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ABSTRACT  

Many systems in the world can be represented as models of complex networks and 

subsequently be analysed fruitfully. One fundamental property of the real-world networks is 

that they usually exhibit inhomogeneity in which the network tends to organise according to 

an underlying modular structure, commonly referred to as community structure or clustering. 

Analysing such communities in large networks can help people better understand the structural 

makeup of the networks. For example, it can be used in mobile ad-hoc and sensor networks to 

improve the energy consumption and communication tasks. Thus, community detection in 

networks has become an important research area within many application fields such as 

computer science, physical sciences, mathematics and biology. 

Driven by the recent emergence of big data, clustering of real-world networks using traditional 

methods and algorithms is almost impossible to be processed in a single machine. The existing 

methods are limited by their computational requirements and most of them cannot be directly 

parallelised.  Furthermore, in many cases the data set is very big and does not fit into the main 

memory of a single machine, therefore needs to be distributed among several machines.  

The main topic of this thesis is about network community detection within these big data 

networks. More specifically, in this thesis, a novel approach, namely Decentralized Iterative 

Community Clustering Approach (DICCA) for clustering large and undirected networks is 

introduced. An important property of this approach is its ability to cluster the entire network 

without the global knowledge of the network topology. Moreover, an extension of the DICCA 

called Parallel Decentralized Iterative Community Clustering approach (PDICCA) is proposed 

for efficiently processing data distributed across several machines. PDICCA is based on 

MapReduce computing platform to work efficiently in distributed and parallel fashion.  

In addition, the real-world networks are usually noisy and imperfect with missing and false 

edges. These imperfections are often diffi cult to eliminate and highly affect the quality and 
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accuracy of conventional methods used to find the community structure in the network. 

However, in real-world networks, node attribute information is also available in addition to 

topology information. Considering more than one source of information for community 

detection could produce meaningful clusters and improve the robustness of the network. 

Therefore, a pre-processing approach that considers attribute information, shared neighbours 

and connectivity information aspects of the network for community detection is presented in 

this thesis as part of my research. 

Finally, a set of real-world mobile phone usage data obtained from Cambridge Laboratories 

(Device Analyzer) has been analysed as an exploratory step for viability to apply the algorithms 

developed in this thesis.  

All the proposed approaches have been evaluated and verified for feasibility using real-world 

large data set. The evaluation results of these experimentations prove very promising for the 

type of large data networks considered. 

Keyword:  Community analysis, community detection algorithms; decentralized clustering 

algorithm; networks; graph; distributed algorithms. 
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CHAPTER 1                                                        

INTRODUCTION  

1.1 Introduction  

Many systems in the world can be represented as networks (also referred to as graphs in much 

of the mathematical literature) composed of nodes (vertices) and links (edges) in which 

network links represent relationships between the interrelating parts (nodes) of the systems. 

Examples include technological networks such as the Internet (Faloutsos, Faloutsos and 

Faloutsos, 1999) and  the World Wide Web (WWW) (Albert, Jeong and Barabási, 1999), 

biological networks e.g., Neuronal networks, metabolic networks, protein-protein interaction 

networks and food webs (Vocaturo and Veltri, 2017), and distribution networks (Newman, 

2003) like postal delivery routes, citation networks, social networks, organisational networks 

(Newman, 2003) and even political elections (Adamic and Glance, 2005) etc. 

Recently, it has become common to analyse interactions in the real-world by looking at the 

networks that underlie these interactions (Chen, Zaiane and Goebel, 2009). However, real-

world networks are not random networks, they usually exhibit inhomogeneity and reveal a high 

level of order and organisation (Mahata and Patra, 2016). An interesting feature that real-world 

networks usually present is the community structure property, under which the topology of 

network is organised into modules commonly called communities or clusters (Fortunato, 2010).  

The process of discovering the cohesive groups or clusters in the network is known as 

community detection (Bedi and Sharma, 2016), it is also known as the graph partition problem 

in modern graph theory, and as the graph clustering or dense subgraph discovery problem in 

the graph mining area (Wang et al, 2015). 
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The problem of community or graph clustering is not well defined and the concepts of 

community do not have a universally accepted definition. Highlighting the difficulties of the 

problem, in his recent work, Fortuna stated that ñthe definition often depends on the specific 

system at hand and/or application one has in mindò (Fortunato, 2010).  Considering social 

network as an example, community can be defined using many natural properties. Whether the 

nodes representing people in a community should know each other, the community should have 

a high edge density or each detectable community ought to have a unique identity (Shah and 

Zaman, 2010). 

