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Highlights 

 NGS identified 16S taxonomic shifts in soil during subsurface decomposition.  

 Arthrobacter, Sphingobacterium and Pedobacter identified as microbial clock and 

season indicators for pig. 

 Sphingobacterium differentiated between pig and plant litter soil necrobiomes. 

 Devosia differentiated between control and treatment soil community compositions.   
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ABSTRACT 

To gain a better understanding of how environmental microbiota respond to cadaver 

decomposition, a forensic ecogenomic study was made with soil only control and 4 g each of 

S. scrofa domesticus and plant litter (Agrostis/Festuca spp) buried individually in a sandy clay 

loam (80 g) in sealed but perforated triplicate microcosms. The next-generation sequencing 

(Illumina Miseq) of the soil bacteria (16S rRNA gene) clade revealed seasonal taxomonic shifts 

at genus-level for the pig and plant litter microcosms compared to the non-burial controls. In 

particular, numerical abundances of Sphingobacterium (5.9%) and Pedobacter (24.1%)  for the 

pig microcosms, and Rhodanobacter (18.1%) and Shinella (4.6%)  for the plant litter 

microcosms, identified bacterial genera that could be tracked to establish a (seasonal) 

subsurface postmortem microbial clock. Also, family-level resolution revealed members that 

were unique to the control, grass and pig soils after 365 days. 

Keywords: Cadaver; Forensic ecogenomics; Sus scrofa domesticus; Plant litter; Illumina 

Miseq 

INTRODUCTION 

Characterization of soil microbial communities by culture-independent techniques has 

indicated their potential forensic applicability in estimating postmortem interval (PMI). 

Nevertheless, accurate PMI estimation still poses a challenge since soil is a complex 

heterogeneous habitat with diverse microbial communities. Thus, next-generation sequencing 

techniques such as 454-pyrosequencing, Illumina and Ion Torrent [1–5] have identified likely 

microbial taxa that are involved in and/or affected by cadaver decomposition [4,6–9]. 

Consequently, terms such as “microbiome”, “necrobiome” and “thanatomicrobiome” 

[1,2,10,11] have been applied and coined to describe microbial communities associated with 

decomposition. For example, Lauber et al. [2] reported changes in the necrobiome of mice 

(Mus musculus) during active and advanced decay with an increased decomposition rate in 

non-sterile soil. On a seasonal basis, Carter et al. [12] recorded variations in microbial 

communities from soil beneath a decomposing Sus scrofa domesticus and emphasised the 

importance of seasonality in PMI estimation. Also, Hyde et al. [5] observed changes in bacterial 
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community composition with decomposition stages where Ignatzschineria/Wohlfahrtimonas 

and Acinetobacter spp were predominant during the bloat/purge and skeletonization phases, 

respectively. Similarly, Pechal et al. [13] used swine carcasses and reported changes in 

bacterial communities at phylum and family taxonomic levels and suggested that the shifts 

could be used to estimate and define unique decomposition intervals. Thus, Metcalf et al. [1] 

and Pechal et al. [13] advocated the utility of the microbial community as a potential 

“postmortem microbial clock”. 

Although these studies highlighted the potential and relevance of forensic ecogenomics, 

more investigations are needed to elucidate fully the complex interactions between cadaver 

decomposition and the impacted surrounding soil ecology. Towards this, microbial community 

dynamics of soil only (control), S. scrofa domesticus and plant litter (Agrostis/Festuca spp) 

decompositions were characterized in a 365-day (Study II) microcosm study. The experimental 

design facilitated specific research objectives to: 

(i) Identify the 16S bacterial and 18S eukaryote soil community compositions 

during decomposition;  

(ii) Determine taxa that reflect seasonal changes; and 

(iii) Measure the predominance of (similar) taxa as a result of S. scrofa domesticus 

and plant litter (Agrostis/Festuca spp) decomposition. 

MATERIALS AND METHODS 

Soil collection and processing. As detailed previously by Olakanye et al. [14], sandy 

clay loam was collected from a site at Bishop Burton College of Agriculture, Lincolnshire, 

U.K. (Lat. 53.27°N, Long. 0.52°W) for Study II. The soil was milled thoroughly (Retsch SM 

100, Retsch, Haan, Germany) and sieved (ASTM - standard soil sieve No 10; 2 mm mesh; 

sterilized by autoclaving at 120°C, 15 psi for 20 min) to ensure homogeneity. The microcosms 

were filled with the fine soil fraction and maintained outdoors (Teesside University, 

Middlesbrough, U.K.; Lat. 54.5722° N, Long. 1.2349° W). 

