
Figura, R, Ceriotti, M, Yen Shih, C, Mulero Pazmany, MC, Fu, S, Daidone, R, 
Jungen, S, Negro, J and Marrón, P

 IRIS: Efficient Visualization, Data Analysis and Experiment Management for 
Wireless Sensor Networks

http://researchonline.ljmu.ac.uk/id/eprint/8117/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Figura, R, Ceriotti, M, Yen Shih, C, Mulero Pazmany, MC, Fu, S, Daidone, R, 
Jungen, S, Negro, J and Marrón, P (2014) IRIS: Efficient Visualization, Data 
Analysis and Experiment Management for Wireless Sensor Networks. EAI 
Endorsed Transactions on Ubiquitous Environments, 1 (3). ISSN 2032-9377 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


IRIS: Efficient Visualization, Data Analysis and 
Experiment Management for Wireless Sensor  Networks
Richard Figura1,∗, Matteo Ceriotti1, Chia-Yen Shih1, Margarita Mulero-Pázmány3, Songwei Fu1,
Roberta Daidone2, Sascha Jungen1, Juanjo José Negro3, Pedro José Marrón1

1Networked Embedded Systems, University of Duisburg-Essen, Germany
2Department of Ingegneria dell’Informazione, University of Pisa, Italy
3Department of Evolutionary Ecology, Doñana Biological Station, CSIC, Seville, Spain

Abstract

The design of ubiquitous computing environments is challenging, mainly due to the unforeseeable impact
of real-world environments on the system performance. A crucial step to validate the behavior of these
systems is to perform in-field experiments under various conditions. We introduce IRIS, an experiment
management and data processing tool allowing the definition of arbitrary complex data analysis applications.
While focusing on Wireless Sensor Networks, IRIS supports the seamless integration of heterogeneous data
gathering technologies. The resulting flexibility and extensibility enable the definition of various services,
from experiment management and performance evaluation to user-specific applications and visualization.
IRIS demonstrated its effectiveness in three real-life use cases, offering a valuable support for in-field
experimentation and development of customized applications for interfacing the end user with the system.

Keywords: Wireless Sensor Networks; Data Processing; Experiment Management; Data Analysis; Data Visualization; 
End-User Application Development

1. Introduction
Wireless Sensor Networks (WSNs) offer a pragmatic solu-
tion for acquiring physical parameter measurements,
serving as a stepping stone towards the realization
of ubiquitous computing environments. Many applica-
tions, e.g., habitant monitoring, surveillance and indus-
trial automation, have employed WSNs as data sources
to observe, control, and optimize a variety of physical
processes. However, setting up a suitable WSN involves
a tedious iterative process of developing the necessary
WSN application, deciding on the deployment config-
uration, evaluating the application performance, and
delivering processed information to the final user. The
developer often conducts numerous empirical experi-
ments or testing cases with various application param-
eter settings and network configurations. Once the
experiment data is available, the developer needs to
define how to process and analyze the data in order
to evaluate the application performance. Finally, a con-
venient interface must enable the user of the final
system to fully exploit the information gathered from
the deployed system.

∗Corresponding author. Email: richard.figura@uni-due.de

The tasks of handling experiment settings, and
evaluating the application performance in order to
determine the best-fit WSN deployment are time
consuming and error-prone. In addition, the processing
required to export the aggregated information to the
end user is typically based on various compositions
of common processing and visualization functions,
depending on the specific application use case. It
is then easy to see that a practical support for
experiment configuration, performance evaluation, and
data analysis is the key to the success of WSN
application development, especially when a complex
ubiquitous computing system requires several WSN
deployments. For this purpose, we offer an integrated
solution that enables effective experiment management
and data analysis for performance evaluation. By
supporting these tasks, we also conveniently support
the development of the interface between the system
and the final user, where usability and extensibility are
of high importance.

Our work was motivated when preparing experi-
ments in an EU project, PLANET [1], for both a pol-
lution monitoring as well as a horse tracking applica-
tion in the Doñana Biological Reserve (DBR) [2], Spain.

1

EAI Endorsed Transactions  
on Ubiquitous Environments Research Article 

EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4

Received on 31 May 2014, accepted on 10 October 2014, published on 17 November 2014.

Copyright © 2014 S. C. Khorakhun, S. N. Bhatti, licensed to ICST. This is an open access article distributed under the terms of the 
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and 

reproduction in any medium so long as the original work is properly cited. 

doi: 10.4108/ue.1.3.e4

mailto:<richard.figura@uni-due.de>


R. Figura et al.

These applications require a long-term WSN deploy-
ment in order to acquire physical measurements from
the target environment under observation. The mea-
surement data is either delivered by the connected WSN
or collected by unmanned aerial or ground vehicles
(UAVs or UGVs). With the time and hardware limitation
in DBR, we needed to efficiently perform concurrent
experiments with various network configurations and
parameter settings. Therefore, we developed a tool, for-
merly known as IMAC [3], which provides a primitive
mechanism for experiment management and on-site
data analysis. The use of IMAC greatly helped us in
accomplishing the experiment objectives.

We present in this paper the final release of IRIS1,
the successor of IMAC, with many augmented features.
Our goal is to provide an integrated and flexible
solution for experiment configuration management
and performance data analysis in order to facilitate
the development of WSN applications for ubiquitous
computing environments. We particularly address IRIS’
main features in several aspects. First, IRIS provides
a mechanism for managing WSN experiments. The
developer can use IRIS to automate the application
installation procedure, to iterate the experiment with
different configuration and parameter settings, to create
customized logs for different experiment purposes, etc.
Second, for data collection and result analysis, IRIS
emphasizes its extensibility by allowing the user to
specify required data message formats and to flexibly
define necessitated functions for data processing. The
user can also develop the user interface to ubiquitous
computing environments supported by WSN systems
by integrating IRIS and implementing the program
logic using functions. Third, during the experiment, the
developer can use IRIS to interact with the deployed
WSN in order to fine tune the parameter settings
for higher performance or for debugging purpose.
Finally, IRIS also includes a graphical interface for
visualizing the status of data collection as well as
analyzed results. IRIS integrates JFreeChart [4] and the
Worldwind Java SDK [5] to generate figures with line
and bar charts as well as representations of spatial data
on maps. With these features, IRIS not only supports
the different phases of experimentation including pre-
experiment configuration, experiment runtime and post-
experiment data analysis, but it is also able to assist in
the development of the end user interface to the gathered
data.

While a preliminary version of IRIS was already
described in [6], this work further extends the core
architecture by (a) supporting the integration with
external middleware solutions for data input, (b)

1After the Greek goddess IRIS for the meaning for messaging and
communication

exposing data in map views, and (c) providing the
different data views in separate containers to simplify
the composition of end user interfaces. Moreover, (d) we
discuss the usage of IRIS in a full fledged application
scenario for horse monitoring in DBR. By covering the
very last step of application development to reach the
final user, we demonstrate the flexibility of IRIS as well
as its ability to meet the user requirements. Finally, (e)
we make IRIS publicly available [7] so that the whole
community can benefit from our work.

The remainder of the paper is structured as follows.
Section 2 describes the related work of experiment
tools for WSNs; Section 3 gives an overview of
the IRIS tool and elaborates on its main features;
Section 4 demonstrates the possible different usages
of the aforementioned features; in Section 5, we show
two case studies, in which IRIS helped the developer
in the process of the WSN experimentation, while
Section 6 discusses a real-world application in which
IRIS supported the end user in accessing the data
collected from a deployed system; finally, we conclude
our work in Section 7.

2. Related Work
Much work has been devoted to enable WSN appli-
cation experiments. WSN testbeds, for example, offer
hardware and software for WSN experiment setup,
WSN application installation, node reprogramming and
experiment execution for performance analysis. The
TWIST [8] testbed deployed by TKN (Telecommuni-
cation Networks group at Technical University Berlin)
enables indoor experiments with heterogeneous node
platforms and network reconfiguration; the CONET
testbed [9] includes a graphical software that allows
an intuitive experiment configuration. Similar to IRIS,
these testbeds allow managing the WSN experiments.
However, such testbed infrastructure is setup in a spe-
cific environment, and they are built neither for per-
forming on-site experiments with the real environment
nor for processing the application data.

