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ABSTRACT 
 
Substantial effort has been devoted toward understanding the psychopharmacological effects of 
tryptamine hallucinogens, which are thought to be mediated by activation of 5-HT2A and 5-HT1A 
receptors. Recently, several psychoactive tryptamines based on the N,N-diallyltryptamine 
(DALT) scaffold have been encountered as recreational drugs. Despite the apparent widespread 
use of DALT derivatives in humans, little is known about their pharmacological properties. We 
compared the binding affinities of DALT and its 2-phenyl-, 4-acetoxy-, 4-hydroxy-, 5-methoxy-, 
5-methoxy-2-methyl-, 5-fluoro-, 5-fluoro-2-methyl-, 5-bromo-, and 7-ethyl-derivatives at 45 
receptor and transporter binding sites. Additionally, studies in C57BL/6J mice examined whether 
these substances induce the head twitch response (HTR), a 5-HT2A receptor-mediated response 
that is widely used as a behavioral proxy for hallucinogen effects in humans. Most of the test 
drugs bound to serotonin receptors, σ sites, α2-adrenoceptors, dopaminergic D3 receptors, 
histaminergic H1 receptors, and the serotonin transporter. DALT and several of the ring-
substituted derivatives were active in the HTR assay with the following rank order of potency: 4-
acetoxy-DALT > 5-fluoro-DALT > 5-methoxy-DALT > 4-hydroxy-DALT > DALT > 5-bromo-
DALT. 2-Phenyl-DALT, 5-methoxy-2-methyl-DALT, 5-fluoro-2-methyl-DALT, and 7-ethyl-
DALT did not induce the HTR. HTR potency was not correlated with either 5-HT1A or 5-HT2A 
receptor binding affinity, but a multiple regression analysis indicted that 5-HT2A and 5-HT1A 
receptors make positive and negative contributions, respectively, to HTR potency (R2 = 0.8729). 
In addition to supporting the established role of 5-HT2A receptors in the HTR, these findings are 
consistent with evidence that 5-HT1A activation by tryptamine hallucinogens buffers their 
effects on HTR. 
 
Keywords:  hallucinogen; psychedelic; mice; head twitch; 5-methoxy-N,N-diallyltryptamine; 5-
MeO-DALT; 4-acetoxy-N,N-diallyltryptamine; 4-AcO-DALT; 4-hydroxy-N,N-
diallyltryptamine. 
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1. INTRODUCTION 

 

 Over the past decade there has been a renewed focus on the pharmacology and effects of 

serotonergic hallucinogens. This focus has been driven, in part, by accumulating evidence that 

serotonergic hallucinogens may have therapeutic efficacy against anxiety, depression, substance 

abuse, and obsessive-compulsive disorder (Bogenschutz and Ross 2017). Additionally, although 

hallucinogen use has remained relatively stable over the past few decades, there has been a 

marked increase in the availability and diversity of hallucinogens in recent years that has resulted 

in numerous reports of untoward effects. Some of these hallucinogens are derived from N,N-

diallyltryptamine (DALT). 5-Methoxy-N,N-diallyltryptamine (5-MeO-DALT), for example, was 

first synthesized by Alexander T. Shulgin (A.T. Shulgin, personal communication), and was first 

marketed via the Internet in 2004 (Corkery et al. 2012). According to Shulgin, oral doses of 12-

20 mg produce psychoactive effects with a rapid onset and a relatively brief duration of 2-4 h 

(Shulgin and Shulgin 2004). Subsequently, 5-MeO-DALT and other DALT derivatives have 

become popular recreational hallucinogen; 5-MeO-DALT has been identified in many seized 

samples (Nagai et al. 2007; Rasanen et al. 2014; Strano Rossi et al. 2014; Odoardi et al. 2016; 

Brunt et al. 2017) and DALT and 4-acetoxy-N,N-diallyltryptamine (4-AcO-DALT) have also 

been detected (EMCDDA 2008,2013,2015).  

Despite the widespread distribution and nonmedical use of diallyltryptamines (DALTs), 

very little is known about their pharmacology. It was previously reported that six DALT 

compounds bind non-selectively to 27 different receptors including 5-HT receptors (Cozzi and 

Daley 2016), and 5-MeO-DALT has been shown to act as a 5-HT2A agonist (Arunotayanun et al. 

2013). However, few animal behavioral assessments have been performed with these 

compounds, and the resulting information could provide insight into the relationship between 
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receptor binding and the behavioral effects of these drugs. Hence, the binding of DALT and nine 

ring-substituted DALTs (see Fig. 1) were assessed at 45 receptor and transporter binding sites. 

 Serotonergic hallucinogens produce the head twitch response (HTR), a brief paroxysmal 

head rotation in rats and mice, via activation of the 5-HT2A receptor (Schreiber et al. 1995; Canal 

and Morgan 2012; Halberstadt and Geyer 2013), the same receptor responsible for the 

psychedelic effects of hallucinogens in humans (Quednow et al. 2012; Kometer et al. 2013; Valle 

et al. 2016; Kraehenmann et al. 2017; Preller et al. 2017b,a). The HTR is widely used as a 

behavioral proxy in rodents for human hallucinogenic effects because it is one of only a few 

behaviors that can reliably distinguish hallucinogenic and non-hallucinogenic 5-HT2A receptor 

agonists (Gonzalez-Maeso et al. 2007). We employed HTR studies with the ten DALT 

compounds in C57BL/6J mice to test whether these tryptamines produce LSD-like behavioral 

effects in vivo. 