Informally, a cluster is usually defined as a set of entities that are closer to each other than with 

the rest of the entities in the data set (Jain, Murty and Flynn, 1999). The notion of closeness is 

based on a similarity measure that is usually defined with the use of a mathematical objective 

function. The task of clustering is also referred to as ñunsupervised learning where the aim is 

to group together similar data set without resorting to any a priori knowledge about the clusters 

(Schaeffer, 2007). In the case of networks, the similarity is usually measured either based on 

the structural similarity which considers the topological features or the attribute features related 

to the nodes or edges of the graph, or both of them (Malliaros and Vazirgiannis, 2013). 

There are several definitions of the community detection problem. In general, the community 

detection algorithms aim to divide a network into sub-communities. The general principle on 

which most community definitions are based is the tendency for the nodes to divide into 

clusters with dense connections within clusters and only sparser connections between them 

(Newman, 2004a). However, communities may overlap as nodes belong to multiple clusters 

simultaneously. The overlapping community is very common in real-world networks for 

example, in a social network, a person may belong to more than one social group such as friend 

group and family group which are known as overlapping nodes (Amelio and Pizzuti, 2014). 

More  detailed definitions of community are presented in another work (Fortunato, 2010). 
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Figure 1.1 shows a small network of 12 nodes that illustrates this idea of network structure. 

The network has three communities denoted by the circles in which a set of nodes are densely 

connected internally and loosely connected to the rest of the network. 

Figure 1.1 A simple graph with three communities that are represented by different colours. 

1.2 Impact of the Research and its Impact 

1.2.1 Social networks 

Community structure is a common and important topological characteristic of many real-world 

complex networks. Nodes belonging to a tight-knit community are more than likely to have 

other properties in common (Danon et al, 2005). The determination of communities in the 

networks can help to better understand the structural makeup of the networks, provide powerful 

insights about the structure of networks, and help analyse complex phenomena at different 

scales (Orman, Labatut and Cherifi, 2011; Borgatti, Everett and Johnson, 2013). Thus, this 

research topic has applications in many fields such as biology, social science, physics, 

computer science, business science, etc. (Schaeffer, 2007; Orman, Labatut and Cherifi, 2011). 

In social networks, for example, analysis of community detection is extremely useful in the 

context of many applications, including customer segmentation, vertex labelling, 
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recommendations and link inference (Khatoon and Banu, 2015). Also could be used to 

estimating unknown features of users in social networks. If a given user does not give a certain 

piece of information (like the school he/she went to), but a reasonable number in his/her 

community do, the missing information can be imputed with a reasonable degree of confidence. 

1.2.2 Impact on WWW 

Community structure is important not only on social networks, but also on various other 

networks. For the famous example of the Internet, determination of community structure can 

address questions such as, how to route data as packets in an efficient way, how to reduce the 

time consumption for such traffic and what is the fast and safe path to consider reaching the 

destination etc. It can go further in depth, by elucidating questions like how computer viruses 

are spreading through the Internet, and what mechanisms they follow to hit organisations etc. 

Also in dark networks, community structure can reveal the hidden relationships between 

individual terrorists and help develop effective disruptive strategies. (Warnke, 2016). Similarly, 

in the case of the world wide web (WWW), pages related to the same subject are typically 

organised into communities, so that the identification of these communities can help the task 

of seeking for identifying the category of the network as well as understanding its dynamic 

evolution and organisation (Costa et al, 2007).  

1.2.3 Routing in Ad-hoc and Wireless Sensor Networks 

Clustering without global knowledge is an important technique in mobile ad-hoc and sensor 

networks (Gehweiler and Meyerhenke, 2010) for the improvement of certain management e.g. 

energy consumption and communication tasks. 

In wireless sensor networks (WSNs), nodes are usually consist with limited and non-

rechargeable energy resources. Thus in WSNs, energy consumption is the most critical problem 

and large number of clustering routing protocols have been developed for WSNs to reduce 
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communications, efficiently optimize the energy of sensor nodes, organize messages among 

the cluster head and their node members and optimize the network life-time (Liu, 2012). 

In clustering routing protocols, the sensing field of sensor network is divided into number of 

clusters where each cluster has a leader called cluster head. The cluster head collects the data 

from its node members and transfer it to the destination (base station). Yu and Chong (2005) 

reported that the cluster structure is an effective topology that could provide many benefits in 

the context of wireless sensor networks (WSNs). It could be used to increase the system 

capacity by spatial reuse of resources. Furthermore, it improves routing performance, since the 

set of cluster-heads and cluster gateways can normally form a virtual backbone for inter-cluster 

routing, and thus the generation and spreading of routing information can be restricted to this 

set of nodes. Additionally, they stated that the cluster structure makes an ad hoc network appear 

smaller and more stable in the view of each mobile terminal, this is because in WSNs when a 

mobile node changes its attaching cluster, only mobile nodes residing in the corresponding 

clusters need to update the information.  

For more information, interested readers may refer to Yu and Chongôs survey (Yu and Chong, 

2005). 

