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Abstract 

Field based forensic tests commonly provide information on the presence and identity of biological 

stains and can also support the identification of species. Such information can support downstream 

processing of forensic samples and generate rapid intelligence. These approaches have traditionally 

used chemical and immunological techniques to elicit the result but some are known to suffer from a 

lack of specificity and sensitivity. The last 10 years has seen the development of field-based genetic 

profiling systems, with specific focus on moving the mainstay of forensic genetic analysis, namely STR 

profiling, out of the laboratory and into the hands of the non-laboratory user. In doing so it is now 

possible for enforcement officers to generate a crime scene DNA profile which can then be matched to 

a reference or database profile. The introduction of these novel genetic platforms also allows for further 

development of new molecular assays aimed at answering the more traditional questions relating to 

body fluid identity and species detection. The current drive for field-based molecular tools is in response 

to the needs of the criminal justice system and enforcement agencies, and promises a step-change in 

how forensic evidence is processed. However, the adoption of such systems by the law enforcement 

community does not represent a new strategy in the way forensic science has integrated previous novel 

approaches. Nor do they automatically represent a threat to the quality control and assurance practices 

that are central to the field. This review examines the historical need and subsequent research and 



developmental breakthroughs in field-based forensic analysis over the past two decades with particular 

focus on genetic methods. Emerging technologies from a range of scientific fields that have potential 

applications in forensic analysis at the crime scene are identified and associated issues that arise from 

the shift from laboratory into operational field use are discussed. 
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1. Introduction - Field Based Analysis vs Central Laboratory 

The Star Trek Tricorder. Portable, light, small, rapid results, identifies multiple biological and genetic 

signals, and importantly it can be used by different groups regardless of their skill set; scientist, security 

officer, doctor, engineer. First introduced in the 1960’s, this pop-culture device is perhaps one of the 

best known and clearly defined examples of what field-based instrumentation should do, albeit in a 

science fiction TV show. Fifty years later the device is almost a reality through the Qualcomm Tricorder 

XPrize, a 10 million USD competition to “stimulate innovation and integration of precision diagnostic 

technologies, helping consumers make their own reliable health diagnoses anywhere, anytime” [1]. 

Primarily designed for biomedical applications, such devices offer a tantalizing glimpse into what may 

become available to forensic science in a few years. Indeed, the field of forensic biology and forensic 

genetics has a history of deriving benefit from utilising the approaches and techniques initially 

pioneered in the health and medical arenas, PCR, DNA fingerprinting and capillary electrophoresis to 

name a few. However, the development of novel technology and its application in forensic casework is 

not a binary process; absent/present, can’t use/can use, not ready/ready. Technology is continually 

developed, introducing new benefits but also presenting difficult decisions to make regarding when and 

what to use. The latter is compounded in the face of a highly regulated field that proceeds with caution 

and requires some form of standardisation and consensus in the forensic stakeholder community. In 

some instances novel technology represents such a seismic shift that it promises to change the way 

forensic laboratories operate. 

The centralised laboratory is currently the standard in forensic investigation. Under this model, a single 

large laboratory representing a defined geographical range is responsible for providing forensic analysis 



to all Law Enforcement Agencies within its bounds. The adoption of this model began in the United 

States in the 1920-1930s due to logistical, quality control, legal and cost issues [2, 3]. This development 

also coincided with the appearance of dedicated forensic pathology courses offered by US higher 

education institutions to train medical students in this emerging field, as well as the invention of the UV 

spectrophotometer which remains a standard tool in forensic chemistry to this day [2, 3]. Criminal 

activity is typically spread over a relatively local geographic range and historically, investigation of 

criminal activity was limited to the collection of eyewitness testimony and physical evidence from this 

area [4]. Individuals performing these activities were predominantly law enforcement officers with little 

or no scientific background. Consequently, as scientific techniques advanced, analysis became more 

complex requiring full time professional forensic analysts to carry out, document, and report their 

findings [5]. Housing such expertise in a small number of centralised laboratories was the logical 

solution. This division between crime scene and laboratory practitioner remains to this day [6]. 

However, in the last two decades there has been a slow shift towards introducing forensic roles into the 

police forces themselves to bring collaboration between police officers and forensic scientists closer 

together [7]. Events such as the closure of the United Kingdom (UK) Forensic Science Service in 2010 

[8], decreasing budgets [9] and the high cost incurred from private sector providers [10] make the 

argument for adopting in-house processes more compelling. Indeed, this structure is already routinely 

practiced in the US. While increasingly common, the cost/benefit of developing an in-house local 

laboratory process vs a centralised laboratory is complicated as groups struggle with the balance of low 

cost, high quality assurance (QA), and ethical arguments about scientific independence [10]. 

As technology develops and applications become more user friendly, safer, and requires less expertise 

and training, they inevitably transfer into the field. The handover of this technology to non-laboratory 

specialists represents further monetary saving as staffing of specialist practitioners remains the highest 

cost of a forensic investigation [11]. Techniques such as the development of traditional fingerprinting, 

chemical tests to identify body fluids and the presumptive detection of drugs of abuse were pioneered 

in research laboratories but are now commonly used by enforcement officers and crime scene examiners 

[4]. Despite the drip feed of applications into field-based operational use, certain approaches have been 

slow to develop and be taken up, specifically those that are DNA-based approaches. There are a number 



of reasons for the slow development and adoption of this technology. Conventional PCR and size 

separation of the resulting DNA fragments requires large, bench-mounted instruments, preventing their 

on-site use [12]. Much of the equipment still requires specialist training to operate, limiting the potential 

user-base. Forensic casework may rely on limited biological input and loss of that material through 

additional processing methods may severely affect the investigation [13]. There is also the raw cost of 

equipment, maintenance, reagents, and storage space which has become more constrictive in recent 

years as forensic budgets have been reduced [4, 9]. Fully equipped forensic laboratory setups are also 

unfeasible in remote areas or developing nations that require these diagnostic tests but lack the resources 

necessary. These factors have presented a need for cheaper, more convenient field-based forensic assays 

and have acted as drivers of development for new technologies and techniques [14]. Indeed, there is 

little argument that the development and practical application of a cost effective, robust and quality-

controlled on-site test would greatly benefit the criminal justice system. 

 

2. Established Field-Based Systems 

One of the oldest forms of biological forensic analysis is in the identification of body fluids such as 

blood, saliva, and semen left behind at a crime scene [13, 15]. Table 1 provides an overview of the most 

common established forensic tests used to detect and identify biological material. A more thorough 

overview of the mechanisms of standard body fluid detection and identification methods is available in 

the review from Virkler and Lednev (2009) [13].  

