape The Cloud- Getting Ready For The Future Cloud Business.” 
http://liberatedcloud.com/category/cloud-brokers-will-reshape-the-cloud/. 

Fowley, Frank, Claus Pahl, and Li Zhang. 2013. “A Comparison Framework and Review of Service Brokerage 
Solutions for Cloud Architectures.” http://doras.dcu.ie/19640/. 

G. Apostolopoulos,D. Williams,S. Kamat, Lucent, R. Guerin, UPenn, A. Orda, Technion, and T. Przygienda. 



 149 

1999. “QoS Routing Mechanisms and OSPF Extensions.” Clarendon Press. 
https://tools.ietf.org/html/rfc2676. 

Garriga, Martín, Andres Flores, Alejandra Cechich, and Alejandro Zunino. 2015. “Web Services Composition 
Mechanisms: A Review.” IETE Technical Review 32 (5). Taylor & Francis: 376–83. 
doi:10.1080/02564602.2015.1019942. 

Gartner. 2013. “Cloud Services Brokerage (CSB) - Gartner.” http://www.gartner.com/it-glossary/cloud-
services-brokerage-csb/. 

GoogAppEngine. 2017. “Google App Engine - Build Scalable Web ; Mobile Backends in Any Language | 
Google Cloud Platform.” Accessed March 15. 
https://cloud.google.com/appengine/?utm_source=google&utm_medium=cpc&utm_campaign=2017-q1-
cloud-emea-gcp-bkws-
freetrial&gclid=CjwKEAjwzKPGBRCS55Oe46q9hCkSJAAMvVuMATK2qBH3r7vqRhDk4_iNtxB40d
sYxbu0ZDDj48_zDxoCLf_w_wcB. 

GoogleDocs. 2017. “Google Docs - Create and Edit Documents Online, for Free.” Accessed March 15. 
https://www.google.co.uk/docs/about/. 

GSuite. 2017. “G Suite - Gmail, Docs, Calendar, &amp; Cloud Storage.” Accessed March 15. 
https://gsuite.google.com/intl/en_uk/products/. 

Guenter, Brian, Navendu Jain, and Charles Williams. 2011. “Managing Cost, Performance, and Reliability 
Tradeoffs for Energy-Aware Server Provisioning.” In 2011 Proceedings IEEE INFOCOM, 1332–40. 
IEEE. doi:10.1109/INFCOM.2011.5934917. 

Guérout, Tom, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajkumar Buyya, and Mihai 
Alexandru. 2013. “Energy-Aware Simulation with DVFS.” Simulation Modelling Practice and Theory 
39 (December): 76–91. doi:10.1016/j.simpat.2013.04.007. 

“Haizea - An Open Source VM-Based Lease Manager.” 2017. Accessed March 16. 
http://haizea.cs.uchicago.edu/. 

Han, Yufei, and Fabien Moutarde. 2012. “Statistical Traffic State Analysis in Large-Scale Transportation 
Networks Using Locality-Preserving Non-Negative Matrix Factorization,” December. 
http://arxiv.org/abs/1212.5264. 

Hang, Chung-Wei, Anup K. Kalia, and Munindar P. Singh. 2012. “Behind the Curtain: Service Selection via 
Trust in Composite Services.” In 2012 IEEE 19th International Conference on Web Services, 9–16. 
IEEE. doi:10.1109/ICWS.2012.96. 

Hermenier, Fabien, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia Lawall. 2009. “Entropy: A 
Consolidation Manager for Clusters.” In Proceedings of the 2009 ACM SIGPLAN/SIGOPS International 
Conference on Virtual Execution Environments - VEE ’09, 41. New York, New York, USA: ACM Press. 
doi:10.1145/1508293.1508300. 

Hyper-v. 2017. “Hyper-V | Microsoft.” Accessed March 15. https://www.microsoft.com/en-us/cloud-
platform/server-virtualization. 

“IBM ILOG CPLEX Optimization Studio.” 1AD. https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex. 
Issarny, Valérie., Richard E. Schantz, and Anindya Neogi. 2008. pMapper: Power and Migration Cost Aware 

Application Placement in Virtualized Systems. Proceedings of the 9th ACM/IFIP/USENIX International 
Conference on Middleware. Springer. http://dl.acm.org/citation.cfm?id=1496966. 

Jay Lyman. 2014. “451 Research-&quot;Is PaaS Becoming Just a Feature of IaaS&quot;?” 
https://451research.com/report-short?entityId=79800. 

Jebalia, Maha, Asma Ben Letaifa, Mohamed Hamdi, and Sami Tabbane. 2013. “A Comparative Study on 
Game Theoretic Approaches for Resource Allocation in Cloud Computing Architectures.” In 2013 
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, 336–41. IEEE. 
doi:10.1109/WETICE.2013.11. 

