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Deep gesture interaction for augmented anatomy
learning

Abstract

Augmented reality is very useful in medical education because of the problem

of having body organs in a regular classroom. In this paper, we propose to

apply augmented reality to improve the way of teaching in medical schools and

institutes. We propose a novel convolutional neural network (CNN) for gesture

recognition, which recognizes the human’s gestures as a certain instruction.

We use augmented reality technology for anatomy learning, which simulates

the scenarios where students can learn Anatomy with HoloLens instead of rare

specimens. We have used the mesh reconstruction to reconstruct the 3D speci-

mens. A user interface featured augment reality has been designed which fits the

common process of anatomy learning. To improve the interaction services, we

have applied gestures as an input source and improve the accuracy of gestures

recognition by an updated deep convolutional neural network. Our proposed

learning method includes many separated train procedures using cloud comput-

ing. Each train model and its related inputs have been sent to our cloud and the

results are returned to the server. The suggested cloud includes windows and

android devices, which are able to install deep convolutional learning libraries.

Compared with previous gesture recognition, our approach is not only more

accurate but also has more potential for adding new gestures. Furthermore, we

have shown that neural networks can be combined with augmented reality as a

rising field, and the great potential of augmented reality and neural networks

to be employed for medical learning and education systems.

Keywords: Neural network, augmented reality, 3D reconstruction, medical

education, mobile cloud
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1. Introduction

In pursuit of immersive human-machine interaction, researchers have ex-

plored the different interacting method with new input sources other than the

traditional mouse and touchpad. In augmented reality, gesture control is often

considered as an ideal interacting method, while leaving gesture recognition as

a crucial problem to study [1, 2, 3, 4]. In contrast to the traditional mouse,

the gestures to convey the same instruction are different in every person. Ges-

tures are also a dynamic process so that the duration of the gestures cannot be

fixed. Plus, except for the starting and ending positions, every other position

in the duration must be detected and track. In the previous work on gesture

recognition, gestures cannot be detected and tracked with satisfactory accuracy.

Meanwhile, the neural networks have achieved many unprecedented results in

deriving meaning and recognizing an object from complicated and vague time in

various fields. With this remarkable advantage, neural networks can be used to

extract patterns and detect the trends which used to be considered too hard for

computers. Thus, a trained neural network can be used to analyze the gestures,

such gestures are often more complicated comparing to click the mouse.

Successful and accurate gesture recognition can significantly improve the

sense of immersion and user experience. It especially has great potential in

medical teaching and learning where require high immersion to simulate the real

environment of operations or anatomy courses. Heard from medical school, the

professors and students are facing such dilemma that the number of anatomical

specimens is limited while the number of students keeps increasing. Students

have lacked the opportunity to have a close study of the specimens. There-

fore building a three-dimensional object can help understanding which cannot

require the textbook.
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Figure 1: General idea to utilize interactive learning based on augmented reality glasses.

In this paper, we propose a user interface of augmented anatomy learning

with gesture interaction based on the deep convolutional neural network. It

offers the functions which teacher can use it to replace the common anatomy

teaching process and students can use it to review anytime and anywhere. Also

as a tutor, it can be the best choice, for example, medical students by listening to

the recorded audio of their professors and using proposed application can learn

anything without joining to those courses directly. Fig. 1. shows the application

interfaces displaying human Humerus supporting labels on/off, scale, move, and

rotate function by gestures controlling. Students can operate the application

by Pan, Pinch, Fist, and Tap gestures which are recognized by a trained deep

convolutional neural network. The networks include a 3D convolutional neu-

ral network to merge and analyze the information from the depth camera and

RGB image. Furthermore, by using a cloud, the procedure of learning is getting

faster. In this method, the learning process should divide into some separated
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server and the results returned back to the main server. Besides the gestures

recognition, we have used the mesh reconstruction to 3D reconstruct the spec-

imens. We scanned the model from different view angles and then merge and

re-mesh the scanned meshes by the key points surface representation (KSR)

algorithm.