 

2.1. Chemical Testing 

One of the earliest forensic tests for blood was the luminol chemiluminescence reaction, first being used 

over 50 years ago. This technique remains invaluable in the detection of latent blood, which can aid 

other forensic techniques such as blood spatter analysis. The test is cheap, works quickly, and can be 

applied to surfaces and stains without requiring pre-treatment. One of the most widely used commercial 

luminol formulations is BlueStar® [16]. This formulation has a greater sensitivity and longer-lasting 

luminescence than that of luminol [17], and is more resistant to the luminescence-reducing effects of 



certain antioxidants than other formulations [18]. However, a qualitative study on the reliability of 

BlueStar found that certain compounds such as oil-based paints, certain vegetables, and metallic ions 

such as copper and ion could cause false positive results [19]. Another feature of BlueStar that has 

helped to ensure its continued use is that it is non-destructive to the DNA contained within the sample, 

allowing for the rapid identification of blood stains that can then be processed by DNA analysis. Other 

chemical tests for blood include the Kastle-Meyers (KM) test and tetramethylbenzidine (TMB). 

Similarly to luminol, they can be directly applied to suspected bloodstains at the crime scene and a 

positive result is clearly displayed as a colour change of the stain (pink for KM, blue-green for TMB). 

The KM test is widely used due to its comparatively high specificity and greater resistance to inhibition 

compared to other presumptive chemical tests for blood [20]. Conversely, TMB offers greater sensitivity 

than KM, but has largely fallen out of use due to poor specificity and concerns about safety as TMB 

may be carcinogenic [21]. Chemical tests for saliva and semen also exist. A standard chemical test for 

the detection of saliva is the Phadebas® Press Test, which detects and identifies latent saliva stains, 

which is a difficult body fluid to identify conventionally due to poor fluorescence under UV light [22]. 

Although the test is simple, cheap, and rapid there can be issues with reproducibility due to temperature 

variation at the scene, causing changes in evaporation of the sample [22]. The acid phosphatase (AP) 

test for semen has been in routine use as early as the 1940s [23], but due to its relatively high false-

positive rate [24] it is unable to be used to as a confirmatory test and has recently been sidelined in 

favour of immunoassay approaches [25]. A considerable advantage of chemical tests is their low per-

test cost, but this is often at the expense of specificity and sensitivity. This is an important point to 

consider when assessing the utility of field-based approaches, in that it is acceptable for sensitivity and 

specificity to be low if understood by the user, appropriately caveated in casework management and 

followed up with a more robust diagnostic test. Indeed while it is the goal to have confirmatory and 

diagnostic approaches in the field it is likely to be considered secondary to other requirements. A shared 

aspect of these tests is their singleplex activity, being able to detect only one body fluid. In practical 

usage, this becomes a potential issue, as forensically important stains may contain a mixture of body 

fluids [13]. This requires an expert in field-based testing to make an informed decision about which test 

should be used based on relative likelihoods of certain biological components being present. This 



highlights a market niche for tests with multiplex activity that can identify multiple biomarkers at once, 

dispensing with the need for expert intuition. While these described tests are applicable at a crime scene, 

chemical approaches are also commonly applied in a centralised laboratory if the evidence is 

transferable from the crime scene. 

 

Despite shared issues surrounding specificity, sensitivity, and tolerance to inhibitors, chemical tests have 

lengthy shelf-lives, enabling to be used in decentralised environments. The standard Kastle-Meyer's test 

for latent blood has a shelf-life of approximately 9 months [26], whereas Bluestar formulation luminol 

can last up to 3 years in dry storage at room temperature [16]. 

 

2.2. Immunological 

Increasing the sensitivity and specificity of the application often requires the use of a more complicated 

test and the expertise required to use and interpret the result. Immunoassays are biomolecular toolkits 

for detecting or quantitatively measuring the levels of biomarkers in a fluid sample using an antibody-

antigen interaction. Wet-lab immunoassays such as enzyme-linked immunosorbent assay (ELISA) are 

well-established and have very high specificity and sensitivity, and in recent years there has been an 

effort to apply this technology outside of the laboratory [27]. Several immunoassays are available for 

forensic use, such as rapid stain identification (RSID™) kits, which are lateral flow immunoassays. 

RSID kits have been developed for the rapid on-site detection of blood, saliva, and semen [28, 29, 30]. 

The sensitivity and specificity of all of these tests were found to be greater than their respective 

presumptive chemical tests. Immunoassays are promising alternatives to chemical testing for body 

fluids due to their ease of use, rapid action, reliable results and confirmatory nature. Cost analysis 

studies of these immunological tools have calculated their per-test cost at roughly £3-6 [31]. Moreover, 

they show extended shelf-lives between 12-24 months, giving them comparable stability to most 

available chemical tests. Quantitative immunological assays for non-human markers such as the 

precipitin test have been available for well over a century [32] and have been used by law enforcement 

officials to identify remains of particular animals protected by the law e.g. big game animals [33, 34]. 



However, due to poor reliability and resolving power between closely-related species [35] there has 

been difficulty in transferring precipitin tests to routine forensic use. 

 

2.3. DNA-based testing 

As on-site tests are designed to be performed outside of the laboratory, there is little opportunity for 

complex sample preparation [36]. This often limits their role to the diagnosis of crude biological 

samples to determine their identity (typically a body fluid such as blood, saliva, or semen or tissue). 

This is one reason that has prevented the development of field-based DNA applications as the PCR 

process is highly susceptible to inhibitors co-collected with the crime scene sample [37]. However, there 

are early examples of field-based forensic genetic analysis. MtDNA studies in the mid-1990's on whale 

products lacking morphological features (e.g. processed meat) sold at retail markets in Japan and South 

Korea found that some whale products sold as minke whale were actually obtained from endangered 

whale species such as humpbacks, the trade of which is heavily regulated and violates international 

whaling laws [38, 39]. This work was performed in a hotel room that had been loosely turned into a 

traditional laboratory with the existing tools and chemistry simply placed in this location. However, as 

DNA systems developed in the laboratory the assumption that they should automatically provide high 

quality robust results also grew. This creates another developmental hurdle to researchers and 

developers and again is prioritised collectively alongside other requirements. 

 

3. Next-Generation Field-Based Systems 

Research and development of field-based molecular approaches has been increasing significantly over 

the last 20 years. This is clear from a literature search of research papers and patents in the subject area 

show an increasing trend which peaks between 2010-2014 (Figure 1). Throughout the 1990's, 

improvements to chemical testing for body fluids were made [40, 41], whilst DNA profiling largely 

remained a laboratory-based technique [42]. By the 2000's, DNA-based detection methods had 

advanced significantly. Lab-on-a-chip technology was a much-publicised area of research, and as such 

by the end of the decade, several micro total analysis systems for forensic and clinical applications had 

been developed [43, 44, 45], accounting for the sharp rise in publications seen during this time span. 