Several network analysis tools have been proposed to
gather data from the physical environment to capture
the network dynamics. SWAT [10] is a software tool
that automates data collection and analysis of mea-
surements for low-level wireless network properties.
These properties allow a better understanding of the
performance of protocols or applications in different
environments. Other tools of this category are TRI-
DENT [11] and RadiaLE [12]. Similar to IRIS, these tools
offer a user interface allowing users to interact with
the testing nodes that gather network parameters, to
visualize the data packets and to process/analyze the
data. The difference is that these tools gather raw data
packet statistics such as received signal strength (RSSI),
link quality indicator (LQI), noise floor, and define a

2 EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor  Networks

fixed set of performance metrics, e.g., packet delivery,
temporal and spatial correlations and link asymmetries.
IRIS does not limit the processing data type and allows
the user to define application-specific processing func-
tions. We note that IRIS can share similar functionality
if the same metrics are defined as IRIS functions.

For analyzing application data, MATLAB [13],
Octave [14], R [15] and SPSS [16] are notable tech-
nical languages for performance analysis, algorithm
development and model design. They also provide a
rich set of built-in mathematical functions for a wide
range of applications such as communication, signal
processing, computational biology, etc. Other tools such
as SciDavis [17] and LabPlot [18] are free software
for scientific data analysis and visualization. Spatial
analysis can be supported by programs like QGIS [19],
GRASS [20] and ArcGIS [21]. While these tools are
powerful for data processing, they cannot be used for
run-time WSN data analysis.

SenseMap [22] and NetViewer [23] are popular
WSN tools for data collection and visualization. In
particular, SenseMap provides different perspectives
for displaying outdoor and indoor deployments, as well
as a topology perspective showing the communication
links within a network. The data is provided through a
RESTful API and can be accessed via HTTP. NetViewer
is, instead, a tool for collecting data with arbitrary
message formats. Both are powerful tools for data
collection and visualization. Similar solutions are
MOTE-VIEW [24], SpyGlass [25], Nviz [26] and Vizzly
[27]. However, these tools do not allow the injection of
arbitrary messages into the network. DISON [28] and
Octopus [29], instead, provide graphical user interfaces
to enable the reconfiguration and management of
deployed applications and networks. This is especially
important for deployments in dynamic environments
or with changing application requirements. Like IRIS,
they allow the injection of reconfiguration messages
into deployed systems. However, they lack the ability
to define customizable functions for data processing.

Although the aforementioned tools are specialized
in either system management or data processing, they
do not support both on-site WSN interaction and real-
time application data processing. To the best of our
knowledge, IRIS is the first tool that provides an
integrated solution for the above issues and offers a
flexible mechanism for the user to define application-
specific processing functions to meet the specific
requirements of various applications and deployments.

3. IRIS
IRIS aims at providing an integrated solution for
experiment management and on-site data analysis. The
predecessor, IMAC, provides an environment for basic
experiment journaling, data logging and visualization.

IRIS enhances these features and especially puts
emphasis on offering flexible data processing with
customized functions. More importantly, IRIS provides
an innovative method that allows to manipulate the
collected data during the system operation as well as
a posteriori.

3.1. Architecture Overview
We developed the IRIS tool in Java as a modular system,
which is flexible and extensible. Each IRIS module
carries out one or more main features of IRIS. Figure 1
shows an overview of the IRIS’ design architecture.

The User Configuration customizes the behavior of
IRIS to the specific scenario at hand by supporting user-
specific configurations, data processing and message
formats required to interact with the data gathering
system. To enable automated application installation
and experiment measurement management, we intro-
duced an Experiment Management module. The Process-
ing and Analysis module carries out IRIS’ capability
of processing gathered data supporting user-defined
functions, while the Communication Interaction mod-
ule enables the interaction between the user and the
deployed WSNs running either standard TinyOS [30]
applications or specialized middleware solutions, e.g.,
the one employed in the PLANET [1] project. Other
modules such as the Data Storage and Recovery and the
Visualization and Controlling modules are responsible
for storing the log data and for visualizing the data
analysis output, respectively.

The core of IRIS is centered at the Controller and
its associated Data Model, which stores all the message
structures and log data imported into IRIS. The
Controller defines the logic for managing these data
as well as the interaction with all other components.
Together all the modules carry out the main features of
IRIS as described below.

3.2. Features
We highlight the main features of IRIS regarding exper-
iment management, data collection, WSN interaction,
data processing and data visualization.

Experiment Management. The first feature of IRIS is that
it provides a set of useful utilities that allow to perform
experiments efficiently.

Automated Application Installation The WSN
developers have a common experience, i.e., repeatedly
installing the application onto many sensor nodes
with unique IDs. IRIS’ Application Manager automates
the installation process, and makes the task of
matching the hardware devices with their node IDs
and required applications less erroneous, especially
when the application has strict limitation on the

3 EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



R. Figura et al.

Message 
Definition Loader

User-defined 
Adapter

User-defined 
Messages

CSV/WiseML Log 
Reader/Writer

Function 
Loader

Controller Graphical 
User 

Interface

Data 
Processing 

unit

TinyOS IO 
module

Message Decoder/
Encoder Measurement 

Manager

User-defined 
Experiment Config

User-defined 
Functions

Application 
Manager

Binary Log 
Reader/Writer

WSN

CSV/
WiseM

log

Binary 
log

Processing 
& Analysis

Data Storage & 
Recovery

Communication
& Interaction

Visualization &
Controlling

User

Customized Plugins

Experiment
Management

Data
ModelCore

Adapter 
Loader

View
View

Views

Custom
MiddlewareCustom

MiddlewareCustom
Middleware

Figure 1. IRIS modular architecture

hardware for installation. This feature is extremely
useful and have greatly shortened the preparation
time of our experiments in DBR. Despite the current
implementation of IRIS restricts this feature to TinyOS
binary images, it can easily be extended to support
other types of operating systems.

Measurement Management When running a series of
experiments, another issue is to match the recorded
data to different experiment settings. In IRIS, an
experiment can consist of several experiment runs,
or “measurements”, and for each measurement IRIS
organizes a set of log files for incoming and outgoing
messages in binary, CSV and WiseML formats. For
each experiment, IRIS generates a metadata file that
specifies the general information and experiment
statistics including an experiment ID, the start
time, the hardware list, the list of involved TinyOS
applications (if any), the number of measurements and
their corresponding settings, etc. Moreover, for those
applications that utilize the flash memory for logging,
IRIS provides a utility for automatically offloading the
flash content of a node. The resulting offloaded data is
directly associated to the current active measurement.

Customized Logging IRIS provides a flexible and
convenient mechanism allowing the user to customize
the logging format. The user can define an application-
specific format for every incoming or outgoing message.
Together with the Data Processing Unit, it is possible
to define functions to directly manipulate collected raw

data and to store the end result to a log file freely.
This bypasses the step of raw data storing and therefore
greatly increases the efficiency.

Data Collection and Interaction with Deployed Systems. The
second feature of IRIS allows user interactions with the
deployed data sources in both directions, i.e., collecting
data from the running system and sending command
messages to the network in order to control the data
flow. Such interaction requires the knowledge of the
message structures. IRIS allows the user to extend the
message set by defining new message structures with
the templates generated by the TinyOS Message Interface
Generator (MIG) tool.

Data Collection To collect data from traditional
WSNs, IRIS can be connected to one or several
base stations via serial ports. Every base station
collects messages and delivers those messages to the
Communication and Interaction module to handle the
messages. The handled messages are then stored by
the Data Storage and Recovery module depending
on whether the message can be parsed. If so, the
message fields are converted into IRIS attributes and
each message is stored as a set of attribute values.
The attributes and their values are stored in a human
readable format, i.e., CSV or WiseML for further
processing or result analysis. In addition to collecting
data from a base station, IRIS also provides a TinyOS
program called FlashReader for offloading the data
from the flash memory. This application reads out the
flash content of a node and sends the data over the serial

4 EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



link, through which IRIS parses and logs the data. IRIS
requires a specific log format for this task, which can
be replaced if necessary with a format specific to the
involved application.