 In addition to producing effects via the 5-HT2A receptor, tryptamine hallucinogens also 

bind to 5-HT1A receptors with moderate to high affinity and efficacy (McKenna et al. 1990; 

Blough et al. 2014; Rickli et al. 2016). The HTR induced by hallucinogens is attenuated by 

administration of 5-HT1A receptor agonists such as 8-OH-DPAT, ipsapirone, and buspirone 

(Darmani et al. 1990; Schreiber et al. 1995; Kleven et al. 1997), which is consistent with 

evidence for countervailing interactions between 5-HT1A and 5-HT2A receptors (Araneda and 

Andrade 1991; Ashby et al. 1994; Krebs-Thomson and Geyer 1998; Amargos-Bosch et al. 2004; 

Li et al. 2011). In light of this apparent cross-talk, one unanswered question is whether the ability 

of tryptamine hallucinogens to induce the HTR via 5-HT2A activation is modulated by their 

concurrent effects on 5-HT1A receptors. Pretreatment with the mixed 5-HT1A/β-adrenergic 

antagonist pindolol markedly augments the subjective response induced by the hallucinogen 
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N,N-dimethyltryptamine (DMT) in human volunteers, suggesting that 5-HT1A activation by 

DMT may blunt its 5-HT2A-mediated effects (Strassman 1996). Based on those findings, we 

hypothesized that 5-HT1A activation by tryptamine hallucinogens may buffer their ability to 

induce the HTR in mice.  

 One way to gauge the involvement of 5-HT1A receptors in the behavioral response to 

hallucinogens is to assess the effect of combined administration with a 5-HT1A antagonist. The 

possibility exists, however, that 5-HT1A antagonists might alter the potency of 5-HT2A receptor-

mediated responses due to interactions that are known to occur between the receptors (Krebs-

Thomson and Geyer 1998; Salmi and Ahlenius 1998; Li et al. 2011). Indeed, 5-HT1A antagonists 

can augment the HTR induced by hallucinogen administration (Willins and Meltzer 1997), and 

under certain conditions can even induce head twitches through a mechanism involving indirect 

activation of 5-HT2A receptors (Darmani and Reeves 1996; Darmani 1998; Fox et al. 2010). As 

an alternative to conducting antagonist blockade studies, receptor binding studies were 

conducted with DALT derivatives and regression analyses were performed to determine whether 

potency in the HTR assay is correlated with 5-HT2A and/or 5-HT1A receptor affinities. 

 

 

2. MATERIALS AND METHODS 

 

2.1. Subjects 

 

 Male C57BL/6J mice (6-8 weeks old) obtained from Jackson Laboratories (Bar Harbor, 

ME, USA) were housed in a vivarium at the University of California San Diego, an AAALAC-
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approved animal facility that meets all Federal and State requirements for care and treatment of 

laboratory animals. Mice were housed up to four per cage in a climate-controlled room on a 

reverse-light cycle (lights on at 1900 h, off at 0700 h) and were provided with ad libitum access 

to food and water, except during behavioral testing. Testing was conducted between 1000 and 

1800 h. All animal experiments were conducted in accordance with NIH guidelines and were 

approved by the UCSD animal care committee.  

 

2.2. Drugs 

 

 The following drugs were tested: N,N-diallyltryptamine hydrochloride (DALT), 5-

methoxy-N,N-diallyltryptamine hydrochloride (5-MeO-DALT), 5-fluoro-N,N-diallyltryptamine 

hydrochloride (5-F-DALT), 5-bromo-N,N-diallyltryptamine hydrochloride (5-Br-DALT), 4-

hydroxy-N,N-diallyltryptamine fumarate (4-HO-DALT), 4-acetoxy-N,N-diallyltryptamine 

fumarate (4-AcO-DALT), 2-phenyl-N,N-diallyltryptamine hydrochloride (2-Ph-DALT), 5-

methoxy-2-methyl-N,N-diallyltryptamine hydrochloride (5-MeO-2-Me-DALT), 5-fluoro-2-

methyl-N,N-diallyltryptamine hydrochloride (5-F-2-Me-DALT), and 7-ethyl-N,N-

diallyltryptamine hydrochloride (7-Et-DALT). 4-AcO-DALT fumarate and 4-HO-DALT 

hemifumarate were obtained from Scientific Supplies (London, UK); the other tryptamines were 

synthesized, fully characterized, and available from previous studies (Meyer et al. 2014; Michely 

et al. 2015; Dinger et al. 2016; Brandt et al. 2017a; Caspar et al. 2017; Michely et al. 2017).  

 

2.3. Binding studies 
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 A screening at 45 receptor and transporter binding sites was performed by the NIMH 

Psychoactive Drug Screening Program (NIMH PDSP). Most of these screenings were performed 

with cloned human receptors; exceptions are listed in Table 1. Test compounds were dissolved in 

DMSO and were tested at 10 µM in competition assays against radioactive probe compounds. 

Sites exhibiting > 50% inhibition at 10 µM were tested in secondary assays at the identified 

receptor or transporter using 12 concentrations of the DALT compound, measured in triplicate, 

to generate competition binding isotherms. Ki values were obtained from nonlinear regression of 

these binding isotherms from best-fit IC50 values using the Cheng-Prusoff equation (Cheng and 

Prusoff 1973). Ki values were converted to pKi values for data analysis. The radioligands used 

were as follows: [3H]8-OH-DPAT (5-HT1A), [3H]GR125743 (5-HT1B/1D), [3H]5-HT (5-HT1E), 

[3H]ketanserin (5-HT2A), [3H]LSD (5-HT2B/5A/6/7), [
3H]mesulergine (5-HT2C), [3H]citalopram 

(serotonin transporter), [3H]prazocin (α1A/1B/1D), [3H]rauwolscine (α2A/2B/2C), [
125I]pindolol (β1), 

[3H]CGP12177 (β2, β3), [
3H]nisoxetine (norepinephrine transporter), [3H]SCH23390 (D1, D5), 

[3H]N-methylspiperone (D2/3/4), [
3H]WIN35428 (dopamine transporter), [3H]DAMGO (µ-

opioid), [3H]DADLE (δ-opioid), [3H]U69593 (κ-opioid), [3H]muscimol (GABAA), 

[3H]funitrazepam (central benzodiazepine), [3H]PK11195 (peripheral benzodiazepine), 

[3H]pyrilamine (H1), [
3H]tiotidine (H2), [

3H]α-methylhistamine (H3), [
3H]histamine (H4), 

[3H]QNB (M1–5), [
3H](+)-pentazocine (σ1), and [3H]DTG (σ2).  The experimental protocols are 

available from the NIMH PDSP website (Roth 2013). 

