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ABSTRACT

Substantial effort has been devoted toward understanding the psychopharmacol ogical effects of
tryptamine hallucinogens, which are thought to be mediated by activation of 5-HT,a and 5-HT1a
receptors. Recently, several psychoactive tryptamines based on the N,N-diallyltryptamine
(DALT) scaffold have been encountered as recreationa drugs. Despite the apparent widespread
use of DALT derivatives in humans, little is known about their pharmacological properties. We
compared the binding affinities of DALT and its 2-phenyl-, 4-acetoxy-, 4-hydroxy-, 5-methoxy-,
5-methoxy-2-methyl-, 5-fluoro-, 5-fluoro-2-methyl-, 5-bromo-, and 7-ethyl-derivatives a 45
receptor and transporter binding sites. Additionaly, studiesin C57BL/6J mice examined whether
these substances induce the head twitch response (HTR), a 5-HT2A receptor-mediated response
that iswidely used as a behaviora proxy for hallucinogen effectsin humans. Most of the test
drugs bound to serotonin receptors, ¢ sites, a2-adrenoceptors, dopaminergic D3 receptors,
histaminergic H1 receptors, and the serotonin transporter. DALT and several of the ring-
substituted derivatives were active in the HTR assay with the following rank order of potency: 4-
acetoxy-DALT > 5-fluoro-DALT > 5-methoxy-DALT > 4-hydroxy-DALT > DALT > 5-bromo-
DALT. 2-Phenyl-DALT, 5-methoxy-2-methyl-DALT, 5-fluoro-2-methyl-DALT, and 7-ethyl-
DALT did not induce the HTR. HTR potency was not correlated with either 5-HT1A or 5-HT2A
receptor binding affinity, but a multiple regression analysis indicted that 5-HT2A and 5-HT1A
receptors make positive and negative contributions, respectively, to HTR potency (R? = 0.8729).
In addition to supporting the established role of 5-HT2A receptors in the HTR, these findings are
consistent with evidence that 5-HT1A activation by tryptamine hallucinogens buffers their
effectson HTR.

Keywords: hallucinogen; psychedelic; mice; head twitch; 5-methoxy-N,N-dialyltryptamine; 5-
MeO-DALT,; 4-acetoxy-N,N-diallyltryptamine; 4-AcO-DALT; 4-hydroxy-N,N-
diallyltryptamine.



1. INTRODUCTION

Over the past decade there has been a renewesidndhe pharmacology and effects of
serotonergic hallucinogens. This focus has beesdyin part, by accumulating evidence that
serotonergic hallucinogens may have therapeuticaef§ against anxiety, depression, substance
abuse, and obsessive-compulsive disorder (Bogetrsahd Ross 2017). Additionally, although
hallucinogen use has remained relatively stable theepast few decades, there has been a
marked increase in the availability and diversitjallucinogens in recent years that has resulted
in numerous reports of untoward effects. Some edethallucinogens are derived frohiN-
diallyltryptamine (DALT). 5-MethoxyN,N-diallyltryptamine (5-MeO-DALT), for example, was
first synthesized by Alexander T. Shulgin (A.T. 8o, personal communication), and was first
marketed via the Internet in 2004 (Corkery et 8lL2). According to Shulgin, oral doses of 12-
20 mg produce psychoactive effects with a rapicebasd a relatively brief duration of 2-4 h
(Shulgin and Shulgin 2004). Subsequently, 5-MeO-DAiInd other DALT derivatives have
become popular recreational hallucinogen; 5-MeO-DAlas been identified in many seized
samples (Nagai et al. 2007; Rasanen et al. 20td@n®&Rossi et al. 2014; Odoardi et al. 2016;
Brunt et al. 2017) and DALT and 4-acetodyN-diallyltryptamine (4-AcO-DALT) have also
been detected (EMCDDA 2008,2013,2015).

Despite the widespread distribution and nonmedisalof diallyltryptamines (DALTS),
very little is known about their pharmacology. lsvwpreviously reported that six DALT
compounds bind non-selectively to 27 different ptoes including 5-HT receptors (Cozzi and
Daley 2016), and 5-MeO-DALT has been shown to a& &-HEa agonist (Arunotayanun et al.
2013). However, few animal behavioral assessmeus heen performed with these

compounds, and the resulting information could mtewnsight into the relationship between

1



receptor binding and the behavioral effects ofelgrsigs. Hence, the binding of DALT and nine
ring-substituted DALTSs (see Fig. 1) were assessdé® aeceptor and transporter binding sites.

Serotonergic hallucinogens produce the head twéshonse (HTR), a brief paroxysmal
head rotation in rats and mice, via activationhef 5-HTa receptor (Schreiber et al. 1995; Canal
and Morgan 2012; Halberstadt and Geyer 2013),dheegeceptor responsible for the
psychedelic effects of hallucinogens in humans (o et al. 2012; Kometer et al. 2013; Valle
et al. 2016; Kraehenmann et al. 2017; Preller.2@Gl7b,a). The HTR is widely used as a
behavioral proxy in rodents for human hallucinogesfiects because it is one of only a few
behaviors that can reliably distinguish hallucinoigeand non-hallucinogenic 5-HA receptor
agonists (Gonzalez-Maeso et al. 2007). We emplélEd studies with the ten DALT
compounds in C57BL/6J mice to test whether thag#amines produce LSD-like behavioral
effectsin vivo.

