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Abstract 

Many children fail in geometric learning, but factors underlying these failures have not been explored 

in detail. The present study addresses this issue by comparing fifth and sixth-grade children who had 

good or poor geometric learning, and were otherwise comparable on verbal intelligence, gender and 

age. Results showed that children with poor geometric learning have deficits in both arithmetic and 

geometric problem solving but they are more impaired in the latter. Results also showed that poor 

geometric learners have weaknesses in working memory, calculation, and visuospatial mental 

imagery. The results from logistic regressions pointed out that mental imagery skills and arithmetic 

problem solving ability had the highest discriminatory power in distinguishing between the two 

groups. Theoretical and practical implications of this research for designing interventions to help poor 

geometric learners are discussed. 

 

Keywords: geometric learning; visuospatial abilities; mental imagery; arithmetic; working 

memory; problem solving 

 

 

Highlights: 

 Geometric learning is an important aspect of academic learning, and factors underlying 

failures in this aspect have not been sufficiently studied  

 Failures in tasks related to working memory and arithmetic and calculation are typical in 

children with poor geometric learning  

 Mental imagery and arithmetic problem solving are highly discriminating factors between 

children with poor or good geometric learning 
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Arithmetic, Working Memory, and Visuospatial Imagery Abilities in Children with Poor 

Geometric Learning 

The complex set of acquisitions involved in learning geometry, including, for example, 

knowledge about spatial arrays and their measurement, are linked to students’ future academic and 

professional success (Verstijnen, van Leeuwen, Goldschmidt, Hamel, & Hennessey, 1998). In fact, 

geometry represents one of the most important forms of mathematical knowledge, relevant in many 

aspects of everyday life (Cass, Cates, Smith, & Jackson, 2003) and important in fields including 

science, technology, engineering, and mathematics (Zhang, Ding, Stegall, & Mo, 2012). Nowadays, 

geometry is included in the majority of mathematical curricula in the world (OECD, 2010).  

A relevant body of evidence on students who face specific difficulties in arithmetic, despite 

having average intelligence and sufficient achievement in other academic areas, has been collected 

(e.g., Passolunghi & Mammarella, 2010). Conversely, little evidence on students with specific 

difficulties in geometric learning is available (Mammarella, Giofrè, & Caviola, 2016). 

Consequently, the cognitive profile of students with difficulties in learning geometry has not been 

studied in depth. The goal of the present research is to provide insights on factors affecting 

difficulties in learning geometry.  

Recent evidence proposes a distinction between intuitive geometry and geometric learning. 

Intuitive geometric concepts (e.g., Euclidean geometry) are shared by humans regardless of formal 

education (Dehaene, Izard, Pica, & Spelke, 2006; Spelke, Lee, & Izard, 2010). In contrast, the 

geometric learning explored in the present research, operationally defined as the ability to answer 

typical geometric questions and problems encountered in schools (Giofrè, Mammarella, & 

Cornoldi, 2014), involves concepts that are predominantly learnt through formal instruction. 

Geometric learning demands an explicit knowledge of principles and concepts (e.g., diagonals, 

parallel lines, and right angles) and of rules and their application in representing complex spatial 

relationships (e.g., imagining the result of the combination of two figures). Such learning also 

involves applying rules to specific requests (e.g., calculating the area or the perimeter of a figure). 
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Due to this intrinsic complexity, school curricula in the early grades are focused on basic geometric 

knowledge (i.e., properties and rules that apply to plane figures such as circles, squares and 

triangles). Only later on, usually during the fifth and sixth grades, does the curriculum become more 

complex and structured, and this can create increasing difficulties for some students. It is worth 

noting, however, that a difficulty in learning geometry may be due not just to complexities involved 

in geometric learning. This kind of learning difficulty can also stem from a variety of factors that 

also seem to affect complex geometric learning, including calculation skills, working memory 

(WM), visuospatial mental imagery, and arithmetic problem solving ability. However, to what 

extent these aspects are associated with a failure in geometric learning has not been investigated in 

depth. 

A difficulty with calculation seems to be relevant because it impacts students’ confidence as 

they cope with other types of mathematical situations (Aydın & Ubuz, 2010), including processes 

crucial for geometric learning. In particular, arithmetic is typically involved in many geometric 

situations requiring the use of measures and calculation (Mammarella et al., 2016). Also, a general 

problem solving ability is clearly connected to geometric learning, as it is associated with several 

distinct processes, such as comprehending the problem, building a representation of it, and planning 

and supervising the solution process (Mammarella et al., 2016; Passolunghi & Pazzaglia, 2004). In 

particular, arithmetic problem solving, involving not only calculation but also mathematical 

reasoning, may have a particularly strong impact on geometric learning. In addition, geometric 

tasks, due to their specific visuospatial features, may require specific abilities, which are not 

necessarily shared with arithmetic abilities (implied in calculation and arithmetic problem solving), 

such as spatial skills (e.g., Clements & Battista, 1992) and in particular visuospatial WM (Giofrè, 

Mammarella, Ronconi, & Cornoldi, 2013) and visuospatial mental imagery (Mammarella et al., 

2016). As a result, arithmetic abilities may be necessary but not sufficient for children to master 

geometry.  
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In psychological literature, the role of WM has been widely acknowledged in arithmetic 

learning (e.g., DeStefano & LeFevre, 2004) but examined minimally in relation to geometry. 

However, WM seems to be involved in geometric learning not only because arithmetic and 

geometric problem solving share several WM resources (Passolunghi, Cornoldi, Liberto, 

Passolunghi, & De Liberto, 1999; Passolunghi & Mammarella, 2010; Zheng, Swanson, & 

Marcoulides, 2011), but also because geometric learning typically requires the temporary 

maintenance and treatment of both verbal and visuospatial information. This temporary 

maintenance can be seen, for example, in tasks such as representing geometric forms or memorizing 

specific geometric formulas (Giofrè et al., 2014). In fact, it has been shown that WM predicts 

success in school-related tasks that require the maintenance and processing of information, such as 

reading comprehension (e.g., Carretti, Borella, Cornoldi, & De Beni, 2009; García-Madruga et al., 

2013), approximate mental addition (Caviola, Mammarella, Cornoldi, & Lucangeli, 2012; 

Mammarella, Cornoldi, et al., 2013), multi-digit operations (Heathcote, 1994), magnitude 

representation (e.g., Pelegrina, Capodieci, Carretti, & Cornoldi, 2014) and mathematical 

achievement (e.g., Bull, Espy, & Wiebe, 2008; Passolunghi, Mammarella, & Altoè, 2008). Because 

of this, it seems plausible to hypothesize that WM is similarly involved in learning geometry.  