We have shown that neural networks as a rising field can be applied to aug-

mented reality for improvement. We also demonstrate the great potential of

augmented reality and neural networks to be employed for medical and edu-

cational usage. Before 2012, people mostly use principal component analysis

(PCA)to reduce dimension then feed to support vector machine (SVM) to rec-

ognize the hand gestures. After 2012, convolutional neural network (CNN) has

become an important tool for object recognition since ImageNet of Krizhevsky et

al. [5] have excelled results on the ILSVRC12 challenge. With high-performance

GPUs, CNN’s show great power on image recognition. Compared with other

neural networks, CNN’s take fewer parameters with better feature extraction

quality which are easier for training. Our architecture contains 26 layers except

for the Relu activation. The only sizes of filters here are 1x1 and 3x3. We

alternately use these two kinds of filters. All convolutional layers are followed

by fully-connected layers. The achievements made by this research include:

• To provide a low-cost and efficient way to reconstruct a 3D model from

divided meshes. Scanning objects are done by the rangefinder camera.

From the point, scanning of the whole part of a body organ is not possible

or at least the quality will decrease. We have divided the scanning into

small parts and merged them with KSR method;

• To provide a user-friendly interface, which meets the demands of medical

education. The improvement of the user interface is not only gesture

recognition, but also a new user interface is designed to interact with an

operator in an easy-using manner;

• To provide an efficient way to recognize human’s gestures by neural net-

works. By utilizing the convolutional neural network, the accuracy of the
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gesture recognition is improved and the operator is able to send a proper

command to the augmented reality application.

The remaining parts of the paper are organized as follows: Section 2 is about

related work. In Section 3, the details of our approach are presented. In Section

4, the experiments and analysis of our design are presented. The conclusions of

the paper go in Section 5.

2. Related work

The origin of human-computer interaction (HCI) to other areas of study

such as computer interface design, human factors, usability and specifically to

educational environments are examined [6] and now its a time for progress this

way to make it as convenient as possible. For the recent years, many approaches

have been proposed for the immersive human-machine interface and augmented

reality. We briefly review some studies related to mesh reconstruction, gestures

reconstruction, and neural networks.

Mesh Reconstruction. There are lots of methods to reconstruct a mesh model

by range sensors or scanners. RealSense camera is one of them that can do

the scanning with its SDK and tools. However, the result of the scanners is

not acceptable in some fields of usage; also it cannot build object just by one

try. Using poison to reconstruct a surface from oriented point samples acquired

with 3D range scanners is one of the famous methods in 3D reconstruction,

but it runs a risk that the data will be over smooth of Kazhdan et al. [7].

Calakli and Taubin [8] made efforts in incorporating positional constraints by

using poisson reconstruction algorithm. Furthermore, Kazhdan and Hoppe et

al. [9] proposed screened poison surface reconstruction. It is one of the best

surface reconstruction and already implemented in some tools and library such

as Meshlab and PCL. Another method to combine all mesh parts together is

about using iterative closest point (ICP) algorithm by Holz and Behnke [10].

They had proposed registration of non-uniform density 3D point clouds using
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approximate surface reconstruction that it can be used to merge all parts from

different angles and extract the full object mesh with reasonable quality. The

paper that is the main method of proposed approach is keypoints-based surface

representation by Shah et al. [11] that it got comparable results with all 3D key

points detectors.

Gestures Reconstruction. Gesture recognition has aroused considerable interest

in research with the increasing demand for human-machine interaction. Many

different models based on the spatiotemporal scheme have been used to solve the

problem of gesture detection and tracking. Nowozin and Shotton [12] proposed

hidden Markov model, which is used to track the movement. Wang et al. [13]

realized a more efficient way to recognize gestures in hidden conditional random

fields for gesture recognition. However, their model does not achieve the goal

of extracting higher-level features of hands. Also [14] have focused on using

Hierarchical Bayesian Neural Networks and active learning to personalize the

human gestures.