1.3 Research Challenges 

In recent years, the problem of network clustering has received growing attention as an 

important analytical technique and has been actively investigated in a variety of fields, from 

computer science and statistical physics (Newman, 2004b; Newman and Girvan, 2004) to data 

mining (Moghaddam et al, 2010). Therefore, a rich and diverse list of methods and algorithms 

has been generated. 

In the current Big Data era, the amount of generated data is huge, existing in various formats, 

from a continuously increasing number of sources. The real-world networks can be very large 
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in size, even reaching billions of nodes. However, most of the community detection algorithms 

in the literature are classified as global algorithms, which require access to the entire 

information of the network and are designed to work on a single machine.  

As the data size is scaling up, the need for computing power is exponentially increasing. In 

many such situations, it has become difficult for the stand-alone community detection 

algorithms to find communities in large-scale networks (Li et al, 2015) and the required 

processing power far exceeds the processing capabilities of single machines. However, most 

of the existing community detection algorithms cannot be directly parallelised. Furthermore, 

in many such cases the large-scale data set does not fit into the main memory of a single 

machine and needs to be distributed among several machines. These demanding requirements 

make existing community clustering algorithms even more limited than before, and so more 

powerful and scalable clustering tools for big data analysis seem to be in urgent need.  

Additionally, in many real-world networks, node attribute is also available in addition to 

topology information. It is pointed out that  nodes containing similar content of communication 

are much likely to belong to the same community (McPherson, Smith-Lovin and Cook, 2001; 

Traud et al, 2011).  Traud et al (2011) show that a set of nodesô attributes can act as the primary 

organising principle of the communities. An overwhelming majority of conventional 

approaches to community detection focus on topology information and largely ignore the 

attribute information. However, the collected topology information for networks is usually 

noisy when there are missing edges. This makes the task of community detection for 

incomplete networks very challenging. 

To summarise, Big data exhibits different characteristics such as óvolume, variety, velocity, 

value, thus it is very difficult to analyse Big data and obtain information with traditional 

techniques (Hu et al, 2014). 
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Given these scenarios, there is the emergence of a new research direction to develop a powerful 

and scalable community clustering method for big data analysis, which will make use of the 

relationship between the attribute and link information to improve the robustness of the existing 

community clustering methods in unreliable environments (incomplete or noisy networks). 

1.4 Aim and Research Objectives  

The main goal of this thesis is to design and implement novel techniques and algorithms for 

the problem of clustering and community detection in large and undirected networks. In the 

light of the above discussed research challenges, the main objectives and motivations of this 

research work are summarised below: 

1. To design and implement an efficient community-detection approach that could work 

at the local level and does not require any global knowledge of the network. 

As the networks being operated on become larger and larger, the ability to process them in 

the main memory of a single machine becomes impractical due to both time and memory 

constraints. Moreover, community detection algorithms are often computationally 

expensive and are not scalable to large networks with hundreds of millions or even billions 

of nodes and billions of edges.  

The above issues motivated me to design, implement, and evaluate an efficient community-

detection solution for large-scale networks. More specifically, the proposed approach 

works at the local level and does not require any global knowledge of the network. From 

the heuristic point of view, it is worth noting that the optimisation of global clustering 

methods, when only restricted to the local knowledge, is more difficult. That is why most 

of the existing approaches and algorithms make use of global knowledge.  

2. To extend the proposed approach for large-scale networks to work in parallel and in a 

distributed fashion. 
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Being a localised algorithm, it can be run in parallel or in a distributed fashion among 

clusters when the size of the input network or the computation complexity is beyond the 

resources of a single computer.  

3. To design and implement a community clustering approach considering both attribute 

information and topological structure information to improve the performance of 

existing community detection algorithms. 

Since in many real-word networks, the nodes and links in the networks may contain 

attribute information, this attribute information has important significance in completely 

presenting the community structure of the network and could improve the robustness of 

community detection algorithms in unreliable environments.  

4. To analyse a set of real-world mobile phone usage data as an exploratory step for 

viability to apply the algorithms developed in this thesis. 

The smart phones in the telecommunication industry generate a massive amount of data. 

These data usually include call details, data and network details. The amount of data is so 

big that manual management and analysis of these data is almost impossible. From this 

perspective to explore the viability of applying the proposed method and algorithms to 

analyse the big data sets generated by smart phones. A real-life big data (Device Analyzer) 

set from Cambridge Laboratories is used for this proposed objective. 

5. To propose a set of broad guidelines and future design from the understanding gained. 

Under this objective, the potential usage of the developed approaches proposed in this 

thesis will be demonstrated. Also, recommendations, guidance information, and 

suggestions to improve the effectiveness of the developed algorithm will be made. 
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1.5 Scope of Research  

This thesis studies in the scope of community detection in big networks. In other words, the 

main goal of this thesis is to design and implement novel techniques and algorithms for the 

problem of clustering and community detection in large and undirected networks. The 

approaches proposed in this thesis all assume that the given network structure is needed to be 

divided into communities in such a way that every node belongs to one of the communities 

(non-overlapping communities). Although doing some modifications of the proposed 

approaches can achieve overlapping communities, the focus of this thesis is on non-overlapping 

communities. 