Working memory is a limited-capacity system that enables information to be temporarily 

stored and manipulated. In the classical dominant tripartite model of WM, the central executive is 

considered responsible for controlling resources and monitoring the processing of information 

across domains (Baddeley & Hitch, 1974). In contrast, the storage of information is mediated by 

two domain-specific slave systems: the phonological loop, which handles the temporary storage of 

verbal information, and the visuospatial sketchpad, which is specialized in retaining and 

manipulating visual and spatial information (Baddeley, 1996). A complementary approach 

distinguishes between many different types of WM processes based not only on the content of the 

information (visual, spatial and verbal), but also on the degree of cognitive control (Cornoldi & 

Vecchi, 2003). This distinction has been shown to be particularly relevant in the arithmetic domain, 
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in which different WM components have varying involvement in arithmetic (Mammarella, 

Pazzaglia, & Cornoldi, 2008). Also, verbal, visuospatial and WM aspects may require different 

levels of cognitive control, and this distinction seems to be particularly relevant when considering 

geometric learning. As for visual and spatial tasks, spatial WM (spatial spans) seem to require 

cognitive control to a lesser extent, while other visual WM tasks seem to require more attentional 

resources (Cornoldi & Vecchi, 2003). 

Geometry deals with spatial information of two and three-dimensional patterns. According 

to recent reports, visuospatial WM may have a critical role both in arithmetic (Li & Geary, 2013; 

Szűcs, Devine, Soltesz, Nobes, & Gabriel, 2013) and in geometric processes (Giofrè, Mammarella, 

Ronconi, et al., 2013). Geometry involves processing of figures in space, and it seems plausible 

that, besides visuospatial WM, other visuospatial abilities affect geometric learning (Hannafin, 

Truxaw, Vermillion, & Liu, 2008). In particular, it has been argued that geometric learning can be 

sustained by visuospatial mental imagery (Weckbacher & Okamoto, 2014), which allows people to 

generate mental representations of geometric figures as they are verbally described and to 

manipulate, organize and compare elements across imagined figural patterns. In fact, visuospatial 

mental imagery is not only supported by visuospatial WM processes (Cornoldi & Vecchi, 2003; 

Logie, 1995), but also involves other skills related to the mental manipulation of forms (Andrade, 

2002; Cornoldi, De Beni, & Mammarella, 2008) that may be crucial in geometric learning. 

Accordingly, a significant correlation between visuospatial mental imagery and geometry has been 

reported in high-school students, whereas the correlation between mental imagery and algebra was 

not statistically significant (Weckbacher & Okamoto, 2014).  

The present study aimed to investigate which factors underlie the difficulties some children 

have in geometric learning. To reach this goal, and to identify both factors that cause difficulty in 

geometric learning and factors that support high geometric achievement, we adopted a good vs. 

poor ability design (also known as extreme group design). This approach is in fact very common for 

testing individual differences (Engle, 2010) and has been used extensively and successfully in 
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several studies (e.g., Borella, Ludwig, Fagot, & De Ribaupierre, 2010; Fukuda & Vogel, 2011; 

Kane et al., 2007; Kane & Engle, 2002; Smeding, Darnon, & Van Yperen, 2015; Unsworth, 

Schrock, & Engle, 2004). Two groups of children - respectively with good and poor performance in 

a standardized geometry test but matched for age and verbal intelligence, and with no history of 

sociocultural challenges, severe arithmetic difficulties, or clinical problems - took part in the study. 

Children were tested with a large set of tasks related to skills including WM, visuospatial mental 

imagery, calculation and arithmetic problem solving.  

The separate consideration of geometric vs. arithmetic problem solving abilities has not 

received attention in the literature to date, also because, in other past research there has seldom been 

a differentiation between children with arithmetic difficulties only, children with geometric 

difficulties only, and children with difficulties in both areas (Mammarella et al., 2016). Therefore, 

for the present study, we developed arithmetic and geometric problems that were very similar, in 

terms of the solving procedures and the computation required, but crucially differed in their content 

(i.e., arithmetic or geometric). As the skills required for solving both geometric and arithmetic 

problems are partly overlapping, we hypothesized that children with poor geometric learning would 

struggle with both geometric and arithmetic problems. However, as the skills required for solving 

geometric problems also involve specific geometric abilities, we expected children with poor 

geometric learning to show greater impairment in the geometric problems compared to the 

arithmetic ones. If confirmed, this result would demonstrate that the difficulties that affect 

geometric problem solving are not entirely the same as those that affect comparable arithmetic 

problems.  

To examine the role of calculation skills, WM, and visuospatial mental imagery in 

geometric learning, we compared children with good or poor geometric learning using a large set of 

tasks including a calculation battery, a WM memory battery, a visuospatial mental imagery test, and 

a problem solving battery (distinguishing between geometric and arithmetic problems). The 

arithmetic battery included simple and complex arithmetic calculations, and an approximate 
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calculation task requiring children to decide which choice –between two numbers– better 

approximated the actual result of a series of calculations. The series of WM tasks assessed both 

verbal WM in its less controlled (forward digit span) and more controlled (backward digit span) 

components. We hypothesized that there would be statistically significant differences in almost all 

the domains, but that differences would be greater in mental imagery and problem solving. In fact, 

mathematical reasoning, as assessed by problem solving tasks, and the visualization and 

manipulation of visual representations require some of the processes assessed by WM and 

arithmetic tasks, while also supporting the complex activities required by geometric learning (see 

Mammarella et al., 2016 for a discussion). Thus, we predicted that, when arithmetic problems and 

mental imagery were entered into the equation, the predictive value of the other variables would be 

diminished. 