Jemili, Imen, Ghazi Tekaya, and Abdelfettah Belghith. 2014. “A Fast Multipath Routing Protocol for Wireless 
Sensor Networks.” In 2014 IEEE/ACS 11th International Conference on Computer Systems and 
Applications (AICCSA), 747–54. IEEE. doi:10.1109/AICCSA.2014.7073275. 

Jos G.J. Olivier, Greet Janssens-Maenhout, Jeroen A.H.W. Peters, Julian Wilson. 2011. “Long-Term Trend in 
Global CO2 Emissions.” http://www.pbl.nl/sites/default/files/cms/publicaties/C02 Mondiaal_ 
webdef_19sept.pdf. 

K C Gouda, Radhika T V, Akshatha M. 2013. “Priority Based Resource Allocation Model for Cloud 
Computing.” International Journal of Science, Engineering and Technology Research 2 (1): 215–19. 

Kacimi, Rahim, Riadh Dhaou, and André-Luc Beylot. 2013. “Load Balancing Techniques for Lifetime 
Maximizing in Wireless Sensor Networks.” Ad Hoc Networks 11 (8): 2172–86. 
doi:10.1016/j.adhoc.2013.04.009. 

Kapgate, Deepak Dashrath, and Manish B. Narnaware. 2013. International Journal of Computer &amp; 



 150 

Communication Engineering Research IJCCER. IJCCER. Vol. 1. [s.n.]. 
http://www.ijccer.org/index.php/ojs/article/view/20. 

Karunamurthy, Rajesh, Ferhat Khendek, and Roch H. Glitho. 2012. “A Novel Architecture for Web Service 
Composition.” Journal of Network and Computer Applications 35 (2): 787–802. 
doi:10.1016/j.jnca.2011.11.012. 

Klusch, Matthias, and Andreas Gerber. 2006. “Fast Composition Planning of OWL-S Services and 
Application.” In 2006 European Conference on Web Services (ECOWS’06), 181–90. IEEE. 
doi:10.1109/ECOWS.2006.20. 

Kodialam, M., and T.V. Lakshman. 2000. “Minimum Interference Routing with Applications to MPLS Traffic 
Engineering.” In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. 
Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. 
No.00CH37064), 2:884–93. IEEE. doi:10.1109/INFCOM.2000.832263. 

Koomey, Jonathan G. 2007. “ESTIMATING TOTAL POWER CONSUMPTION BY SERVERS IN THE U.S. 
AND THE WORLD.” http://www.koomey.com. 

Kubernetes. 2017. “Kubernetes - Production-Grade Container Orchestration.” Accessed March 15. 
https://kubernetes.io/. 

Kumar, Dilip, Bibhudatta Sahoo, Bhaskar Mondal, and Tarni Mandal. 2015. “A Genetic Algorithmic Approach 
for Energy Efficient Task Consolidation in Cloud Computing.” International Journal of Computer 
Applications 118 (2): 1–6. doi:10.5120/20714-3066. 

Kurdi, Heba, Abeer Al-Anazi, Carlene Campbell, and Auhood Al Faries. 2015. “A Combinatorial 
Optimization Algorithm for Multiple Cloud Service Composition.” Computers & Electrical Engineering 
42 (February): 107–13. doi:10.1016/j.compeleceng.2014.11.002. 

Kusic, Dara, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, and Guofei Jiang. 2008. “Power 
and Performance Management of Virtualized Computing Environments Via Lookahead Control.” In 
2008 International Conference on Autonomic Computing, 3–12. IEEE. doi:10.1109/ICAC.2008.31. 

Kvm. 2017. “KVM (Kernel-Based Virtual Machine).” Accessed March 15. https://www.linux-
kvm.org/page/Main_Page. 

Larumbe, Federico, and Brunilde Sansò. 2012. “Optimal Location of Data Centers and Software Components 
in Cloud Computing Network Design.” In 12th IEEE/ACM International Symposium on Cluster, Cloud 
and Grid Computing (Ccgrid 2012), 841–44. IEEE. doi:10.1109/CCGrid.2012.124. 

Laszewski, Gregor von, Lizhe Wang, Andrew J. Younge, and Xi He. 2009. “Power-Aware Scheduling of 
Virtual Machines in DVFS-Enabled Clusters.” In 2009 IEEE International Conference on Cluster 
Computing and Workshops, 1–10. IEEE. doi:10.1109/CLUSTR.2009.5289182. 

Lazzeri, Francesco, Gianmarco Bruno, Jeroen Nijhof, Alessio Giorgetti, and Piero Castoldi. 2015. “Efficient 
Label Encoding in Segment-Routing Enabled Optical Networks.” In 2015 International Conference on 
Optical Network Design and Modeling (ONDM), 34–38. IEEE. doi:10.1109/ONDM.2015.7127270. 