1.6 Contribution s of the research to state of the art 

This thesis aims to design and implement methods for the problem of extracting non-

overlapping communities in large networks. However, since the global community clustering 

approaches demand shared memory to access global information, they are inappropriate for 

this goal. Thus, in this work attention is given to the local community clustering as it is more 

accessible for parallelization. 

The following summary provides a short overview of the four key contributions of this work 

that address all of the challenges introduced in the previous sections: 

1. A novel Decentralized Iterative Community Clustering Approach (DICCA) to extract 

an efficient community structure for large networks is proposed.  An important property 

of this approach is its ability to cluster the entire network without the global knowledge 

of the network topology. This ability means that the entire network does not need to be 

loaded into one memory and DICCA could be easily adapted to run in parallel on as 

many processors as available to find community clusters in big networks. This cannot 

be done in the majority of the existing community detection algorithms as they 
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implicitly assume that the entire structure of the big network is known and is available. 

Another perspective of DICCA approach is reducing the problem size by aggregating 

the nodes in the network, allowing the approach to cluster the large-scale data set 

efficiently. 

2. A Parallel Decentralized Iterative Community Clustering Approach (PDICCA), which 

does not require any global knowledge of the graph topology is proposed.  PDICCA is 

a distributed memory parallel processing approach that transforms the serial steps of 

DICCA approach into parallel tasks. It is scalable and will work with a range of 

computer architecture platforms (e.g. cluster of PCs, multi-core distributed memory 

servers, GPUs).  

3. A pre-processing approach for existing community detection algorithms is proposed to 

improve the robustness of community detection algorithms in unreliable environments. 

The proposed approach is applicable to the existing weighted community detection 

algorithms and it seeks to improve their performance by considering attribute 

information, shared neighbours information and connectivity between nodes in the 

network. Therefore, if either attribute information or topological structure information 

is noisy or missing, the other could make up for it. 

4. Using a set of real-life android smartphone usage datasets, the different features of 

mobile phone usage is analysed. 

1.7 Thesis Structure 

The thesis contains eight chapters, which are organised as follows. The present chapter gives 

an overall picture of the thesis, highlights the importance of the field of community detection 

in the networks and states the challenges, aim, objectives and the contributions of the research. 

The rest of the thesis is organised as follows:  
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Chapter 2 gives some basic definitions of graph theory, which are used in further chapters. 

Furthermore, the literature review of state-of-the-art community detection algorithms and 

related work in the area of parallelisation techniques for the community detection algorithms 

are also discussed. 

Chapter 3 presents some specific structural properties and models of real networks. 

Additionally, the current work available in literature for models that generate synthetic 

networks with community structures along with the most popular quality metrics for assessing 

the network clustering results are discussed.  

Chapter 4 addresses the first technical objective of the research. It gives a detailed description 

of my proposed Decentralized Iterative Community Clustering Approach, for detecting 

community and then the effectiveness and efficiency of the DICCA approach is evaluated.  

Chapter 5 centres around the design and implementation of the parallel framework version of 

DICCA approach named PDICCA. In this chapter, the principle and implementation of the 

proposed PDICCA approach is detailed and its performance is evaluated.  

Seeking to improve the robustness of existing community detection algorithms rather than 

looking to identify communities in the network based just on topological structure information, 

a new pre-processing approach that considers attribute information, shared neighbours 

information and connectivity between nodes in the network is presented in chapter 6. Chapter 

7 shows the data analysis of the datasets from the real-world telecom network.  

Finally, chapter 8 concludes the research activities within this thesis by summarising the 

contributions and proposing a set of possible suggestions for future work. 
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CHAPTER 2                                                               

LITERATURE  REVIEW  

This chapter introduces some fundamental concepts that are widely used throughout this thesis, 

and reviews existing work on the community clustering and distributed techniques. It starts 

with a short introduction into the basics of graph theory, including the concepts required to 

understand further chapters. This is followed by a discussion of the definitions and concepts 

around community clustering. Then a detailed literature survey on the state-of-the-art in 

community approaches and the parallelisation techniques for extracting network clusters is 

presented. 

2.1 Basic concepts of graph theory 

Many practical problems in various fields of study such as scientific computing, data analysis 

etc, can be modelled in their essential form by graphs and solved using appropriate graph 

algorithms. In graph theory, a simple graph G = (V, E) is defined as an abstract representation 

of a set of nodes (or vertices) V = {1, . . . , n} and a set of edges (or links) E = {(i, j)| i, j  ɴV} 

which connect pairs of nodes together. A pair (i, j) belongs to E if there is an interaction 

between the nodes i and j and the cardinality of the set E. The number of nodes in the graph is 

n = |V| and the number of edges m = |E|. In some graphs it is possible to find an edge that 

connects a node to itself, (i, i) ɴ E, it is called a self-loop (Silva and Zhao, 2016). 