Method 

Participants 

Two groups, each including 45 children, were formed on the basis of an initial screening 

that involved a sample of 309 children (111 in the fifth grade and 198 in sixth grade). Children in 

the two groups were selected for having good geometric learning (≥ 70° percentile) or poor 

geometric learning (≤ 30° percentile), assessed by the GEO-P test (Cronbach’s α = .71; 

Mammarella, Todeschini, Englaro, Lucangeli, & Cornoldi, 2012). In this test, children are required 

to calculate the area of complex figures or to solve complex geometric exercises. Verbal 

intelligence was evaluated by the Verbal Meaning subtest of the Primary Mental Ability Test, used 

in two different forms respectively for the younger and the older children (PMA, 2-4 and PMA 11-

17; Thurstone & Thurstone, 1963). The Brown-Spearman corrected fidelity index reported for this 

test in the Italian manual is very high (.96). Children were included in the study if they had not 

received a clinical diagnosis (e.g., intellectual disability), did not present learning disorders in any 

other academic area (including arithmetic) according to the school reports, and did not belong to 
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disadvantaged sociocultural or linguistic groups (see for a similar procedure Giofrè, Borella, & 

Mammarella, 2017; Giofrè et al., 2014; Giofrè, Mammarella, Ronconi, et al., 2013; Mammarella, 

Giofrè, Ferrara, & Cornoldi, 2013). To confirm that children included in the study did not have a 

specific arithmetic difficulty, we assessed basic arithmetic abilities through a quick battery, 

involving arithmetic exercises of different types, used for screening (AC-MT paper-and-pencil 

battery; Cornoldi, Bellina, & Lucangeli, 2012; Cronbach’s α = .70). 

The two groups were composed of 45 children (20 fourth graders and 25 fifth graders), as 

follows: the poor geometric learning group (26 females and 19 males; Mage = 134.90 [8.02] 

months), and the good geometric learning group (24 females and 21 males; Mage = 136.66 [8.20] 

months). These two groups were similar in gender, age, and verbal intelligence, and in basic 

arithmetic abilities, but differed considerably in terms of geometric learning (Table 1).  

Table 1 about here 

Materials  

Problem solving battery. A problem solving battery, including 12 geometric and 12 

arithmetic problems, was explicitly created for the present study. Geometric problems (four with 

triangles, four with squares, and four with rectangles) were based on knowledge and principles 

taught to all children in the Italian curriculum. In particular, to solve these problems, children were 

required to calculate the perimeter of different figures: half of the problems with a direct formula 

and half with an indirect one. The arithmetic problems were very similar to the geometric ones, 

meaning that they required the same calculations and procedures, but they did not include any 

reference to geometric knowledge. In other words, the two kinds of problems (i.e., geometric and 

arithmetic) had the same mathematical structure, in terms of operations required to solve them, but 

were crucially differed in their content: geometric problems involved geometric content (e.g., 

calculating the perimeter), whereas arithmetic problems only involved arithmetic content (e.g., 

calculating the product of multiplication). An example of a geometric problem was: “Fabio should 
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buy a stick of wood for a frame that has the shape of an isosceles triangle, having the two identical 

sides measuring 9 cm, and a perimeter of 26 cm. How long is the stick of wood that he needs?”; the 

corresponding arithmetic one was: “Mr. Peter has to fill 26 bottles with wine and put them in boxes. 

He has already packaged two boxes with 9 full bottles in each. How many more bottles have to be 

filled?”. In order to avoid practice effects for a particular category of problems, arithmetic and 

geometric problems were mixed, and problems involving the same algorithm had to be separated by 

at least four other problems. The overall reliability for the problem solving battery was .87. 

Correlation between the number of correct responses respectively for geometric and arithmetic 

problems was adequate (.73), confirming that the two problem types were highly correlated.  

Calculation battery. Calculation ability was assessed by three computer based tasks; 

simple calculation, complex calculation, and approximate calculation. All tasks were presented on a 

15-inch laptop and were programmed using the Superlab Software. Stimuli were presented in Arial 

font, size 16, and each trial started with a fixation marker lasting 1 second and followed by a blank 

screen. After 1s, the two target operands appeared simultaneously at the center of the screen. The 

order of the blocks was fixed, but trials within each block were randomized. Cronbach’s α of the 

calculation battery was .76. In the simple calculation task, children were administered with three 

blocks of twenty-four additions (e.g., 13 + 9), subtractions (e.g., 10 - 8) and multiplications (e.g., 24 

× 3), for a total of 92 operations. The time limit was 5 seconds for each operation. A microphone 

was used to collect the answers. The task lasted about 15 min. In the complex calculation task, 

children were presented with a series of additions (e.g., 39 + 58) and subtractions (e.g., 90 – 34) of 

increasing difficulty, for a total of 16 operations. The time limit was 10 seconds for each operation. 

A microphone was again used to collect the answers. The task lasted about 10 min. Finally, in the 

approximate calculation task, children were requested to indicate the most plausible approximation 

to a given operation between two alternative results. Children were presented with four additions 

(e.g., 162 + 9: 160 or 190), four subtractions (e.g., 489 – 71: 420 or 460), and four multiplications 

(e.g., 67 × 5: 340 or 380), for a total of 12 operations. The time limit was 5 seconds for each 
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operation. Two possible answers were simultaneously presented and children had to indicate, 

pressing one of two different keys on the keyboard, which answer better approximated the correct 

result. This task also lasted about 10 min.  

Working memory battery. Participants were presented with two digit span tasks and five 

visuospatial WM tasks derived from an Italian standardized WM test battery for children (BVS; 

Mammarella, Toso, Pazzaglia, & Cornoldi, 2008), which was inspired by the visuospatial WM 

model proposed by Cornoldi and Vecchi (2003) and includes different aspects of visuospatial WM. 