Similarly, non-DNA based methods also became more sophisticated during this time, benefiting from 

advancements in engineering and miniaturisation of existing technology to allow for on-site usage. 

Table 2 provides an overview of next generation forensic identification tests and their features. 

 

3.1. Drivers for development 

The key driver in the all this new development has been the end user group has changed between the 

‘Laboratory User’ to ‘Field User’ and a set of ‘end-user specifications’ has been identified. This is 

largely due to the concerted effort of stakeholders in the criminal justice community directing research 

in this area. In 2006, the “Future of Forensic and Crime Scene Science Conference” identified some 

key system and technological drivers that came out of discussion with International Stakeholders in the 

forensic community [46], specifically: 

 Miniaturisation to increase portability and ease of use. 

 Faster analysis. 

 Simple ‘Black-Box’ interpretation. 

 Easy integration of case information. 

 Low cost.  

Being representatives of the end-user community the ‘wish list’ of the stakeholders formed an early 

market research exercise and set of specifications that developers could work towards. This conference 

identified a need by the criminal justice community that was not at the time being met and led to further 

research and development by industry, academic and government groups to develop a system that could 

meet these requirements and supercede the traditional laboratory process flow (Figure 2). The current 

laboratory process can delay obtaining results due to work backlogs [13]; transitioning to a primarily 

field-based approach would greatly reduce the current average time taken to produce full DNA reports 

for use as evidence in court.  More formal end-user specification documents were later published by the 

National Policing Improvement Agency (NPIA) to represent the United Kingdom Criminal Justice 

Community [47] and also by the Federal Bureau of Investigation (FBI) to represent North American 

interests [48]. Once again, this feedback to developers has been instrumental for the successful 



development and integration of such systems into operational use. Consequently, flexibility-of-use has 

been downgraded in order to simplify operation, while test robustness and sensitivity have decreased as 

a consequence of developing a single step process with data analysis primarily being software driven 

instead of requiring independent expertise. While these may be seen as an indication that systems need 

further optimisation before routine adoption, others believe it simply narrows their operational use [14]. 

Indeed as forensic analysis becomes more decentralised, it becomes more important to fulfil the needs 

and identify the requirements of the practitioner whilst also remaining informative in the wider context. 

 

3.2. Non DNA-based 

Techniques that have been pioneered elsewhere can have applications in forensic science. Raman 

spectroscopy is a technique that obtains information on the vibrational mode of molecules in a system 

excited by inelastic (Raman) scattering of monochromatic light [49]. Its primary use has been in 

analytical chemistry, as different chemical bonds have characteristic vibrational outputs, allowing the 

resulting spectra to be analysed to determine which chemical bonds are present in a sample. In the past 

few years, forensic analysts and researchers have sought to co-opt Raman spectroscopy as a tool for 

forensic science [50]. This is based on the observation that body fluids analysed by Raman spectroscopy 

display their own unique peak signatures, making the results relatively simple to analyse by comparing 

them to the known spectral peaks of various biological substances. Raman spectroscopy is also a 

confirmatory test, as the position of the spectral peaks are tied to particular molecules and thus is 

extremely unlikely to bring up false positives [13]. Another advantage of performing Raman 

spectroscopy in a forensic setting is that it is both non-destructive to the sample (as no contact with the 

sample is required) and does not require time-consuming sample pre-treatment steps [13]. Several on-

site Raman spectroscopy devices currently exist [51, 52, 53, 54] which have been demonstrated to work 

effectively in the on-site detection of chemical and biological samples. These devices are simple to use 

and deliver results rapidly. Portable Raman spectroscopy possesses many of the “ideal” on-site test but 

is more expensive than chemical-based detection and may require some training prior to use in order to 

ensure that results are correctly interpreted. As the only requirement for Raman spectroscopy to take 

place is that there is an optically visible stain present, it dispenses with the need for any reagents that 



would normally be used in the treatment of unknown stains for analysis. This means there is no 

associated storage requirements or expiry date of the Raman instrumentation, making it ideal for use in 

de-centralised locations. 

 

3.3. DNA-based - Human 

Perhaps the most important technique in modern forensic crime scene investigation is the detection of 

human DNA. This analysis has traditionally been carried out by trained forensic experts as biological 

samples require complex pre-treatment to extract DNA, and obtaining a full STR profile can take 

upwards of 8 hours [55]. This estimate does not include the time taken to process samples from a crime 

scene to obtain a full DNA report, which has been found to take an average of 66 days in the UK for 

serious crimes [56]. This highlights a need for a shorter and more simplified workflow. In doing so, this 

would also facilitate the use of STR profiling by individuals with no/limited forensic background that 

routinely require STR profiling work, such as law enforcement officials. In the past few years, there has 

been considerable progress towards user-friendly DNA detection and identification. This has been 

achieved by advancements in microfluidics [43], as well as miniaturisation of thermal cycling [57] and 

optimisations to the PCR process such as implementation of rapid inhibitor-tolerant polymerases (e.g. 

Phusion™ Flash) [58]. Another major enabling technology is the automation of steps in STR profiling, 

including DNA extraction, PCR amplifaction, separation, and detection by a single instrument allowing 

for a rapid “sample in, result out” workflow without any additional input from the user. Several 

automated laboratory-based DNA detection instruments exist, such as RapidHIT® and DNAScan™ 

[59, 60, 61]. Inputs for these assays include “neat” biological samples such as buccal swabs and blood, 

but can also analyse indirect samples such as swabs from drinking glasses or cigarette butts that may 

hold forensic evidence, making them suitable for forensic case work where there may not be large 

amounts of biological material for direct sampling. Validation studies of these systems have found that 

the RapidHIT ID system has a high sensitivity, able to generate full STR profiles from ~500 pg of DNA 

applied to a cotton swab. [62]. The DNAScan system was designed to produce full STR profiles from 

1.0 µg of template DNA present on buccal swabs but can also produce partial profiles with a lower input 

[63]. Accuracy for these systems is also very high, demonstrating a 100% genotype concordance with 



known reference profiles [62, 63, 64]. Both systems take ~90 minutes to build a full STR profile, and 

have low (<15 minutes) handling times for the user [62, 65]. Further issues of these systems is the high 

cost associated with them, both in terms of the machinery itself and the reagents required for its use. 

Both DNAScan and RapidHIT instruments utilise single-use cartridges as their inputs, with the operator 

only having to load a reference swab onto them and insert into the machine, which automatically handles 

the sample processing and outputs an STR profile. While this system is convenient for the end-user, 

processing high volumes of samples may become prohibitively costly. The sample cartridges and 

reagents have a shelf-life of up to 6 months at room temperature [63, 66]. 