Experimental design and sampling. As reported previously [14], triplicate 

microcosms  (polyethylene, 127 ml, 50 x 70 mm; VWR, Lutterworth, U.K.) were established 
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for each of the control (80 g soil), S. scrofa domesticus (soil + 4 g pig) and Agrostis/Festuca 

spp (soil + 4 g plant litter) to enable destructive sampling on days 7, 14, 28, 60, 120, 180, 300 

and 365 between July 2013 and July 2014. These microcosms were perforated every 7 mm 

(width) x 35 mm (height) for hygiene maintenance, aeration and moisture migration. The soil 

nutrient properties, pH and temperature measurements are presented in Olakanye et al. [14]. 

DNA extraction and next-generation sequencing. Soil DNA was extracted from the 

control, plant litter and pig microcosms as described previously [8] with FastDNA®Spin Kit 

for Soil (MP Biomedicals, U.K.) according to the manufacturer’s instructions and stored at -

20°C until needed. Triplicate extracts from days 0, 28, 180 and 365, representing the months 

of July 2013 (summer), January 2014 (winter) and July 2014 (summer), were pooled for the 

control, plant litter (Agrostis/Festuca spp) and S. scrofa domesticus soils and used for 16S 

rRNA gene analysis. 

All samples were sequenced with Illumina Miseq platform (Research and Testing 

Laboratory, Lubbock, Texas, U.S.A.) with the primer sets 28F/519R (16S bacterial gene; V1 – 

V3 region; 5’-GAGTTTGATCNTGGCTCAG-3’/5’-GTNTTACNGCGGCKGCTG-3’) [15]. 

The raw sequences were processed in FASTQ format, merged with PEAR Illumina paired-end 

read merger and converted into FASTA formatted sequences for quality checking and filtering. 

Operational taxonomic unit selection was made with UPARSE and Chimera checking was 

performed using UCHIME executed in de novo mode. Taxonomy was assigned using 

USEARCH global search algorithm (http://drive5.com/usearch/), while the phylogenetic tree 

was constructed using MUSCLE (www.researchandtesting.com/“version 2.2.4”). 

Data analyses. The relative abundances (%) of microbial taxa were determined as the 

number of operational taxonomic units (OTUs) reads relative to the total number of OTUs 

reads for all the samples [16]. Unclassified OTUs were filtered out and only OTUs >3% 

(relative abundance) were plotted. Alpha diversity was estimated with Shannon diversity [17]. 

The phylogenetic distance matrices were analysed using Bray-Curtis dissimilarity with 

nonmetric dimensional scaling (NMDS). A heatmap was constructed for family relative 

abundances (>0.3 %) using the gplots package (R version 3.3.2, gplots version 3.0.1; R Core 

Team) with increasing colour codes from grey to yellow. Differences at family-level taxonomic 

http://drive5.com/usearch/
http://www.researchandtesting.com/
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resolution between control and treatments (plant litter and pig) were analysed by 

PERMANOVA (PAST 3.10, 2015). Pair wise multiple comparisons after a multi-way ANOVA 

with Tukey (HSD) post hoc tests (p < 0.05) were used to analyse significant differences in 

OTUs between the control, treatments and seasons [4,16,18,19].  

RESULTS 

16S taxonomic resolution. The control, Agrostis/Festuca spp and S. scrofa domesticus 

microcosms recorded a total of 212 248 sequences for days 0, 28, 180 and 365 combined (Table 

S1). On day 0, Proteobacteria accounted for ≥ 50% of the total community with 

Hyphomicrobium, a genus consisting of chemoorganotrophic rod-shaped denitrifying bacteria 

[20], belonging to Alphaproteobacteria, dominant. Overall, four phyla, Actinobacteria, 

Proteobacteria, Bacteroidetes and Firmicutes, were numerically dominant across all three 

microcosms with Bacteroidetes recording increased abundance in the pig microcosms on day 

365 (summer 2014) (Table S1). 

Analysis of dominant taxa at family-level, including Micromonosporaceae, Rhizobiaceae, 

Planococcaceae, Xanthomonadaceae, Hyphomicrobiaceae and Sphingobacteriaceae, 

highlighted temporal and seasonal 16S community composition shifts with decomposition as 

revealed by the heatmap (Fig. 1). For example on day 28, Rhizobiaceae showed differences 

between all three microcosms with, generally, increased relative abundance in the presence of 

Agrostis/Festuca spp. Likewise, Planococcaceae and Micromonosporaceae showed increases 

on day 28 for the pig treatment compared to both the control and plant litter microcosms. On 

day 180 (winter 2013), the pig microcosm recorded Staphylococcaceae as the only taxon shift. 