Neural Networks. Since the introduction of RGBD depth cameras like Kinect,

people not only try to use RGB data but also to use depth data for gesture

recognition. Wang et al. [13] attempt to use RGB-D data and one-shot learning

to train a gesture recognition model. Wan et al. [15] similarly, have applied

another method to apply deep learning to gesture recognition. In the article of

Neverova et al. [16], adaptive multi-modal gesture recognition is established by

using convolutional neural networks and deep learning. 3D convolutional neural

networks for human action recognition are then proposed by Ji et al. [17], they

applied calibrated and supervised videos to train 3D CNN to automatically

identify human actions. This model is able to get many high-level features

effectively from the video [18, 19]. Convolutional learning of spatiotemporal

features by Taylor et al. [20] also used 3D CNN to get Spatio-temporal features.

Wu et al. [21] then proposed deep dynamic neural networks for multi-modal

gesture segmentation and recognition.
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In the convolutional network, CNN’s proposed by Krizhevsky et al. [5] for

processing ImageNet promoted the advancement in image recognition. The

architecture of [5] consists five convolutional layers, some layers followed with

max-pooling layers, and fully-connected layers. They also refer to neurons with

nonlinearity as rectified linear units (ReLUs). In 2014, A CNN structure to

further improve the original architecture for processing ImageNet is proposed

by Simonyan and Zisserman [22] to make use of the deep representation of

a network with small 3x3 filters for all convolutional layers. GoogLeNet by

Szegedy et al. [23], a 22 layers deep network, won ILSVRC14, this architecture

uses 12x fewer parameters than the architecture of Krizhevsky et al. [5], while

being more accurate (6.67 vs 16.4 top-5 error rate). Also, it removes FC layers

completely. ResNet by He et al. [24] is ILSVRC 2015 winner, 8x more layers

than VGG nets [22] but faster at runtime. In this architecture, they introduce

a deep residual learning framework with batch normalization after every Conv

layer.
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Figure 2: The overview of extracting the KSR features from the scanned results. (a) Scanning

the object from different view angle. (b) Detecting the keypoints. (c) Calculate the distances

from one feature to another (d) Selecting the KSR features. (e) The results of KSR.

3. Approach

3.1. Mesh reconstruction

3.1.1. Scan by range finder

We have used RealSense camera to scan our objects. The overview of extract-

ing the KSR features from the scanned results is shown if Fig. 2. Regular photo

and video will be recorded by a standard 2D camera but RealSense camera is

used an infrared camera and an infrared laser projector to detect its distance to

every point of faced objects, and it can separate its target from the background.

This device comes in three different types: front-facing, rear-facing, and snap-

shot. These days, the front-facing cameras are most common type because it

supports more operating system and allowing all kinds of games and application

to use it. However, in this experiment, we have selected the front-end version

to scan the human’s skeleton. We had to move the camera around our object

8



to scan one side of it. It is an impossible task to make a complete model by just

single time scanning. Thus, in this paper, we propose to use scanner more than

one time and merge all parts together. In the first step, the model should have

scanned from different view angle, save them and make them ready for the step

of mesh registration. A demonstration of scanning an object from a single side

is shown in Fig. 3.

Figure 3: Scan an object from single side. The camera should be moving around our object

as much as possible (less than losing the quality).

3.1.2. Merge the divided point clouds

There will be some meshes that have scanned from different view angles.

Therefore, they need to be merged and become a complete object mesh. The

state-of-the-art KSR method by Shah et al. [11] is one of the best methods to

merge our meshes into a full object’s mesh. Through this algorithm, the geo-

metrical relationship of detected 3D key points for local surface representation

will appear. It will output the transformation between point clouds and refer-

ence surfaces. KSR is computationally efficient and fast. It has done its task by

detecting the key points and then making subsets from them. These subsets are

used to make KSR vector that is the main part of merging task. Meanwhile, the

scanned parts are important to be clear and have some common feature with

other parts. After achieving the KSR features and attaching the local reference

frame (LRF) to the features, DOG keypoints detector by Darom and Keller [25]
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has been used to get the matched point cloud. Fig. 4 has briefly shown the

procedure of merging the separated meshes of an object to full mesh.