Furthermore, IRIS allows the interaction with
customized middleware solutions for data collection.
To convert incoming messages from a specific format
into the format internally used by IRIS, a user
has to implement a customized middleware adapter.
This adapter is automatically loaded by IRIS during
runtime using the Adapter Loader. Messages arriving
at loaded adapters can then be added to the Data
Model. With this feature, IRIS is effectively capable of
merging heterogeneous information gathered from any
input source. Once messages are translated from the
appropriate adapter, they can be merged in single data
models and processed independently from the specific
data source. For example, we could conceive using IRIS
to calibrate environmental readings collected from a
deployed sensor networks with measurements taken
from satellites or other remote sensing technologies.
In this manner, we were able to effectively integrate
IRIS with the PLANET Framework as discussed in more
details in Section 6.

System Interaction IRIS allows the user to control
the experiment flow and to interact with the deployed
WSN by dispatching the arbitrary user-defined AM
messages. Such feature is advantageous for adjusting
experiment parameters and for program debugging. To
send a message to the WSN, the user needs to connect
IRIS with one or more base stations, and to specify three
parameters: the message template (type), the attribute
values and the base station responsible for sending the
message. When configured with the message template,
IRIS creates its message instances and serializes them in
binary form for sending. IRIS is then only responsible
to transfer the generated messages to the base station.
Once transferred, the messages can be handled on the
base station by custom data dissemination or over-
the-air firmware updates protocols, e.g., Deluge [31],
depending on the services running in the specific WSN
deployed. A similar approach allows the interaction
with custom middleware platforms by providing an
appropriate interaction adapter. Moreover, if more than
one adapter is provided, the user can define the active
outgoing adapter for each message individually. This
feature enables the integration of networks based on
alternative operating systems or different hardware
platforms. Also considering the independence from the
protocols used inside the network for data gathering
or dissemination, IRIS is effectively decoupled from
the specifics of the deployed systems with which it
interacts.

Figure 2. Different types of composition functions in IRIS

Processing and Analysis. IRIS provides an innovative
way for extending its processing capabilities by flexibly
defining application-specific functions for processing
data at the packet level. These functions can be applied
to collected data during runtime or a posteriori. Such
feature is especially useful for runtime data analysis,
application debugging and customized logging. In IRIS,
a function is created via the definition of a function
template, which specifies the number of input attributes
(ports) and the number of static configuration values.
The user can initiate a function instance by wiring
the target attributes to the input ports and deciding
on the constant values during/after the experiment.
Currently, IRIS provides a rich set of function templates
for data processing. However, the user can easily extend
it with user-defined templates written in Java. With
such feature, the user can use IRIS not only merely as
a data processing tool but also as a building block for
complex WSN application development.

It is worth noting that IRIS’ function template has
a unique feature that distinguishes IRIS from other
data processing tools. That is, it is composable, meaning
that the function template can take inputs as attributes
that are either converted from the message template or
created by other function templates. Figure 2 depicts
the flexible composability of the function templates.
For instance, a function instance can take message
attributes as inputs (Func 1); one can have a function
output as input and create a new attribute (Func 2);
an instance as Func 3 can take as input a function
output and a newly created attribute, outputting a new
attribute of a size different from the input, e.g., used
for prediction. Func 4 shows a function template that
takes two attributes as input but does not generate
any new output. Usually this kind of functions can
be used for monitoring or controlling purposes (e.g.
for sending conditional messages into the network
by using th Communication and Interaction module).
With composable function templates, the user can
implement a variety of data processing algorithms that
directly access the data without redundant storing
and retrieving for further processing, and thus can
obtain processed results with less storage resources and
significantly reduced time.

5

IRIS: Eÿcient Visualization, Data Analysis and Experiment Management for Wireless Sensor  Networks
IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor  Networks

EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



R. Figura et al.

Figure 3. The graphical user interface of IRIS with packet- and chart view, showing the result of a conversion and a prediction function

Visualization and User Control Interface. The visualization
and user control interfaces are basic and yet important
features for a tool like IRIS. The provided base user
interface of IRIS consists of several parts for the
user input and for visualizing the experiment data.
Figures 3 and 4 show snapshots of the main graphical
user interface (GUI) of IRIS. Through the IRIS’
GUI, the user can perform experiment management,
including creating an experiment profile, initiating data
collection, sending control messages, store/load the
experiment data, defining the function instances for
data processing, etc. For each measurement, IRIS first
displays general information about the measurement.
When the data is available, the Packet View displays
the content of the messages based on their attributes
and can be customized to only show required attributes.
Additionally, IRIS is integrated with JFreeChart, a
library for generating line charts or bar charts in a
graph view. It allows the user to zoom into the chart,
to save pictures of generated charts and to change
the scale of the view for a better visualization of any
attribute. Moreover, IRIS provides a map view based on
the Worldwind Java SDK for the visualization of spatial
data, as shown in Figure 4. Like the graph view, the
map view allows zooming and saving pictures of the
displayed area.

Finally, the modularity of the IRIS architecture allows
the developer to use the different components, e.g.,
for processing, logging, or visualization, as building
blocks for a customized user interface. Given that IRIS
already provides the majority of the common features
in properly encapsulated modules, the developer
exclusively needs to focus on the code necessary
to interconnect the different functionalities together
depending on the specific application requirements.

This features becomes even more relevant considering
that user requirements for these systems typically
evolve over time; the design of IRIS supports the
developer through the reusability and extensibility of
its components.

4. Usage
With the above features, IRIS supports the user to
perform tasks in the different experiment phases: pre-
experiment, runtime and post-experiment. In addition, the
basic functions employed in these different phases can
be combined to produce a predefined user interface.

4.1. Pre-Experiment Phase
In this phase, the user can use IRIS to perform the
following four tasks.

Automatically Installing Applications To automate
application installation, the user needs to provide two
configuration files, which specify a list of application
node IDs with the TinyOS applications to be installed,
and a list of the IDs with their hardware addresses,
respectively. IRIS also provides utilities to generate
these lists easily. Once both lists are available, the user
can attach any number of nodes to the USB ports and
start an automated application installation.

Defining Message Templates IRIS requires the mes-
sage templates in order to access the content of incom-
ing and outgoing messages. Therefore, the user needs
to define application-specific templates as described
previously. If an incoming message template is missing,
IRIS will treat the collected messages in their binary

6 EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



Figure 4. The graphical user interface of IRIS with map view

Listing 1. A user-defined CC2420 RSSI conversion function
template

public f l o a t [ ] computeData ( f l o a t [ ] [ ] val ,
f l o a t [ ] s e t ) {

f l o a t [ ] r e s u l t = new f l o a t [ val [ 0 ] . length ] ;
for ( int i = 0 ; i < val [ 0 ] . length ; i ++){

f l o a t rawReading = val [ 0 ] [ i ] ;
f l o a t r s s i = rawReading − 45;
r e s u l t [ i ] = r s s i ;

}
return r e s u l t ;

}

form, without parsing the message fields. In contrast,
the outgoing message structure must be defined, oth-
erwise the message values cannot be serialized and
therefore cannot be sent. With the message template,
each message field is converted to an attribute, which
stores the name of a message field together with all of
its values. The definition or the type of an attribute
is opaque to IRIS. However, such definition can be
important for data processing, e.g., indexing the packets
by their source ID. Thus, IRIS allows attribute mapping
to assign attributes with the information type for an
experiment. These typed attributes can then be used in
functions, e.g., a filtering function based on the node ID
as a type. IRIS has already a predefined set of mappings,
e.g., the sequence numbers and the source node ID, and
this set can be easily extended by the user.

Implementing Customized Function Templates IRIS
allows the user to process the experiment data by
defining customized function templates, which can
be categorized into three types. The first type is the
monitoring function, which produces no output value
but only examines the attribute values of incoming
messages. They can be used, e.g., for implementing
an alarm function, which displays a warning message
when an attribute value reaches a certain threshold.
The second type is the scalar function, which only
outputs a scalar value. This function is normally used to
generate an aggregated result such as Packet Reception
Rate (PRR). The last type of functions outputs a
new attribute. Most data processing functions fall into
this category. Such functions are normally defined to
process the original message values in order to generate
a new value, e.g., filtering functions and transformation
functions. Please note that the size of the output
attribute (the number of messages it includes) can
outnumber the size of the input attributes. Through
this its possible defining functions can be used for
prediction and future value estimation as it it necessary
for some algorithms related to model driven data
acquisition [32]. The newly defined function template
must be implemented in Java and the compiled class
must be placed in a specific folder so that it is
available to IRIS. The user defines the function logic
by overriding the method computeData(), which is
invoked every time a new packet is received. Listing 1
shows an example of a snipped definition of a CC2420
RSSI conversion function template. Independent from
the set of customized function templates, IRIS already

7

IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor  NetworksIRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor  Networks

EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



R. Figura et al.

Figure 5. Creating a fire monitoring function instance using attribute mapping

provides a large number of mathematical and WSN
specific function templates that can be customized for
WSN monitoring and controlling. The predefined set
of templates include simple arithmetic functions like
addition and subtraction, as well as more complex
function templates like a customizable least mean
square algorithm for value prediction.