In addition to producing effects via the 5-kATeceptor, tryptamine hallucinogens also
bind to 5-HT A receptors with moderate to high affinity and eftig (McKenna et al. 1990;
Blough et al. 2014; Rickli et al. 2016). The HTRluted by hallucinogens is attenuated by
administration of 5-H7a receptor agonists such as 8-OH-DPAT, ipsapirone baspirone
(Darmani et al. 1990; Schreiber et al. 1995; Klegeal. 1997), which is consistent with
evidence for countervailing interactions betweddATa» and 5-HTa receptors (Araneda and
Andrade 1991; Ashby et al. 1994; Krebs-Thomson@eger 1998; Amargos-Bosch et al. 2004;
Li et al. 2011). In light of this apparent crosi«t@mne unanswered question is whether the ability
of tryptamine hallucinogens to induce the HTR WHB,4 activation is modulated by their
concurrent effects on 5-H{ receptors. Pretreatment with the mixed 5:Hp-adrenergic

antagonist pindolol markedly augments the subjeat@sponse induced by the hallucinogen



N,N-dimethyltryptamine (DMT) in human volunteers, sagting that 5-H7, activation by
DMT may blunt its 5-HFa-mediated effects (Strassman 1996). Based on firaliegs, we
hypothesized that 5-HE activation by tryptamine hallucinogens may buffeir ability to
induce the HTR in mice.

One way to gauge the involvement of 51WTeceptors in the behavioral response to
hallucinogens is to assess the effect of combidedirastration with a 5-HJ, antagonist. The
possibility exists, however, that 5-klfantagonists might alter the potency of 5;klTeceptor-
mediated responses due to interactions that angrktm occur between the receptors (Krebs-
Thomson and Geyer 1998; Salmi and Ahlenius 19981 &l. 2011). Indeed, 5-HA antagonists
can augment the HTR induced by hallucinogen admnatien (Willins and Meltzer 1997), and
under certain conditions can even induce head lteg#t¢hrough a mechanism involving indirect
activation of 5-Hpa receptors (Darmani and Reeves 1996; Darmani 19@8gt al. 2010). As
an alternative to conducting antagonist blockaddiss, receptor binding studies were
conducted with DALT derivatives and regression gsesd were performed to determine whether

potency in the HTR assay is correlated with 5;kdnd/or 5-HT A receptor affinities.

2. MATERIALSAND METHODS

2.1. Subjects

Male C57BL/6J mice (6-8 weeks old) obtained fraokson Laboratories (Bar Harbor,

ME, USA) were housed in a vivarium at the Universit California San Diego, an AAALAC-



approved animal facility that meets all Federal State requirements for care and treatment of
laboratory animals. Mice were housed up to fourgagye in a climate-controlled room on a
reverse-light cycle (lights on at 1900 h, off abD0h) and were provided witd libitum access

to food and water, except during behavioral tesfiregting was conducted between 1000 and
1800 h. All animal experiments were conducted itoadance with NIH guidelines and were

approved by the UCSD animal care committee.

2.2. Drugs

The following drugs were testel;N-diallyltryptamine hydrochloride (DALT), 5-
methoxyN,N-diallyltryptamine hydrochloride (5-MeO-DALT), 5-faro-N,N-diallyltryptamine
hydrochloride (5-F-DALT), 5-bromd,N-diallyltryptamine hydrochloride (5-Br-DALT), 4-
hydroxyN,N-diallyltryptamine fumarate (4-HO-DALT), 4-acetoRyN-diallyltryptamine
fumarate (4-AcO-DALT), 2-phenyN,N-diallyltryptamine hydrochloride (2-Ph-DALT), 5-
methoxy-2-methyN,N-diallyltryptamine hydrochloride (5-MeO-2-Me-DALT%-fluoro-2-
methykN,N-diallyltryptamine hydrochloride (5-F-2-Me-DALT), dri7-ethytN,N-
diallyltryptamine hydrochloride (7-Et-DALT). 4-Ac@ALT fumarate and 4-HO-DALT
hemifumarate were obtained from Scientific Supplleshdon, UK); the other tryptamines were
synthesized, fully characterized, and availablenfyevious studies (Meyer et al. 2014; Michely

et al. 2015; Dinger et al. 2016; Brandt et al. 201Caspar et al. 2017; Michely et al. 2017).