Figure 4: Mesh registration procedure: (a) Dataset from the previous process of extracting

KSR features and LRF data (b) The input of the registration process (c) DOG have been

used to match the input KSR features. (d) Put the meshes together to get the complete mesh.

Each color is connected with one of the mesh parts.

3.2. User interface design

3.2.1. Overview

After research on the current anatomy course in medical school, teachers

usually, follow such process: (1) Introducing the general information of a cer-

tain part; (2) Decomposing the object into several components and show them

with real specimen or picture; (3) Labeling out all the names of each part on

the component; (4) Explaining each part and show their position by virtual

specimen or pictures. To cover the medical professor needs, the labeling should

be precise and the labels have to be in 2 languages: English and Mandarin lan-

guages. In order to scan the body organs and to pointing the labels on the right

part, a group of medical students has been helping us. At the end of making a

complete 3D model, we have a painted model by vertex colors that helped us
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to recognize right parts and pair them with connected labels.

Figure 5: User interface designed to reach our needs in medical school. Left: Whole body

menu; Right: The user interface displaying Human Humerus supporting gestures controlling

and cellphone APP. The menu will appear in front of the operator based on initial pattern

position at setup time.

3.2.2. Existing problems and our design

The real specimens amount is limited and some specimen must be kept in a

certain preservation solution. Not all students can have a close look at it and

none of them can take one home for review. On the other hand, if the teachers

use pictures to conduct the education, although students can observe the picture

as much as they want. Therefore, the user interface must meet the following

requirements: (1) Provide the general information in text format first; (2) Show

the model which is 3D Reconstructed from the real one; (3) Enable people to

Zoom, Move, Rotate the model by gestures; (4) Label out all the names of each

part of the component; (5) Hide the labels for quiz mode. The user interface is

built by Unity3D and realized all the function mentioned above. Meanwhile, the

gesture recognition is left for the trained model of neural networks to achieve

more user-friendly interaction for aged and experienced teachers.

3.3. Deep convolutional neural networks

3.3.1. Preprocessing

One of the most important parts of learning method is preprocessing part

but to use deep learning, in most of the cases the preprocessing is done inside
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of the network. On the other hand, with the use of convolutional layers, we can

recognize the best features to get the acceptable result. In order to decrease the

learning process and improve the rate of recognition, we have done some steps

of preprocessing to make the gestures ready to proposed deep neural network.

Without doing the preprocessing the position of the gesture and also noise had

affected to our network and caused to make us use more layer and consume

more time to get the favorite results.

Figure 6: The preprocessing procedure. (a) Original image (b) Cropping image (c) Making

negative of gray values (d) Thresholding (e) Eroding.

As it has shown in Fig. 6, we get images directly from the dataset and edit

them to achieve the gesture with as less as possible noise. At the first step, our

specific dataset has the tiny noises on its borders. Sometimes because of the

sitting the operator behind a desk, we have some irrelevant objects around our

depth images which affected to our results; such as desk, camera cable, PCs

and etc. To remove these things from the images we just have to remove the

borders. The size of borders is depending on the dataset. In our experiment,

we set it to 50 pixels. The raw result of the real sense camera is different from

the others; the nearest point is darker than the far points. To make it such as

other depth camera and make it more understandable to human vision, we have

made it negative; nearest points are brighter than the far points and then the

image is ready for thresholding. As it’s clear in Equation 1.

A = vMax − I

B =

 0 , Ax < t

Ax , Ax ≥ t

(1)

where, vMax is the maximum gray level of our images, I is the original image,
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A is the negative image, Ax is pointed to each pixel of the negative image,

t is the threshold and B is the result of thresholding. On thresholding step,

the minimum and maximum of the threshold level must be defined. But these

parameters are directly related to the distance of the camera from the user

hand gestures [26]. Therefore, the parameters must be set based on our target

dataset. You can follow the sample in the fourth step of Fig. 6. It has shown

the thresholding results. In this result, there are so many tiny white pixels that

appeared because of the noise in the depth camera. The main emphasis is to

use morphological methods to remove this kind of noise. Thus erosion has been

used to get the fifth step of Fig. 6.