 

2.4. Head-twitch response 
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 The head twitch response (HTR) was assessed using a head-mounted magnet and a 

magnetometer detection coil (Halberstadt and Geyer 2013,2014; Nichols et al. 2015). Briefly, 

mice were anesthetized and a small neodymium magnet was attached to the dorsal surface of the 

cranium using dental cement. Following a two-week recovery period, HTR experiments were 

carried out in a well-lit room with at least 7-days between sessions to avoid carryover effects. 

Test compounds were dissolved in water containing 5% Tween 80 and administered IP at a 

volume of 5 or 10 mL/kg body weight immediately prior to testing. Mice (n=5–6/group) were 

injected with drug or vehicle and then HTR activity was recorded in a glass cylinder surrounded 

by a magnetometer coil for 30 minutes. Coil voltage was low-pass filtered (2–10 kHz cutoff 

frequency), amplified, and digitized (20 kHz sampling rate) using a Powerlab/8SP with LabChart 

v 7.3.2 (ADInstruments, Colorado Springs, CO, USA), then filtered off-line (40–200 Hz band-

pass). Head twitches were identified manually based on the following criteria: 1) sinusoidal 

wavelets; 2) evidence of at least two sequential head movements (usually exhibited as bipolar 

peaks) with frequency ≥ 40 Hz; 3) amplitude exceeding the level of background noise; 4) 

duration < 0.15 s; and 5) stable coil voltage immediately preceding and succeeding each 

response.  

 

2.5. Data analysis 

 

 Head twitch counts were analyzed using one-way analyses of variance (ANOVA). Post 

hoc pairwise comparisons between selected groups were performed using Tukey's studentized 

range method. The entire 30-min recordings were examined for head twitches, but in some cases 

a shorter block of time was used for analysis to accommodate compounds with a brief duration-
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of-action (potency calculations can be confounded by extended periods of inactivity). ED50 

values and 95% confidence limits were calculated using nonlinear regression. Relationships 

between HTR potency and binding affinities were assessed using linear regression and ordinary 

least-squares regression. For all analyses, significance was demonstrated by surpassing an α-

level of 0.05.  

 

3. RESULTS 

 

3.1. Receptor binding 

 

 DALT and 9 ring-substituted derivatives were submitted to the NIMH PDSP for 

examination of their binding profiles at 45 neurotransmitter receptors and transporters. Ki values 

were determined for compounds that produced > 50% displacement of a radioactive probe 

compound at a concentration of 10,000 nM. The results are summarized in Table 1. The data for 

DALT and several of its 5-substituted derivatives (5-MeO-DALT, 5-F-DALT, and 5-Br-DALT) 

were reported in a previous publication (Cozzi and Daley 2016). All of the compounds were 

devoid of 50% displacement at M1-M5 muscarinic, β1-β3 adrenergic, H4 histaminergic, central 

benzodiazepine sites (labeled with [3H]flunitrazepam), and GABAA receptors..   

 As reported previously (Cozzi and Daley 2016), DALT binds relatively non-selectively to 

5-HT1 and 5-HT2 subtypes, σ1 and σ2 sites, α2-adrenoceptors, dopaminergic D3 receptors, 

histaminergic H1 receptors, and the 5-HT transporter (SERT). DALT had the highest measured 

affinities for 5-HT2B (Ki = 61 nM), 5-HT1A (Ki = 100 nM), σ1 (Ki = 101 nM), α2A (Ki = 124 nM), 

H1 (Ki = 127 nM) and SERT (Ki = 150 nM). Incorporation of an oxygenated substituent at the 4-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 

position altered the binding pattern of DALT. Compared to DALT, the 4-hydroxy and 4-acetoxy 

derivatives showed several-fold lower affinities for 5-HT1A, 5-HT2C, α2A-adrenergic receptors, σ1 

and σ2 sites, and SERT, whereas 5-HT7 receptor affinity was increased by at least an order of 

magnitude. 4-Hydroxy-DALT also had low affinity for 5-HT2B receptors (Ki = 2593 nM) and 

moderately high affinity for 5-HT6 receptors (Ki = 213 nM). 

 The 2-phenyl-substituted DALT derivative (2-Ph-DALT) showed a notable binding 

profile. The 5-HT2A binding affinity of 2-Ph-DALT (Ki = 13 nM) was 54-fold higher than the 

affinity of DALT (Ki = 701 nM) and at least 10-fold higher than the affinity of any other DALT 

derivative. According to a previous report (Stevenson et al. 2000), 2-aryl-tryptamines such as 2-

phenyl-N,N-dimethyltryptamine and 2-phenyl-N,N-diethyltryptamine act as 5-HT2A receptor 

antagonists and have high affinity (Ki values of 4.4 nM and 2.8 nM, respectively, vs. 

[3H]ketanserin). 2-Ph-DALT was the only compound tested herein that bound to D1, D4, D5, H2, 

δ-opioid, and peripheral benzodiazepine receptors with a Ki value < 10 µM. Compared to the 

other compounds, 2-Ph-DALT also had relatively high affinity for α1A and α1D adrenoceptors and 

D2 receptors. By contrast, 2-phenyl substitution abolished binding to σ1 sites and SERT. 

 The 2-methyl derivatives of 5-MeO-DALT and 5-F-DALT were also examined. 

Incorporation of a 2-methyl group tended to reduce the affinity of those DALT derivatives for 5-

HT receptors and SERT. The affinities of 5-MeO-DALT and 5-F-DALT for 5-HT1A, 5-HT1D, 5-

HT1E, 5-HT2A, and 5-HT2C receptors were consistently reduced by 2-methylation (see Table 1). 