2.3. Binding studies



A screening at 45 receptor and transporter bingiteg was performed by the NIMH
Psychoactive Drug Screening Program (NIMH PDSP)st\vdb these screenings were performed
with cloned human receptors; exceptions are listelchble 1. Test compounds were dissolved in
DMSO and were tested at 10 uM in competition asagginst radioactive probe compounds.
Sites exhibiting > 50% inhibition at 10 uM werettgbin secondary assays at the identified
receptor or transporter using 12 concentratiorite@DALT compound, measured in triplicate,
to generate competition binding isotheridsvalues were obtained from nonlinear regression of
these binding isotherms from best-fitsfalues using the Cheng-Prusoff equation (Cheng and
Prusoff 1973)K; values were converted t&pralues for data analysis. The radioligands used
were as follows:3H]8-OH-DPAT (5-HTia), [PH]GR125743 (5-HTsxp), [FH]5-HT (5-HT.g),
[*H]ketanserin (5-H7a), [PHILSD (5-HTassa6r7), ["H]mesulergine (5-HIw), [*H]citalopram
(serotonin transporter)*H]prazocin ¢uaaeip), [(Hlrauwolscine ¢oane2d), [F1]pindolol (By),
[*HICGP12177 8, Bs), [*H]nisoxetine (norepinephrine transportefH]SCH23390 (B, Ds),
[*H]N-methylspiperone (Bs), [PH]WIN35428 (dopamine transporterfHIDAMGO (u-
opioid), PH]DADLE (8-opioid), PH]U69593 (-opioid), PH]Jmuscimol (GABA),
[*H]funitrazepam (central benzodiazepiné{]PK11195 (peripheral benzodiazepine),
[*H]pyrilamine (H), [*H]tiotidine (H,), [*H]a-methylhistamine (&), [*H]histamine (H),

[*HIQNB (M1_s), [*H](+)-pentazocined;), and fH]DTG (o2). The experimental protocols are

available from the NIMH PDSP website (Roth 2013).

2.4. Head-twitch response



The head twitch response (HTR) was assessed asirgd-mounted magnet and a
magnetometer detection coil (Halberstadt and G29&B8,2014; Nichols et al. 2015). Briefly,
mice were anesthetized and a small neodymium magetattached to the dorsal surface of the
cranium using dental cement. Following a two-wesdorery period, HTR experiments were
carried out in a well-lit room with at least 7-ddystween sessions to avoid carryover effects.
Test compounds were dissolved in water containtégisveen 80 and administered IP at a
volume of 5 or 10 mL/kg body weight immediatelygorto testing. Miceri=5—-6/group) were
injected with drug or vehicle and then HTR activitgs recorded in a glass cylinder surrounded
by a magnetometer coil for 30 minutes. Coil voltages low-pass filtered (2—-10 kHz cutoff
frequency), amplified, and digitized (20 kHz samplrate) using a Powerlab/8SP with LabChart
v 7.3.2 (ADInstruments, Colorado Springs, CO, USAgn filtered off-line (40—-200 Hz band-
pass). Head twitches were identified manually basethe following criteria: 1) sinusoidal
wavelets; 2) evidence of at least two sequentiatimovements (usually exhibited as bipolar
peaks) with frequency 40 Hz; 3) amplitude exceeding the level of backgnoise; 4)
duration < 0.15 s; and 5) stable coil voltage imratstlly preceding and succeeding each

response.

2.5. Data analysis

Head twitch counts were analyzed using one-walyses of variance (ANOVA)Post
hoc pairwise comparisons between selected groups pegfermed using Tukey's studentized
range method. The entire 30-min recordings wereneed for head twitches, but in some cases

a shorter block of time was used for analysis tmaunodate compounds with a brief duration-



of-action (potency calculations can be confoundgexiended periods of inactivity). E§

values and 95% confidence limits were calculatedgusonlinear regression. Relationships
between HTR potency and binding affinities wereeased using linear regression and ordinary
least-squares regression. For all analyses, signifie was demonstrated by surpassing an

level of 0.05.

3.RESULTS

3.1. Receptor binding

DALT and 9 ring-substituted derivatives were sutbedi to the NIMH PDSP for
examination of their binding profiles at 45 neuanismitter receptors and transporté&ts/alues
were determined for compounds that produced > 58pdattement of a radioactive probe
compound at a concentration of 10,000 nM. The tesuk summarized in Table 1. The data for
DALT and several of its 5-substituted derivativBeeO-DALT, 5-F-DALT, and 5-Br-DALT)
were reported in a previous publication (Cozzi Bxadey 2016). All of the compounds were
devoid of 50% displacement at;Mls muscarinic;-B3 adrenergic, klhistaminergic, central
benzodiazepine sites (labeled withiflunitrazepam), and GABAreceptors.

As reported previously (Cozzi and Daley 2016), OAkinds relatively non-selectively to
5-HT,; and 5-HT, subtypesg; ando; sites,a-adrenoceptors, dopaminergig f@ceptors,
histaminergic H receptors, and the 5-HT transporter (SERT). DART the highest measured
affinities for 5-HTg (Ki = 61 nM), 5-HTa (Ki = 100 nM),o1 (Ki = 101 nM), 024 (Ki = 124 nM),

Hi (Ki = 127 nM) and SERTK{ = 150 nM). Incorporation of an oxygenated substitwat the 4-



position altered the binding pattern of DALT. Congzhto DALT, the 4-hydroxy and 4-acetoxy
derivatives showed several-fold lower affinities 88HT;4, 5-HT,c, axa-adrenergic receptors;
ando; sites, and SERT, whereas 5-H€&ceptor affinity was increased by at least aroad
magnitude. 4-Hydroxy-DALT also had low affinity f6rHT,g receptorsk{; = 2593 nM) and
moderately high affinity for 5-Hdreceptorsk; = 213 nM).