Figure 7: Step 2 of the preprocessing procedure. (a) Eroded image (b) Dilating image (c)

Multiply the result to original image (d) Cropping the max area (e) Result of subtracting min

value from the gesture pixels.

The Step 2 of the preprocessing procedure is illustrated in Fig. 7. At this

step, the white pixels are disappeared but still, some of the important parts of

user’s hand are noisy. In this part, we have to fill the empty part and pixels of

the gestures. Hence by applying the dilation method with disk size 1, the clearer

gesture has appeared, also you can follow this procedure in the Equation 2.

C = (B 	HE) ⊕HD (2)

where HE is the structuring element of erosion, HD is structuring element of

dilation and C is the result of morphological noise removing’s part. On this

step, we have a clear black and white gesture image but the proposed network
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needs to have the depth data of our gestures. Also cropping the gesture area

was one of our goals to have a better input of proposed CNN. Accordingly, in

this step, we multiply the back and white image to the negative of the original

image. In the result, the black side is disappeared and white side is replaced

with original negative pixels (Fig. 8 step 3).

Figure 8: Convolutional network architecture. It should train for every gesture separately.

It starts from 32x32 image and by decreasing the size through the network, the number of the

Conv layer is increased.

In order to get the gesture area, the maximum value of the gesture has

been found and then window size 112x112 is cropped from this area that the

Equation 3 is shown this method.

D = Max(C × I)area (3)

where D is the result of preprocessing image. It has been shown in step 4

of Fig. 8. Step 5 just makes it more clear to human vision and is a step

of the normalizing value of gesture’s pixel. To do this, the minimum value

was subtracted from the whole gesture points. After doing these steps, the

preprocessed dataset is ready to import as an input to our proposed neural

network.

3.3.2. Network architecture

The input of our network is 32x32 depth images and We have used 3x3

convolutional layers. The stride for all convolutional layers is 1 pixel. The
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first layer in our architecture has 32 filters with size 3x3 and padding 1. The

next convolutional layer has channel size 64 and the filter size is 3x3 and no

padding. Filters of the same amount are used to maintain the dimension. In this

architecture, the stride of max-pooling layers is 2 and after max-pooling layer,

the feature map size is halved. We have doubled the filter number to preserve

the whole size per layer. After convolutional layers, a fully-connected layer with

11 channels is followed. Finally, a SoftMax layer has used in calculating the

loss. Except for those linear transformation, we add rectification (ReLU) non-

linearity as the activation function [5]. ReLU is very computationally efficient

and converges much faster than sigmoid or tanh.

One of the challenges of the learning method and especially deep learning is

being time-consuming. Sometimes training for a small dataset takes more than

a day. In order to improve the speed of our training, the cloud server is used.

Fig. 9 is shown the proposed procedure of using cloud computing. In fact, the

input and model of each gesture should send to one specific device to train. In

our cloud part, not only the PCs but also Android devices have been used. This

task was down by installing Tensorflow library on windows and android devices

such as mobile phones and tablets and etc. Therefore, at the first stage, the

cloud server is categorizing the train procedures and then related Tensorflow

commands and related inputs will be sent to connected PCs or mobile devices.

Thus the proposed cloud has divided into 2 main parts: console cloud and mobile

cloud.
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Figure 9: Procedure of using cloud in order to increasing the speed of training level.

3.3.3. Difficulties and challenges

However, in the implementation, we have found that the proposed network

has good performance in a wide range gestures. In the case of several handshak-

ing or rapid movement, it lost the hands’ position and also cannot recognize the

gestures well. This may be due to very little training data about the blurred

situation that it appeared because of the motion. Therefore, if hands move

rapidly, the neural network cannot correctly identify the location of the hand.