The BVS battery manual reports good psychometric properties, a Cronbach’s α ranging from .84 to 

.92, and has been used in other studies (e.g., Caviola, Mammarella, Lucangeli, & Cornoldi, 2014; 

Giofrè, Mammarella, Ronconi, et al., 2013). All the tasks were administered in a paper and pencil 

format, except for the Corsi, which was administered in the classical physical board format. All 

tasks were of increasing difficulty, and children continued as long as they were able to solve at least 

two items out of three at a given level. The “span” score - which corresponds to the longest list the 

child is able to perfectly recall at least in 2 out of the 3 presented sequences - was calculated for the 

digit span and for the spatial span (for the forward and backward version, respectively). In all the 

other tasks, the score was calculated as the sum of the last three correct responses: for example, if a 

participant successfully solved two items at the fourth level and one at the fifth, then the score was 

thirteen. In the digit span tasks, digits were presented verbally at a rate of 1 item per second. In the 

forward digit span, participants were required to recall the digit sequence material in the same 

order, whereas in the backward digit span they had to recall the series in the backward order. There 

was no time limit for recalling the digits. The spatial span tasks included a forward version of the 

task, in which participants were required to reproduce the spatial sequence presented by the 

experimenter in the same order, and a backward version where they had to reproduce the sequence 

in the backward order (Corsi, 1972). In the visual pattern test (VPT; adapted from Della Sala, Gray, 

Baddeley, & Wilson, 1997), participants were presented for 3s with random square matrices created 

by filling half of the squares of a grid. The grids were of increasing size: for example, in the second 
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level, the grids included 6 squares with 3 filled cells, and in the last level, the grids included 22 

squares with 11 filled cells. In the presentation phase, participants had to memorize the filled 

squares. After 3s, the initial stimulus was removed and participants were presented with a blank test 

matrix in which they had to indicate the previously filled squares. In the pathway task (adapted 

from Mammarella, Toso, et al., 2008), participants were required to mentally visualize a pathway 

followed by a little man moving on a blank matrix. At the end of a series of directions given by the 

experimenter (i.e., forward, backward, left, or right), the child had to indicate the man’s final 

position in the matrix. The complexity of the task varied according to the size of the matrix (from 2 

× 2 to 6 × 6) and to the length of the pathway described (from 2 to 10). Finally the jigsaw puzzle 

task (adapted from Vecchi & Richardson, 2000) consisted of a series of drawings fragmented into 

two to ten numbered pieces forming a puzzle. Each whole drawing was presented for 2s, and was 

then removed. The puzzle pieces were set out in a non-ordered way and a blank matrix with a 

corresponding number of cells was then displayed in front of the participant. Puzzles had to be 

solved without moving the pieces, by writing down or pointing to the corresponding number of 

each piece on a response sheet. The level of complexity was defined by the number of pieces in 

each puzzle (from 2 to 10). 

Visuospatial mental imagery test. The test was developed on the basis of a series of 

empirical analyses concerning the development of imagery and spatial skills and is included in the 

“Geometria test” battery (Mammarella et al., 2012) with good psychometric properties (Cronbach’s 

α = .72). The test involves a series of 16 items that require different mental operations, all of which 

share a common requirement of holding in memory one or more figures in order to find the correct 

solution (see Figure 1). More specifically, children are required to compose and decompose spatial 

patterns (four items each), find an embedded figure (four items), and color the intersection between 

different figures (four items).  

Figure 1 about here 
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Procedure 

Participants were tested in an individual session lasting approximately 1.5 hours in a quiet 

room outside the classroom. Tasks were administered in the following fixed pseudorandomized 

order: the problem solving battery, the WM battery, the calculation battery and the visuospatial 

mental imagery test. The tasks within the batteries were administered in a fixed order, as described 

in the material section. The research was carried out in accordance with the guidelines of the 

Bicocca University in Milan (Italy), and the declaration of Helsinki and the Ethical Guidelines of 

the Italian Association for Psychologists. For all children, parental consent was obtained prior to 

testing. 

Statistical analyses  

The R program (R Core Team, 2014) was used with the “rms” package for hierarchical 

logistic regressions (Harrell, 2016). We considered both the statistical significance, which can be in 

some cases biased by reduced statistical power (see Tressoldi & Giofrè, 2015 on this point), and the 

magnitude of the effect expressed in terms of effect size following the Cohen (1988) criteria: .01, 

.09, and .25 for the partial eta square (2
p), and .20, .50, and .80 for the Cohen’s d were considered, 

small, medium, and large effects, respectively.  

As for univariate analysis of variance (ANOVA), skewness and kurtosis were moderated 

and were under 1.00, which is generally considered acceptable (Tabachnick & Fidell, 2007). 

Although the ANOVAs are robust against various violations of the assumptions, non-parametric 

analyses were performed to confirm the results of the parametric ones. As for multivariated 

analyses, multicollinearity was addressed: tolerance was > .593 and VIF < 1.686, indicating 

reasonably good values (Neter, Wasserman, & Kutner, 1989), and the correlations between 

measures were not extremely high (Table 2). Box’s M test was also checked and values were well 

above .001, which is generally considered as an indication that the null hypotheses of unequal 

variances can be rejected confidently (Tabachnick & Fidell, 2007). As for logistic regression, this 
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analysis does not make assumptions of linearity, normality, homoscedasticity, and measurement 

level (Agresti & Kateri, 2011).  

Results 

Group comparisons. 

Problem solving skills. We performed a 2 group [geometric learning: good vs. poor] × 2 

problem type [geometric and arithmetic] mixed ANOVA. We found significant main effects of 

group, F(1, 88) = 42.93, p < .001, 2
p = .328, and problem type, F(1, 88) = 85.42, p = .003, 2

p = 

.324, with large effect sizes. We also found a significant interaction between group and problem 

type, F(1, 88) = 9.25, p = .003, 2
p = .095, with a medium effect size. We also performed a post hoc 

comparison using Bonferroni's correction; all the contrasts were statistically significant. As Figure 2 

clearly shows, geometric problems were more difficult than arithmetic problems regardless of the 

level of geometric learning. Nonetheless, this difference was more pronounced in the poor 

geometric learning group. The mean numbers of correctly solved problems were 10.18 and 10.91 

(geometric and arithmetic respectively) for the good geometric learning group, and 6.67 and 8.69 

(geometric and arithmetic respectively) for the poor geometric learning group.  