The 2-phenyl-substituted DALT derivative (2-Ph-DRLshowed a notable binding
profile. The 5-HBa binding affinity of 2-Ph-DALT K; = 13 nM) was 54-fold higher than the
affinity of DALT (K; = 701 nM) and at least 10-fold higher than théndif of any other DALT
derivative. According to a previous report (Stevenst al. 2000), 2-aryl-tryptamines such as 2-
phenylN,N-dimethyltryptamine and 2-pheni;N-diethyltryptamine act as 5-HA receptor
antagonists and have high affinitg; (values of 4.4 nM and 2.8 nM, respectively, vs.
[*H]ketanserin). 2-Ph-DALT was the only compoundedsterein that bound to;[Da, Ds, Ho,
d-opioid, and peripheral benzodiazepine receptotis akK; value < 10 uM. Compared to the
other compounds, 2-Ph-DALT also had relatively hadfimity for a1 ando;p adrenoceptors and
D, receptors. By contrast, 2-phenyl substitution &beld binding ta; sites and SERT.

The 2-methyl derivatives of 5-MeO-DALT and 5-F-DAlwere also examined.
Incorporation of a 2-methyl group tended to redineeaffinity of those DALT derivatives for 5-
HT receptors and SERT. The affinities of 5-MeO-DA&fd 5-F-DALT for 5-HTEa, 5-HTip, 5-
HT1g 5-HT,a, and 5-HBc receptors were consistently reduced by 2-metlofigsee Table 1).
Likewise, the binding of 5-MeO-DALT to SERK{(= 499 nM) was abolished by 2-methylation
(5-MeO-2-Me-DALT: < 50% displacement at 10,000 nMfereas the affinity of 5-F-DALTK

= 36 nM) was reduced almost 30-fold (5-F-2-Me-DAIKE = 983 nM).



Although 7-ethyl-substitution tended to reduceltiveling affinity of DALT for most
sites (including 5-HTa and 5-HTEa receptors), the affinity of 7-Et-DALT fas; sites K; =22

nM) was nearly 5-fold higher than the parent conmabu

3.2. Head twitch response

DALT induced the HTR in mice with an Epof 3.42 mg/kg. Compared to othHgjN-
disubstituted tryptamines suchN-dipropyltryptamine and\,N-diisopropyltryptamine (Smith
et al. 2014), DALT had relatively low potency. Slamito other tryptamine derivatives
(Fantegrossi et al. 2008a), the response to DAlI&Vied an inverted-U-shaped dose-response
function (see Table 2).

Ring-substitution on the DALT molecule resultedattive compounds, some of which
were more potent than DALT (see Table 2). The 4rtwyyd and 5-methoxy derivatives induced
the HTR with almost twice the potency of DALT. 4-&oxy- or 5-fluoro-substitution produced
even greater increases in potency. By contrastpBb substitution did not significantly alter
HTR potency relative to DALT. Substitution at thg@@sition with either a methyl or a phenyl
group (e.g., 2-Ph-DALT, 2-Me-5-MeO-DALT, 2-Me-5-FADT) abolished activity in the HTR
assay. Similarly, 7-Et-DALT did not induce the HTIR.addition to having higher potency than
DALT, the 4-hydroxy and 4-acetoxy derivatives proeld a HTR with an extremely rapid onset
(data not shown).

For DALT and its active derivatives, there wascoorelation between HTR potency
(EDso values) and 5-Hila receptor affinity &= 0.2804;F(1,4) = 1.56NS) or 5-HT,a receptor

affinity (R°= 0.1646:F(1,4) = 0.79NS). A multiple regression analysis was performetesi



whether HTR potency is predicted by both 5iand 5-HT4 affinity. The ordinary least-
squares (OLS) regression revealed that 5aHihd 5-HTEa binding affinities significantly
predicted HTR potencyRf = 0.8729:F(2,3) = 10.31p < 0.05; Figure 2). Both 5-H affinity

(B = 0.7414(3) = 3.74,p < 0.04) and 5-H7x affinity (B = —0.2791(3) = —4.09p < 0.03)
contributed significantly to the prediction, indiicey that 5-HTEa and 5-HT A receptors make
positive and negative contributions, respectiveEl\{H TR potency. In addition to 5-Hf and 5-
HT,a receptors, several other monoaminergic sitesrdrence HTR expression, including 5-
HT,c receptors (Fantegrossi et al. 2010), SERT (Bassélal. 2009), and,-adrenoceptors
(Schreiber et al. 1995). To test whether theserattceptors play a role in the HTR induced by
DALT derivatives, additional regression analysesengerformed for sites witk; < 10,000 nM.
There was no correlation between HTR potency afiditgfat 5-HT,c (RP= 0.0292:F(1,4) =
0.12,NS), SERT R= 0.0661;F(1,4) = 0.28NS), Or 024 Sites(RP= 0.2197;F(1,4) = 1.12NS).
Furthermore, affinity for these sites did not sfgraintly predict HTR potency when analyzed in

combination with 5-HF receptor affinity using multiple regressi@ata not shown).

4. DISCUSSION

The potency and 5-HT receptor affinities of tryptae hallucinogens are influenced by
the substituent groups present on the indole na@ed amine nitrogen. Most compounds in this
structural class contal,N-dialkyl substituents, but tryptamines containhél-diallyl groups
have also been synthesized (Brandt et al. 201 7djodgh the structure-activity relationships
and pharmacology of dialkyltryptamines such as Datid psilocybin have been widely

investigated, relatively little is known about tt@mparative properties of diallyltryptamines.
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The present studies were conducted to investigatpharmacology and behavioral effects of
DALT and a variety of ring-substituted derivativesme of which are used recreationally as
new psychoactive substances or “research chemigats¥eportedly have hallucinogenic effects.