Lecue, Freddy, and Nikolay Mehandjiev. 2011. “Seeking Quality of Web Service Composition in a Semantic 
Dimension.” IEEE Transactions on Knowledge and Data Engineering 23 (6): 942–59. 
doi:10.1109/TKDE.2010.237. 

Lee, Ming-Chieh, and Jang-Ping Sheu. 2016. “An Efficient Routing Algorithm Based on Segment Routing in 
Software-Defined Networking.” Computer Networks 103 (July): 44–55. 
doi:10.1016/j.comnet.2016.03.017. 

Lee, Young Choon, and Albert Y. Zomaya. 2012. “Energy Efficient Utilization of Resources in Cloud 
Computing Systems.” The Journal of Supercomputing 60 (2). Springer US: 268–80. doi:10.1007/s11227-
010-0421-3. 

Lemos, Angel Lagares, Florian Daniel, and Boualem Benatallah. 2015. “Web Service Composition.” ACM 
Computing Surveys 48 (3). ACM: 1–41. doi:10.1145/2831270. 

Levesque, Hector, Fiora Pirri, and Ray Reiter. 1998. “Foundations for the Situation Calculus.” Computer and 
Information Science 3 (3). http:/. 

Li, Bo, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong. 2009. “EnaCloud: An Energy-Saving 
Application Live Placement Approach for Cloud Computing Environments.” In 2009 IEEE International 
Conference on Cloud Computing, 17–24. IEEE. doi:10.1109/CLOUD.2009.72. 

Liang Luo, Wenjun Wu, Dichen Di, Fei Zhang, Yizhou Yan, and Yaokuan Mao. 2012. “A Resource 
Scheduling Algorithm of Cloud Computing Based on Energy Efficient Optimization Methods.” In 2012 
International Green Computing Conference (IGCC), 1–6. IEEE. doi:10.1109/IGCC.2012.6322251. 

Limbani, Oza. 2012. “A Proposed Service Broker Policy for Data Center Selection in Cloud Environment with 
Implementation.” Int. J. Comput. Technol. Appl.,. 

LinuxContainers. 2017. “Linux Containers.” Accessed March 15. https://linuxcontainers.org/. 
Liu, Fang, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and Dawn Leaf. 2011. “NIST Cloud 



 151 

Computing Reference Architecture Recommendations of the National Institute of Standards and 
Technology.” Cloud Computing Program, Information Technology Laboratory. 

Liu, Tao, Qingrui Li, and Ping Liang. 2012. “An Energy-Balancing Clustering Approach for Gradient-Based 
Routing in Wireless Sensor Networks.” Computer Communications 35 (17): 2150–61. 
doi:10.1016/j.comcom.2012.06.013. 

Loganathan, Shyamala, and Saswati Mukherjee. 2013. “Differentiated Policy Based Job Scheduling with 
Queue Model and Advanced Reservation Technique in a Private Cloud Environment.” Springer, Berlin, 
Heidelberg, 32–39. doi:10.1007/978-3-642-38027-3_4. 

Lu, Junwen, Yongsheng Hao, Lina Wang, and Mai Zheng. 2015. “Towards Efficient Service Composition in 
Multi-Cloud Environment.” In 2015 International Conference on Computational Science and 
Computational Intelligence (CSCI), 65–70. IEEE. doi:10.1109/CSCI.2015.69. 

Luo, Jun-Zhou, Jing-Ya Zhou, and Zhi-Ang Wu. 2009. “An Adaptive Algorithm for QoS-Aware Service 
Composition in Grid Environments.” Service Oriented Computing and Applications 3 (3). Springer-
Verlag: 217–26. doi:10.1007/s11761-009-0047-6. 

Malboubi, Mehdi, Liyuan Wang, Chen-Nee Chuah, and Puneet Sharma. 2014. “Intelligent SDN Based Traffic 
(de)Aggregation and Measurement Paradigm (iSTAMP).” In IEEE INFOCOM 2014 - IEEE Conference 
on Computer Communications, 934–42. IEEE. doi:10.1109/INFOCOM.2014.6848022. 

Martínez, Alberto, Marta Patiño-Martínez, Ricardo Jiménez-Peris, and Francisco Pérez-Sorrosal. 2005. 
“ZenFlow: A Visual Web Service Composition Tool for BPEL4WS *.” In Proceedings of the IEEE 
Symposium on Visual Languages and Human-Centric Computing, 181–88. 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.6247&rep=rep1&type=pdf. 

Mazzucco, Michele, Dmytro Dyachuk, and Ralph Deters. 2010. “Maximizing Cloud Providers’ Revenues via 
Energy Aware Allocation Policies.” In 2010 IEEE 3rd International Conference on Cloud Computing, 
131–38. IEEE. doi:10.1109/CLOUD.2010.68. 