Figure 2 about here  

Calculation. We performed a multivariate analysis of variance (MANOVA) comparing 

calculation skills (simple calculation, complex calculation, and approximate calculation) by group. 

We found a significant effect of group, F(3, 86) = 3.84, p = .012, 2
p = .118, with a medium effect 

size. Tests of significance showed that children with good versus poor geometric learning differed 

statistically on two tasks (i.e., simple calculation and complex calculation), with effect sizes ranging 
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from small to moderate, but did not on approximate calculation task with a small effect size (Table 

2).  

Working memory. For the WM tasks, we performed a MANOVA comparing WM tests 

(forward digit span, backward digit span, forward spatial span, backward spatial span, VPT, 

pathway, and jigsaw puzzle) by group. We found a significant effect of group, F(7, 82) = 2.37, p = 

.030, 2
p = .168, with a medium effect size. Tests of significance showed that children with poor 

geometric learning scored significantly lower than those with good geometric learning on almost all 

the WM tasks (with the exception of the forward digit-span), with effect sizes ranging from small to 

moderate (Table 3).  

Visuospatial mental imagery. An ANOVA comparing the two groups showed that children 

with good geometric learning scored higher than those with poor geometric learning, with a large 

effect size (Table 3). 

Table 2 and 3 about here 

Hierarchical logistic regressions. A series of logistic regression analyses were performed 

testing five different models to find out which tasks had the highest discriminatory power in 

distinguishing between children with good versus poor geometric learning. Effect sizes and 

discriminatory power were estimated using Nagelkerke pseudo R2 and c-index (or AUC, area under 

the curve).  

Model 1. The logistic regression was performed using WM tasks as predictors (i.e., 

backward digit span, forward and backward spatial span, VPT, pathway and puzzle). The model 
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was statistically significant and had only a fair predictive value, χ2(6) = 16.29, p = .012, R2 = .22, c-

index = .739 (Table 4).  

Model 2. The logistic regression was performed using calculation tasks as predictors (i.e., 

simple calculation, and complex calculation). The model was statistically significant, but the 

predictive value was not very large, χ2(2) = 9.62, p = .008, R2 = .14, c-index = .682 (Table 4).  

Model 3. The logistic regression was performed using calculation and WM tasks as 

predictors. The model was statistically significant but had only a fair predictive value, χ2(8) = 20.23, 

p = .010, R2 = .27, c-index = .774 (Table 4).  

Model 4. The logistic regression was performed using calculation, WM and the visuospatial 

mental imagery tasks as predictors. The model was statistically significant and had a good 

predictive power, χ2(9) = 28.00, p = .001, R2 = .36, c-index = .803. Importantly, when visuospatial 

mental imagery was entered into the model, only this task was statistically significant (Table 4).  

Model 5. The logistic regression was performed using calculation and WM tasks, the 

visuospatial mental imagery test, and the arithmetic problem solving task as predictors. The model 

was statistically significant and had a good predictive power, χ2(10) = 41.14, p < .001, R2 = .49, c-

index = .847, and was statistically better compared to all previous models (p < 001). In this model, 

probably due the high correlation between predictors, only visuospatial mental imagery and 

arithmetic problem solving were statistically significant (Table 4).  

Model 6. Considering the high correlation between some of the predictors in model 5, we 

decided to use a principal component analysis, with a Varimax rotation, to reduce the number of 

predictors to a smaller set of uncorrelated components for both WM and calculation tasks1. The 

scree-test showed the clear presence of two WM factors and of one calculation factor. These three 

factors were therefore entered in the logistic regression instead of the original tests. The model was 

statistically significant and had a similar predictive power compared to model 5, χ2(5) = 36.34, p < 
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.001, R2 = .44, c-index = .831. In this model, only visuospatial mental imagery and arithmetic 

problem solving were statistically significant (Table 4). 

Model 7. In the final step of analysis, we included geometric problem solving, to evaluate 

whether visuospatial mental imagery and arithmetic problem solving remain significant predictors 

of group differences in geometric learning, even when geometric problem solving was included in 

the regression model. The model was statistically significant and had a similar predictive power 

compared to the previous one, χ2(6) = 46.26, p < .001, R2 = .54, c-index = .869. Visuospatial mental 

imagery and geometric problem solving were statistically significant, whereas arithmetic problem 

solving ceased to be statistically significant (Table 4).  

Table 4 about here 

Additional Analyses 

All the parametric analysis presented in Table 3 were repeated using a non-parametric 

approach (Mann-Withney U). The results were very similar and perfectly consistent with the 

parametric analyses. In particular, the difference between the two groups was not statistically 

significant for approximate calculation (U = 823.5, p = .122) or forward digit span (U = 848.0, p = 

.164), while all the other effects were statistically significant (Us > 775.1, ps < .048).  

We also performed a series of ANCOVAs and MANCOVAs controlling for the effect of age 

and gender, and the results were very similar to the original analyses, except for VPT, F(1, 86) = 

3.56, p = .062, 2
p = .040, and Puzzle, F(1, 86) = 3.56, p = .056, 2

p = .042, whose results, although 

not statistically significant, were similar in terms of effect size.  

Model 1 and 2 were also repeated using factor scores (see Model 6 for further information). 

When factor scores were used instead of the original tasks, all predictors were statistically 

significant (Table 4; Models 1a and 2a), confirming that the relatively high correlation between the 

tasks was causing some estimation problems.  
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Discussion 

The present study aimed to shed light on geometric learning and on the factors underpinning 

a failure in this area. We examined whether and to what extent fifth- and sixth-graders with good 

versus poor geometric learning differed in a series of tasks including arithmetic problem solving, 

WM, visuospatial mental imagery, and calculation.  

Children with poor geometric skills failed in arithmetic problems, but met particular 

difficulty with geometric problems. In this respect, our results offer more information on the 

characteristics of children with poor geometric learning. In fact, we designed arithmetic and 

geometric problems that were very similar, in terms of the solving procedures and the computation 

required, but not identical, with the latter including additional geometric content, which increased 

difficulty for children with poor geometric learning (see also Clements & Battista, 1992).  