Consistent with the effects of other tryptamin8utnogens (Fantegrossi et al. 2006;
Fantegrossi et al. 2008b; Halberstadt et al. 2@htbonaro et al. 2015; Nichols et al. 2015),
DALT and several of its derivatives substitutedh&t 4 or 5 position induced head twitches in
mice. Although our studies measured 5,KBinding affinity and did not include a functional
assessment of receptor activation, DALT, 4-HO-DABUIACO-DALT, 5-Br-DALT, 5-F-DALT
and 5-MeO-DALT are likely to be 5-Hk agonists based on their effects in the HTR assay.
Importantly, 5-MeO-DALT was previously reportedact as an agonist at recombinant human
5-HT>,a receptors (Arunotayanun et al. 2013). Similatiyyas recently reported (Gatch et al.
2017) that 5-MeO-DALT produces full substitutionrats trained to discriminate the
hallucinogenic 5-H7a receptor agonist 2,5-dimethoxy-4-methylamphetarfid@M). Since the
head twitch assay is routinely used to test wheihdi,, agonists produce LSD-like behavioral
effects (Gonzalez-Maeso et al. 2007), the abilitgtiallyltryptamines to induce the HTR and
produce DOM-like stimulus effects is thus consisteith their classification as serotonergic
hallucinogens. However, few details have beeniphétl regarding the effects of these
compounds in humans.

Notably, the potency of the diallyltryptaminesie HTR assay is not correlated with 5-
HT,a receptor binding affinity alone but is dependemiativity atboth 5-HT;4 and 5-Hba
receptors. According to the multiple regressionysis, there is a positive relationship between
HTR potency and 5-Hk affinity and a negative relationship between HTdRepcy and 5-Hia

affinity; in other words, HTR potency increase$dadT,a affinity increases and decreases as 5-
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HT,a affinity increases. As noted earlier, the hallagan HTR occurs as a result of 5-AT
activation and can be suppressed by concurrentréstnaition of a 5-HTa agonist (Darmani et
al. 1990; Schreiber et al. 1995; Kleven et al. J9Based on the roles that 5-HTand 5-HTEa
receptors are known to play in the hallucinogen HifR regression analysis can be interpreted
as showing that 5-H} activation by DALT and its derivatives mediates TR, whereas their
interaction with the 5-Hi, receptor has a countervailing influence that iftkibxpression of
head twitch behavior. Hence, the potency of diaiptamines in the HTR assay may ultimately
be determined by their combined activities at 5-kHand 5-HTa receptors. These findings
support the hypothesis that 5-FATactivation by tryptamine hallucinogens buffersitiedfects
on the HTR.

Based on the ability of 5-HE agonists to inhibit the HTR, there has been sp¢ion
that 5-HT, 4 stimulation by nonselective tryptamine and lysergke hallucinogens may reduce
or inhibit the frequency of their induced head tlibehavior (Darmani et al. 1990). Our recent
work has demonstrated that the LSD analog and al@tisve 5-HTA/5-HT,a agonist lysergic
acid morpholide (LSM-775) does not induce the HfiRnice unless the animals are pretreated
with the 5-HT;5 antagonist WAY-100635 (Brandt et al. 2017b), imdiicg that 5-HTa
activation by LSM-775 masks its ability to indutetHTR. As far as we are aware, however, the
present study is the first to show that plegency of the HTR induced by tryptamine
hallucinogens may be influenced by their 5. nteractions. Nevertheless, these findings

remain tentative given to the small number of conmuis tested; follow-up studies with a larger

group of tryptamines are necessary to achieve afiritive results.
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One potential confound for the regression anaigsisat the binding studies were

performed with cloned human 5-HT receptors whetikadehavioral experiments were
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performed in mice. Sequence differences betweesntaahd human 5-HT receptors can result in
ligand binding affinity differences (Kao et al. ZQDksenberg et al. 1992; Parker et al. 1993;
Smolyar and Osman 1993). There are reportedly epélifferences in the affinities of 4-
hydroxytryptamines for the 5-HX receptor, which are potentially relevant to oudgts with 4-
HO-DALT and 4-AcO-DALT. Specifically, according tBallaher et al. (1993), who studied
human and rat 5-H receptors labeled witiHi]ketanserin, 4-hydroxy-DMT (psilocin) has 15-
fold higher affinity for the human receptds; (= 340 nM) than for the rat receptds; € 5,100

nM), whereas its 5-hydroxy isomer bufotenine haarlyeequal affinities for the human and rat
receptorsK; values of 300 nM and 520 nM, respectively). Thenhn 5-HTEa receptor contains
a serine at position 242 in helix V whereas alamn@esent in the receptor in rodents, leading
Gallaher et al. (1993) to speculate that psilocay fmave higher affinity for the human receptor
because Ser-24£7? can form a hydrogen-bond with the 4-hydroxyl grampsilocin. Other
studies, however, failed to confirm their findingsother group reported that both psilocin and
bufotenine displaceé'{l] R-(-)-DOI binding to 5-HEa receptors in rat cortex with high affinity
and have nearly equivalentsisalues (McKenna et al. 1990). Furthermore, Sef*22n the
human 5-H7%a receptor is believed to form a hydrogen-bond whhindoleN1 nitrogen of
tryptamines and ergolines based on mutagenesisiegrgs and molecular modeling (Nelson et
al. 1993; Johnson et al. 1994; Almaula et al. 1396&¢cker et al. 2017), abrogating the structural
basis for the species differences posited by Gaidlafherefore, although there is no clear
evidence indicating that differences between huaramhmouse 5-HT receptors are likely to
confound our regression analysis, especially vatiard to 4-substituted DALT derivatives, the
potential existence of cross-species differencé&sHT receptor pharmacology must be

acknowledged as a source of potential error foreigeession.