These laboratory-based detection methods have many of the features recommended for an ideal on-site 

assay such as robustness and ease of use, but are not considered field portable. The ParaDNA® Field 

Instrument from LGC [67] can perform two separate tests in ~75 minutes each; a screening test for 

determining the presence of human DNA in a sample and an intelligence test for building an STR profile 

across 5 loci (D3S1358, D8S119, D16S539, D18S1358 and TH01) [68]. Both of these tests also profile 

for amelogenin to simultaneously determine gender.  The ParaDNA screening system is a presumptive 

test as it measures the presence/absence of DNA through PCR of two STR loci (D16S539 & TH01) 

with fluorescent Hybeacon® human-specific probes, and outputs a percentage chance of the sample 

containing DNA suitable for laboratory analysis as a relative assessment score [69, 70]. This 

circumvents a major issue in submission policy for forensic case work as the screening data is an 

objective measure and so eliminates the need for speculation by the end user, helping to reduce waste 

and improve laboratory processing. A cost analysis of the ParaDNA screening system against standard 

in-house STR profiling found that although the per-test cost of ParaDNA is relatively high (~$50), it is 

potentially able to save thousands of dollars per annum by eliminating the screening costs of negative 

samples that may be processed under other screening methods [71]. Validation studies of the screening 

test show high accuracy for blood, saliva, and semen [70] but some conflicting results with touch DNA 

samples. The screening test is able to obtain a gender result in >80% of samples with a sufficient 

presence of DNA (>62.5 pg), though is more sensitive to male samples than female due to software 

reporting a male result whenever a Y target is amplified [69]. There has also been some assessment of 

whether the assay interferes with existing forensic processes with research demonstrating that pre-



treatment of samples with Phadebas and luminol/Bluestar® did not impact the ability of ParaDNA to 

reliably screen these samples for DNA [72]. However, despite the ease of use and portability, the 

ParaDNA screening test is intended to augment the existing processes of sample submission and case 

management, and not designed to replace existing tools [73] meaning that costs savings may be more 

difficult to identify. Independent validation studies of the ParaDNA intelligence test found that full DNA 

profiles of 12 alleles could be produced from an input of 500pg DNA and that 99.8% of allele calls by 

ParaDNA was concordant with those of other STR typing kits [68, 73]. However, some cross-reactivity 

of the system is observed with some primate DNA samples [70]. As the output of the ParaDNA 

intelligence test is an STR profile, this does require some training in order to interpret, but is minimal 

compared to the training needed to perform STR analysis in-house. Both tests are noted for their ease 

of use by non-expert handlers [70] and have demonstrated reliability and high potential for cost-saving. 

Recent work by LGC has looked at developing an assay for field-based mRNA analysis for the 

identification of body fluid samples [74]. 

The RapidHIT ID system is a compact version of the laboratory-based RapidHIT system that utilises 

the same GlobalFiler® Express chemistry and has been optimised for use in decentralised 

environments, such as police stations or border control posts [66]. Validation studies have shown that 

the RapidHIT ID system is also capable of obtaining full concordance from assumed single-source DNA 

samples, with complete STR profiles obtained from as low as 12,500 cells per sample swab [75]. 

Multiple RapidHIT ID systems across geographic locations can be networked together with 

RapidLINK™ software for remote access to results and control of the RapidHIT ID instruments 

themselves. [76]. This allows for easy access and processing of data from remote locations by a 

centralised laboratory prior to uploading resulting DNA profiles to a database. 

 

3.4. DNA-Based - Non-Human 

While detection and identification systems of human DNA have received the majority of the research 

attention there have also been some big steps towards the application of portable molecular tools for 

non-human and food standards applications. The ability to perform on-site species identification is 

particularly important in the food standards and conservation fields. On-site detection means that 



samples do not have to be transported to centralised laboratories. From a food standards viewpoint, food 

samples of unknown origin do not have to be seized from retail markets or restaurants and can be 

identified on-site, improving workflow while also reducing the possibility of a genuine sample being 

needlessly analysed by an equipped laboratory. For conservation work, suspected trade of endangered 

animal products in violation of CITES seized at international borders can have the species identified 

on-site without having to transport samples to a wildlife forensic laboratory, which may be situated in 

another country. On-site potential for species detection has been greatly improved in the past decade 

due to advancements in isothermal amplification and miniaturisation of sequencing instruments. 

Recombinase polymerase amplification (RPA) is a highly sensitive and specific isothermal method of 

DNA amplification that can take place in a single tube, dispensing with the need for a thermal cycler 

[77, 78]. This technology has been commercialised by TwistDX, who supply the portable battery-

powered Twirla® mixing incubator and provide several kits for food safety and species identification. 

One such kit is specific to DNA from the Red Snapper [79] and is designed to prevent mislabelling 

fraud.  The assay requires a one-step biochemical reaction prior to incubation which can be performed 

by non-experts and the result of the assay is processed automatically and delivered by the instrument in 

<20 minutes as either positive or negative for Red Snapper. A similar on-site assay for non-expert usage 

is the real-time nucleic acid sequence-based amplification (RT-NASBA) assay devised by Ulrich et al. 

[80] which has demonstrated similar efficiency to laboratory-based benchtop RNA purification with 

mildly lower sensitivity. However, this assay takes longer to perform (~80 minutes). NASBA is a well-

established molecular biology tool for the isothermal amplification of RNA sequences [81]. RT-NASBA 

works by combining this method with fluorescent molecular beacons, allowing for the real-time 

detection of target sequences using a handheld fluorometer, which also doubles as a heater to keep 

samples at an optimal temperature for the reaction to progress. 

 

A novel on-site RNA/DNA sequencing instrument is the MinION™ real-time sequencing device from 

Oxford Nanopore Technologies [82]. The device is smaller than most mobile phones and contains a 

flow cell for spotting DNA/RNA for sequencing. MinION can be powered by a laptop after hooking up 

to one with a standard USB 3.0 port, making it extremely useful for field work in even highly-remote 



locations. The device costs approximately $1000 USD, though this also includes everything needed to 

begin sequencing right away, with a very low per-test cost. Early-access studies also found the system 

to be useful for taxonomic analyses [83, 84], which would be of great benefit to on-site species 

identification. Although the potential of this technology for true on-site DNA detection is very high, 

performance studies have shown error rates as high as 38% [83, 85, 86]. Although this rate can be 

reduced to as low as ~5% with improved data analysis [87], it also suggests that extensive optimisation 

and specialist knowledge of both the system and the DNA sequence of interest is required. 