Unique taxa shifts were recorded exclusively for the control, plant litter and pig microcosms 

on day 365 (summer 2014). For example, Norcardioidaceae, Comamonadaceae, 

Alicyclobacillaceae and Bradyrhizobiaceae characterised the control while Nocardiaceae, 

Alcaligenaceae, Micrococcaceae and Hyphomicrobiaceae were unique to the pig soils. Finally, 

Xanthomonadaceae and Sphingobacteriaceae were the only families that recorded increased 

numerical abundances that were distinctive to the plant litter and pig soils, respectively. The 

PERMANOVA analysis between the control and treatments showed no significant difference 

(p = 0.055).  
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Pairwise comparison with Turkey post hoc identified OTUs that recorded statistically 

significant differences at family-level resolution between the control and treatment soil samples 

(Table 1), and due to seasonal differences (Table 2). For example, Micrococcaceae, Gram-

positive aerobic bacteria, Sphingobacteriaceae, Staphylococcaceae, Gram-positive facultative 

anaerobic bacteria [21], and Alcaligenaceae, aerobic Gram-negative rod or coccobacilli 

chemoorganotrophic bacteria [22], which was associated with advanced stages of 

decomposition [1], were statistically significantly different (p < 0.05) for the pig interment 

when compared to both the control and Agrostis/Festuca spp litter microcosms (Table 1). 

While Alicyclobacillaceae, aerobic Gram-positive chemoorganotrophic bacteria, and 

Comamonadaceae, aerobic Gram-negative bacteria commonly found in soil and water habitats 

[23], were significantly different (p < 0.05) for the control microcosm, only 

Xanthomonadaceae, aerobic Gram-negative straight rod obligate bacteria [24], were 

significantly different (p < 0.05) for the plant litter microcosms. Also, Alicyclobacillaceae 

recorded a statistically significant difference for the control compared to the plant litter and pig 

treatments (p = 0.001). 

Seasonal taxa differences (Table 2) were recorded mostly during summer 2014 with clades 

such as Micrococcaceae, Sphingobacteriaceae, Alicyclobacillaceae, Comamonadaceae, 

Xanthomonadaceae and Alcaligenaceae significantly different (p < 0.05) when compared to 

summer and autumn 2013. Only Staphylococcaceae was significantly different (p < 0.05) 

during winter 2013. Uniquely, Micrococcaceae, Caulobacteraceae and Alcaligenaceae 

recorded statistically significantly different abundances for the pig compared to the control and 

plant litter microcosms, and then between summer 2014 and the other two seasons.  

The Shannon index plot (Fig. 2) showed no statistically significant differences (p > 

0.05). However, the two-dimensional NMDS (stress = 0.15) of the bacterial community 

structure at genus-level identified temporal differences with days 28 (summer 2013) and 180 

(winter 2014) significantly different from day 365 (summer 2014) (Fig. 3). For example, 

Hyphomicrobium and Solirubrobacter decreased from 6.78% and 2.89% on day 0 to <1% and 

below detection on day 365, respectively (Fig. 4). Also, Kribella was detected (5.45% – 

10.84%) until day 180 but not on day 365. In contrast, dominances of Rhodanobacter (18.12%) 



 

8 
 
 

 

 

 

and Dyella (3.04%) were recorded only on day 365 for the Agrostis/Festuca spp microcosm. 

While Rhodanobacter was dominant at the same sampling time from the pig microcosm, 

Dyella was not detected. 

Other taxonomic shifts included increases in the relative abundances of Shinella 

(4.63%), aerobic Gram-negative nitrogen-fixing symbiotic bacteria [25] and aerobic Gram-

positive bacteria [21,26] Micromonospora (16.27%) and Sporosarcina (3.72%) on day 28 for 

the plant litter and S. scrofa domesticus treatments, respectively. This contrasted the dominance 

of Actinoplanes (3.24%), Gram-positive spore-forming mycelium aerobic bacteria [26], and 

Solirubrobacter (8.37%), Gram-positive aerobic bacteria [26], for the control microcosms. In 

addition, a seasonal shift from summer to winter between days 28 and 180 resulted in the 

dominance of Bacillus for the control and treatments.  