14



DALT and derivatives substituted at the 5-positi@ve been shown to bind to multiple
5-HT receptors, as well as adrenergic subtypes; ando; sites, histamine Heceptors, and
SERT (Cozzi and Daley 2016). As shown in the pressestigation, substitution at other
positions in the indole ring can markedly alter liireding profile of DALT. The 4-substituted
derivatives displayed reduced affinity at 544Teceptors compared to DALT and the 5-
substituted derivatives. This is consistent withorés demonstrating that 4-hydroxy-DMT
(psilocin) binds to 5-H7a siteswith 20-fold lower affinity compared to its 5-hydepisomer
(bufotenine) or the 5-hydrox®-methyl derivative (5-methoxy-DMT), whereas thegdittle
difference between their 5-HAreceptor affinities (McKenna et al. 1990; Blaira&t2000).

Addition of a methyl group to the 2-position oMeO-DALT reduced its affinity for
most 5-HT binding sites, including 5-hidand 5-HTha receptors, and abolished its ability to
induce the HTR in mice at doses up to 14 mg/kgséhmdings parallel those of Glennon et al.
(2000), who found that 2-methylation or 2-ethylataf 5-methoxy-DMT reduced its affinity for
5-HT,areceptors. Similarly, although 2-methyl-5-methoxMD s a hallucinogen in humans, it
reportedly has significantly lower potency than Bthoxy-DMT (Shulgin and Shulgin 1997).
The 5-HTa receptor apparently has difficulty accommodatnygtamines with a 2-alkyl
substituent.

2-Ph-DALT did not induce the HTR despite having tighest 5-H7, affinity of any
compound screenel= 13 nM). According to Stevenson et al. (2000)jois 2-phenyN,N-
dialkyltryptamines including thBl,N-dimethyl,N,N-diethyl, andN-methylN-ethyl homologues
bind to the 5-HFa receptor with high (nMaffinities. However, all of these compounds blocked
the stimulatory effect of 5-HT on phosphoinositidalrolysis in CHO cells expressing the

human 5-H%a receptor. In light of the fact that other 2-phefNyN-disubstituted tryptamines act
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as antagonists, the failure of 2-Ph-DALT to indtloe HTR suggests that it may also act as a 5-
HT, antagonist.

The 7-ethyl-substituted derivative of DALT alsadHaw affinity for 5-HT;5 and 5-HTEa
receptors and did not induce the HTR in mice wiested at 15 mg/kg. These findings are
consistent with the behavioral effects of othetiyesubstituted tryptamines. 7-Ethyl-DMT
produces only partial substitution in rats traitediscriminate 5-MeO-DMT from vehicle
(Glennon et al. 1980a). Rats trained to discringirthe interoceptive cue produced by 5-MeO-
DMT generalize to other serotonergic hallucinoggsiennon et al. 1980b; Young et al. 1982);

hence, the absence of full substitution with 7-eIMT indicates that it does not produce

hallucinogen-like stimulus effects in rodents.
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The present findings also suggest that while 4-%substituted DALT compounds may

produce hallucinogenic effects in humans, 2- asdfystituted DALT compounds may lack
hallucinogenic effects, although further studies @ecessary to test this hypothesis. While

DALT, 5-MeO-DALT, and 4-AcO-DALT have already bedatected by the European Early-
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Warning System and reported to the European MongdZentre for Drugs and Drug Addiction
(EMCDDA 2013, 2015), no such reports have ariser2fmr 7-substituted DALT compounds.

To our knowledge, this analysis is the first t@itify the relative contributions of 5-
HT,aand 5-HTareceptors to the induction of HTR by a class gbtaynine hallucinogens.
These findings may allow us to better predict thgchoactive potential of DALT derivatives
based on their behavioral pharmacology, and sudigassimilar analyses could be attempted for
other classes of tryptamine hallucinogens. Howealdnpugh 5-MeO-DALT produces
hallucinogen-like behavioral responses in rodehb®ral paradigms including mouse HTR
(the present studies) and rat drug discriminat®at¢h et al. 2017), it is not yet clear whether
DALT derivatives can fully mimic the psychedelidegfts produced by classical hallucinogens,
allowing the possibility of subtle pharmacologid#ferences relative to other tryptamine
hallucinogens. Hence, it is not known whether theeoved relationship between HTR potency
and 5-HTha and 5-HT 4 binding affinities is consistent across the entless of tryptamine
hallucinogens. Nevertheless, if similar relatiopshilo exist for other tryptamines, performing
similar analyses on those classes should improvemierstanding of their complex

pharmacology and facilitate predictions regardimgrtpsychoactive potencies.
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FIGURE CAPTIONS

Figure 1. Chemical structuresMfN-diallyltryptamine (DALT) and several ring-substid
derivatives.