 

In summary, it is important to clarify that field-based testing does not necessarily dispense with the 

requirement for expert training that is often needed to operate large, bench-mounted apparatus. Indeed, 

portability of a system and the expertise required to successfully operate it exists on a spectrum. When 

considering the ease of use vs the portability it is possible to see that the systems presented do not 

always achieve all of the identified end user requirements (Figure 3). For many end users, there is a 

desire for tests that are both highly portable and easy to use as these are the most practical in the field 

and have the greatest potential user-base. However, the development of such tools is compounded by 

factors such as manufacturing costs (both of the device itself and the reagents required on a per-test 

basis), availability of appropriate miniaturisation technology, and the flexibility of use. 

  

 

4. Future Innovations in Field-Based Analysis 

Advancements in forensic science are often the result of co-option of existing technologies routinely 

used in other fields, particularly medical science. A selection of techniques that have recently been 

applied to on-site forensic analysis of various biological samples show some great potential and may 

form the basis of the next phase of development in field-based molecular identification. 

 

4.1. Loop-mediated isothermal amplification 



Development of reliable and rapid isothermal PCR would be of great benefit to on-site forensic analysis 

as it would transfer one of the most important laboratory-based forensic techniques into the field, greatly 

increasing the potential of on-site investigation. As discussed previously, there has already been some 

application of isothermal PCR to forensics with RPA and the TwistDX system, however this is not the 

only method of low-temperature PCR. Loop-mediated isothermal amplification (LAMP) is a PCR 

method that can be performed at relatively low temperatures (60-65°C) [88, 89], making it suitable for 

on-site work when paired with a portable battery-powered heater. LAMP differs from conventional PCR 

in that it uses multiple sets of primers, which form loops in the synthesised DNA strand that facilitate 

further rounds of amplification without the need for a bench-mounted thermal cycler. LAMP has 

previously been used extensively in clinical science for the detection of harmful bacteria in complex 

biological samples such as blood and sputum [90, 91] and would be applicable to detection of 

biomarkers of forensic importance. Very recently, several rapid on-site LAMP assays were developed 

for drug detection and species identification, all of which have shown very promising results with 

comparable efficiency to laboratory-based methodology whilst heavily reducing the cost that would 

normally be incurred from using any specialised equipment [92, 93, 94]. This highlights the potential 

of LAMP for forensic use and warrants further development to produce a commercialised LAMP assay. 

There are several benefits to using LAMP over other PCR methods. Firstly, the amplification product 

is much simpler to visualise with LAMP than standard PCR, using photometry to measure the turbidity 

of the sample post-amplification. Although LAMP is used for the detection of DNA, it is possible to 

combine the technique with a reverse transcription step (RT-LAMP) to enable the detection of RNAs 

[88, 95]. Complex biological samples such as blood contain inhibitors (e.g. Immunoglobin G [96, 97] 

that affect the PCR reaction, and is a common cause of amplification failure [37]. LAMP is more 

resistant to these inhibitors than standard PCR, which would make LAMP a more ideal method for 

detecting DNA in body fluid samples and would require less prior sample preparation such as 

DNA/RNA extraction [98]. However, the use of LAMP is limited by the difficult design of primers, 

requiring the use of software kits [99], as well as being more restricted in its range of designs compared 

to conventional PCR markers. This is particularly a concern for forensic applications as some 

biomarkers may have transcriptional variants, where the design of primers would have to be centred 



around a common sequence. Another issue with LAMP is that due to the increased number of primer 

sets required compared to standard PCR, it increases the likelihood of primer-primer dimer interactions 

occurring in a multiplex reaction. As such, LAMP is typically reserved for single-target detection. It is 

possible to utilise LAMP in a multiplex detection assay [100], but this would require complex 

processing that would be difficult to transfer to on-site practice. 

 

4.2. Synthetic Biology 

The field of synthetic biology has made considerable strides in the past decade, with the aim of 

characterising genetic “parts” to create programmable biological devices with complex functions. 

Despite the numerous hurdles faced by the field [101], it remains a promising avenue of research for a 

number of fields, including forensics. Researchers from the University of Dundee have attempted to 

use synthetic biology in conjunction with microsphere technology to provide an all-in-one body fluid 

identification assay (“FluID”) that would eliminate the need for multiple body fluid tests [102]. This 

assay would consist of a liquid formulation (“BioSpray”) containing fluorescent microspheres that have 

binding ligands specific to biomarkers present in various body fluids immobilised onto their surfaces. 

When the ligands come into contact with their respective molecules, a binding interaction takes place 

which leads to fluorescence of the microspheres. Biochemically functionalised microspheres are an 

ideal delivery method for the binding proteins as they have been shown to not impact the effect of 

biochemical molecules immobilised onto their surfaces [103], and also display high sensitivity [104]. 

Similar to luminol, BioSpray can be applied to surfaces and then examined for fluorescence in darkness. 

The primary advantage this offers over established body fluid identification tests is that the BioSpray 

formulation would contain binding proteins for biomarkers from a number of body fluids, including 

blood, saliva, semen, and urine, allowing for only one test to be used when normally multiple tests 

would be required. As a cell-free approach is used, this means that there is no contamination of crime 

scenes with foreign DNA. It is also hoped that fluorescence from BioSpray would last longer than other 

fluorescent methods and there would be no interaction with chemicals that interfere with forensic 

investigations at crime scenes e.g. bleach. Using synthetic cell-free systems, researchers were 



successfully able to overexpress and purify binding proteins against haemoglobin and spermidine for 

the detection of blood and semen, respectively. However, work is still required to purify binding proteins 

agains biomarkers in saliva and urine, and for the formulation to have its performance tested against 

crude samples. An issue with transferring biology to field-based applications lies in the stability of 

biological components at ambient temperatures. DNA sequences, PCR products, and many other 

reagents require storage at temperatures ≤-20°C and can lose their functions or shear DNA through 

repeated freeze-thaw cycles. Room-temperature storage of components would allow for more 

applications to be performed outside of the laboratory. Pardee et al. [105] have demonstrated a method 

of storing cell-free protein expression systems and synthetic gene network DNA for long periods of 

time (at least 1 year) at room temperature by freeze-drying these components onto ordinary filter paper 

discs ~3mm in diameter. The synthetic gene network sequence is complementary to a desired mRNA 

sequence, and will activate expression of a reporter gene (e.g. GFP/LacZ) to visualise detection when 

the embedded paper is rehydrated with this sequence (Figure 4). Research in this area has recently 

advanced with the development of the SHERLOCK (Specific High sensitivity Enzymatic Reporter 

unLOCKing) platform developed by MIT and Harvard University. Taking a slightly different approach, 

the research combines isothermal amplification with CRISPR Technology to develop a 4-channel single 

reaction multiplexing method, capable of detecting unique DNA and RNA frangments [105.5]. Using a 

lateral flow readout to detect presence or absence of amplification target, this device enables rapid 

detection of multiple fragments for field-based diagnosis with early evidence suggesting allele specific 

amplification from saliva is possible. The use of paper as a substrate and the negligible amount of 

materials required makes this process extremely cheap, with a per-test cost of 4-65¢ USD [105]. These 

features allow for cheap, easily portable, and stable diagnostics of desired nucleotide sequences (such 

as those from infectious diseases) in remote locations. The novel design of the synthetic gene networks 

used in these experiments also gives them the potential to detect virtually any desired sequence [106], 

greatly increasing their utility across a range of fields. 