Together with overall community structure differences with time, taxa abundances 

were examined further to identify treatment-specific indicators, particularly on day 365. Thus, 

the subsequent seasonal change from winter to summer resulted in a dominance of 

Proteobacteria for both the control and plant litter microcosms, which contrasted a dominance 

of Bacteriodetes in the S. scrofa domesticus treatment and a specifc predominance of 

Firmicutes in the control soil. Variations at the genus-level characterized the three microcosm 

types with the presence of Alicyclobacillus and Tumebacillus, aerobic Gram-positive 

chemoorganotrophic bacteria from the family Alicyclobacillaceae [21], and 

chemolithoautotophic Bradyrhizobium [27] for the control and Rhodanobacter for the 

Agrostis/Festuca spp treatment. Also, increases in Rhizobium, Gram-negative symbiotic 

bacteria of the phylum Proteobacteria involved in nitrogen fixation, deamination, 

ammonification and denitrification [25], were recorded for the control and plant litter 

microcosms. Likewise, the pig microcosms were characterized by Rhodococcus, Arthrobacter, 

Pedobacter, Devosia and Sphingobacterium, aerobic Gram-negative bacteria from the family 

Sphingobacteriaceae that contain sphingophospholipid and ceramides in their cell membranes 

[28]. Specifically, the S. scrofa domesticus microcosms recorded dominances of Pedobacter 

(24.14%) and Devosia (6.31%) compared to the plant litter (1.31%; 1.78%) and control (0.01%; 

0.15%) (Fig. 4). Also, Sphingobacterium was absent in the plant litter microcosm but recorded 
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a 5.92% dominance in the S. scrofa domesticus treatment. Similarly, Arthrobacter and 

Rhodococcus were not recorded for the control but were present at 4.85% and 3.53% 

abundances, respectively, in the pig treatment.  

DISCUSSION 

Cadaver decomposition is a complex process that affects the soil microbiota. The ability 

to identify components that are involved actively in and impacted by decomposition, 

irrespective of the cadaver microbiome, justifies further the relevance and applicability of 

cadaver/soil ecology interaction analyses for postmortem interval and time-since-burial 

estimations. The use of next-generation sequencing techniques in necrobiome studies as a 

potential PMI tool has aided the identification of microbial taxa that are involved in 

decomposition [1,2,5]. According to Metcalf et al. [29], approximately 40% of the total soil 

microbiota are involved at the onset of decomposition at low relative abundance.  

To better understand key temporal and seasonal interactions between soil ecology and 

cadaver decomposition, we compared microbial community dynamics in the presence of two 

different carbon sources: S. scrofa domesticus, as a human taphonomic proxy; and 

Agrostis/Festuca spp, as a non-animal organic material. Overall, the 16S community structure 

varied in the presence of pig and plant litter. Although common to most soils, dominances of 

Proteobacteria; Actinobacteria; Bacteroidetes and Firmicutes as also reported in forensic 

contexts [4,5,10], were consistent with this study where they accounted for approximately 90% 

of the bacterial phyla. Specifically, the phylum-level taxonomic community shifts resulted with 

decreases in Proteobacteria and increases in Actinobacteria and Firmicutes as reported 

previously [5,7,13], but on day 28 for this study. Characteristically, these taxa have been 

associated with soil microbiota, the human microbiome and meat spoilage [30].  

Ubiquitous families such as Micromonosporaceae and Bacillaceae were recorded for 

the entire decomposition timeline but with the former, in particular, recording highly consistent 

relative abundances throughout the trial. The taxon would, therefore, be an identifier for this 

soil type but neither a target for pig/plant litter decomposition nor a microbial clock indicator. 

In contrast, Staphylococcaceae was recorded solely for the S. scrofa domesticus treatment after 

180 days with no specific differentiators for the control and Agrostis/Festuca spp soils, making 
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this family a decomposition indicator for the human analogue and winter season. Further to 

this, new families that were often exclusive of one treatment or the control highlighted temporal 

divergences, which were considerably pronounced on day 365. Thus repeat studies on this soil 

type, using the same decomposition substrates and timeline, could target the temporally unique 

families towards understanding the dynamic processes within the soil necrobiome community.  