The edges in the graph can be assigned with a weight, which represents the strength of 

connection between two nodes; in this case, the graph is called a weighted graph. If each edge 

has unit weight, the graph is called an unweighted graph (Silva and Zhao, 2016). Considering 

the nature of the edges, the graphs can be classified into two: undirected and directed graph. A 

graph is called directed (also referred to as digraph) if the orientation of the edges is important 

for the task (Silva and Zhao, 2016). A directed graph G= (V, E) consists of a non-empty set of 
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nodes V and a set of directed edges E. Each edge e:(u, v) of E is specified by an ordered pair 

of nodes (u, v) and comes out from node u, namely the origin (or tail), and reaches a destination 

v (or head).  

Directed graphs arise in many real-world applications such as the web graph whose node 

represents a web host and each directed edge represents the hyperlinks. These hyperlinks are 

one-way from web pages on the source host to web pages on the destination host (Canright and 

Engø-Monsen, 2008). On the other hand, in undirected graphs, the edges have no orientation 

and the graph has edges that represent symmetric relationships in which whenever the edge (u, 

v) exists in an undirected graph then so does the edge (v, u) (Costa et al, 2007). For example, 

in friendship networks where each relationship is considered reciprocal in the sense that if you 

are friends with someone, then they are friends with you. 

From the mathematical point of view an undirected unweighted graph G = (V, E) can be 

represented by a matrix A called adjacency matrix A ᶰπȟρ . 

Definition 2.1  Adjacency Matrix : The adjacency matrix A of a graph G = (V, E) is an |V|×|V| 

matrix, such that: 

ὃȟ
ρ ὭὪ ὭȟὮᶰὉȟ
π έὸὬὩὶύὭίὩ

         (2.1) 

The adjacency matrix for an undirected graph is symmetric, This fact implies that A(i,j) = A(j,i). 

However for a directed graph, the adjacency matrix may not be symmetric (Silva and Zhao, 

2016). 

 Throughout this thesis, the terms ñgraphò and ñnetworkò are used interchangeably. In the same 

spirit, the data relationships that make up a graph are termed structure or topology of the 

network. Unless stated otherwise, a graph G = (V, E) is unweighted, undirected and consists of 
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a set of nodes V and a set of E edges. Nodes and vertices convey the same type of information 

and are used interchangeably and the same principle applies to edges and links.  

Labeled graph Adjacency matrix 

 

A= 

ụ
Ụ
Ụ
Ụ
ợ
π π ρ ρ π
π π ρ π π
ρ ρ π ρ ρ
ρ π ρ π π
π π ρ π πỨ

ủ
ủ
ủ
Ủ

 

Figure 2.1 An example of unweighted undirected graph and its adjacency matrix. 

Definition 2.2 Degree of a node: The degree ὑ of a node ói' in undirected graph G = (V;E) is 

equal to the number of edges connecting to node i (Silva and Zhao, 2016). Given an adjacency 

matrix A, the degree of node i is the sum of row entries corresponding to node i, which can be 

expressed as: 

ὑ В ὃ         (2.2) 

However, for directed graphs, the concept of degree is split into two categories: out-degree and 

in-degree.  

Definition 2.3 In-degree and out-degree: The out-degree of a node óiô in a directed graph is 

the number of edges that leave the node i, and the in-degree is the number of edges that enter 

the node i (Silva and Zhao, 2016). 

Definition 2.4 A completely connected (fully connected) graph: In undirected graph G the 

fully connected graph is a graph in which every pair of distinct nodes is connected by a unique 

edge.  Thus the total number of edges in a completely connected graph with n number of nodes 

is equal to n(n-1)/2 (Tomassini, 2010). 

Definition 2.5 A triangle:  In graph G = (V, E) a triangle (æ) is a three node subgraph with V 

= {v1, v2, v3} Ṓ V and E = {(v1, v2), (v2, v3), (v3, v1)} Ṓ E (Schank and Wagner). 
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Definition 2.6 A triple :  In graph G = (V, E) a triple N3(i) at node ói', is a path length of two 

for which i is the centre node (Schank and Wagner). For undirected graph, the number of triples 

of node i is defined as: 

ὔ Ὥ  
ὑ
ς

 
                                           (2.3) 

and the number of triples in graph G is defined as the summing of triples of all nodes in the 

graph: 

ὔ В ὔ Ὥ                                                                    (2.4) 

To illustrate the concept of triangle and triples, the network in Figure 2.1 has 1 triangle and 8 

connected triples.  