Mell, Peter, and Timothy Grance. 2011. “The NIST Definition of Cloud Computing Recommendations of the 
National Institute of Standards and Technology.” doi:10.6028/NIST.SP.800-145. 

MicrosoftAzure. 2017. “Microsoft Azure: Cloud Computing Platform Services.” Accessed March 15. 
https://azure.microsoft.com/en-us/. 

Ming Lu, Ye, and Vincent W. S. Wong. 2007. “An Energy-Efficient Multipath Routing Protocol for Wireless 
Sensor Networks.” International Journal of Communication Systems 20 (7). John Wiley & Sons, Ltd.: 
747–66. doi:10.1002/dac.843. 

Mishra, Rakesh Kumar, Sandeep Kumar, and B Sreenu Naik. 2014. “Priority Based Round-Robin Service 
Broker Algorithm for Cloud-Analyst.” In 2014 IEEE International Advance Computing Conference 
(IACC), 878–81. IEEE. doi:10.1109/IAdCC.2014.6779438. 

Mitrani, Isi. 2011. “Service Center Trade-Offs between Customer Impatience and Power Consumption.” 
Performance Evaluation 68 (11): 1222–31. doi:10.1016/j.peva.2011.07.017. 

———. 2013. “Managing Performance and Power Consumption in a Server Farm.” Annals of Operations 
Research 202 (1). Springer US: 121–34. doi:10.1007/s10479-011-0932-1. 

Montoya, Germán A., and Yezid Donoso. 2013. “Energy Load Balancing Strategy to Extend Lifetime in 
Wireless Sensor Networks.” Procedia Computer Science 17: 395–402. doi:10.1016/j.procs.2013.05.051. 

Murtazaev, Aziz, and Sangyoon Oh. 2011. “Sercon: Server Consolidation Algorithm Using Live Migration of 
Virtual Machines for Green Computing.” IETE Technical Review 28 (3): 212. doi:10.4103/0256-
4602.81230. 

Nacer, Hassina, and Djamil Aissani. 2014. “Semantic Web Services: Standards, Applications, Challenges and 
Solutions.” Journal of Network and Computer Applications 44 (September): 134–51. 
doi:10.1016/j.jnca.2014.04.015. 

Nair, SK, and Sakshi Porwal. 2010. “Towards Secure Cloud Bursting, Brokerage and Aggregation.” … 
ECOWS), 2010 IEEE …, no. 257115: 1–8. 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5693261. 

Naone, Erica. 2009. “Conjuring Clouds - How Engineers Are Making on-Demand Computing a Reality.” MIT 
Technology Review. https://www.technologyreview.com/s/413981/conjuring-clouds/. 

Nathani, Amit, Sanjay Chaudhary, and Gaurav Somani. 2012. “Policy Based Resource Allocation in IaaS 
Cloud.” Future Generation Computer Systems 28 (1): 94–103. doi:10.1016/j.future.2011.05.016. 

Nidhi Jain, Inderveer Chana. 2012. “Cloud Load Balancing Techniques : A Step Towards Green Computing.” 
IJCSI International Journal of Computer Science Issues 9 (1). 
https://www.researchgate.net/publication/266489231_Cloud_Load_Balancing_Techniques_A_Step_Tow
ards_Green_Computing. 

“OpenNebula.” 2017. Accessed March 16. https://opennebula.org/. 
OpenStack. 2017. “Home » OpenStack Open Source Cloud Computing Software.” Accessed March 15. 



 152 

https://www.openstack.org/. 
OpenVZ. 2017. “OpenVZ Virtuozzo Containers Wiki.” Accessed March 16. https://openvz.org/Main_Page. 
ORGERIE, ANNE-CECILE, and LAURENT LEFEVRE. 2011. “ERIDIS: ENERGY-EFFICIENT 

RESERVATION INFRASTRUCTURE FOR LARGE-SCALE DISTRIBUTED SYSTEMS.” Parallel 
Processing Letters 21 (2). World Scientific Publishing Company: 133–54. 
doi:10.1142/S0129626411000138. 

Panarello, Carla, Alfio Lombardo, Giovanni Schembra, Luca Chiaraviglio, and Marco Mellia. 2010. “Energy 
Saving and Network Performance: A Trade-off Approach,” 41–50. doi:10.1145/1791314.1791321. 

Pawar, Chandrashekhar S., and Rajnikant B. Wagh. 2012. “Priority Based Dynamic Resource Allocation in 
Cloud Computing.” 2012 International Symposium on Cloud and Services Computing, 1–6. 
doi:10.1109/ISCOS.2012.14. 

Perkins, Charles E.,Elizabeth M. Belding-Royer, Samir R. Das. 2003. “Ad Hoc On-Demand Distance Vector 
(AODV) Routing.” Network Working Group. https://tools.ietf.org/html/rfc3561. 