 

4.3. Smartphone Forensics 



Smartphones are a near-ubiquitous aspect of the modern world. They are lightweight, small, versatile 

in their range of applications, and in recent years have become reasonably cheap. This makes them ideal 

candidates for use as on-site forensic detection instruments. Many modern smartphone models are 

equipped with high-resolution cameras and applications are available to measure the RGB output from 

images, allowing for colorimetric analysis. Researchers have devised a novel method (“Smart Forensic 

Phone”) of estimating the age of bloodstains using a colorimetric analysis of bloodstain images taken 

with a smartphone over a fixed time period [107]. However, this analysis can only be performed on 

bloodstains <42 hours old which severely limits its potential use and requires more optimisation to be 

used on older bloodstains. 

Another study examining the range of on-site applications of smartphone cameras modified Raspberry 

Pi cameras available for smartphone market to repurpose them as ultra-violet (UV) imaging equipment 

[108]. This is particularly beneficial due to the wide applications of UV detection, and the very low cost 

of manufacturing smartphone cameras. Smartphones are also capable for use as analytical and data 

processing devices. Researchers have developed an electrochemical chip that utilises a rapid (<20 

minutes) quantitative enzyme analysis for gender identification of body fluids deposited at a crime 

scene. This chip can then interface with smartphones utilising a special user-friendly application that 

guides the user through the detection process [109]. The chip is compatible with several different models 

of smartphone and as many smartphones possess wi-fi capabilities, any data recorded using the 

application can be uploaded to a central “cloud” network for storage or downloaded to other devices. 

Performance studies of the electrochemical chip found high specificity and sensitivity (88.9% and 

88.3%, respectively) on analysis of real samples, but also noted slight interference from substances such 

as ascorbate. An upcoming device from Oxford Nanopore Technologies LTD is the SmidgION nanopore 

sequencer, currently in beta testing and expected to release in 2017 [110]. This device works similarly 

to the MinION sequencer (also from Oxford Nanopore) described previously, but can instead be 

connected to a smartphone, or any similar mobile device. This would further reduce the cost of 

equipment needed to sequence DNA/RNA in the field, whilst also enabling its use with a wider user-

base and in more remote locations. 



Smartphone technology has also been combined with handheld PCR. Biomeme have developed a 

mobile handheld RT-PCR device equipped with a heater and fluorometer for tracking reaction progress. 

This device can be docked to a smartphone, which runs an application that controls the device and 

utilises the smartphone’s camera to track changes in fluorescence [111]. This highlights a particular 

advantage of smartphone forensics in that the user interface of smartphones are designed to be as 

ergonomic and user-friendly to operate as possible. Combining this technology with standard forensic 

techniques has the potential to reduce the expertise barrier of entry and allow for simple use of the 

device by non-laboratory users. 

 

5. Further Considerations 

While the development and use of field-based molecular tools for non-laboratory trained individuals 

offers great potential, there are a number of issues that need further consideration by both developers 

and end-users, specifically the necessity for independent validation of novel technology, prior to use. In 

the traditional cycle of forensic product development and release there has been a build-up of scientific 

support from practitioner scientists and academics over time that have highlighted and reported on 

procedural oddities, errors, reproducibility and overall effectiveness of the system. Either because these 

individuals represented the target forensic user or the systems under evaluation also supported academic 

research, the publication and dissemination of this research makes it easy for the forensic community 

to assess and critically appraise new issues as they arise. The advent of field-based, non-expert user 

systems may change the nature of this. The identified end user for many of these systems include, police, 

customs (border) officials, military personnel, and crime scene examiners, many of whom have little or 

no scientific background but may be expected to a) have an opinion on whether they believe the device 

supports their work, b) identify erroneous results, and c) report on any new issues observed to the wider 

community. It is worth considering each of these in turn to assess the overall risk that under-developed 

and poorly characterised systems may have and how performance is recorded. 

 

5.1 Development and Release 



With respect to the development of new technology it is common to describe it in term of a ‘Technology 

Readiness Level’ (see figure 5) [112]. There is routinely a well characterised and documented path from 

first principles to product release which reduces the likelihood of products being early. In order to 

warrant a TRL measure of 9 it is common for industry groups to perform a ‘beta-release’, whereby new 

assays, kits and technology are distributed among a small number of practitioners for limited testing 

and feedback in an operational setting. Beta testing is typically only performed once the product format 

and protocols have been optimised and represents the finished product. Concurrent to this user 

evaluation, industry scientists also perform developmental validation studies which seek to characterise 

the approach and identify its ‘efficacy and reliability for forensic casework’ [113]. While there is an 

obvious conflict of interest, the publication of data in support of a commercial application by industry 

scientists is not new, is not unethical but (like all scientific studies) should not be considered singularly. 

Publishing practices exist that require conflicts of interest to be declared and the peer review process 

means that the data and findings are independently critiqued. Indeed, given that quality and accuracy 

forms a large part of brand identity for biomolecular products it is counterproductive for industry to 

release technology early. Further independent assessment is also performed as many of the end users 

are represented by wider working groups or have ties to third party expertise who perform this function. 

For example the UK police forces work closely with the Centre for Applied Science and Technology 

(CAST) who have a remit to assess and publish their findings on novel developments that support 

policing [114, 115]. In turn the US police forces work closely with both the Federal Bureau of 

Investigation (FBI) and the National Institute of Standard and Technology (NIST), members of which 

have a long history of independent assessment and publication of novel forensic genetic methods [61, 

116, 117]. There are also specific groups representing military interests such as the Defence Science 

and Technology Laboratory (DSTL) and the U.S. Army Research Office and the Defence Forensic 

Science Center (DFSC) that closely assess novel developments. As such it seems unlikely that novel 

technology will reach the end user without some form of independent assessment, although the well-

publicised sale of ineffective bomb detectors to the UK military would suggest that on occasion the 

assessment process may not be as robust as needed [118]. While the oversight of a third party reduces 

the chance of underdeveloped systems entering operational use, it is also worth noting that the findings 



of some groups are difficult to find, represent an internal discussion, is commercially sensitive, or are 

simply referred to (but not explored) in government records [e.g. 119, 120]. 