Likewise, the binding of 5-MeO-DALT to SERT (Ki = 499 nM) was abolished by 2-methylation 

(5-MeO-2-Me-DALT: < 50% displacement at 10,000 nM), whereas the affinity of 5-F-DALT (Ki 

= 36 nM) was reduced almost 30-fold (5-F-2-Me-DALT; Ki = 983 nM). 
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 Although 7-ethyl-substitution tended to reduce the binding affinity of DALT for most 

sites (including 5-HT1A and 5-HT2A receptors), the affinity of 7-Et-DALT for σ1 sites (Ki = 22 

nM) was nearly 5-fold higher than the parent compound. 

 

3.2. Head twitch response 

 

 DALT induced the HTR in mice with an ED50 of 3.42 mg/kg. Compared to other N,N-

disubstituted tryptamines such as N,N-dipropyltryptamine and N,N-diisopropyltryptamine (Smith 

et al. 2014), DALT had relatively low potency. Similar to other tryptamine derivatives 

(Fantegrossi et al. 2008a), the response to DALT followed an inverted-U-shaped dose-response 

function (see Table 2). 

 Ring-substitution on the DALT molecule resulted in active compounds, some of which 

were more potent than DALT (see Table 2). The 4-hydroxy and 5-methoxy derivatives induced 

the HTR with almost twice the potency of DALT. 4-Acetoxy- or 5-fluoro-substitution produced 

even greater increases in potency. By contrast, 5-bromo substitution did not significantly alter 

HTR potency relative to DALT. Substitution at the 2-position with either a methyl or a phenyl 

group (e.g., 2-Ph-DALT, 2-Me-5-MeO-DALT, 2-Me-5-F-DALT) abolished activity in the HTR 

assay. Similarly, 7-Et-DALT did not induce the HTR. In addition to having higher potency than 

DALT, the 4-hydroxy and 4-acetoxy derivatives produced a HTR with an extremely rapid onset 

(data not shown).  

 For DALT and its active derivatives, there was no correlation between HTR potency 

(ED50 values) and 5-HT1A receptor affinity (R2 = 0.2804; F(1,4) = 1.56, NS) or 5-HT2A receptor 

affinity (R2 = 0.1646; F(1,4) = 0.79, NS). A multiple regression analysis was performed to test 
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whether HTR potency is predicted by both 5-HT1A and 5-HT2A affinity. The ordinary least-

squares (OLS) regression revealed that 5-HT1A and 5-HT2A binding affinities significantly 

predicted HTR potency (R2 = 0.8729; F(2,3) = 10.31, p < 0.05; Figure 2). Both 5-HT2A affinity 

(β = 0.741, t(3) = 3.74, p < 0.04) and 5-HT1A affinity (β = –0.279, t(3) = –4.09, p < 0.03) 

contributed significantly to the prediction, indicating that 5-HT2A and 5-HT1A receptors make 

positive and negative contributions, respectively, to HTR potency. In addition to 5-HT1A and 5-

HT2A receptors, several other monoaminergic sites can influence HTR expression, including 5-

HT2C receptors (Fantegrossi et al. 2010), SERT (Basselin et al. 2009), and α2-adrenoceptors 

(Schreiber et al. 1995).  To test whether these other receptors play a role in the HTR induced by 

DALT derivatives, additional regression analyses were performed for sites with Ki < 10,000 nM. 

There was no correlation between HTR potency and affinity at 5-HT2C (R
2 = 0.0292; F(1,4) = 

0.12, NS), SERT (R2 = 0.0661; F(1,4) = 0.28, NS), or α2A sites (R
2 = 0.2197; F(1,4) = 1.12, NS).  

Furthermore, affinity for these sites did not significantly predict HTR potency when analyzed in 

combination with 5-HT2A receptor affinity using multiple regression (data not shown). 

 

4. DISCUSSION 

 
 
 The potency and 5-HT receptor affinities of tryptamine hallucinogens are influenced by 

the substituent groups present on the indole nucleus and amine nitrogen. Most compounds in this 

structural class contain N,N-dialkyl substituents, but tryptamines containing N,N-diallyl groups 

have also been synthesized (Brandt et al. 2017a). Although the structure-activity relationships 

and pharmacology of dialkyltryptamines such as DMT and psilocybin have been widely 

investigated, relatively little is known about the comparative properties of diallyltryptamines. 
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The present studies were conducted to investigate the pharmacology and behavioral effects of 

DALT and a variety of ring-substituted derivatives, some of which are used recreationally as 

new psychoactive substances or “research chemicals" and reportedly have hallucinogenic effects. 

 Consistent with the effects of other tryptamine hallucinogens (Fantegrossi et al. 2006; 

Fantegrossi et al. 2008b; Halberstadt et al. 2011; Carbonaro et al. 2015; Nichols et al. 2015), 

DALT and several of its derivatives substituted at the 4 or 5 position induced head twitches in 

mice. Although our studies measured 5-HT2A binding affinity and did not include a functional 

assessment of receptor activation, DALT, 4-HO-DALT, 4-AcO-DALT, 5-Br-DALT, 5-F-DALT 

and 5-MeO-DALT are likely to be 5-HT2A agonists based on their effects in the HTR assay. 

Importantly, 5-MeO-DALT was previously reported to act as an agonist at recombinant human 

5-HT2A receptors (Arunotayanun et al. 2013). Similarly, it was recently reported (Gatch et al. 

2017) that 5-MeO-DALT produces full substitution in rats trained to discriminate the 

hallucinogenic 5-HT2A receptor agonist 2,5-dimethoxy-4-methylamphetamine (DOM).  Since the 

head twitch assay is routinely used to test whether 5-HT2A agonists produce LSD-like behavioral 

effects (Gonzalez-Maeso et al. 2007), the ability of diallyltryptamines to induce the HTR and 

produce DOM-like stimulus effects is thus consistent with their classification as serotonergic 

hallucinogens.  However, few details have been published regarding the effects of these 

compounds in humans.  