Creating Experiment Profile To initiate an experi-
ment in IRIS, the user can create an experiment profile,
which records logistic information specified by the user
regarding a performed experiment. For each experi-
ment, IRIS creates a directory holding all generated
related files including the application files, log files,
etc. If no custom log file is specified, IRIS automati-
cally stores the binary and CSV representation of every
incoming and outgoing message.

4.2. Experiment Runtime
Once IRIS is configured with the required templates for
messages and functions, and with the required experi-
ment information, during the experiment runtime, the
user mainly uses the IRIS GUI to collect, process and
visualize the sensory data and to interact with the WSN.
After the user starts the data collection process, the
incoming messages are first logged in binary, CSV or
WiseML format. In addition, the message attributes are
automatically displayed in the Packet View (see Figure
3) if the messages can be parsed.

For interacting with the WSN, IRIS allows the user
to flexibly send messages in three different ways. First,
the user can create a message using the GUI and
send it to the network if the message template has
been defined. The second option is to use the API

provided by IRIS within a function template. This is
the suggested way for defining conditional message,
e.g., for WSN monitoring and controlling. The last
method is useful when the user intends to introduce a
series of messages. IRIS provides a scripting language
for specifying sending commands. To perform runtime
analysis, the user can create a function instance by
selecting the required function template from the
GUI. The selected function can then be configured
by mapping the input ports to the desired attributes
and by defining the constant settings of the function.
Figure 5 illustrates an example of creating a fire
monitoring function with the specified minimum and
maximum temperature thresholds for triggering the
alarm.

For visualizing the runtime data, IRIS displays
attribute values with a line graph or a bar chart. The
user can choose the attribute from a pull-down menu as
showed in Figure 6a to view the change of the attribute
values in real time. Furthermore, it is possible to filter
the values by the attribute types. Figure 6b shows
an example to only display the RSSI values from the
node with the ID 3. Alternatively, the user can display
location-aware data on a map. To achieve this, the user
is required to select the reference longitude and latitude
fields.

4.3. Post-experiment: Analysis and Management
When the experiment is complete, the user can
apply previously defined functions to the collected
data in a similar way as for runtime processing. If
the application stores data in the flash, IRIS can
automate the process of reading/erasing the flash by
specifying the data structure and the volume partitions.
The default read-flash application reads the whole

8 EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



Figure 6. (a) Adding the attribute “HumiditySink” to the line chart, (b) Applying a filter on the RSSI values for node with ID 3

flash content as a single volume and sends it via
the serial port to IRIS. The offloaded data and any
logged data can be visualized and processed within
the Java GUI. Data can be loaded into different
measurements using the following formats: binary,
CSV or WiseML. Moreover, it is possible to load the
data of two different measurements for comparing the
measurements outcomes.

4.4. User Interface
Aside from supporting experimentation with WSNs in
real-world environments, IRIS allows the composition
of convenient interfaces for the end user to explore data
collected by different monitoring systems. Building a
coherent application requires the appropriate selection
of the building blocks already discussed previously.
The flexibility of IRIS allows the developer to reuse,
extend, and combine different sets of components
to conveniently meet the specific user requirements.
When data is collected from a custom middleware,
IRIS expects an appropriate user-defined adapter
to convert messages from custom formats to one
compliant with the structures generated by the TinyOS
MIG tool. Messages can then be processed similarly
to how described in Section 4.1. Application-specific
data processing can be implemented through defined
analysis functions, composed accordingly to the user
needs. Finally, different views over the data can be
selected and combined together to offer the user the
possibility to explore the collected data, defining the
resulting graphical front-end. Through a complete
customization of the views and the appropriate
selection of the data to visualize, the resulting interface
simplifies the interactions with the system that are
possible to the user. At the same time, IRIS can

Listing 2. A user-defined function template for computing the
PRR

public f l o a t [ ] computeData ( f l o a t [ ] [ ] val ,
f l o a t [ ] s e t ) {

int windowSize = ( int ) s e t [ 0 ] ;
f l o a t [ ] r e s u l t = new f l o a t [ val [ 0 ] . length ] ;
for ( int i = val [ 0 ] . length −1; i >= 0 ; i −−) {

int current_sn = val [ 0 ] [ i ] ;
int count getNumberOfPacketsWithinWindow

( windowSize , current_sn , val [ 0 ] ) ;
r e s u l t [ i ] = count / windowSize ;

}
}

easily support the developer in satisfying changing
analysis requirements that emerge from the study of the
gathered data.

5. Experimenting with WSN Protocols: Failure
Detection and Secure Communication
In this section, we address the usability and extensibil-
ity of IRIS with two study cases. We now focus on the
WSN developer, who can directly benefit from the IRIS’
features supporting experiment management and data
processing.

5.1. WSN Failure Detection and Diagnosis System
Wireless sensor networks are especially susceptible to
unexpected environmental factors, radio interference,
battery depletion and hardware vulnerability. To
improve the robustness and reliability of WSNs, we
have developed a Failure Detection and Diagnosis System
(FDDS) to provide analytical monitoring information

9

IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor  Networks

EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



R. Figura et al.

regarding the presence of failures with their possible
root causes. The implementation of FDDS integrates
IRIS to carry out required operations. Additionally,
to evaluate FDDS’ performance, we conduct a set of
experiments using IRIS to interact with the network
with various parameter settings. Figure 7 illustrates
the IRIS-integrated FDDS and IRIS’ support for the
experiments.

IRIS-Integrated FDDS. FDDS consists of two parts:
(1) a set of 20 TelosB, programmed with TinyOS.
Each of those nodes is running an FDDS agent
which periodically sends monitoring information; (2)
a central control server (running on the PC), which
analyzes the data for hardware/network failures and
their root causes. FDDS requires collecting application
and network monitoring data from the WSN. Thus,
FDDS integrates the IRIS’ data collection routine to
gather these messages (see Figure 7a,I). Once the
data is available, the FDDS control server performs
real-time data processing for failure detection, and
monitors parameters such as PRR, ETX [33] and the
congestion level (cl) [34], which is defined as cl =
n(bp)/n(gp), where n(bp) and n(gp) are numbers of
packets with and without CRC errors respectively. Each
FDDS agent records the values of ETX, n(bp) and n(gp)
in its flash and includes these values in monitoring
messages regularly sent to the control server. The
server is implemented with three IRIS processing
functions (see Figure 7b). The first function is called
calculate_PRR(), it computes the PRR for each packet
according to a user defined window size. Listing 2
shows the computeData() method of the corresponding
function template. The user can set the window size
during runtime. The set value is accessible through the
first element of the set[] array of the computeData()
method. Additionally to the window size, it requires
a single attribute as input (the sequence number),
which is accessible through the val[][] array. The two
other functions are implemented in a similar way.
The function calculate_congestion_level() takes two
attributes, n(bp) and n(gp), to calculate the value of cl.
The third function, root_cause_diagnosis(), implements
the failure detection and the root cause diagnosis
algorithms. It takes three attributes, PRR, ETX and cl,
as input, and outputs the root cause of the failure as a
new attribute if a failure has occurred.