Concerning calculation skills, we found that, in children with poor geometric learning, 

calculation skills were poorer than in children with good geometric learning, but with very small 

effect sizes, which is consistent with findings indicating that quantity skills are not directly related 

to geometry (LeFevre et al., 2010). The result could also be due to the fact that children in the poor 

geometric learning group were reported not to have disabilities in other academic areas, including 

arithmetic. However, the result supports the hypothesis that it is possible to individuate children 

who fail in geometry, and that such children are, at least in part, different from those who only fail 

in arithmetic (see Mammarella et al., 2016 for a discussion). In further support of this, children with 

poor geometric learning had minor deficits in calculation skills, but they were struggling in other 

tasks, confirming that multiple factors are related to deficits in geometric learning.  

Children with poor geometric learning were impaired in almost all WM tasks, confirming 

that verbal, visual and spatial aspects of WM are involved in geometric learning. Only performance 

on the forward digit span did not differ significantly between the two groups, with a very small 

effect size. Forward digit span requires verbal short term memory, while backward digit span 

requires learners to memorize verbally presented pieces of information and to rotate them in order. 
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Thus, backward digit span may involve some degree of mental rotation or visuospatial skills (Rudel 

& Denckla, 1974), which might be one reason why the backward digit span had a better 

discriminatory power compared to the forward one. An alternative explanation is that manipulation 

of information may be a critical aspect of WM that is involved in mathematical tasks (reviewed by 

DeStefano & LeFevre, 2004; Raghubar, Barnes, & Hecht, 2010). Forward digit span mainly 

assesses phonological memory, while assessing manipulation of the information to lesser extent 

(Alloway, Gathercole, & Pickering, 2006; Cornoldi & Vecchi, 2003; Gathercole, Pickering, 

Ambridge, & Wearing, 2004; Swanson, 1993). Therefore, it can be argued that, in geometric 

learning, verbal WM likely plays a critical role only when the task requires more cognitive control 

and a greater degree of manipulation of information (as it happens, for example, when the task 

requires the understanding of verbal descriptions of a geometric problems).  

It should be noted that specialized geometric vocabulary (e.g., knowledge of shape names; 

Fisher, Hirsh-Pasek, Newcombe, & Golinkoff, 2013), which was not tested or matched across 

groups, could play a role in geometric learning. In fact, while children were matched for general 

verbal intelligence, it still might be the case that knowledge or flexibility with geometric vocabulary 

could be important and associated with formal geometric knowledge. It can also be argued that 

children in the poor geometric learning group were not aware of simple rules, for example for 

calculating the area and perimeter. Future research, should look into this issue for example 

controlling for children`s knowledge of simple geometric rules.  

We also investigated various visuospatial skills in relation to children’s geometric learning. 

In the present study, visuospatial aspects of the WM system were distinguished according to content 

(verbal, visual and spatial) and the degree of cognitive control required. Children with poor 

geometric learning performed poorly in tasks assessing all the visuospatial aspects, a finding that 

offers further support to the assumption that visuospatial abilities are crucial in geometry (Hannafin 

et al., 2008). To some extent, this finding indirectly supports the observation that children with poor 

visuospatial abilities also struggle in geometry (Mammarella, Giofrè, et al., 2013). In fact, results 
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strengthen the hypothesis that both visuospatial WM (Giofrè, Mammarella, Ronconi, et al., 2013; 

Gittler & Glück, 1998) and visuospatial mental imagery (Cornoldi & Vecchi, 2003) are implicated 

in geometric learning. It should be noted that visuospatial WM tasks may require more cognitive 

control compared to verbal simple storage tasks (e.g., Giofrè, Mammarella, & Cornoldi, 2013), and 

thus may also be more related to geometric learning due to the greater involvement of active 

manipulation processes (Giofrè et al., 2014). Moreover, the active manipulation of stimuli is crucial 

in mental imagery tasks (see Cornoldi & Vecchi, 2003). In fact, WM and mental imagery overlap to 

some extent as they require the maintenance and processing of visual patterns (see Cornoldi & 

Vecchi, 2003). However, visuospatial mental imagery, compared to WM, can require more 

attentional resources, and the particular test used in the present study was specifically designed for 

assessing mental imagery processes involved in geometry. A complementary explanation of the fact 

that the mental imagery test predicted geometric learning better than the visuospatial WM tests is 

that WM and visuospatial mental imagery assessments measure geometric learning abilities at 

different levels. The visuospatial mental imagery task used in the present study can be considered as 

more geometry specific, tapping resources extensively used in geometric tasks, while WM tasks are 

in a sense broader and do not involve content typically found in geometric problems.  

Results of hierarchical logistic regressions showed that WM and calculation skills had a 

modest predictive value in discriminating between the two groups (Models 1 and 2; see also Models 

1a and 2a). Furthermore, when arithmetic problem solving was not included in the analysis (Model 

4), a conspicuous portion of the variance was accounted for by the other predictors (e.g., 

visuospatial imagery). This finding suggests that solving geometric problems is a complex task 

which requires not only calculation or arithmetic problem solving but also other skills as well. 

When visuospatial mental imagery and arithmetic problem solving were included in the model, the 

predictive value of WM and arithmetic skills was greatly reduced. In fact, our final models showed 

that only visuospatial mental imagery and arithmetic problem solving were statistically significant 

when all the variables were entered simultaneously into the equation. It is noteworthy that 
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arithmetic problem solving requires basic calculation skills and WM to some extent (Passolunghi & 

Pazzaglia, 2004), and that visuospatial mental imagery also requires WM (Cornoldi & Vecchi, 

2003). For the same reason, when we included geometric problem solving in our final model 

(Model 7), the predictive value of the arithmetic problem solving task was greatly reduced and not 

statistically significant. 