Definition 2.7 Reachability: In graph theory, reachability refers to the ability to get from one 

node to another within a graph. Given a graph G(V, E), it is said that V2  ɴV is reachable from 

V1  ɴV if there is at least a walk that starts from V1 and ends at V2 (Silva and Zhao, 2016). 

Definition 2.8  Homophily: 

Apart from the previous patterns that concern network architecture, there are also some other 

patterns that relate to how links depend on other characteristics of nodes. For instance, if nodes 

are people, then they have some attributes such as age, gender, ethnicity, profession, political 

attitudes, their hobbies and so forth. In real-world networks, it has been shown that the similar 

nodes in terms of their characteristics tend to be more frequently linked to each other than to 

nodes that are less similar to themselves in characteristics. This is referred to as homophily, as 

originally named by Lazarsfeld and Merton (McPherson, Smith-Lovin and Cook, 2001; 

Jackson, 2010). 

Definition 2.9  Hierarchical structure : Another important aspect related to community 

structure is the hierarchical organisation (multiscale or multilevel) exhibited in most real-world 
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networks in which communities contain smaller communities that may be further divided into 

sub-communities. (Fortunato, 2010) 

2.2 Community Detection Algorithms 

The problem of unveiling the community structure of a network is called community detection. 

Community detection is an active area of network science research and over the years, a wide 

variety of community detection algorithms have been proposed to find the communities in the 

network. Community detection is also named as graph partitioning in much of the literature 

(Aggarwal and Wang, 2010; Wang et al, 2015). It is tempting to suggest that this community 

detection and graph partitioning are really addressing the same question; in both, their aim is 

to identify groups of nodes in a network that are better connected to each other than to the rest 

of the network. However, it is very important to stress that the task of graph partitioning and 

community detection can be distinguished from one another based on whether the experimenter 

fixes the number and size of the groups or it is unspecified (Newman, 2010). Graph partitioning 

is the problem of partitioning a graph into a predefined number and size of clusters. It has been 

pursued particularly in computer science and related fields with applications in parallel 

computing and very-large-scale integration (VLSI) design. However, in the community 

detection, which has been pursued by sociologists and more recently by physicists and applied 

mathematicians, with applications especially to social and biological networks the number and 

size of clusters are unspecified. Furthermore, the goal in the former is usually to identify the 

best division of a network regardless of whether or not a good division existed. In case there 

are no good divisions exist, the least bad one will be done as a solution. On the other hand, in 

community detection, the algorithm only divides the network when good divisions exist and 

leave the network undivided in case there are no existing good divisions (Newman, 2010).  

Community structure identification has been an important research topic in complex networks. 

Given the number and range of community definitions, it is not a surprise that the number of 
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methods proposed for detecting and revealing the community structures in networks are even 

larger. Furthermore, the community detection algorithms can be classified in different ways, 

and depending on the selected criteria, one algorithm can belong to more than one category. A 

brief summary of existing community detection algorithms is introduced in the sections below. 

The algorithms are classified based on methodological principles as presented in Orman, 

Labatut and Cherifi (2011)  in which most of the existing community detection algorithms 

mainly fall into the following categories: 

2.2.1 Link -Centrality -Based Algorithms 

The centrality measures such as degree centrality (Silva and Zhao, 2016) and betweenness 

(Girvan and Newman, 2002)  are used to rank how important an edge (or node) is in the 

structure of the network. Thus, the link-centrality-based algorithms are usually hierarchical 

divisive approaches that start with a single community comprising all the nodes of the network. 

Then repeatedly removing/cutting edges and dividing the network progressively into smaller 

and smaller disconnected subnetworks that are viewed as communities until further splitting is 

no longer worthwhile. The centrality measures are used for the selection of the links to be cut, 

which are links connecting the communities and not those within them (Orman, Labatut and 

Cherifi, 2011). 

The first and most known algorithm using this approach is the Girvan-Newman algorithm 

introduced in Girvan and Newman (2002). The algorithm estimates the centrality of a link by 

considering the edge betweenness measure, which is defined as the number of shortest paths 

between pairs of nodes that go through an edge in a graph. The algorithm is based on the fact 

that edges connecting communities are expected to have high edge betweenness. Thus, by 

iteratively removing these edges, the network is separated into groups from one another and 

the underlying community structure of the network is revealed. Though the algorithm obtains 

good results, it is very slow and highly complex thus it is not well suited for very large networks.  
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2.2.2 Modularity Optimi sation Algorithms 

The most popular method widely used to find community in the network relies on the 

optimisation of a quantity called modularity. Modularity (Q) is a prominent measure for the 

quality of a community structure introduced by Newman and Girvan in (Newman and Girvan, 

2004) and it has become a widely accepted quality of measure for community detection.  

The general concept of modularity optimisation algorithms is to detect the best community 

structure in terms of modularity by searching over possible divisions of a network that have 

high modularity. 