Figure 2. Correlation between potency in the heaith response (HTR) assay (pkalues)
and serotonin receptor binding affinitie(walues) foN,N-diallyltryptamine (DALT) and five
ring-substituted derivatives. (A) Correlation bets HTR potency and 5-HA receptor affinity.
(B) Correlation between HTR potency and 52 Teceptor affinity. (C) Correlation between
HTR potency and 5-Hi and 5-HTEa receptor affinity.
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Table 1 Summary of binding data fod,N-diallyltryptamine (DALT) and ring-substituted deaitives at 33 receptors and transporters.

Binding Affinity ( K;, nM)
Site Specied DALT 5-MeO 5-F 5-Br 4-HO 4-AcO 2-Ph 5-MeO-2-Me| 5-F-2-Me 7-Et
5-HT;a | Humar 10C 19 80 11 31¢ 38:¢ 40z 267 31¢ 1,01
5-HTz | Humar > 10,00( 73E 1,787 95( 2,49¢ | >10,00( 272 2,260 2,011 > 10,00(
5-HT;p | Humar 68¢ 107 81¢€ 13C 69: 801 204 90( 1,592 2,691
5-HTe | Humar 37¢ 50C 474 51z 23¢ 467 | > 10,00( 1,59/ 1,27: > 10,00(
5-HT,, | Humar 701 21¢ 247 477 652 56¢ 13 1,15: 65E 1,51¢
5-HT,s | Humar 61 59 16 53 2,59:¢ 63 192 241 17 65
5-HT,c | Humar 38¢ 45¢€ 10z 35¢ 2,11 1,51t 27¢ | >10,00( 541 445
5-HTs, | Humar > 10,00( 3,312 4,29¢ 2,38¢ | >10,00( 5,84¢ 1,67C 1,822 1,91¢ > 10,00(
5-HTs | Humar 1,71¢ 153 74 13: 21z 1,791 68 20¢€ 16¢€ > 10,00(
5-HT,; | Humar > 10,00( 90 40z 49 60C 724 | >10,000 | >10,00( 49: > 10,00(
SERT | Humar 15C 49¢ 36 127 5,21( 1,08¢ | >10,00( | > 10,00( 98¢ 79t
1A Humar 1,66 | > 10,00( 1,251 637 | >10,000 | > 10,00( 75 1,19¢ 1,57C > 10,00(
o1 Humar 1,36¢ | >10,00( | > 10,00( 2,05C | >10,00( | > 10,00( 904 | > 10,00( > 10,00( > 10,00(
01p Humar > 10,00 | >10,00( | > 10,00( 1,12¢ | >10,00( | > 10,00( 24z 2,40¢ > 10,00( > 10,00(
oA Humar 124 21k 11¢ 83 1,20¢ 34z 85 18¢ 53 141
OB Humar 30¢ 72€ 21¢ 227 | >10,00( 17C 78 33E 10¢ 48¢
O Humar 901 1,467 84¢ 35€ | >10,00( 74¢ 15¢ 88¢ 184 682
NET Humar 1,121 | > 10,00( 1,81¢ 964 | > 10,000 | > 10,00( 42C | >10,00( > 10,00( 1,87¢
D, Humar >10,00( | > 10,00 | >10,00( | >10,00( | > 10,00 | > 10,00( 2,79 | >10,00( > 10,00( > 10,00(
D, Humar > 10,00( | > 10,00( 2,46 4,34¢ | > 10,000 | > 10,00( 38¢ | >10,00( 4,41¢ > 10,00(
D; Humar 67z | > 10,00( 12C 24C | 1,57( > 10,00( 34z 2,39¢ 414 1,082
D, Humar >10,00( | >10,00( | >10,00C | >10,00C |>10,00( |>10,00( 1,00C | > 10,00( > 10,00( > 10,00(
Ds Humar >10,00( | >10,00( | >10,00( | >10,00C | > 10,00 | > 10,00( 2,00¢ | >10,00( > 10,00( > 10,00(
DAT Humar 1,40¢ 3,37¢ 2,15( 2,458 | >10,00( | > 10,00( 74¢€ 2,41 2,20¢ 1,72¢
MOR Humar > 10,00 | >10,00( | > 10,00( 1,72¢ | >10,00( | >10,00( | >10,00( | > 10,00( > 10,00( 2,67¢
DOR Humar >10,00( | >10,00( | >10,00( | >10,00( | > 10,00( | > 10,00( 6,78¢ | > 10,00( > 10,00( > 10,00(
KOR Humar 2,477 1,132 2,18¢ 89¢ | >10,00( 5,23¢ 58¢ 391 58( 58(
PBR Rat kidney | > 10,00( | >10,00( | >10,00( | >10,00( | >10,00( | > 10,00( 1,92¢ | > 10,00( > 10,00( > 10,00(
H, Humar 127 50t 83 10€ | > 10,00( 352 79 847 43t 91:
H, Humar >10,00( | > 10,00 | >10,00( |>10,00( | > 10,00 | > 10,00( 367 | >10,00( > 10,00( > 10,00(
Hs Guinea pig | > 10,00( 1,71z 2,09:¢ 1,49% | >10,00( | > 10,000 | > 10,00( 1,13¢ 1,397 > 10,00(
o1 Rat brair’ 101 301 86 101 2,76 29¢ | >10,00( 427 531 22
() Ra PC1? 35€ 252 30z 224 | >10,000 | > 10,00( 717 1,23t 39¢€ 13€