The predictive power of arithmetic problem solving seems, at least in part, related to 

problem solving and simple arithmetic skills also found in geometric problem solving. Basic skills 

involved in problem solving, such as comprehending the problem, building a representation of it, 

and planning and supervising the solution processes (see Passolunghi & Pazzaglia, 2004) may be in 

fact shared by both arithmetic and geometric problem solving. However, our results seem to 

indicate that failures in arithmetic problem solving do not fully account for failures in geometric 

problem solving and, in fact, the differences between the two groups were larger in geometric 

problems compared to arithmetic problems. This is also confirmed by the fact that geometric 

problem solving proved to be a better predictor of geometric learning compared to arithmetic 

problem solving.  

Our findings have some limitations. In the present study, although the predictors included in 

the models explain part of the variance in engagement scores, a large portion of the variance still 

remains unexplained. This finding suggests that future research exploring children’s failures in 

geometric learning will need to address a variety of other potential factors, both cognitive (e.g., 

other aspects of mental imagery, spatial intelligence, reasoning, overall IQ, and speed of 

processing) and meta-cognitive/motivational (e.g., interest for mathematics, math anxiety, and self-

efficacy) (see Aydın & Ubuz, 2010; Hannafin et al., 2008) factors. Unfortunately, these 

variables - due to the limitations imposed by the schools participating in the study - could not be 

assessed in the present study. Furthermore, due to our agreement with the schools, we were only 

able to test a limited number of students. For this reason, we decided to use an extreme groups 

approach. This approach is extensively used in the individual difference literature (Engle, 2010), but 
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it may tend to amplify the difference between groups (e.g., Murphy, Mazzocco, Hanich, & Early, 

2007). Therefore, future research using a different approach, for example testing a larger group of 

children, using structural equation models (e.g., Giofrè et al., 2014), may also be needed. Finally, 

the possibility of using new tasks should be considered, as Cronbach alphas of some of the tasks we 

used were not particularly high. 

Future research should also include children of different ages, to determine whether the 

present findings could be generalized for younger or older children, and additional groups, in 

particular children with non-verbal learning disabilities (a condition which is associated with poor 

visuospatial abilities) who are more likely to obtain low scores in geometry (Mammarella, et al., 

2013). In light of this, it would have been interesting to include other measures of visuospatial 

ability.  

In spite of these limitations, the present study has important implications that may help 

others to better understand why some children struggle with geometric learning. There are many 

reasons for recommending that teachers pay particular attention to children’s geometric learning. 

Nowadays, geometry is included in mathematical curricula all over the world, and in international 

assessments such as the Program for International Student Assessment (PISA; OECD, 2010). It has 

been suggested that PISA proficiency scores predict educational outcomes (Fischbach, Keller, 

Preckel, & Brunner, 2013) and that teaching geometry may help to improve spatial intelligence 

(Gittler & Glück, 1998). Such evidence indicates that geometric learning can be important in many 

contexts outside of academics and school, and should therefore receive much more attention and 

research in the near future (Mammarella et al., 2016). Educational implications, which could 

provide educators with information on the cognitive processes involved in geometric learning, 

could also be drawn from our findings. For example, knowing that children with poor geometric 

learning show difficulties in the visual-spatial domain and in WM suggests that teachers should 

promote activities and strategies designed to compensate for these limits, for example minimizing 

the load on children’s WM (Alloway, Gathercole, Willis, & Adams, 2004).  
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Geometric skills supposedly mastered in the fifth and sixth grade are likely built upon more 

basic geometric concepts acquired earlier in life. Such a possibility has already been explored 

widely in the domain of arithmetic learning, in which a causal link between an intuitive 

approximate number sense and learning of formal mathematics has been identified (e.g., Hyde, 

Khanum, & Spelke, 2014; Park & Brannon, 2013, 2014). Also, there is evidence indicating that 

formal reasoning and linguistic rules for formal geometric learning are hard for learners to retain, 

compared to incorrect geometric intuitions (Goldin, Pezzatti, Battro, & Sigman, 2011). This is in 

accordance with evidence indicating the involvement of a core non-symbolic geometric system in 

children’s geometric learning (Giofrè, Mammarella, Ronconi, et al., 2013) and in the use of 

geometric abilities, for example in the interpretation of maps (Dillon, Huang, & Spelke, 2013). 

These latter findings also seem to be significant because it can be argued that the abstract geometric 

understanding needed to solve geometric problems builds on core mechanics that emerge in infancy 

and develop throughout life (Dillon & Spelke, 2015). Future studies could investigate whether 

activities related to basic abilities can affect the emergence of abstract geometric intuitions (Dillon 

& Spelke, 2015). Finally, it has been found that tasks such as Lego construction are related to 

mathematical performance (Nath & Szücs, 2014). For these reasons, it would be very interesting to 

study whether intervention that uses these activities could also improve related abilities such as 

geometric learning, but more research is needed in this area.  

In conclusion, the current study gives some important insights on why many children have 

difficulty in learning geometry. Geometry is a fundamental skill that can be very important in the 

complex society in which we live, both in everyday life situations and in the STEM (science, 

technology, engineering, and mathematics) fields, which nowadays are considered crucial in global 

society. Therefore, attention should be devoted to identifying factors underlying difficulties in 

children’s geometric learning.  
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Footnotes 

1 It is worth noting that even modest correlations can have a relevant impact on path coefficients 

(see Loehlin & Beaujean, 2016 on this point), because when predictors are entered simultaneously, 

their single effects are considered over and above the effects of the other predictors. 
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Table 1 

Characteristics of the groups: mean age, verbal intelligence (PMA), score on a standardized test of 

geometry, standard deviations (SD) 

 

 Geometric learning Groups Statistical analyses 

Good Poor F(1,88) p η²p 

Age (months) 136.66 (8.21) 134.90 (8.02) 1.06 .307 .012 

PMA-V [2-4] 28.67 (1.67) 28.09 (2.08) 2.12 .149 .024 

PMA-V [11-17] 17.09 (5.70) 16.11 (7.31) 0.50 .481 .006 

GEO-P 12.64 (1.69) 3.44 (1.42) 777.95 <.001 .898 

AC-MT 27.09 (2.09) 26.37 (2.36) 2.30 .133 .025 

 

Note. PMA-V = Primary mental abilities, verbal; GEO-P = Geometric problem solving; AC-MT = 