Pi, Bingfeng, Gang Zou, Chaoliang Zhong, Jun Zhang, Hao Yu, and Akihiko Matsuo. 2012. “Flow Editor: 
Semantic Web Service Composition Tool.” In 2012 IEEE Ninth International Conference on Services 
Computing, 666–67. IEEE. doi:10.1109/SCC.2012.48. 

Pinheiro, Eduardo, Ricardo Bianchini, Enrique V Carrera, and Taliver Heath. 2001. “Load Balancing and 
Unbalancing for Power and Performance in Cluster-Based Systems.” Proceedings of theWorkshop on 
Compilers and Operating Systems for Low Power, 182–95. 
http://www2.ic.uff.br/~julius/stre/pinheiro01load.pdf. 

Proxmox. 2017. “Proxmox - Open Source Server Solutions.” Accessed March 16. 
https://www.proxmox.com/en/. 

Qi, Zheng. 2006. “Load Balancing Algorithm Based on Dynamic Feedback.” Computer Age, 49–51. 
Quan, Dang Minh, Robert Basmadjian, Hermann De Meer, Ricardo Lent, Toktam Mahmoodi, Domenico 

Sannelli, Federico Mezza, Luigi Telesca, and Corenten Dupont. 2011. “Energy Efficient Resource 
Allocation Strategy for Cloud Data Centres.” In Computer and Information Sciences II, 133–41. London: 
Springer London. doi:10.1007/978-1-4471-2155-8_16. 

Randles, Martin, David Lamb, and A. Taleb-Bendiab. 2010. “A Comparative Study into Distributed Load 
Balancing Algorithms for Cloud Computing.” In 2010 IEEE 24th International Conference on Advanced 
Information Networking and Applications Workshops, 551–56. IEEE. doi:10.1109/WAINA.2010.85. 

Rani, Pushpi, Reena Chauhan, and Ritu Chauhan. 2015. “An Enhancement in Service Broker Policy for Cloud- 
Analyst.” International Journal of Computer Applications 115 (12): 975–8887. 
http://research.ijcaonline.org/volume115/number12/pxc3902450.pdf. 

Rekha P.M., and M. Dakshayini. 2014. “Cost Based Data Center Selection Policy for Large Scale Networks.” 
In 2014 International Conference on Computation of Power, Energy, Information and Communication 
(ICCPEIC), 18–23. IEEE. doi:10.1109/ICCPEIC.2014.6915333. 

Ren, Xiaona, Rongheng Lin, and Hua Zou. 2011. “A Dynamic Load Balancing Strategy for Cloud Computing 
Platform Based on Exponential Smoothing Forecast.” In 2011 IEEE International Conference on Cloud 
Computing and Intelligence Systems, 220–24. IEEE. doi:10.1109/CCIS.2011.6045063. 

Rodriguez-Mier, Pablo, Manuel Mucientes, and Manuel Lama. 2012. “A Dynamic QoS-Aware Semantic Web 
Service Composition Algorithm.” In , 623–30. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-
34321-6_48. 

Rodriguez-Mier, Pablo, Manuel Mucientes, Juan C. Vidal, and Manuel Lama. 2012. “An Optimal and 
Complete Algorithm for Automatic Web Service Composition.” International Journal of Web Services 
Research 9 (2). IGI Global: 1–20. doi:10.4018/jwsr.2012040101. 

Rogers, Owen, and Dave Cliff. 2012. “A Financial Brokerage Model for Cloud Computing.” Journal of Cloud 
Computing: Advances, Systems and Applications 1 (1). Springer Open Ltd: 2. doi:10.1186/2192-113X-1-
2. 

S. Ponnekanti, A. Fox. 2002. “SWORD: A Developer Toolkit for Web Service Composition.” In Proceedings 
of the 11th International WWW Conference (WWW2002),,. Honolulu. 
https://www.bibsonomy.org/bibtex/2acd4b46d0d98e21eaac9337a2b06983b/hennig. 

Sarfaraz Ahmed, A. 2012. “Enhanced Proximity-Based Routing Policy for Service Brokering in Cloud 
Computing.” International Journal of Engineering Research and Applications 2 (2): 1453–55. 
http://www.ijera.com/papers/Vol2_issue2/IM2214531455.pdf. 

Scheepers, Mathijs Jeroen. 2014. “Virtualization and Containerization of Application Infrastructure: A 
Comparison.” In 21st University of Twente Conference on IT. 
http://referaat.cs.utwente.nl/conference/21/paper/7449/virtualization-and-containerization-of-application-
infrastructure-a-comparison.pdf. 