However, in the interaction of augmented reality programs, we often need a wide

range of hands movement. Also losing the hand’s position or any failure is not

acceptable. That is the reason that makes us improve the existing model. On

the other hand, to load many meshes just in one application of AR glasses is an-

other challenge. To overcome this step, the application should be a low process

and sometimes use some other applications to optimize our reconstructed mesh

is necessary. Finding a more optimized way to render or making the low-poly

meshes without losing quality is the other challenges in this research.
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4. Experiments and analysis

4.1. Gesture recognition: Deep convolutional neural network

The 11 gestures such as Pan, Pinch, Fist and etc. have been trained in our

network which has been made in the dataset of Memo et al. [27]. In this part

of the project to recognize the hand gestures, the RealSense camera has been

used. We should mention that Hololens has a range camera but its quality was

not enough to the proposed method. The preprocessing was done and then the

gestures were set as standard inputs and tested in different layers and trains

of the model respectively. Also, we record the recognition statistics in a real

scene. Results of two kinds of testing are listed below. Table 1 is a result of

cross-subject method, and Table 2 is result of cross-validation method. To cross

subject testing every group of the samples should separate into 2 parts: Half

for training and the half for testing. But in cross-validation method, we have

to divide the samples into 4 parts, 3 for training and 1 for testing. Also in

cross-validation after first training, the results are stored and train should be

started with 3 other groups. Thus the train must repeat 4 times and at the end,

the mean of these 4 trains is our final result. As in Table 1 and Table 2, each

row shows the results of testing the network on a specific gesture. For instance,

Table 1, row 1 is shown the average rate of estimation with 97 percent accuracy.

In order to get the superiority of proposed method, the results are compared

with the results of Memo et al. [27]. Proposed method accuracy was interesting

but the advantages of the proposed method are more than a just recognition

rate. By performing the preprocessing, our proposed approach is trustable and

more extendable in comparison with [27]. The output of preprocessing layer is

small and cropped image that is affected by the speed of the network in both

training and testing process. Also, this method is removed the background

pixels hence the network doesn’t need to process the ineffective data. In the

CNN part, the result of [27] was fine but we have got extremely better results

which are shown in Table 3 and Fig. 10.
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Table 1: Cross subject testing results. The gestures should be divided into two parts, one for

training and one for testing. This table shows the results of the networks for every gesture.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

G1 0.97 0 0 0 0.02 0 0 0 0 0.02 0

G2 0 0.98 0 0 0 0 0 0.02 0 0 0

G3 0 0 1 0 0 0 0 0 0 0 0

G4 0 0 0 0.98 0.02 0 0 0 0 0 0

G5 0.02 0 0 0.05 0.92 0 0 0 0.02 0 0

G6 0 0 0 0 0 0.97 0 0 0.02 0 0.02

G7 0 0 0 0 0 0.02 0.98 0 0 0 0

G8 0 0 0.1 0 0 0 0 0.87 0.03 0 0

G9 0 0 0 0.02 0 0 0 0.08 0.9 0 0

G10 0.13 0 0 0 0 0 0 0 0 0.87 0

G11 0 0 0.05 0 0 0 0 0.07 0 0.12 0.77

Table 2: Cross validation testing results. The gestures should be divided into four parts,

three for training and one for testing. This procedure has been performed for four times, and

the results is the mean of the four testing outputs.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

G1 1 0 0 0 0 0 0 0 0 0 0

G2 0 0.93 0.01 0 0 0.01 0.01 0.02 0 0.03 0

G3 0 0 0.99 0.01 0 0 0.01 0 0 0 0

G4 0 0 0 0.99 0 0 0 0 0.01 0 0

G5 0 0 0 0 1 0 0 0 0 0 0

G6 0 0 0.02 0 0 0.98 0 0 0 0 0

G7 0 0 0 0.03 0 0 0.94 0 0 0.03 0

G8 0 0 0 0.02 0 0.01 0 0.93 0.02 0 0.03

G9 0 0 0.01 0 0.01 0 0 0 0.99 0 0

G10 0.01 0 0 0 0 0 0 0 0.02 0.96 0.02

G11 0 0 0 0 0.01 0.01 0 0 0.01 0.06 0.92
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Table 3: Comparison between 3D array from Memo et al. [27] and our proposed CNN

approach with the cross-validation and the cross-subject testing methods.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 mean