 Notably, the potency of the diallyltryptamines in the HTR assay is not correlated with 5-

HT2A receptor binding affinity alone but is dependent on activity at both 5-HT1A and 5-HT2A 

receptors. According to the multiple regression analysis, there is a positive relationship between 

HTR potency and 5-HT2A affinity and a negative relationship between HTR potency and 5-HT1A 

affinity; in other words, HTR potency increases as 5-HT2A affinity increases and decreases as 5-
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HT1A affinity increases. As noted earlier, the hallucinogen HTR occurs as a result of 5-HT2A 

activation and can be suppressed by concurrent administration of a 5-HT1A agonist (Darmani et 

al. 1990; Schreiber et al. 1995; Kleven et al. 1997). Based on the roles that 5-HT1A and 5-HT2A 

receptors are known to play in the hallucinogen HTR, the regression analysis can be interpreted 

as showing that 5-HT2A activation by DALT and its derivatives mediates the HTR, whereas their 

interaction with the 5-HT1A receptor has a countervailing influence that inhibits expression of 

head twitch behavior. Hence, the potency of diallyltryptamines in the HTR assay may ultimately 

be determined by their combined activities at 5-HT1A and 5-HT2A receptors. These findings 

support the hypothesis that 5-HT1A activation by tryptamine hallucinogens buffers their effects 

on the HTR.  

 Based on the ability of 5-HT1A agonists to inhibit the HTR, there has been speculation 

that 5-HT1A stimulation by nonselective tryptamine and lysergamide hallucinogens may reduce 

or inhibit the frequency of their induced head twitch behavior (Darmani et al. 1990). Our recent 

work has demonstrated that the LSD analog and non-selective 5-HT1A/5-HT2A agonist lysergic 

acid morpholide (LSM-775) does not induce the HTR in mice unless the animals are pretreated 

with the 5-HT1A antagonist WAY-100635 (Brandt et al. 2017b), indicating that 5-HT1A 

activation by LSM-775 masks its ability to induce the HTR. As far as we are aware, however, the 

present study is the first to show that the potency of the HTR induced by tryptamine 

hallucinogens may be influenced by their 5-HT1A interactions. Nevertheless, these findings 

remain tentative given to the small number of compounds tested; follow-up studies with a larger 

group of tryptamines are necessary to achieve more definitive results. 

 The absence of a direct correlation between 5-HT2A binding affinity and HTR ED50 

values is surprising because the potency of hallucinogens in the drug discrimination paradigm is 
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known to correlate with 5-HT2A binding affinity (Glennon et al. 1984; Titeler et al. 1988). For 

example, there is a significant correlation (r = 0.938) between the 5-HT2A affinities of 22 

hallucinogens and their ED50 values in rats trained to discriminate 1.0 mg/kg DOM (Glennon et 

al. 1984). Although these discrepant findings could potentially reflect mechanistic differences 

between HTR and drug discrimination, a simpler explanation is that the lack of congruence is a 

consequence of testing hallucinogens with different degrees of selectivity for 5-HT1A and 5-HT2A 

receptors. Most of the hallucinogens included in the Glennon et al. (1984) study are 

phenylalkylamine derivatives — compounds with high 5-HT2A/5-HT1A selectivity — so their 

correlation analysis was designed to minimize confounding interactions with 5-HT1A receptors.  

By contrast, the diallyltryptamines are relatively nonselective and hence testing these compounds 

would increase the likelihood of detecting functional interactions between 5-HT1A and 5-HT2A 

receptors. One caveat is that it is not clear whether the 5-HT1A receptor can regulate hallucinogen 

discriminative stimulus effects in the same manner as the HTR. 8-OH-DPAT reportedly inhibits 

the stimulus effects of DOM in monkeys, but the same interaction has not been observed in rats 

(Li et al. 2010). According to Kleven et al. (1997), pretreatment with certain doses of the 5-HT1A 

agonists 8-OH-DPAT and buspirone produced a slight reduction of drug-lever selection in rats 

trained to discriminate 0.63 mg/kg DOI, although the reduction did not exceed 33%. 

Nevertheless, we have found robust correlations between drug discrimination- and HTR-derived 

ED50 values for both phenylalkylamine and tryptamine hallucinogens (Halberstadt et al., 

unpublished findings), demonstrating that potencies in these two behavioral assays are likely 

governed by similar mechanistic factors. 

 One potential confound for the regression analysis is that the binding studies were 

performed with cloned human 5-HT receptors whereas the behavioral experiments were 
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performed in mice. Sequence differences between rodent and human 5-HT receptors can result in 

ligand binding affinity differences (Kao et al. 1992; Oksenberg et al. 1992; Parker et al. 1993; 

Smolyar and Osman 1993). There are reportedly species differences in the affinities of 4-

hydroxytryptamines for the 5-HT2A receptor, which are potentially relevant to our studies with 4-

HO-DALT and 4-AcO-DALT.  Specifically, according to Gallaher et al. (1993), who studied 

human and rat 5-HT2A receptors labeled with [3H]ketanserin, 4-hydroxy-DMT (psilocin) has 15-

fold higher affinity for the human receptor (Ki = 340 nM) than for the rat receptor (Ki = 5,100 

nM), whereas its 5-hydroxy isomer bufotenine has nearly equal affinities for the human and rat 

receptors (Ki values of 300 nM and 520 nM, respectively).  The human 5-HT2A receptor contains 

a serine at position 242 in helix V whereas alanine is present in the receptor in rodents, leading 

Gallaher et al. (1993) to speculate that psilocin may have higher affinity for the human receptor 

because Ser-242(5.42) can form a hydrogen-bond with the 4-hydroxyl group in psilocin.  Other 

studies, however, failed to confirm their findings. Another group reported that both psilocin and 

bufotenine displace [125I]R-(–)-DOI binding to 5-HT2A receptors in rat cortex with high affinity 

and have nearly equivalent IC50 values (McKenna et al. 1990). Furthermore, Ser-242(5.42) in the 

human 5-HT2A receptor is believed to form a hydrogen-bond with the indole N1 nitrogen of 

tryptamines and ergolines based on mutagenesis experiments and molecular modeling (Nelson et 

al. 1993; Johnson et al. 1994; Almaula et al. 1996; Wacker et al. 2017), abrogating the structural 

basis for the species differences posited by Gallaher. Therefore, although there is no clear 

evidence indicating that differences between human and mouse 5-HT receptors are likely to 

confound our regression analysis, especially with regard to 4-substituted DALT derivatives, the 

potential existence of cross-species differences in 5-HT receptor pharmacology must be 

acknowledged as a source of potential error for the regression.   
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 DALT and derivatives substituted at the 5-position have been shown to bind to multiple 