Definition 2.10 Modularity  (Q) 

Modularity is based on the idea that a random graph is not expected to have a cluster structure, 

so it quantifies the community strength by comparing the fraction of edges that fail within a 

community with the expected fraction value of the same quantity of edges failing at random. 

Let eij be the fraction of edges in the network that connect nodes in group i to those nodes in 

group j, then the modularity score Q for a clustering is given by the following equation  

(Newman and Girvan, 2004):  

     ὗ В Ὡ ВὩ          (2.5) 

Formally, modularity can be defined as (Fortunato, 2010): 

ὗ
ȿȿ
В ὃ

ȿȿ
 (2.6)                   

Where A ij is an element of the adjacency matrix, ὑ is the degree of node i. ά is the total 

number of edges in the network.    is the Kronecker delta symbol, which is equal to 1 if 

ci=cj and 0 otherwise, and ci is the label of the community to which node i is assigned. 

The modularity can also be equivalently defined as (Fortunato, 2010): 
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ὗ В        (2.7) 

Here, k is the number of clusters, ὒ the total number of edges joining nodes in community c 

and Ὠ is the total degree of nodes in c. 

The higher the value of Q in the network, the better its community strength.  Networks with 

high modularity have dense connections between nodes within the same communities and 

sparse connections between nodes from different communities. Thus, a Q value close to 0 

indicates that fraction of edges within communities is no better than for a random case. Values 

other than 0 indicate deviations from randomness. However, Newman et.al reported that in real 

networks the modularity values typically fall in the range from about 0.3 to 0.7, and values 0.3 

or more, usually indicate good divisions (Newman and Girvan, 2004). 

Fortunato and Barthélemy (2007) pointed out that the modularity measure suffers from serious 

resolution limits, and claimed that the size of the detected community, by enforcing modularity 

optimisation Q, depends on the size of the whole network, which may fail to identify modules 

smaller than a certain size. The main reason is that the modularity index does not consider the 

information of the number of nodes in a community, and the choice of partition is highly 

sensitive to the total number of edges in the network. 

However, despite the fact that modularity is subject to a resolution limit, it is still one of the 

most popularly accepted metrics for measuring the quality of community structure as well as 

an optimisation criterion used by some algorithms to identify communities in networks 

(Newman, 2016). In the following paragraphs, two modularity optimisation algorithms are 

considered in some detail.  

Fastgreedy algorithm  is an agglomerative hierarchical clustering method proposed by 

Newman (Newman, 2004b). The algorithm greedily maximises the modularity function Q, and 
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starts the process by assigning a different community to each node in the network. Then at each 

stage in the process, the pair of clusters that yields greatest increase of modularity or smallest 

decrease is merged until only one cluster remains containing all nodes in the network.  The 

whole procedure can be represented by a dendrogram (hierarchical tree) that illustrates the 

order of the mergers. Cuts through the dendrogram at different levels give different partitions 

into communities.  The optimal community cluster can be found by cutting the dendrogram at 

the level of maximum Q. 

Louvain algorithm  is a hierarchical agglomerative optimisation method proposed by Blondel 

et al and attempts to optimise the modularity of a partition of the network.  The optimisation is 

performed in two steps that are repeated iteratively (Blondel et al, 2008). 

This algorithm starts with each node in the network belonging to its own community. Then in 

the first step and for each node in the network, the algorithm uses the local moving heuristic to 

obtain an improved community structure by moving each node from its own community to its 

neighboursô community and evaluating the gain of modularity associated with the moving of 

the node. The node is then placed in the community for which the modularity change is the 

most positive. If none of these modularity changes is positive, the node stays in its original 

community. This process is applied repeatedly and sequentially for each node until all the nodes 

in the network are considered, and no further improvement can be achieved. This concludes 

the first step. The second step of the algorithm consists of building a new network from the 

communities discovered in the first step. Therefore, the individual nodes in the new network 

are the individual communities from the first step. In this new network, there will be an edge 

between two nodes if there were edges between the corresponding two communities in the 

previous step. The weights of those new edges are the sum of the weights of the edges between 

nodes in the corresponding two communities. The edges between nodes of the same community 

in the first step will lead to self-loops for this community node in the new network. Once the 
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second step is completed, it is possible to replay the first step and iterate again if necessary. 

The two steps repeat iteratively and stop when there is no more change in the modularity gain 

and consequently a maximum modularity is obtained.  