 

5.2. Identifying Errors 

Once the instrumentation has been cleared for operational use it is still required to function well and 

perform as expected. If the instrumentation begins to drift and results change over time it is important 

that this is captured. Employing pre-existing Quality Control (QC) measurements and Good Laboratory 

Practices (GLP) may aid in the detection of such events, but the emphasis is again on the end-user to 

modify or develop their existing procedures, which again raises issues. One strategy is to have the 

machine self-calibrate. Such features are common in many non-expert user systems [65, 121, 122] and 

takes the emphasis off the end-user but also removes any independence. Further preventative measures 

commonly adopted include full annual servicing of instrumentation and the development and adoption 

of positive control samples and are likely to allow detection performance issues. However, the lack of 

support for the publication and dissemination of such data may mean that performance issues go 

undetected more widely by the forensic community despite initial validation. 

Other potential operational impacts that require some control include the possible crime scene 

contamination through PCR. The traditional approach of DNA profiling uses the process of PCR to 

amplify small numbers of target DNA molecules into billions of copies that are then detected by the 

instrumentation. In a centralised laboratory there is a strict separation between pre- and post-PCR 

activities with a uni-directional workflow, provisions to prevent post-PCR work more than once a day, 

and positive pressure rooms that vent low contamination into high contamination areas rather than the 

other way round. Developing a robust anti-contamination strategy for crime scene analysis or custody 

suite analysis can simply mean following established procedures but may also mean the development 

of bespoke anti-contamination procedures and routine environmental sweeps of the instrumentation. 

Indeed there are perhaps fewer hurdles to the custody suite approach than the crime scene approach 

given that the custody suite remains remote from the scene of the crime. In the absence of an effective 

and proven anti-contamination strategy the default option is to reduce the evidential weight of the data 

obtained and seek further quality controlled data from a centralised laboratory. This may not be as 



counterproductive as it sounds given that many of the popular applications of field-based testing are 

presumptive and may require further laboratory testing anyway. Being aware of the limitations of new 

technology and developing practices that seek to minimise the impact of errors is something that is core 

to the criminal justice community and there are already robust strategies in place for both minimising 

and reporting analysis and contamination issues so it is considered unlikely, but not impossible, that the 

adoption of genetic technology by non-laboratory trained users will result in mass errors given proper 

training.   

 

5.3. Fitting End User Requirements 

One of the driving forces behind the development of the next generation field-based technology has 

been cost. As identified in 2006 [14], cheaper forensic science was identified as a key end user 

requirement. However, assessing cost effectiveness is not a simple calculation for both developer and 

user. From the commercial development perspective there is a need to secure a profit margin that ensures 

the longevity of the product. The cost can neither be unaffordable or too cheap which may lead to 

unrealised commercial profit. Cost is determined by the size of the market, potential uptake and the 

business model under use [123]. From the end-user perspective there is the calculation of how much 

currently is spent on the existing processes, how much will get spent on the new process, and whether 

there is any time lag to seeing any savings. Both are business decisions and often not made by the 

scientific staff who are either developing or using the techniques. There is currently little independent 

evidence that the use of any of these devices leads to a greater monetary saving and increased sample 

success rate and more research is needed in this area. It is therefore important the forensic and law 

enforcement communities are aware of the potential for an ‘Emperor’s new clothes’ outcome whereby 

no one can admit a novel application does not do what they want, and also to avoid the ‘Concorde 

fallacy’ whereby an application is deemed ‘too big to fail’ as too much investment (time, effort, raw 

cost) has already been put in. Ultimately there is no single group who takes responsibility for this 

assessment and long term assessment of an instruments utility requires the continued cooperation 

between government advisory groups, end users and industry partners 



It is also important to recognise that the ‘end user’ in question is in fact the criminal justice community, 

not just the users of the instrument, and it’s important to consider the wider impact of adopting new 

technology. With regards to Rapid DNA devices, it is likely that soon some traditional processes will 

no longer be performed in the laboratory. At what point in time this occurs is debatable but there are 

fewer hurdles now than there were 10 years ago. The next question is whether this shift in user is going 

to create a period of instability in the centralised laboratory as Law Enforcement Agencies submit less 

evidence to a laboratory. The answer to this question relies on both the quality of the data obtained and 

what other analysis options the laboratory can offer. Currently the forensic genetic community is 

assessing the ability to offer information on a genomic level. The adoption of Massively Parallel 

Sequencing by forensic laboratories offers an application that cannot currently be met through the use 

of a single field-based instrument. However the implementation of this technology is also currently 

under assessment with more work required to determine how well the system compares to existing 

approaches in terms of cost and performance but also from an ethical stance regarding whether it is 

appropriate to answer questions regarding race and ethnicity when the reported probabilities remain 

relatively low. Indeed while this offers an exciting potential it is likely to take five to ten years before 

forensic laboratories make the full transition to this platform [124]. Until this transition the laboratory 

continues to offer greater quality, greater sensitivity and greater evidential weight attached to the data 

it provides. 

 

6. Summary 

Molecular techniques for the forensic detection/identification of body fluids, individuals, and species 

have rapidly advanced in the last 30 years. During this time, the technology has transferred from trained 

forensic specialists working from an equipped, centralised laboratory to field users such as law-

enforcement officials working at crime scenes. Most of this new generation of field-based forensic tests 

are characterised by their ease of use, rapid action, robustness, and comparable efficiency to similar 

laboratory-based assays. In their current state, on-site forensic assays are demonstrably effective 

methods of identifying body fluids, assessing the presence of DNA, or performing amplification of high 

quantity of genetic material for DNA profiling. However, the widespread adoption of on-site forensic 



toolkits has been somewhat hampered, as it is still necessary for many on-site tests to be used in 

conjunction with laboratory analysis - due to either their presumptive nature or inferior activity. As such, 

future development work should seek to improve upon their performance and provide confirmatory 

results to achieve a true on-site forensic workflow. Some field-based techniques still suffer from issues 

surrounding component storage which will need to be addressed if they are to become standardised 

techniques. There are also procedural questions remaining about how to effectively utilise and these 

systems as they migrate from the lab to the crime scene or police station.   
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Table 1 – An overview of the features, cost, and current end-user groups of established forensic techniques used in the detection of body fluids, DNA, and the 

identification of non-human species. 