Discussion The integration with IRIS makes the
development process of FDDS very efficient. FDDS
draws support from IRIS in several aspects. First, with
IRIS’ data collection utility, we only need to define the
required message types without additional code, and
the gathered data is recorded in a customized format
for later processing. Since IRIS has covered the typical
and yet tedious data collection task, we could focus

our efforts on optimizing the FDDS algorithm. Second,
flexible IRIS function definition especially allows us
to easily design the above functions to carry out the
operations of FDDS. Third, to retrieve data stored in
each agent’s local flash, we use the IRIS’ flash offloading
utility to automatically download the flash data from all
the nodes connected to the USB ports (see Figure 7c).
Moreover, the flash data is stored in the customized log
in the same format for the runtime messages. Without
such feature of IRIS, we would have to manually
download the flash data and to write a program for
parsing the data and storing it in the correct format.
Last but not least, FDDS uses IRIS’ GUI for the user
to view the network condition during runtime (see
Figure 7d). This feature not only frees us from the
GUI implementation but also helps us in debugging
and verifying FDDS’ operations in different failure
scenarios.

FDDS Experiments. The aim of the experiments is to
evaluate the FDDS’ performance on failure detection
and root cause analysis. We first would like to know the
accuracy of FDDS in identifying these failure causes.
Therefore, we simulate 4 root causes of the failures at
the nodes: battery depletion, bad link, node crash and
node reboot. Moreover, we also study the impact of two
different message sending rates (for both application
and monitoring messages) on the responsiveness and
the performance of FDDS. The experiment runs on
the above IRIS integrated FDDS and uses IRIS’ utility
for introducing messages to the WSN in order to
reconfigure different parameter values for both sending
rates (see Figure 7a,II). IRIS manages the experiment
profile and stores the collected experiment data in
a particularly customized format, sorting with the
timestamp and the parameter setting (see Figure 7e).
For each experiment run, the result of the response
time and the root cause is logged along with the
corresponding parameter setting and the measurement
profile.

Discussion It is easy to see the advantages of
IRIS with its effective environment for experiment
management. Without this feature, the user typically
needs to manually record the experiment logistics,
to organize all collected data sets by placing them
in proper directories, to associate them with the
measurement settings and to store them in the
customized format, etc. In the FDDS experiment, the
experiment data is collected and stored based on the
experiment profile and organized in the customized
format. In addition, IRIS allows us to retrieve stored
logs and to visualize the data flexibly in order to focus
on the monitored information. For instance, FDDS
monitors the changes of cl of each node for failure
detection. For post-experiment analysis, we apply the

10 EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



Figure 7. Case 1: The FDDS network integrated with IRIS

same FDDS function filtered by the sensor ID in
order to calculate the cl. Furthermore, using the IRIS
visualization tool, we can compare different experiment
results using a combination of functions and filters and
view the results in the graphical charts.

5.2. Secure Communication
In many realistic WSN applications it is fundamental
to guarantee confidentiality and/or authenticity of
messages exchanged within the network. The issue
is that the developer needs to assure confidentiality,
integrity or both, while preserving performance of a
network of resource constrained sensor devices. In
addition, it is a prudent cryptographic engineering
practice to periodically refresh cryptographic keys
in order to avoid cryptanalysis attacks. Thus, it is
important to distribute and refresh cryptographic keys
in an efficient manner and to lower the overhead
for network performance [35, 36]. To tackle the
above issues, we implemented a security architecture
to be used in the PLANET project. The PLANET
Security Architecture (PLASA) is composed of three
modules: secure communication, key management
and a keyDB for storing cryptographic keys. With
these modules, PLASA is used as a transparent
layer between the application and the remaining
communication layers to secure communications and
manage cryptographic keys. PLASA transparency relies
on the secure communication module transparency.
This module secures communications according to a
security policy, which can dynamically change over time.
Further details about this module can be found in [37].
In this study case, we use IRIS as an experiment tool

Listing 3. A user-defined function template for computing the
ratio of successfully secured packets

public f l o a t [ ] computeData ( f l o a t [ ] [ ] val ,
f l o a t [ ] s e t ) {

f l o a t [ ] r e s u l t = new f l o a t [ val [ 0 ] . length ] ;
for ( int i = 0 ; i < val [ 0 ] . length ; i ++) {

numberOfPacketCorrectlyReceived = i + 1 ;
sequenceNumber = val [ 0 ] [ i ] ;
r e s u l t [ i ] = numberOfPacketCorrectlyReceived

/ sequenceNumber ;
}
return r e s u l t ;

}

to evaluate the performance of PLASA with different
security policies and to study the impact of the
rekeying frequency on the number of packets which are
discarded because of authentication mismatches.

PLASA Experiment using IRIS. The setup of the PLASA
experiment includes 2 to 10 sensor nodes that
periodically send a fixed amount of packets to the
base station connected to IRIS. When the secure
communication is enabled, PLASA secures the packets
before transmitting them, while the base station
unsecures the received packets and authenticates
them. The performance evaluation of PLASA first
involves reconfiguring the node with many different
settings to consider various security policies, and
thus the experiment relies on IRIS for effective
experiment management. We also heavily used IRIS
to automatically install the application linked with
PLASA and specify the security policy for each

11

IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor  Networks

EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



R. Figura et al.

Figure 8. Case 2: Secure communication experiments using IRIS

measurement (see Figure 8a). Different security policies
influence performance with: (1) processing overhead
due to security computations, and (2) communication
overhead due to extra bytes added to the packet to
allow the adversary to recognize the security policy, or
because of the Message Authentication Code appended to
the payload. To know the impact of different policies
on WSNs with different number of nodes, we define a
processing function called calculate_delivery_ratio() to
calculate the delivery ratio, which is defined as the ratio
between the amount of secured packet transmitted by
a sender and the amount of packets correctly received
by the base station. By knowing the changes of this
ratio, we can derive the overhead introduced by the
security policy. Listing 3 shows the computeData()
method of this function template. The cumulative
delivery ratio at the time of reception of each packet
is stored within a single new attribute. In a similar
way, we defined another function template called
monitor_discarded_packets() to evaluate the impact of
rekeying (see Figure 8b). During the experiment, we use
IRIS to send different rekeying messages (Figure 8c,II)
and to evaluate PLASA’s performance with different
policies and to monitor the number of discarded
messages using the functions defined previously. The
collected messages as well as the changes of the metric
values, e.g., the delivery ratio, can be viewed on
the IRIS’ GUI (Figure 8d). Finally, the messages are
stored in the customized logs for post-experiment data
analysis (Figure 8e).

Discussion The PLASA experiment demonstrates
IRIS’ capability of effective managing a large set of
experiment data, runtime WSN interaction, real-time
data processing and visualization for result analysis.
The experiment requires the sensor nodes to be
reconfigured with various security policies. With the

IRIS’ installation tool, we only need to define a script
program with a few lines of code and connect the nodes
to the USB hubs. Similar to the FDDS experiment,
we spend little efforts on collecting experiment data
and managing data logs, and only need to define the
required message types. The requirement of the PLASA
experiment strongly highlights the usefulness of IRIS in
runtime data processing. IRIS can calculate the delivery
ratio of each node at runtime and provide plots of
network performance over time. Note that the impact of
the processing overhead on the delivery ratio cannot be
evaluated with simulations. Collecting and analyzing a
huge amount of experimental data without a tool like
IRIS might be very complex. It is worth mentioning that
the implementation of the two processing functions
only counts for less than 100 lines of code in total. When
performing rekeying, IRIS is extremely useful because
it allows to periodically inject a rekeying message in the
network without re-installing the sensor node programs
or forcing sensors to change their behaviour to send
rekeying messages. Thus, we force the refresh of the
cryptographic key and observe the number of packets
that cannot be correctly unsecured during the network
transient state, in which nodes do not share the same
key. Finally, IRIS allows storing the experimental results
to compare them over time, or to collect statistics
offline. This is very important because the feature
makes it possible to have a deep evaluation of the
impact of different security policies.

6. Interfacing with WSN Applications: Horse
Tracking in Doñana
We turn now our attention to the final end user, who can
exploit the ability of IRIS to analyze and visualize data
gathered with various monitoring systems, e.g., WSNs.
In fact, the developer can easily compose and extend
predefined user interfaces thanks to the flexibility

12 EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



provided by the architecture. This section describes
IRIS ability to serve as a data collection client and
processing engine for a horse tracking scenario. In
contrast to the previous two study cases, we focus
on the usage of IRIS for the development of the
end user application. In this context, flexibility and
usability are of paramount importance: the resulting
interface targets users without technical knowledge of
the underlying technology, whose requirements may
change over time. Moreover, the integration in a real-
life application expands the time horizon of the data
processing from few controlled experiments to months.