While Cobaugh et al. [4] observed the presence of Shinella in the advanced stage of 

human cadaver decomposition, we observed its dominance in the plant litter microcosm only, 

and during early decomposition. The dominance of Solirubrobacter on day 28 (summer 2013) 

for the control soil microcosm contrasted the work of Carter et al. [12] who reported increased 

abundance of Solirubrobacterales in the winter period. Additionally, the presence of 

Staphylococcus, Gram-positive facultative anaerobic bacteria [21], for the S. scrofa domesticus 

microcosms on day 180 identified a useful community temporal and seasonal indicator for 

winter in this soil type. Although increases in the relative abundance of Sphingobacteriaceae 

(Bacteroidetes phylum) have been reported previously during decomposition [1,12], we 

observed its increase in the pig microcosm particularly on day 365 during summer 2014.  

Taxa analyses, which emphasized dominance rather than presence/absence, suggested 

that Micromonosporaceae/Micromonospora were likely early (day 28) PMI indicators of pig 

decomposition at family/genus-level. Devosia, Sphingobacteriaceae/Sphingobacterium, 

Pedobacter and Xanthomonadaceae/Rhodanobacter were then seasonal (summer) PMI 

markers that also differentiated between pig and plant litter during late (day 365) 

decomposition. Furthermore, while Metcalf et al. [1] associated a predominance of the 

Xanthomonadaceae with mouse decomposition, its decrease in the S. scrofa domesticus 

microcosms aligned our findings to the work of Hyde et al. [5] and Pechal et al. [13] who used 

human cadaver and swine carcass as the animal model. In particular, the heatmap identified 

Sphingobacteriaceae as a key family indicator for summer and 365 days since interment. Also, 

Arthrobacter and Rhodococcus were ideal genus-level microbial clocks to differentiate 

between control and pig for the sandy clay soil.   

Some bacterial (Bacillus) members dominanted the soil controls in comparison with 

the S. scrofa domesticus burial soils and so excluded these genera as microbial clock indicators 
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for this soil type. Notwithstanding this, shifts in clades such as Sphingobacterium and 

Rhodanobacter provided evidence for 16S-based divergences between pig and vegetation 

decomposition. In particular, the sole incidence of Sphingobacterium and the marked 

dominance increase of Pedobacter in the presence of the mammalian taphonomic proxy, 

concomitant with the absence of the former in the control and plant litter micrososms, identified 

them as (seasonal) microbial clock indicators for the sandy clay soil. Similarly, some families 

were recorded exclusivly for the control, pig or plant litter soils at the end of the study. These 

genera/families could, therefore, be targeted to identify/and or predict the presence of a body, 

365 days after interment.  

Generally, the recorded divergences identified families and genera that could be useful 

microbial indicators in subsurface decomposition studies, for which there is considerable 

paucity. Notwithstanding this, the effects of time and season must be explored 

comprehensively and separately. They, therefore, mandate further robust and protracted 

experimental designs that consider: (i) different start (D0) dates, possibly from different 

seasons during the same calendar year; and (ii) the same start and end dates during similar 

seasons but in consecutive/different years. Thus the identification/differentiation of consistent 

(non-transient) temporal and seasonal microbial clocks for the same soil type and animal model 

would be attained.  

Initiatives such as the human microbiome [31] and thanatomicrobiome [19] projects 

aimed to identify and differentiate core and transient members that can be used to establish 

health and disease states, and be adopted as microbial clock indicators for enhanced PMI 

determinations, respectively. In parallel, and although outwith the forensic context, multi-team 

studies (e.g. Stone et al. [32]) have illustrated the utility of analysing microbial ecological 

dynamics of soils under similar and different management regimen, between similar soil types, 

and/or across geographical locations with different climatic conditions. Similarly, the effects 

of soil depth (surface, subsurface) and season (summer, winter) on microbial community size, 

structure and function were exemplified by Blume et al. [33] who recorded sesonal effects on 

subsurface population structure and activity. Notwithstanding this, changes and similarities in 
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soil ecology are typically dependent on several factors including experimental design, 

analytical method(s), site, soil type, depth, vegetation cover, etc. Therefore, concerted efforts 

are required for soil necrobiome profiling both aboveground and in the subsurface to establish 

the applicability of temporal- and seasonal-focused ecogenomic analyses in forensic scenarios. 

Ultimately, it is essential to study site-specific non-burial controls in protracted decomposition-

based investigations. This will elucidate the occurrences of both unique and universal soil 

microbial taxa within each site. 