5-HT receptors, as well as α2 adrenergic subtypes, σ1 and σ2 sites, histamine H1 receptors, and 

SERT (Cozzi and Daley 2016). As shown in the present investigation, substitution at other 

positions in the indole ring can markedly alter the binding profile of DALT. The 4-substituted 

derivatives displayed reduced affinity at 5-HT1A receptors compared to DALT and the 5-

substituted derivatives. This is consistent with reports demonstrating that 4-hydroxy-DMT 

(psilocin) binds to 5-HT1A sites with 20-fold lower affinity compared to its 5-hydroxy isomer 

(bufotenine) or the 5-hydroxy O-methyl derivative (5-methoxy-DMT), whereas there is little 

difference between their 5-HT2A receptor affinities (McKenna et al. 1990; Blair et al. 2000).  

 Addition of a methyl group to the 2-position of 5-MeO-DALT reduced its affinity for 

most 5-HT binding sites, including 5-HT1A and 5-HT2A receptors, and abolished its ability to 

induce the HTR in mice at doses up to 14 mg/kg. These findings parallel those of Glennon et al. 

(2000), who found that 2-methylation or 2-ethylation of 5-methoxy-DMT reduced its affinity for 

5-HT2A receptors. Similarly, although 2-methyl-5-methoxy-DMT is a hallucinogen in humans, it 

reportedly has significantly lower potency than 5-methoxy-DMT (Shulgin and Shulgin 1997). 

The 5-HT2A receptor apparently has difficulty accommodating tryptamines with a 2-alkyl 

substituent. 

 2-Ph-DALT did not induce the HTR despite having the highest 5-HT2A affinity of any 

compound screened (Ki = 13 nM). According to Stevenson et al. (2000), various 2-phenyl-N,N-

dialkyltryptamines including the N,N-dimethyl, N,N-diethyl, and N-methyl-N-ethyl homologues 

bind to the 5-HT2A receptor with high (nM) affinities. However, all of these compounds blocked 

the stimulatory effect of 5-HT on phosphoinositide hydrolysis in CHO cells expressing the 

human 5-HT2A receptor. In light of the fact that other 2-phenyl-N,N-disubstituted tryptamines act 
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as antagonists, the failure of 2-Ph-DALT to induce the HTR suggests that it may also act as a 5-

HT2A antagonist.  

 The 7-ethyl-substituted derivative of DALT also had low affinity for 5-HT1A and 5-HT2A 

receptors and did not induce the HTR in mice when tested at 15 mg/kg. These findings are 

consistent with the behavioral effects of other 7-ethyl-substituted tryptamines. 7-Ethyl-DMT 

produces only partial substitution in rats trained to discriminate 5-MeO-DMT from vehicle 

(Glennon et al. 1980a). Rats trained to discriminate the interoceptive cue produced by 5-MeO-

DMT generalize to other serotonergic hallucinogens (Glennon et al. 1980b; Young et al. 1982); 

hence, the absence of full substitution with 7-ethyl-DMT indicates that it does not produce 

hallucinogen-like stimulus effects in rodents.  

 In addition to their relatively high potency in the HTR assay, the responses produced by 

4-HO-DALT and 4-AcO-DALT had a rapid onset relative to other diallyltryptamines, with 

effects occurring almost immediately following administration. It is thus likely that these 

compounds enter the brain rapidly. Given the relatively rapid onset of the effects of 5-MeO-

DALT in humans (e.g. peak effects occurring 30 min after p.o. dosing), one may expect an even 

faster onset for the 4-substituted DALT derivatives.   

 The almost doubled molar potency of 4-AcO-DALT relative to 4-HO-DALT in mice is 

another notable finding.  4-Hydroxytryptamine esters are rapidly hydrolyzed in vivo and are 

thought to serve as prodrugs.  Psilocybin and psilocin are equipotent in humans on a molar basis 

(Wolbach et al. 1962) and psilocybin is known to be rapidly dephosphorylated in vivo and in 

vitro (Horita and Weber 1961; Eivindvik et al. 1989; Hasler et al. 1997; Hasler et al. 2002; 

Brown et al. 2017). 4-Acetoxy-DMT, the acetate ester of psilocin, is also believed to serve as a 

prodrug (Shulgin and Shulgin 1997; Nichols and Fescas 1999). By contrast, based on the present 
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results, 4-AcO-DALT may not solely function as a prodrug given that it has moderate affinity for 

the 5-HT2A receptor and is more potent than 4-HO-DALT in the HTR paradigm.  Hence, certain 

4-hydroxytryptamine esters may be active drugs in the absence of hydrolysis.   

 Given the link between 5-HT2A receptor activation and hallucinogenic effects 

(Halberstadt 2015; Nichols 2016), it is surprising that virtually all of the DALT compounds had 

higher affinities for 5-HT1A sites than for 5-HT2A sites.  The binding data reported herein, 

however, likely underestimate the potency of the interactions between DALT compounds and the 

5-HT2A receptor.  5-HT2A receptors exist in high-affinity and low-affinity agonist binding 

conformations depending on whether they are coupled to G proteins.  Antagonist radioligands 

(such as [3H]ketanserin) label both states non-selectively, whereas agonist radioligands (such as 

[3H]DOB and [125I]DOI) are selective for the subset of receptors in the G protein-coupled state 

(Lyon et al. 1987; Glennon et al. 1988).  In competitive binding studies, the affinity of 5-HT2A 

agonists can vary depending on whether an agonist or an antagonist radioligand is used, and 

agonists typically display 10–100-fold higher affinity when agonist radioligands are used 

compared to antagonist radioligands (Titeler et al. 1988; Glennon et al. 1992; Glennon et al. 