Semwal, Ashwin, and Pradeep Singh Rawat. 2014. “Performance Evaluation of Cloud Application with 



 153 

Constant Data Center Configuration and Variable Service Broker Policy Using CloudSim.” International 
Journal of Enhanced Research in Science Technology & Engineering 3 (1): 2319–74631. 
https://pdfs.semanticscholar.org/f08a/4e08488fdb8f46a77eed301d48dbefc13e54.pdf?_ga=2.15382582.1
475734039.1503066130-1030030070.1503066130. 

Sgambelluri, Andrea, Alessio Giorgetti, Filippo Cugini, Gianmarco Bruno, Francesco Lazzeri, and Piero 
Castoldi. 2015. “First Demonstration of SDN-Based Segment Routing in Multi-Layer Networks.” In 
Optical Fiber Communication Conference, Th1A.5. Washington, D.C.: OSA. 
doi:10.1364/OFC.2015.Th1A.5. 

Sharma. 2014. “Efficient Data Center Selection Policy for Service Proximity Service Broker in CloudAnalyst.” 
Int. J. Innovative Comp. Sci. Eng. (IJICSE) 1 (1): 21–28. 

SolarisContainers. 2017. “Solaris Containers - Oracle.” Accessed March 16. 
http://www.oracle.com/technetwork/ server-storage/solaris/containers-169727.html. 

Soltesz, Stephen, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, Larry Peterson, Stephen Soltesz, Herbert 
Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson. 2007. “Container-Based Operating System 
Virtualization: A Scalable, High-Performance Alternative to Hypervisors.” In Proceedings of the 2nd 
ACM SIGOPS/EuroSys European Conference on Computer Systems 2007 - EuroSys ’07, 41:275. New 
York, New York, USA: ACM Press. doi:10.1145/1272996.1273025. 

Song, Weijia, Zhen Xiao, Qi Chen, and Haipeng Luo. 2014. “Adaptive Resource Provisioning for the Cloud 
Using Online Bin Packing.” IEEE Transactions on Computers 63 (11): 2647–60. 
doi:10.1109/TC.2013.148. 

Song, Ying, Hui Wang, Yaqiong Li, Binquan Feng, and Yuzhong Sun. 2009. “Multi-Tiered On-Demand 
Resource Scheduling for VM-Based Data Center.” In 2009 9th IEEE/ACM International Symposium on 
Cluster Computing and the Grid, 148–55. IEEE. doi:10.1109/CCGRID.2009.11. 

Sotomayor, Borja, Kate Keahey, and Ian Foster. 2008. “Combining Batch Execution and Leasing Using 
Virtual Machines.” In Proceedings of the 17th International Symposium on High Performance 
Distributed Computing - HPDC ’08, 87. New York, New York, USA: ACM Press. 
doi:10.1145/1383422.1383434. 

Srikantaiah, Shekhar, Aman Kansal, and Feng Zhao. 2008. “Energy Aware Consolidation for Cloud 
Computing.” Proceedings of the 2008 Conference on Power Aware Computing and Systems. USENIX 
Association. http://dl.acm.org/citation.cfm?id=1855620. 

Sun, Le, Hai Dong, and Jamshaid Ashraf. 2012. “Survey of Service Description Languages and Their Issues in 
Cloud Computing.” In 2012 Eighth International Conference on Semantics, Knowledge and Grids, 128–
35. IEEE. doi:10.1109/SKG.2012.49. 

Takeda, Shingo, and Toshinori Takemura. 2010. “A Rank-Based VM Consolidation Method for Power Saving 
in Datacenters.” Information and Media Technologies IPSJ Transactions on Advanced Computing 
Systems 5 (32): 994–1002. https://www.jstage.jst.go.jp/article/imt/5/3/5_3_994/_pdf. 

Taleb, Tarik, Marius Corici, Carlos Parada, Almerima Jamakovic, Simone Ruffino, Georgios Karagiannis, and 
Thomas Magedanz. 2015. “EASE: EPC as a Service to Ease Mobile Core Network Deployment over 
Cloud.” IEEE Network 29 (2): 78–88. doi:10.1109/MNET.2015.7064907. 

Tian Shaoliang, Zuo Ming, and Wu Shaowei. 2007. “An Improved Load Balancing Algorithm Based on 
Dynamic Feedback.” Computer Engineering and Design 28: 572–73. 

Tootoonchian, Amin, Monia Ghobadi, and Yashar Ganjali. 2010. “OpenTM: Traffic Matrix Estimator for 
OpenFlow Networks.” http://www.pam2010.ethz.ch/papers/full-length/21.pdf. 

Travostino, Franco, Paul Daspit, Leon Gommans, Chetan Jog, Cees de Laat, Joe Mambretti, Inder Monga, Bas 
van Oudenaarde, Satish Raghunath, and Phil Yonghui Wang. 2006. “Seamless Live Migration of Virtual 
Machines over the MAN/WAN.” Future Generation Computer Systems 22 (8): 901–7. 
doi:10.1016/j.future.2006.03.007. 