6.1. Horse Tracking in Doñana Biological Reserve
The Doñana protected area, the largest nature reserve
in Western Europe, covers 1080 km2 and hosts
a unique biodiversity, including many endangered
species such as the Spanish imperial eagle (Aquila
adalberti) and the Iberian lynx (Lynx pardinus). It is
one of the most important wetlands in Europe, as
confirmed by its inclusion in the List of Wetlands of
International Importance [38] and, in 1994 (extended
in 2005), in the World Heritage List [39]. Doñana
Biological Reserve (DBR) forms the core of Doñana
National Park. The Spanish Ministry of Education and
Science recognized DBR as a Singular Scientific and
Technological Infrastructure (ICTS) in 2006 [40]. In the
reserve, specialized communication infrastructures and
scientific equipment, including automated monitoring,
allow the observation and study of natural processes
and endangered species in the whole Doñana area.

The distribution of animal species among environ-
ments and the forces that cause those patterns have
been historically subjects of human interest [41]. A bet-
ter understanding of the causes, patterns, mechanisms,
and consequences of animal movement is relevant to
manage protected areas or degraded landscapes [42].
For this reason, high-resolution spatial data on the
location and activity of animals is very useful in ecology
and conservation biology. In our endeavor, we focus on
the Retuerta’s horse, an autochthonous breed managed
by the Doñana Biological Station (CSIC). This breed is
genetically very distant from other breeds studied so far
[43], which makes it particularly interesting. Moreover,
researchers and park managers need information about
their use of resources because the presence and the
foraging impact of this species in the protected area is a
controversial issue.

The specific questions we aim at answering relate
to spatial ecology, which studies the interaction of
individuals of a given species with other conspecifics,
other species and with the environment. The main
focus is on the identification of spatial patterns and
their relationships to ecological phenomena. This type
of enquiry requires high-quality information regarding

Figure 9. Data collection process for the horse tracking scenario
in Doñana

animal locations and their activities. For this reason,
we are mainly interested in temporal data regarding
horses’ location and estimated activities. For the latter,
accelerometers located at the neck of the horse can
offer an indication of the individual’s activity, e.g.,
lying, grazing, or moving. Finally, an index of the
data quality, e.g., GPS “time to fix” or the number of
satellites available for a reading, is required to estimate
the observation error. Ideally, biologists prefer to take
observations with high frequency, as desirable in any
study of this type. However, there exist clear tradeoffs
between the number of tagged animals and available
budget, as well as the number of observations and the
system lifetime.

6.2. The PLANET Framework
In the context of the PLANET project, which started
in October 2010, we developed a system that auto-
matically tracks the position of horses as well as their
context. In September 2013 the system was deployed
in Doñana Biological Reserve for the Retuerta’s horses
with an expected runtime of one year. To achieve these
goals, 34 Retuerta’s horses were equipped with special
collars during routine veterinary inspections with the
animals restrained in a cattle chute. 9 males and 25
females were chosen, belonging to at least three dif-
ferent social groups in order to have a representative
sample of the DBR Retuerta’s horse population. Each
collar encapsulates a sensor node that reads GPS and
accelerometer samples every 20 minutes.

During the same period, 8 additional base stations
were deployed as static data gathering stations (static
sinks in Figure 9) for downloading data from the horses’
collars. For minimizing the communication costs within
the network and increasing the achieved system
lifetime, each data gathering station is instructed
to download data directly from nodes entering the
communication range, avoiding interactions among
mobile nodes themselves. The data gathered in this

13

IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor  Networks

EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



R. Figura et al.

manner is made available through the PLANET
Platform for online analysis. In addition, each sink
maintains a backup of the data as a CSV on an SD-
Card; the biologists can then recover this information
by physically accessing the devices in the field.

The challenges involved in the monitoring of wildlife
in DBR are increased by large areas within Doñana
that are flooded during the rainfall season. Relying
exclusively on fixed equipment, i.e., static sinks, in
these areas is difficult due to the unpredictable amount
of rain during the rainfall season. Any permanent
installment for communication or data collection could
get flooded and damaged. In the project, therefore,
UAVs are exploited for data collection and monitoring
of environmental phenomena. They can cover large
areas and provide real time information during a flight,
reaching otherwise inaccessible areas.

As a result, as depicted in Figure 9, data collected
from the devices attached to the horses can be provided
in two ways to the user:

1. Through the usage of either mobile or static
sinks, which receive readings from devices in their
proximity and provide it directly to the PLANET
Platform;

2. Through the access to the log files stored as
CSV on the static sinks and collected directly in
the field; Since some static sinks do not have a
permanent network connection to the PLANET
Platform, this is the only way in which all the
data can be retrieved for later visualization and
processing.

The result is a complex framework in which highly
heterogeneous data sources and collection methods
provide various information of the same physical phe-
nomena under observation. Accessing and analyzing
such data through a uniform and simple interface is the
key to make the system usable to the biologists.

6.3. Requirements for Visualization and Processing
Biologists require data represented on a map, possibly a
satellite image of the area. For the analysis, the interface
should allow the user to select an individual horse
and visualize its positions along different dates to see
the temporal sequence of observations (from oldest
to more recent samples) and to show the movements
of different horses in specifics dates. In addition,
customized processing function should evaluate the
data to identify animals that have not moved for more
than a couple of days. This processing can provide
information about illness or death of a horse, as well
as a missing or lost collar. As a result of this function
evaluation, an alarm, e.g., a blinking icon, should
visualize in the map the location of the last observed
location.

In addition, biologists would like to automatically
identify outliers with reduced quality. This type of
analysis can be based on the “time to fix” value
provided by the GPS for each reading. Finally, samples
could be aggregated to export information about the
areas most visited by a specific set of individuals.

Since several programs are already established for
environmental research and tracking scenarios, it is
crucial that the data is available in a format common
to other programs. In this way, the biologists can
also utilize other tools with which they are more
familiar. Examples of these tools typically employed
by biologists are Microsoft Excel for general purpose
analysis, SPSS or R for statistical analysis, and QGIS
or ArcGIS as geographic information systems. This
requires data to be exported at least as CSV files,
which are commonly supported input types for all the
aforementioned programs.

6.4. IRIS support
As discussed, the development of the visualization tool
employed in the PLANET project for the horse tracking
application aims at providing a user-friendly interface
for the biologist to visualize, process, and analyze the
gathered data from the monitored horses. In order
to optimally serve the biologists as a simple to use
visualization tool, the interface is customized for the
specific user needs and expertise. A simplified GUI
provides a more intuitive way of downloading the data
from the PLANET system, applying temporal filters and
simplifying data accessing and storing. Furthermore
the map view is embedded into the customized user
interface. This customization process, simplified by
the modular architecture of IRIS, results in a reduced
subset of the overall basic functionalities in order to
simplify the interaction with the data and minimize the
tool misuse.

The new user interface of IRIS consists of two parts:
the status/filtering panel on the left side and the data
panel on the right. The status/filtering panel shows
general information about the collection process, e.g.,
the number of collected packets per each horse collar.
Furthermore it allows filtering the data to be displayed
on the data panel based either on the observation time
or on the corresponding node identifier.

The data panel provides three different views for a
detailed visualization of the collected data: a table view,
a graph view and a map view. The table view lists all
available readings and thus provides an overview of
all collected packets. Data shown in the table can be
sorted by each individual field, e.g., the node identifier
or the GPS timestamp. The graph view, as shown
in Figure 10, allows drawing the data of each field
against its corresponding GPS timestamp. The map
view (Figure 12), instead, displays the trace of the

14 EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



Figure 10. Graph view showing location information of two horses

horses in a map. The positions of a horse can be
either depicted as independent circles, or drawn as
rectangles where consecutive positions are connected
with a line. A decreasing alpha value is just for
indicating more current readings. In this way, the
path followed by each horse through time can be
identified easily. Additionally, IRIS allows exporting
and importing filtered or non-filtered data as a CSV
file; this allows some part of the analysis to be carried
out in external programs, with which the biologists may
have more experience. It is however worth noticing that,
once the biologists have clearly identified the type of
processing to perform on the data, any type of analysis
can afterwards be easily integrated in IRIS with the
definition of appropriate processing functions.