®The experiments were performed using cloned recefitom the species indicatefiThe experiment was performed using tissues or nalisely expressing the receptor.
Abbreviations: 2-Ph, 2-phenyIN,N-diallyltryptamine;4-AcO, 4-acetoxyN,N-diallyltryptamine;4-HO, 4-hydroxyN,N-diallyltryptamine;5-Br, 5-bromoN,N-diallyltryptamine;
5-F, 5-fluoroN,N-diallyltryptamine;5-F-2-Me, 5-methoxy-2-fluoroN,N-diallyltryptamine;5-MeO, 5-methoxyN,N-diallyltryptamine;5-MeO-2-Me, 5-methoxy-2-methyN,N-
diallyltryptamine;7-Et, 7-ethylN,N-diallyltryptamine DALT , N,N-diallyltryptamine;DAT, dopamine transporteDOR, 3-opioid receptorKOR, k-opioid receptorMOR, -
opioid receptorNET, norepinephrine transportd?BR, peripheral benzodiazepine recep®ERT, serotonin transporter.



Table 2 Summary of head twitch response (HTR) dataNidi-diallyltryptamine (DALT) and ring-substituted deaitives.

Drug One-Way ANOVA Duration | N Dose HTR Counts EDs0(95% ClI) EDs0(95% Cl)
(min) (mg/kg) (mean = SEM) (mg/kg) (umol/kg)
DALT F(5,24) =5.71,p< 0.00Z 3C 5 0 3.6+0.¢ 3.42 (2.4-4.79 | 12.3 (8.617.3
5 0.87¢ 82+2.¢
5 1.7¢% 6.8+ 2.¢
5 3.t 142 44.:¢
5 7 21.8+£44*
5 14 206 £2.7*
5-MeGC-DALT F(5,24) = 6.63,p=0.000! 2C 5 0 3.0+£1.t 2.25(1.8-2.78 7.3 (5.¢9.1)
5 1.7t 6.6+ 1.(
5 3.5 19.8+15*
5 7 8.8+ 2.¢
5 14 80+4¢
5-F-DALT F(5,2) =5.12,p< 0.002 | 30 5 |0 4.4 +0.¢ 1.58 (1.0-2.28 | 5.4 (3.%-7.7)
5 0.87¢ 9.8+ 2.¢
5 1.7t 2105’
5 3.t 36.0+6.8*
5 7 26.8+7.1°
5 14 21.0+4.1
5-Br-DALT F(5,2 =5.21,p< 0.002 | 30 5 |0 34+0.! 4.80 (2.7-8.54° | 13.5 (7.624.0
5 3.5 50+0.:
5 7 10.8 2.7
5 14 8.6x2.
5 28 1.4+0.
5 56 14+1.
4-HO-DALT F(5,2¢4) =12.07,p< 00001 | 5 5 0 1.2+0. 2.60 (2.0-3.35 8.3 (6.--10.6
5 0.87¢ 4.0+3.:
5 1.7¢ 9.2+3.0
5 3.t 286+4.1*
5 7 31.6+£49*
5 14 246 £4.7 %
4-AcO-DALT F(5,24) =6.87,p=0.000- 3C 5 0 48+ 1.( 1.99 (1.3-2.95 4.8 (3.%7.1)
5 0.87¢ 104 +1.
5 1.7¢ 42095
5 3.5 39.0+£14.1
5 7 65.0£84*
5 14 47.8+x10.0™*




2-Pr-DALT F(5,2¢) =2.20,NS 3C 5 0 3.8+0.¢ ND ND
5 0.87¢ 2.8+0.t
5 1.7¢ 3.6+1:
5 3.t 14+0.
5 7 20+0.
5 14 12+0.!
2-Me-5-MeG-DALT F(5,2¢) =1.02,NS 3C 5 0 3.8+1: ND' ND
5 0.87¢ 44 +0.:
5 1.7¢ 74+2:
5 3.t 42+ 1.
5 7 42+0.
5 14 5.0+1.
2-Me-5-F-DALT F(5,2¢) =0.19,NS 3C 5 0 54+1. ND ND
5 0.87¢ 6.2+1.(
5 1.7¢ 6.8 +0.¢
5 3.5 58+2!
5 7 6.4 +1.¢
5 14 7.2+0.
7-Et-DALT F(1,1¢0) =0.11,NS 3C 6 0 10.7£1- ND ND
6 15 9.8+ 1.

IND = not determined (the compound was not activeiwitre dose range tested).

*p < 0.05, *p < 0.01, significant difference from the vehicle ttohgroup (Tukey’s test).
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HIGHLIGHTS

A new class of recreational drugs are derived from N,N-Diallyltryptamine (DALT)

DALT derivatives are relatively nonsel ective for serotonin receptors

DALT derivatives induce the head twitch response (a 5-HT,a-mediated behavior) in mice

Both 5-HT,a and 5-HT 14 receptors contribute to head twitch potency