Uchechukwu, Awada, Keqiu Li, and Yanming Shen. 2012. “Improving Cloud Computing Energy Efficiency.” 
In IEEE Asia Pacific Cloud Computing Congress, 53–58. doi:10.1109/APCloudCC.2012.6486511. 

Victories, Victor. 2015. “4 Types of Cloud Computing Deployment Model You Need to Know.” IBM 
developerWorks, Internet and Technology Blog. 
https://www.ibm.com/developerworks/community/blogs/722f6200-f4ca-4eb3-9d64-
8d2b58b2d4e8/entry/4_Types_of_Cloud_Computing_Deployment_Model_You_Need_to_Know1?lang=
en. 

VirtuozzoContainers. 2017. “Virtuozzo - Containers, VMs, Storage Virtualization.” Accessed March 16. 
https://virtuozzo.com/. 

VMware. 2017. “VMware Virtualization for Desktop &amp; Server, Application, Public &amp; Hybrid 
Clouds.” Accessed March 15. http://www.vmware.com/. 

Wajid, Usman, Cesar A. Marin, and Anthony Karageorgos. 2013. “Optimizing Energy Efficiency in the Cloud 



 154 

Using Service Composition and Runtime Adaptation Techniques.” In 2013 IEEE International 
Conference on Systems, Man, and Cybernetics, 115–20. IEEE. doi:10.1109/SMC.2013.27. 

Wang, Jinhai, Chuanhe Huang, Kai He, Xiaomao Wang, Xi Chen, and Kuangyu Qin. 2013. “An Energy-
Aware Resource Allocation Heuristics for VM Scheduling in Cloud.” In 2013 IEEE 10th International 
Conference on High Performance Computing and Communications & 2013 IEEE International 
Conference on Embedded and Ubiquitous Computing, 587–94. IEEE. 
doi:10.1109/HPCC.and.EUC.2013.89. 

Wang, Xiumin, Jianping Wang, Zeyu Zheng, Yinlong Xu, and Mei Yang. 2009. “Service Composition in 
Service-Oriented Wireless Sensor Networks with Persistent Queries.” In 2009 6th IEEE Consumer 
Communications and Networking Conference, 1–5. IEEE. doi:10.1109/CCNC.2009.4784868. 

Whitney, Josh, and Pierre Delforge. 2014. “Scaling Up Energy Efficiency Across the Data Center Industry: 
Evaluating Key Drivers and Barriers.” https://www.nrdc.org/sites/default/files/data-center-efficiency-
assessment-IP.pdf. 

Wickremasinghe, Bhathiya, Rodrigo N. Calheiros, and Rajkumar Buyya. 2010. “CloudAnalyst: A CloudSim-
Based Visual Modeller for Analysing Cloud Computing Environments and Applications.” In 2010 24th 
IEEE International Conference on Advanced Information Networking and Applications, 446–52. IEEE. 
doi:10.1109/AINA.2010.32. 

Wolke, Andreas, Boldbaatar Tsend-Ayush, Carl Pfeiffer, and Martin Bichler. 2015. “More than Bin Packing: 
Dynamic Resource Allocation Strategies in Cloud Data Centers.” Information Systems 52: 83–95. 
doi:10.1016/j.is.2015.03.003. 

Xavier, M. G., M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F. De Rose. 2013. “Performance 
Evaluation of Container-Based Virtualization for High Performance Computing Environments.” In 2013 
21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 233–
40. IEEE. doi:10.1109/PDP.2013.41. 

Xen. 2017. “The Xen Project, a Powerful Open Source Industry Standard for Virtualization.” Accessed March 
15. https://www.xenproject.org/. 

Yamini, B., and D. Vetri Selvi. 2010. “Cloud Virtualization: A Potential Way to Reduce Global Warming.” In 
Recent Advances in Space Technology Services and Climate Change 2010 (RSTS & CC-2010), 55–57. 
IEEE. doi:10.1109/RSTSCC.2010.5712798. 

Zaman, Sharrukh, and Daniel Grosu. 2013. “Combinatorial Auction-Based Allocation of Virtual Machine 
Instances in Clouds.” Journal of Parallel and Distributed Computing 73 (4): 495–508. 
doi:10.1016/j.jpdc.2012.12.006. 

Zhang, Li, Frank Fowley, and Claus Pahl. 2014. “A Template Description Framework for Services as a Utility 
for Cloud Brokerage.” International Conference on Cloud Computing and Service Science, no. Fehling. 
http://doras.dcu.ie/19796/. 

Zhang, Qi, Lu Cheng, and Raouf Boutaba. 2010. “Cloud Computing: State-of-the-Art and Research 
Challenges.” Journal of Internet Services and Applications 1 (1). Springer London: 7–18. 
doi:10.1007/s13174-010-0007-6. 