As depicted in Figure 11c, incoming data can be
processed in different ways. First it is converted into
corrected GPS readings by using the convert_to_gps()
function. This step is necessary since the sensor
network does not provide floating point values for GPS
readings. The compute_distance() function generates
a new attribute, whose value represents the distance
each horse traveled between two consecutive sensor
readings, using the corrected GPS readings, the
timestamps and the node identifiers. This distance
attribute is then used as input for the alarm() function,
which triggers an alarm if the horse did not move
for a certain period of time. The corresponding time
and distance thresholds can be defined by the user
during runtime. Furthermore the outlier_detection()
function takes the computed distance and a quality
metric, e.g., the “time to fix” value, as input to evaluate
the reliability of each observation. Listing 4 shows
the computeData() method for the outlier_detection()
function. This function compares a quality metric with
a given threshold, whose value can be defined by
the user during runtime. The result is then stored in
a newly created attribute. Interestingly, IRIS allows

Figure 12. Positions of horse with id 5 in Doñana in October
2013

Listing 4. A user-defined function template for detecting
inaccurate GPS readings

public f l o a t [ ] computeData ( f l o a t [ ] [ ] val ,
f l o a t [ ] s e t ) {

f l o a t [ ] r e s u l t = new f l o a t [ val [ 0 ] . length ] ;
f l o a t threshold = s e t [ 0 ] ;
for ( int a = 0 ; a < val [ 0 ] . length ; a++) {

int o u t l i e r = 0 ;
int metric = val [ 0 ] [ a ] ;
i f ( metric > threshold )

o u t l i e r = 1 ;
r e s u l t [ a ] = o u t l i e r ;

}
return r e s u l t ;

}

the definition of several function instances, each
instantiated with a different quality metric and a
specific threshold.

6.5. Discussion
IRIS effectively supported the development of an
application fitting the needs of the biologists of Doñana
for data collection and visualization. First of all, the
modular design of the IRIS architecture allowed a
simple development of a GUI specialized for the needs
of the biologists, including a packet view, graph view
and map view for visualizing data as well as sufficient
processing functions for analyzing any incoming data.
Moreover, changes and extensions to the processing
functions, driven by the refinement of the analysis
performed by the biologists, could be applied easily
and promptly. The ability to support user-defined
adapters allowed us to interface IRIS to the PLANET
Framework for downloading the data collected by the
mobile and static sinks (see Figure 11a). In this manner,
all data could be read into the Data Model, even if

15

IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor  Networks

EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4



R. Figura et al.

Figure 11. Horse tracking scenario integrated with an adapted graphical user interface of IRIS

collected with different means. This data could then
easily be stored locally on the user’s computer using
the Data Storage and Recovery module (see Figure
11b). Additionally, this module allowed us to read the
CSV-based log files generated by the sinks (see Figure
11c). The Processing and Analysis module enabled us
to convert the raw data from the sinks into correct
GPS readings (see Figure 11d) and to apply an outlier
detection function as well as an alarm function. For this
reason, it was necessary to write just four user-defined
functions, one for each type of processing, which were
plugged into IRIS. For visualization, the graph view
generated a simple overview of the time series of the
collected data, while the map view allowed a deeper
analysis. The position of horses could easily be drawn
on the map, filtered by date and by node identifier (see
Figure 11e).

Although IRIS can successfully be used within the
PLANET project as the only interface to the frame-
work, the biologists still rely on other programs, e.g.,
Microsoft Excel, SPSS and R for additional investiga-
tions on the gathered data. This is required because
the developer can hardly foresee all the possible types
of analysis of interest to the user. Similarly, allowing
the arbitrary definition of processing functions is not
necessarily preferable, as it would make the interface
more complex and hardly usable. However, as described
in Section 3.2, IRIS processing capabilities can be eas-
ily extended or modified with pluggable user-defined
functions. The user would then rely on more complex
tools to investigate the type of the analysis to perform
on the data, but ultimately use IRIS to implement such
analysis and apply it to the collected data.

Compared to the validation scenarios described in
Section 5, the horse tracking application involves a
larger number of nodes (altogether more than 40

nodes), has a longer time horizon and, consequently,
experiences a higher number of information to be
processed. This requires a scalable architecture. In
fact, depending on the host processing power, the
number and the type of applied functions, as well
as the logging and visualization tasks active, up to
several dozens of thousands packets can be evaluated
with constant processing time. Once this limit is
reached, the current implementation of IRIS becomes
less responsive. We have identified the currently
employed data structures as the root cause of this
performance issue; more advanced data structures may
offer observable performance improvements. However,
to counteract this effect, IRIS supports message caching:
If the data needs not to be processed at the arrival of
every packet, IRIS can be configured to evaluate the
function after a specified number of received packets.
Interestingly enough, however, we did not meet such
performance bottleneck in the application scenarios in
which we employed IRIS.

7. Conclusion

Distributed monitoring systems, such as WSNs, offer
the unique opportunity to support the realization of
ubiquitous computing environments based on data
gathered directly from the physical environment.
However, a crucial step to realize such vision is
to cover the gap between the deployed system and
the system developer as well as the final user. IRIS
offers a flexible and effective tool to realize such a
bridge. It supports both system developers and non-
technical end users in experimenting with different
system configurations, collecting data from a variety
of information sources and interacting with them,
performing arbitrary complex processing tasks on

16
EAI Endorsed Transactions on 

Ubiquitous Environments 
01 -11 2014 | Volume 1| Issue 3 | e4



the collected data, and ultimately visualizing the
raw and processed data. The core contribution of
IRIS is its ability to support the definition of user-
specific functions for data processing, which can be
composed to build complex services based on real-time
observations gathered from the real world.

In all our experimental setups and in a real-life
complex application IRIS demonstrated its usefulness
and effectiveness. This was not only confirmed by
developers with technical knowledge of the underlying
monitoring system, but also by the biologists who
successfully employed IRIS in their analysis of wildlife.
Indeed, we firmly believe that a publicly available
tool such as IRIS [7] is valuable and its user can
gain significant benefits while realizing ubiquitous
computing environments. Ultimately, IRIS can bring
the monitoring and analysis of physical processes closer
to the end user, enabling both the acquisition of new
scientific knowledge as well as the optimization of
widely applied processes.

Acknowledgments. This work has been partially
supported by PLANET, Platform for the Deployment
and Operation of Heterogeneous Networked
Cooperating Objects, funded by the European
Commission under FP7 with contract number FP7-
2009-5-257649(www.planet-ict.eu) and by TENACE,
Protecting National Critical Infrastructures From
Cyber Threats, funded by the Italian Ministry of
Education, University and Research, under the PRIN
Framework with contract number 20103P34XC
(http://www.dis.uniroma1.it/~tenace/)

References
[1] PLAtform for the deployment and operation of heteroge-

neous NETworked cooperating objects (PLANET). URL
www.planet-ict.eu.

[2] Doñana Biological Reserve. URL http://www.ebd.

csic.es.
[3] Figura, R., Jungen, S., Soleymani, R., Shih, C.y. and

Marrón, P.J. (2012) Demo Abstract: IMAC, Enabling
Flexible Configuration and Result Analysis for Diverse
Wireless Sensor Network Experiments. In Proceedings of
the 9th European Conference on Wireless Sensor Networks
(EWSN).

[4] JFreeChart. URL http://www.jfree.org/jfreechart/.
[5] World Wind Java SDK. URL http://worldwind.arc.

nasa.gov.
[6] Figura, R., Shih, C.Y., Fu, S., Daidone, R., Jungen, S.

and Marrón, P.J. (2013) IRIS: A Flexible and Extensible
Experiment Management and Data Analysis Tool for
Wireless Sensor Networks. In Proceedings of the 4th
International Conference on Sensor Systems and Software
(S-CUBE).

[7] Open Source Tools for Wireless Sensor Networks. URL
http://wsntools.com.

[8] Handziski, V., Köpke, A., Willig, A. and Wolisz, A.

(2006) TWIST: A Scalable and Reconfigurable Testbed

for Wireless Indoor Experiments with Sensor Networks.
In Proceedings of the 2nd International Workshop on
Multi-hop Ad Hoc Networks: From Theory to Reality
(REALMAN).