3D array 0.94 0.84 1 0.88 0.88 0.88 0.8 0.93 0.82 0.92 1 0.9

Ours (Cross Subject) 0.97 0.98 1 0.98 0.92 0.97 0.98 0.87 0.9 0.87 0.77 0.93

Ours (Cross Validation) 1 0.93 0.99 0.99 1 0.98 0.94 0.93 0.99 0.96 0.92 0.97

Figure 10: Correctness rate with different model, the solid line is our proposed method and

the dotted line is from 3D array method. The left one is the proposed method’s result by

cross subject testing method and the right one is come from cross validation testing method.

4.2. Interactive learning parts

To implement a real application in AR glasses, we need to have a camera

to get gesture directly from the operator and recognize the meaning of that

gesture by passing it through CNN. We have implemented 4 applications to

achieving the goal of interactive learning in medical schools: 1- first of all,

our CNN network that has implemented in Tensorflow library by using Python

language that is already explained in section 3. 2- An application in HoloLens

augmented reality glasses. This application has divided important parts to doing

the interactive learning: First of all, we can mention our novel user interface

design. Fig. 5 is shown the parts of this design. The second feature shows the

3D body organ mesh with all labels. The third is our gesture recognition method
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that helps the operator to interact with the application by their gestures. 3-

Interaction with the application is one of the important parts, thus to make it

easier, the cellphone APP has been made that it can control every parameter

and action, by sending the commands through the UDP network protocol. 4-

Scanning the body organs are done by real sense camera, but to merging every

part of the scanned mesh, the mesh reconstruction was made that it already

explained in section 2.

Figure 11: The hand area should be found and crop from the main depth image. By sending

the cropped image to trained CNN, and recognizing the gesture, target command is selected.

The commands are sent through the socket programming on the active wireless network to

the target AR Glasses.

The learning method includes some parts which are easy to use and clear to

understand to both professors and students. As an instance, we can mention

displaying a human body, muscles, vessels, skeleton as user interface menu.

Professors of medical school can wear the HoloLens glasses and see the starting

menu. To see the details of one of the parts of human body, they have to select

that part with their gestures. If they want to select a part they just have to

do the Tap gesture that is already defined in HoloLens glasses. But if the body

organ was selected and the labeling is shown, they are able to change the labeling

to the next or previous one by using our predefined gestures. An illustration

of gesture processing is shown in Fig. 11. At the end of implementing the

proposed method, we have honored to hold the first interactive learning course

at Shanghai Jiao Tong University.
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5. Conclusions

In this paper, we discuss the future trends that combining neural networks

and augmented reality to achieve immersive experience and user-friendly oper-

ation. It is obvious that augmented reality has much better performance in dis-

playing three-dimensional view than any traditional methods. Considering the

demands of realistic experience from medical school when teaching anatomy and

the specimen shortage, we try to apply augmented reality in medical anatomy

learning. In the process of practice, we try to solve the mesh reconstruction

and UI interaction design. At the same time, we no longer want to use the

traditional devices as an input source, and hope to use gesture in 3D space to

interact. For this purpose, we use the trained neural networks with an RGB-D

camera to recognize hand’s position and tracks three-dimensional path. Finally,

we achieve a good result. In the future of augmented reality development, the

reality and virtual interaction will become increasingly important, and this must

involve a large variety of people’s behavior patterns to detect and track, and

this is where we need to combine the augmented reality and neural networks.

Up to this point of our research, for thresholding step of the operator have

to set the threshold parameter manually, based on the distance of camera and

operator. As a future plan, we need to improve this method and remove any

interfere in preprocessing methods. Also shaking the hand and rapid movement

was another weak point of this method that pushing us to continue this research

until achieving the best performance.
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