Zhang, Qi, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu, Raouf Boutaba, and Joseph L. Hellerstein. 
2012. “Dynamic Energy-Aware Capacity Provisioning for Cloud Computing Environments.” In 
Proceedings of the 9th International Conference on Autonomic Computing - ICAC ’12, 145. New York, 
New York, USA: ACM Press. doi:10.1145/2371536.2371562. 

Zheng Wang, and J. Crowcroft. 1996. “Quality-of-Service Routing for Supporting Multimedia Applications.” 
IEEE Journal on Selected Areas in Communications 14 (7): 1228–34. doi:10.1109/49.536364. 

Zou, Guobing, Yixin Chen, Yang Xiang, Ruoyun Huang, and You Xu. 2010. “AI Planning and Combinatorial 
Optimization for Web Service Composition in Cloud Computing.” 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.210.2898&rep=rep1&type=pdf. 

 
 
 
 
 
 
 
 
 
 



 155 

Appendix		1	
 

1. T. Baker, B. Al-Dawsari, H. Tawfik, D. Reid, Y. Ngoko, GreeDi: An energy 
efficient routing algorithm for big data on cloud, Ad Hoc Networks, Volume 35, 
2015, Pages 83-96, ISSN 1570-8705. 
 

2. Aldawsari, B., Baker, T., & England, D. (2015). Trusted Energy-Efficient Cloud-
Based Services Brokerage Platform. International Journal of Intelligent Computing 
Research (IJICR, 6(4), 630–639. 

 
3. Aldawsari, Bandar; Baker, Thar; England, David, "Towards a Holistic Multicloud 

Brokerage System: Taxonomy, Survey, and Future Directions," in Computer and 
Information Technology; Ubiquitous Computing and Communications; Dependable, 
Autonomic and Secure Computing; Pervasive Intelligence and Computing 
(CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on  , vol., no., 
pp.1467-1472, 26-28 Oct. 2015. 

 
4. B. Aldawsari, T. Baker and D. England, "Towards a holistic brokerage system for 

multi-cloud environment," 2015 10th International Conference for Internet 
Technology and Secured Transactions (ICITST), London, 2015, pp. 249-255. 

 
5. T. Baker, M. Mackay, A. Shaheed, and B. Aldawsari, “Security-Oriented Cloud 

Platform for SOA-Based SCADA,” in 15th IEEE/ACM International Symposium on 
Cluster, Cloud and Grid Computing , 2015, pp. 961–970. 

 
6. Thar Baker, Muhammad Asim, Hissam Tawfik, Bandar Aldawsari, Rajkumar 

Buyya, An energy-aware service composition algorithm for multiple cloudbased IoT 
applications, Journal of Network and Computer Applications, Volume 89, 1 July 
2017, Pages 96-108, ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2017.03.008. 
 

7. B. Aldawsari, T. Baker, M. Asim, H. Tawfik, Z. Maamar, R. Buyya, Cloud-SEnergy: 
A Bin-Packing based Multi-Cloud Service Broker for Energy Efficient Composition 
and Execution of Data-intensive Applications, has been submitted  to the Computer 
Communications Journal. 

 
 
 
 
 
 
 
 
 
 



 156 

Appendix		2	
 
 
Table 18 Summary of notations used. 

Notation Meaning 
𝒊 user machine  

𝑫𝑪𝒊 data centre  
𝒗 node  
𝑮  Interconnection graphs  
𝑷𝒊	 power consumption  

𝑪𝒊	(𝒗) capacity of a node 
𝑬𝒊 ⊆ 𝑽𝒊×𝑽𝒊 interconnection nodes 
𝑳𝒊 ∶ 𝑬𝒊 → ℕ latency between connected nodes 

𝑩𝒊 bandwidth 
𝑱𝒖 User’s job 
𝒘𝒖 quantity of Flops 
𝒊𝒏𝒖 amount of input 
𝒐𝒖𝒖 amount of output 

𝑬𝑻𝒔𝒆𝒏𝒅	(𝒊) sending a bit from the user to the data centre 
𝑬𝑻𝒓𝒆𝒄𝒗(𝒊) for the inverse sending 
𝝁(𝒊) time units for processing one flop 
𝒔 a web Service 
𝒔𝒊 service input 
𝒔𝒐 service output 
𝒔𝒆𝒄 energy of service computation 
𝑰 request interface 
𝑮 goal interface 
𝑺 a set of candidate ws 
𝝅𝑩 broker composition plan 
𝝅𝑪𝑷 a cloud provider composition plan 
𝝅′𝑩 a optimal composition plan 
𝑴𝑪𝑷 multiple cloud providers 
𝑪𝑷 a cloud provider 
𝑬𝑪 energy consumption 
𝑽𝒊 gives a list of all possible nodes available between any 𝑖	and 𝑎 𝐷𝐶' 

 
 