[9] Jiménez, A., Dios, J.M.d., Sánchez-Matamoros, J. and
Ollero, A. (2010) Towards an open testbed for the
cooperation of robots and wireless sensor networks. In
Proceedings of the 10th Conference on Mobile Robots and
Competitions (ROBOTICA).

[10] Srinivasan, K., Kazandjieva, M., Jain, M., Kim, E.

and Levis, P. (2008) Demo Abstract: SWAT: Enabling
Wireless Network Measurements. In Proceedings of the
8th International Conference on Embedded Networked
Sensor Systems (SenSys).

[11] Istomin, T., Marfievici, R., Murphy, A.L. and Picco,

G.P. (2014) TRIDENT: In-field Connectivity Assessment
for Wireless Sensor Networks. In Proceedings of the 6th
Extreme Conference on Communication and Computing
(ExtremeCom).

[12] Baccour, N., Koubâa, A., Jamâa, M.B., do Rosário,

D., Youssef, H., Alves, M. and Becker, L.B. (2011)
RadiaLE: A Framework for Designing and Assessing
Link Quality Estimators in Wireless Sensor Networks.
Ad Hoc Networks 9(7).

[13] Matlab. URL http://www.mathworks.com/.
[14] Octave. URL www.gnu.org/software/octave/.
[15] The R Project for Statistical Computing. URL www.

r-project.org/.
[16] SPSS. URL www.ibm.com/software/analytics/spss/.
[17] SciDAVis. URL http://scidavis.sourceforge.net/.
[18] LabPlot. URL http://labplot.sourceforge.net/.
[19] QGIS. URL http://www.qgis.org/.
[20] GRASS GIS. URL http://grass.osgeo.org/.
[21] ArcGIS. URL http://www.esri.de/.
[22] Simek, M., Mraz, L. and Oguchi, K. (2013) SensMap:

Web framework for complex visualization of indoor out-
door sensing systems. In Proceedings of the International
Conference on Indoor Positioning and Indoor Navigation
(IPIN).

[23] Ma, L., Wang, L., Shu, L., Zhao, J., Li, S., Yuan, Z. and
Ding, N. (2010) NetViewer: A Universal Visualization
Tool for Wireless Sensor Networks. In Proceedings of the
Global Telecommunications Conference (GLOBECOM).

[24] Turon, M. (2005) MOTE-VIEW: A Sensor Network
Monitoring and Management Tool. In Proceedings of the
2nd Workshop on Embedded Networked Sensors (EmNetS-
II).

[25] Buschmann, C., Pfisterer, D., Fischer, S., Fekete, S.P.
and Kröller, A. (2005) SpyGlass: A Wireless Sensor
Network Visualizer. Special Interest Group on Embedded
Systems (SIGBED) 2(1).

[26] Dinh-Duc, A.V., Dang-Ha, T.H. and Lam, N.A. (2012)
Nviz - a general purpose visualization tool for Wire-
less Sensor Networks. In Proceedings of the 9th Inter-
national Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technol-
ogy (ECTI-CON).

[27] Keller, M., Beutel, J., Saukh, O. and Thiele, L. (2012)
Visualizing Large Sensor Network Data Sets in Space and
Time with Vizzly. In Proceedings of the 37th Conference on
Computer Networks Workshops (LCN Workshops).

17

IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor  Networks

EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4

www.planet-ict.eu
http://www.ebd.csic.es
http://www.ebd.csic.es
http://www.jfree.org/jfreechart/
http://worldwind.arc.nasa.gov
http://worldwind.arc.nasa.gov
http://wsntools.com
http://www.mathworks.com/
www.gnu.org/software/octave/
www.r-project.org/
www.r-project.org/
www.ibm.com/software/analytics/spss/
http://scidavis.sourceforge.net/
http://labplot.sourceforge.net/
http://www.qgis.org/
http://grass.osgeo.org/
http://www.esri.de/


R. Figura et al.

[28] Cao, T.M., Bellata, B. and Oliver, M. (2014) Design
of a generic management system for wireless sensor
networks. Ad Hoc Networks 20(0).

[29] Jurdak, R., Ruzzelli, A., Baribirato, A. and Boivineau,

S. (2009) Octopus: Monitoring, Visualization, and
Control of Sensor Networks. Wireless Communication and
Mobile Computing 11(8).

[30] TinyOS. URL http://www.tinyos.net/.
[31] Hui, J.W. and Culler, D. (2004) The Dynamic

Behavior of a Data Dissemination Protocol for Network
Programming at Scale. In Proceedings of the 2nd
International Conference on Embedded Networked Sensor
Systems (SenSys).

[32] Deshpande, A., Guestrin, C., Madden, S., Hellerstein,

J. and Hong, W. (2004) Model-Driven Data Acquisition
in Sensor Networks. In Proceedings of the 30th Interna-
tional Conference on Very Large Data Bases (VLDB).

[33] Gnawali, O., Fonseca, R., Jamieson, K., Moss, D. and
Levis, P. (2009) Collection Tree Protocol. In Proceedings
of the 7th International Conference on Embedded Networked
Sensor Systems (SenSys).

[34] Ramanathan, N., Chang, K., Kapur, R., Girod, L.,
Kohler, E. and Estrin, D. (2005) Sympathy for the
Sensor Network Debugger. In Proceedings of the 3rd
international conference on Embedded networked sensor
systems (SenSys).

[35] Dini, G. and Savino, I.M. (2011) LARK: A Lightweight
Authenticated ReKeying Scheme for Clustered Wireless

Sensor Networks. Transactions on Embedded Computing
Systems 10(4).

[36] Dini, G. and Tiloca, M. (2013) HISS: A HIghly Scalable
Scheme for Group Rekeying. The Computer Journal 56(4).

[37] Daidone, R., Dini, G. and Tiloca, M. (2013) STaR: Secu-
rity Transparency and Reconfigurability for Wireless
Sensor Networks programming. In Proceedings of the 2nd
International Conference on Sensor Networks (SENSOR-
NETS).

[38] The Ramsar List of Wetlands of International
Importance. URL http://www.ramsar.org/cda/

en/ramsar-documents-list/main/ramsar/1-31-218_

4000_0__.
[39] World Heritage List. URL http://whc.unesco.org/en/

list/685.
[40] Singular Scientific and Technological Infrastructure

(ICTS). URL http://icts.ebd.csic.es.
[41] Morrison, M., Marcot, B. and Mannan, W. (2006)

Wildlife-Habitat Relationships: Concepts and Applications
(Island Press).

[42] Nathan, R. and Getz, W. (2008) A movement ecology
paradigm for unifying organismal movement research.
National Academy of Science of the United States of America
(PNAS) .

[43] Vega-Pla, J. (2006) Saving feral horse populations: does
it really matter? A case study of wild horses from Doñana
National Park in southern Spain. Animal Genetics .

18 EAI Endorsed Transactions on 
Ubiquitous Environments 

01 -11 2014 | Volume 1| Issue 3 | e4

http://www.tinyos.net/
http://www.ramsar.org/cda/en/ramsar-documents-list/main/ramsar/1-31-218_4000_0__
http://www.ramsar.org/cda/en/ramsar-documents-list/main/ramsar/1-31-218_4000_0__
http://www.ramsar.org/cda/en/ramsar-documents-list/main/ramsar/1-31-218_4000_0__
http://whc.unesco.org/en/list/685
http://whc.unesco.org/en/list/685
http://icts.ebd.csic.es

	1 Introduction
	2 Related Work
	3 IRIS
	3.1 Architecture Overview
	3.2 Features
	Experiment Management
	Data Collection and Interaction with Deployed Systems
	Processing and Analysis
	Visualization and User Control Interface


	4 Usage
	4.1 Pre-Experiment Phase
	4.2 Experiment Runtime
	4.3 Post-experiment: Analysis and Management
	4.4 User Interface

	5 Experimenting with WSN Protocols: Failure Detection and Secure Communication
	5.1 WSN Failure Detection and Diagnosis System
	IRIS-Integrated FDDS
	FDDS Experiments

	5.2 Secure Communication
	PLASA Experiment using IRIS


	6 Interfacing with WSN Applications: Horse Tracking in Doñana
	6.1 Horse Tracking in Doñana Biological Reserve
	6.2 The PLANET Framework
	6.3 Requirements for Visualization and Processing
	6.4 IRIS support
	6.5 Discussion

	7 Conclusion