 

Cost is given as total cost considering both per-test and instrumentation expenses. Very low = <£100, Low = £100-£999, Medium = £1000-9999, High = 

<£100,00-100,000, Very high = >£100,000 

 

Primary Detection Method Input Assay Name Molecular Target Field-based

Current End 

User Group Result Sensitivity/Detection Limit Specificity Cost References

Raw Sample Kastle-Meyers Test Haemoglobin Yes Police/CSI Pink colour change

Positive results down to 10-7 

dilution of neat blood

High rate of false positives in presence of 

hypochlorite or ferrous sulphate Very Low [20]

Raw Sample TMB Haemoglobin Yes Police/CSI Blue-green colour change Low rate of false negatives

False positives in presence of plant 

peroxidases Very Low [21]

Raw Sample

Alpha-naphthyl 

phosphate and 

Brentamine Fast Blue SAP, GDA, CAP Yes Police/CSI Colour change 65.60% 96.40% Low [13]

Raw Sample Luminol Iron Yes Police/CSI

White/blue 

chemiluminescence

Positive results down to 10-6 

dilution of blood (dependent 

on substrate)

False positives in presence of fibre foods, 

paints/varnishes, and mettalic ions Very Low [16, 17, 18, 19]

Raw Sample Phadebas test α-amylase Yes Police/CSI

Blue colour change + 

absorbance measurement 0.5µl pure saliva

Positive results may not yield enough 

DNA to obtain a profile Very Low [22]

Alternative Light 

Source Raw Sample Polilight Whole Cells Yes Police/CSI Fluorescence of stains Any optically-visible stain 50% Medium/High [13]

Raw Sample RSID

GPA/α-

amylase/Semenogelin Yes Police/CSI Positive Band

250nl/ul (blood) 0.5ng/ul 

(saliva), 2.5nl/ul (semen)

Cross-reactions with sweat and urien 

(saliva test) Low [28, 29, 30]

Raw Sample ELISA Membrane Assay

Haemoglobin/PSA, 

SVSA/α-amylase Yes Police/CSI Colour change

~1mM of molecular target 

present No cross-reactivity known Low [27]

Size Separation of 

DNA Fragments Purified DNA PCR amplification Whole Genome Office-based Researchers Bands on agarose gel Dependent on gel resolution Dependent on gel resolution Medium [3, 36, 42, 57]

Reaction of sample 

with a species-

specific antigen

Species-

specific 

biological 

sample Precipitin Test Various Yes Police/CSI

Formation of 

antibody:antigen complexes

Detection up to 1:16,000 

dilution of matching antisera

Cross-reactivity between closely-related 

species Very Low/Low [32, 33, 34, 35]

Chemical Test

Immunological

Body Fluid Detection and Identification

Species Identification



Table 2 – An overview of the features, cost, and current end-user groups of next-generation forensic techniques used in the detection of body fluids, DNA, and 

the identification of non-human species. 

 

Cost is given as total cost considering both per-test and instrumentation expenses. Very low = <£100, Low = £100-£999, Medium = £1000-9999, High = 

<£100,00-100,000, Very high = >£100,000 

 

Primary Detection Method Input Assay Name Molecular Target Field-Based

Current End-User 

Group Result Sensitivity/Detection Limit Specificity Cost References

Raman Spectroscopy Raw Sample

Portable Raman 

Spectroscopy 

Device Whole Fluids Yes Police/CSI

Unique 

Spectroscopic 

Peaks Any contactable stain

No false 

positives Medium

[49, 50, 51, 52, 

53, 54]

Endpoint analysis of mRNA Raw Sample

ParaDNA Body 

Fluid ID Test DNA Yes Police/CSI/Clinic

Presence / 

absence of 

marker 86% 93% High [74]

Endpoint analysis of STRs Raw Sample

ParaDNA 

Intelligence Test

TH01, Amelogenin, 

D16 Yes Police/CSI

DNA profile 

across 5 STRs 62.5pg of DNA

No cross-

reactivity High [68, 70, 73]

Endpoint analysis of DNA Raw Sample

ParaDNA 

Screening Test Short Tandem Repeats Yes Police/CSI

Relative 

quantitative 

assessment 

score (%) 500pg of DNA

99.8%, some 

cross-

reactivity with 

primate DNA High [68, 69, 70]

RAPID-DNA Raw Sample

RAPIDHit, 

DNAScan Short Tandem Repeats No Police/CSI STR profile 500pg-1µg DNA 100% Very High

[59, 60, 61, 62, 

63, 64]

Recombinase Polymerase 

Amplification Purified DNA TwistDX Various Yes Researcher

Presence of 

positive result 

band

Single copies of DNA/tens of 

RNA

Specific to 

target species Medium [77, 78, 79]

Real-Time Nucleic Acid 

Sequencing

Species-Specific 

Biological Samples RT-NASBA Various Yes Researcher

Raw 

fluorescence 

data 80.30%

No known 

cross-

reactivity Medium/High [80, 81]

Real-Time DNA/RNA 

sequencing Purified DNA

MinION, 

SmidgION Whole Genome Yes Researcher

DNA/RNA 

sequence data

200ng of high molecular 

weight DNA ~0.01% Low/Medium

[82, 83, 84, 85, 

86, 87, 110]

Body Fluid Detection and Identification

DNA Detection, Individual Identification, 

and Sample Matching

Species Identification



 

Fig 1. The number of research papers and patents published in the study of on-site forensic analysis, 

excluding drug and environmental methods, combined from Google Scholar and Scopus search engines. 

Black bars = Total number of publications, grey bars = proportion of publications concerning non-

DNA-based (e.g. chemical reaction) methods for forensic detection, striped bars = number of 

publications concerning DNA-based methods for forensic detection. Search keywords: All of the words 

“onsite, forensic”, exact phrase “forensic”, at least one of the words “detection, identification, DNA, 

body fluid, rapid”, without the words “drug, environmental”. 

 

 

 

 

 

 

 

 

 

 



 

Fig. 2. A simplified workflow for obtaining a complete DNA report from a sample collected at a crime 

scene. A = The current process, which includes transfer of evidence to a centralised laboratory to 

extract and amplify DNA to obtain an STR profile. B = A potential future process, whereby all DNA 

profiling steps are carried out in the field via automated systems, largely cutting down the time and 

number of steps required at present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 3: A sample of established and next-generation forensic techniques arranged by their portability 

and the expertise required to operate or interpret results from them. NB: Placement on the chart is 

defined by the authors’ experience with the techniques and interpretation of the surrounding literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 4: Process of embedding cell-free machinery and synthetic gene networks onto paper discs for 

portable diagnostic capability. Adapted with permission from Pardee et al. (2014) [104]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 5: A technology readiness level chart used to estimate the maturity of a novel technology during 

development. A higher position on the chart indicates a greater maturity and progress towards the 

finished product working under intended operational conditions.   

 

 

 

 

 

 