Basic arithmetic abilities 
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Table 2 

Correlations between basic arithmetic battery, WM battery and visuospatial mental imagery tasks 

 

 
1 2 3 4 5 6 7 8 9 10 11 

1. Simple arithmetic 1 
          

2. Complex arithmetic .298** 1 
         

3. Approximate calculation .041 .138 1 
        

4. Forward digit span .252* .128 .164 1 
       

5. Backward digit span .195 .262* .153 .430** 1 
      

6. Forward spatial span .232* .175 .031 .197 .392** 1 
     

7. Backward spatial span .107 .351** .168 -.014 .289** .217* 1 
    

8. VPT .264* .192 .100 .041 .380** .318** .325** 1 
   

9. Pathways .013 .127 -.007 .087 .205 .166 .265* .385** 1 
  

10. Puzzle .268* .288** .096 .003 .278** .311** .558** .446** .248* 1 
 

11. Visuospatial mental imagery .088 .406** .107 .148 .312** .326** .330** .271** .264* .304** 1 

 

Note.  
* p < .05 
** p < .05 
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Table 3 

Mean scores and standard deviations (SD) obtained by children with high and low achievement in 

geometry in the battery of tests, and statistical analyses comparing the two groups.  

 

 Geometric Learning Groups Statistical analyses 

Good Poor F(1,88) p η²p 
Cohen’s 

d 

Arithmetic skills       

Simple arithmetic 69.22 (2.69) 67.31 (3.96) 7.18** .009 .075 0.56 

Complex arithmetic 12.78 (2.30) 11.62 (2.44) 5.35* .023 .057 0.49 

Approximate calculation 8.16 (1.87) 7.56 (1.96) 2.21 .141 .024 0.31 

       

Working Memory       

Forward digit span  5.31 (1.08) 4.98 (0.87) 2.60 .110 .029 0.34 

Backward digit span  3.89 (1.19) 3.27 (0.96) 7.43** .008 .078 0.57 

Forward spatial span 5.11 (0.86) 4.58 (0.92) 8.11** .005 .084 0.60 

Backward spatial span 4.91 (1.02) 4.38 (1.17) 5.30** .024 .057 0.49 

VPT 19.64 (4.50) 17.82 (3.91) 4.20* .043 .046 0.43 

Pathway 20.82 (5.34) 18.22 (6.01) 4.71* .033 .051 0.46 

Puzzle 20.07 (4.68) 17.29 (5.12) 7.21** .009 .076 0.57 

       

Visuospatial mental imagery 12.64 (2.99) 10.11 (2.44) 19.35** .000 .180 .093 

Note. .000 means that the value is zero when approximated to the third decimal.  

* p < .05 

** p < .01 
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Table 4 

Standardized beta, standard error and odd rations for each logistic regression model.  

 

Models  B SE OR 

Model 1     

Backward digit span .35 .26 1.42 

Forward spatial span .41 .28 1.50 

Backward spatial span .13 .25 1.14 

VPT -.01 .06 0.99 

Pathways .06 .04 1.06 

Puzzle .07 .06 1.07 

    

Model 2    

Simple arithmetic .14 .07 1.15* 

Complex arithmetic .15 .09 1.16 

    

Model 3    

Backward digit span .32 .26 1.37 

Forward spatial span .35 .28 1.43 

Backward spatial span .12 .27 1.13 

VPT -.03 .07 0.97 

Pathways .06 .04 1.07 

Puzzle .05 .06 1.05 

Simple arithmetic .12 .08 1.13 

Complex arithmetic .08 .11 1.08 

    

Model 4    

Backward digit span .28 .28 1.32 

Forward spatial span .20 .30 1.23 

Backward spatial span .08 .28 1.09 

VPT -.04 .07 0.96 

Pathways .05 .05 1.06 

Puzzle .03 .07 1.03 

Simple arithmetic .16 .08 1.17 

Complex arithmetic -.01 .12 0.99 

Visuospatial mental imagery .27 .10 1.31** 

    

Model 5    

Backward digit span .10 .29 1.11 

Forward spatial span .18 .32 1.20 

Backward spatial span .02 .30 1.02 

VPT -.09 .08 0.91 

Pathways .08 .05 1.08 

Puzzle .04 .07 1.04 

Simple arithmetic .08 .10 1.09 

Complex arithmetic -.17 .14 0.84 

Visuospatial mental imagery .31 .11 1.36* 

Arithmetic problem solving .68 .23 1.98** 
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Model 6    

Arithmetic factor -.00 .32 1.00 

WM factor 1 .32 .34 1.37 

WM factor 2 .27 .30 1.32 

Visuospatial mental imagery .26 .10 1.30** 

Arithmetic problem solving .58 .20 1.73** 

    

Model 7    

Arithmetic factor -.20 .34 0.82 

WM factor 1 .33 .36 1.39 

WM factor 2 .21 .31 1.23 

Visuospatial mental imagery .25 .11 1.28* 

Arithmetic problem solving .21 .22 1.23 

Geometric problem solving .44 .16 1.55** 

    

Additional Models     

Model 1a    

WM factor 1 .77 .23 2.15** 

WM factor 2 .67 .27 1.94** 

    

Model 2a    

Arithmetic factor .75 .24 2.12** 

 

Note.  

 
* p < .05  
** p < .01 
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Figure 1. Examples of tasks included in the visuospatial mental imagery test. TOP LEFT: requires 

finding the figures that comprise the composite target figure in the square. TOP RIGHT: requires 

mentally assembling individual pieces to find the target figure. BOTTIM LEFT: Asks for the 

intersection between all the figures. BOTTOM RIGHT: asks for the location of the hidden figure 

embedded in the complex pattern. 
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Figure 2. Mean number of correctly solved mathematic problems (geometric and arithmetic) by the 

two groups (good geometry and poor geometry): with good geometry, M = 10.18 and M = 10.91 for 

geometric and arithmetic problems respectively; with poor geometry, M = 6.67 and M = 8.69 for 

geometric and arithmetic problems respectively. The error bars represent 95% confidence intervals.  
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