CONCLUSIONS 

In summary, next-generation sequencing of pooled DNA samples for the forensic 

ecogenomics study identified taxonomic changes at both family and genus levels due to the 

presence of decomposing material, particularly S. scrofa domesticus, with temporal effects 

determined for the bacterial communities. This is the first research where microbial 

decomposer communities of two C/N sources were compared in a forensic ecogenomics 

context to further knowledge of necrobiomes. As reported in Olakanye et al. [8,14], DGGE-

based profiling identified spatio-temporal shifts in ecological indices between the burial and 

non-burial soils, generally, and relative to S. scrofa domesticus burial depth. The current trial 

reflects next-generation sequencing analysis where pooled DNA samples provided a 

preliminary investigation of bulk microbial taxonomic differentiation between the presence and 

absence of a decomposing human cadaver analogue, and in comparison to plant litter. The 

approach models real cases more closely where soil microbial community analyses, from trace 

evidence and often with no opportunities for replicates, would parallel other forensic 

intelligence gathering for suspected crime locations.  Our results suggested that non-burial and 

gravesoils can be differentiated at genus-level with the possibility of a bacterial clock for 

estimating postmortem interval/time-since-burial. 

While this study is novel and provided further insight of the soil necrobiome 

community, it was made with processed soils for maxima of 365 days. Therefore, we 

recommend more in situ investigations with unprocessed soils of different types, whole 

cadavers/mammalian proxies, various plant litters, different start dates within the same year 

and same start dates/seasons across different years, with relevant attendant 
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mathematical/statistical analyses, for comprehensive subsurface postmortem necrobiome 

community analyses. 
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FIG 1 Heatmap to visualize the relative abundances (%) of the most predominant bacterial 

families (>0.3%) for the control (C), plant litter (Agrostis/Festuca spp; G) and pig (Sus scrofa 

domesticus; P) microcosms on days 0 (D0), 28, 180 and 365. 

 

Summer 2014 Winter 2014 Summer 2013 
Relative Abundance (%) 



 

18 
 
 

 

 

 

 

  

FIG 2 16S bacterial taxa Shannon index diversity plot of pooled DNA samples for the control 

(C; ●), plant litter (G; ▲) and pig (P; ■) microcosms on days 0, 28, 180 and 365.
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FIG 3 NMDS (stress = 0.15) plot for 16S bacteria community at genus level for the control 

(C; ●), plant litter (G; ▲) and pig (P; ■) microcosms on days 0, 28, 180 and 365. 
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FIG 4 Bacterial taxa (genus) resolution of pooled DNA samples for the control (C), plant litter 

(Agrostis/Festuca spp, G) and pig (Sus scrofa domesticus, P) microcosms on days 0 (D0), 28, 

180 and 365. 
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Table 1 Family-level OTUs that are statistically significantly different (p < 0.05) 

between the control and treatments soils according to the least squares means (LS-means). 

Combinations sharing the same letter are not significantly different while those with no letter 

in common are significantly different (a, b, c) as calculated by multi-way ANOVA with Tukey 

(HSD) post hoc tests. 

OTUs (family) Control Plant Litter Pig p < 0.05 

Micrococcaceae 0.027 b 0.036 b 1.778 a 0.000 

Sphingobacteriaceae 0.112 c 1.458 b 10.034 a 0.000 

Alicyclobacillaceae 2.574 a 0.360 b 0.041 b 0.001 

Staphylococcaceae 0.000 b 0.017 b 2.495 a 0.000 

Caulobacteraceae 1.435 a 1.767 a 0.319 b 0.002 

Alcaligenaceae 0.097 b 0.324 b 1.125 a 0.003 

Comamonadaceae 1.157 a 0.603 b 0.089 c 0.002 

Xanthomonadaceae 1.241 b 7.688 a 0.471 c 0.000 

 

Table 2 Family-level OTUs that are statistically significantly different (p < 0.05) 

between seasons according to the LS-means. Combinations sharing the same letter are not 

significantly different while those with no letter in common are significantly different (a, b, c) 

as calculated by multi-way ANOVA with Tukey (HSD) post hoc tests. 

 OTUs (family) Summer 2013 Winter 2013 Summer 2014 p < 0.05 

Micrococcaceae 0.108 b 0.115 b 1.619 a 0.000 

Sphingobacteriaceae 0.014 b 0.003 b 11.588 a 0.000 

Alicyclobacillaceae 0.134 b 0.144 b 2.697 a 0.001 

Staphylococcaceae 0.003 c 2.317 a 0.191 b 0.000 

Caulobacteraceae 0.246 b 0.043 b 3.232 a 0.002 

Alcaligenaceae 0.161 b 0.040 b 1.346 a 0.003 

Comamonadaceae 0.125 b 0.015 b 1.709 a 0.002 

Xanthomonadaceae 0.289 b 0.018 b 9.093 a 0.000 

 

 