1994). Hence, the binding data listed in Table 1 likely overestimate the selectivity of DALT 

compounds for 5-HT1A versus 5-HT2A sites because the former receptor was labeled with an 

agonist radioligand ([3H]8-OH-DPAT) whereas the latter receptor was labeled with an antagonist 

radioligand ([3H]ketanserin).   

 The present findings also suggest that while 4- and 5-substituted DALT compounds may 

produce hallucinogenic effects in humans, 2- and 7-substituted DALT compounds may lack 

hallucinogenic effects, although further studies are necessary to test this hypothesis.  While 

DALT, 5-MeO-DALT, and 4-AcO-DALT have already been detected by the European Early-
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Warning System and reported to the European Monitoring Centre for Drugs and Drug Addiction 

(EMCDDA 2013, 2015), no such reports have arisen for 2- or 7-substituted DALT compounds. 

 To our knowledge, this analysis is the first to quantify the relative contributions of 5-

HT2A and 5-HT1A receptors to the induction of HTR by a class of tryptamine hallucinogens. 

These findings may allow us to better predict the psychoactive potential of DALT derivatives 

based on their behavioral pharmacology, and suggest that similar analyses could be attempted for 

other classes of tryptamine hallucinogens. However, although 5-MeO-DALT produces 

hallucinogen-like behavioral responses in rodent behavioral paradigms including mouse HTR 

(the present studies) and rat drug discrimination (Gatch et al. 2017), it is not yet clear whether 

DALT derivatives can fully mimic the psychedelic effects produced by classical hallucinogens, 

allowing the possibility of subtle pharmacological differences relative to other tryptamine 

hallucinogens. Hence, it is not known whether the observed relationship between HTR potency 

and 5-HT2A and 5-HT1A binding affinities is consistent across the entire class of tryptamine 

hallucinogens. Nevertheless, if similar relationships do exist for other tryptamines, performing 

similar analyses on those classes should improve our understanding of their complex 

pharmacology and facilitate predictions regarding their psychoactive potencies. 
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FIGURE CAPTIONS 
 
Figure 1.  Chemical structures of N,N-diallyltryptamine (DALT) and several ring-substituted 
derivatives. 
 
Figure 2.  Correlation between potency in the head twitch response (HTR) assay (pED50 values) 
and serotonin receptor binding affinities (pKi values) for N,N-diallyltryptamine (DALT) and five 
ring-substituted derivatives.  (A) Correlation between HTR potency and 5-HT1A receptor affinity.  
(B) Correlation between HTR potency and 5-HT2A receptor affinity.  (C) Correlation between 
HTR potency and 5-HT1A and 5-HT2A receptor affinity.   
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Table 1. Summary of binding data for N,N-diallyltryptamine (DALT) and ring-substituted derivatives at 33 receptors and transporters. 
 
Site 

 
Speciesa 

Binding Affinity ( Ki, nM) 
DALT 5-MeO 5-F 5-Br 4-HO 4-AcO 2-Ph 5-MeO-2-Me 5-F-2-Me 7-Et 

5-HT1A Human         100           19           80           11         319         383         402         267         318      1,013 
5-HT1B Human > 10,000         735      1,787         950      2,494 > 10,000         273      2,267      2,011 > 10,000 
5-HT1D Human         689         107         816         130         693         801         204         900      1,592      2,691 
5-HT1E Human         378         500         474         512         238         467 > 10,000      1,594      1,273 > 10,000 
5-HT2A Human         701         218         247         477         652         565           13      1,153         655      1,515 
5-HT2B Human           61           59           16           53      2,593           63         192         241           17           65 
5-HT2C Human         385         456         102         358      2,113      1,515         278 > 10,000         541         443 
5-HT5A Human > 10,000      3,312      4,299      2,389 > 10,000      5,844      1,670      1,822      1,916 > 10,000 
5-HT6 Human      1,718         153           74         133         213      1,791           68         206         168 > 10,000 
5-HT7 Human > 10,000           90         402           49         600         724 > 10,000 > 10,000         493 > 10,000 
SERT Human         150         499           36         127      5,210      1,089 > 10,000 > 10,000         983         795 
α1A Human      1,663 > 10,000      1,251         637 > 10,000 > 10,000           75      1,198      1,570 > 10,000 
α1B Human      1,369 > 10,000 > 10,000      2,050 > 10,000 > 10,000         904 > 10,000 > 10,000 > 10,000 
α1D Human > 10,000 > 10,000 > 10,000      1,124 > 10,000 > 10,000         243      2,405 > 10,000 > 10,000 
α2A Human         124         215         119           83      1,206         342           85         189           53         141 
α2B Human         305         726         218         227 > 10,000         170           78         335         108         489 
α2C Human         901      1,467         848         356 > 10,000         748         159         888         184         682 
NET Human      1,121 > 10,000      1,818         964 > 10,000 > 10,000         420 > 10,000 > 10,000      1,879 
D1 Human > 10,000 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000      2,793 > 10,000 > 10,000 > 10,000 
D2 Human > 10,000 > 10,000      2,463      4,349 > 10,000 > 10,000         388 > 10,000      4,416 > 10,000 
D3 Human         672 > 10,000         120         240 1,570 > 10,000         342      2,399         414      1,082 
D4 Human > 10,000 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000      1,000 > 10,000 > 10,000 > 10,000 
D5 Human > 10,000 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000      2,003 > 10,000 > 10,000 > 10,000 
DAT Human      1,406      3,378      2,150      2,455 > 10,000 > 10,000         746      2,413      2,208      1,725 
MOR Human > 10,000 > 10,000 > 10,000      1,726 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000      2,674 
DOR Human > 10,000 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000      6,789 > 10,000 > 10,000 > 10,000 
KOR Human      2,477      1,132      2,184         898 > 10,000      5,235         589         391         580         580 
PBR Rat kidneyb > 10,000 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000      1,929 > 10,000 > 10,000 > 10,000 
H1 Human         127         505           83         106 > 10,000         353           79         847         435         913 
H2 Human > 10,000 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000         367 > 10,000 > 10,000 > 10,000 
H3 Guinea pig > 10,000      1,712      2,093      1,495 > 10,000 > 10,000 > 10,000      1,134      1,397 > 10,000 
σ1 Rat brainb         101         301           86         101      2,765         299 > 10,000         427         531           22 
σ2 Rat PC12b         356         253         303         224 > 10,000 > 10,000         717      1,235         396         136 
aThe experiments were performed using cloned receptors from the species indicated.  bThe experiment was performed using tissues or cells natively expressing the receptor. 
Abbreviations:  2-Ph, 2-phenyl-N,N-diallyltryptamine; 4-AcO, 4-acetoxy-N,N-diallyltryptamine; 4-HO, 4-hydroxy-N,N-diallyltryptamine; 5-Br, 5-bromo-N,N-diallyltryptamine; 
5-F, 5-fluoro-N,N-diallyltryptamine; 5-F-2-Me, 5-methoxy-2-fluoro-N,N-diallyltryptamine; 5-MeO, 5-methoxy-N,N-diallyltryptamine; 5-MeO-2-Me, 5-methoxy-2-methyl-N,N-
diallyltryptamine; 7-Et, 7-ethyl-N,N-diallyltryptamine; DALT , N,N-diallyltryptamine; DAT , dopamine transporter; DOR, δ-opioid receptor; KOR , κ-opioid receptor; MOR , µ-
opioid receptor; NET, norepinephrine transporter; PBR, peripheral benzodiazepine receptor; SERT, serotonin transporter.



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 
Table 2. Summary of head twitch response (HTR) data for N,N-diallyltryptamine (DALT) and ring-substituted derivatives. 
 

Drug One-Way ANOVA Duration 
(min) 

N Dose 
(mg/kg) 

HTR Counts 
(mean ± SEM) 

ED50 (95% CI) 
(mg/kg) 

ED50 (95% CI) 
(µmol/kg) 

DALT F(5,24) = 5.71, p < 0.002 30 5 0   3.6 ± 0.9 3.42 (2.44-4.79) 12.3 (8.8-17.3) 
   5 0.875   8.2 ± 2.8   
   5 1.75   6.8 ± 2.6   
   5 3.5 14.2 ± 4.3   
   5 7 21.8 ± 4.4 **   
   5 14 20.6 ± 2.7 **   
5-MeO-DALT F(5,24) = 6.63, p=0.0005 20 5 0   3.0 ± 1.5 2.25 (1.82-2.78)   7.3 (5.9-9.1) 
   5 1.75   6.6 ± 1.0   
   5 3.5 19.8 ± 1.5 **   
   5 7   8.8 ± 2.6   
   5 14   8.0 ± 4.9   
5-F-DALT F(5,24) = 5.12, p < 0.003 30 5 0   4.4 ± 0.6 1.58 (1.09-2.28)   5.4 (3.7-7.7) 
   5 0.875   9.8 ± 2.6   
   5 1.75 21.0 ± 5.7   
   5 3.5 36.0 ± 6.8 **   
   5 7 26.8 ± 7.1 *   
   5 14 21.0 ± 4.0   
5-Br-DALT F(5,24) = 5.21, p < 0.003 30 5 0   3.4 ± 0.5 4.80 (2.70-8.54) 13.5 (7.6-24.0) 
   5 3.5   5.0 ± 0.3   
   5 7 10.8 ± 2.7 *   
   5 14   8.6 ± 2.7   
   5 28   1.4 ± 0.4   
   5 56   1.4 ± 1.4   
4-HO-DALT F(5,24) = 12.07, p < 0.0001 5 5 0   1.2 ± 0.4 2.60 (2.01-3.35)   8.3 (6.4-10.6) 
   5 0.875   4.0 ± 3.3   
   5 1.75   9.2 ± 3.7   
   5 3.5 28.6 ± 4.1 **   
   5 7 31.6 ± 4.9 **   
   5 14 24.6 ± 4.7 **   
4-AcO-DALT F(5,24) = 6.87, p=0.0004 30 5 0   4.8 ± 1.0 1.99 (1.35-2.95)   4.8 (3.3-7.1) 
   5 0.875 10.4 ± 1.4   
   5 1.75 42.0 ± 9.5 *   
   5 3.5 39.0 ± 14.1 *   
   5 7 65.0 ± 8.4 **   
   5 14 47.8 ± 10.0 **   
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2-Ph-DALT F(5,24) = 2.20, NS 30 5 0   3.8 ± 0.8 ND ND 
   5 0.875   2.8 ± 0.5   
   5 1.75   3.6 ± 1.3   
   5 3.5   1.4 ± 0.5   
   5 7   2.0 ± 0.5   
   5 14   1.2 ± 0.5   
2-Me-5-MeO-DALT F(5,24) = 1.02, NS 30 5 0   3.8 ± 1.3 ND1 ND 
   5 0.875   4.4 ± 0.2   
   5 1.75   7.4 ± 2.2   
   5 3.5   4.2 ± 1.0   
   5 7   4.2 ± 0.9   
   5 14   5.0 ± 1.4   
2-Me-5-F-DALT F(5,24) = 0.19, NS 30 5 0   5.4 ± 1.7 ND ND 
   5 0.875   6.2 ± 1.0   
   5 1.75   6.8 ± 0.9   
   5 3.5   5.8 ± 2.5   
   5 7   6.4 ± 1.6   
   5 14   7.2 ± 0.8   
7-Et-DALT F(1,10) = 0.11, NS 30 6 0 10.7 ± 1.7 ND ND 
   6 15   9.8 ± 1.8   
1ND = not determined (the compound was not active within the dose range tested). 
*p < 0.05, **p < 0.01, significant difference from the vehicle control group (Tukey’s test). 
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HIGHLIGHTS 
 
A new class of recreational drugs are derived from N,N-Diallyltryptamine (DALT)  
 
DALT derivatives are relatively nonselective for serotonin receptors 
 
DALT derivatives induce the head twitch response (a 5-HT2A-mediated behavior) in mice 
 
Both 5-HT2A and 5-HT1A receptors contribute to head twitch potency 
 