2.2.3 Spectral Algorithms 

The spectral algorithms are mostly based on the analysis of the eigenvectors of matrices derived 

from the networks and designed to find the partition minimising the links lying in between the 

node groups. Leading eigenvector is one of the effective spectral algorithms proposed by 

Newman (2006b). The algorithm is based on the spectral optimisation of modularity. Newman 

showed that the modularity could be expressed in terms of the eigenvectors of a characteristic 

matrix for the network, called modularity matrix, and therefore spectral techniques for the 

optimisation process could be applied. He exploits the spectral properties of the modularity 

matrix by using the leading eigenvectors (associated with the largest eigenvalues) of the 

modularity matrix to maximise the modularity in his proposed algorithm. The algorithm 

initially divides the network by assigning all the nodes into two communities according to the 

signs of the leading vector elements of the modularity matrix. The negative signs clustered in 

one group and positive signs in the other. The algorithm then runs recursively on each 

subnetwork to divide those parts, and so forth. At any stage when there is no division of a 

subgraph that will increase the modularity of the network the algorithm leaves the 

corresponding subgraph undivided. This happens when all the elements in the eigenvector of 

the proposed split subgraph have the same sign, and when the entire network has been 

decomposed into indivisible subgraphs the algorithm ends. For the interested readers, Newman 

(2006b) discusses the algorithm in more detail. 

However, there are two drawbacks in the spectral algorithm described above. First, it only takes 

the leading eigenvector of the modularity matrix to generate the solution and ignores all the 

information provided by the other eigenvectors. Second, it splits a network into more than two 
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communities by recursive partitioning instead of getting all the communities directly in a single 

step (Chen and Hero, 2015). 

2.2.4 Random-Walk-Based Algorithms 

Random walk is a process of traversing nodes at random and it has been widely used to partition 

the network into communities. There are several algorithms which have been proposed in 

literature based on the random walk. An example includes Walktrap  (WT) algorithm which 

is proposed by Pons and Latapy (2006).  

The walktrap algorithm is based on the principle that random walks on a network tend to get 

ñtrappedò into densely connected parts defining the communities. In this method, the authors 

propose using a node similarity measure based on short walks to capture structural similarities 

between nodes instead of modularity to identify community via hierarchical agglomeration. 

The algorithm starts by assigning each node to its own community and the distance for every 

pair of communities is computed. Communities are merged according to the minimum of their 

distances and the process iterated. After nī1 steps, the algorithm finishes and gives a 

hierarchical structure of communities called a dendrogram. The best partition is then 

considered to be the one that maximises modularity. 

2.2.5 Information -Based Algorithms 

Information-Based algorithms are also known as compression-based approaches. These 

approaches use the concept of information theory to find community clusters in the network. 

They basically consider the community structure as a set of regularities in the network topology, 

which can be used to represent the whole network in a more compact way than the whole 

adjacency matrix (Orman, Labatut and Cherifi, 2012). Infomap algorithm is an example of 

information theoretic algorithms proposed by Rosvall and Bergstrom (2008). Infomap 

algorithm characterises the problem of finding the optimal community clustering in the 

network as the problem of finding the most compressed (shortest) description length of the 
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random walks on the network. It uses a random walk as a proxy for information flow in a 

network and minimises a map equation, which measures the description length of a random 

walker, over all the network clusters to reveal its community structure. To represent the 

community structure, the algorithm uses a two-level nomenclature based on Huffman coding: 

a level to distinguish communities in the network and the other to distinguish nodes in the 

community.  

In practice, the random walker is likely to stay longer inside communities, therefore in the 

process of finding a community containing few inter-community links, only the second level 

is needed to describe its path, leading to a compact representation. However, even though 

Infomap is a competitive community detection algorithm and shows a very good performance 

across several benchmarks (Fortunato, 2010), it cannot handle big networks with millions and 

billions of edges that are becoming commonplace with the advent of Big Data (Bae et al, 2017). 

For a more thorough discussion of community detection methods and algorithms and their 

principles, please refer to the work done by Fortunato who is one of the major authorities in 

the field of community detection (Fortunato, 2010) and Schaeffer (Schaeffer, 2007). 

2.3 Parallelisation of Centrality Algorithms  

Presently, the real-world networks are often complicated and accompanied by extremely large 

sizes. Using conventional algorithms to analyse the networks is almost impossible to process 

in a single machine and they usually require specialised processing methods, especially parallel 

ones. Furthermore, many data parallelisation methods are proposed to extend storage 

capabilities and to improve performance by distributing data and related tasks into disparate 

hardware (Hu et al, 2014).  MapReduce (Dean and Ghemawat, 2008) is one of the most popular 

distributed computation frameworks that is being widely applied to large scale data-intensive 

processing. 
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2.3.1 MapReduce  

MapReduce is a distributed computing model proposed by Google in 2004 for processing 

massive data sets with a parallel distributed algorithm using a large number of computers in an 

efficient and fault tolerant manner (Dean and Ghemawat, 2008).  Nowadays, MapReduce is 

widely used as an efficient distributed computation tool in many applications e.g., search, 

clustering, analysis of social networks, log analysis and matrix multiplication to name but a 

few (Derbeko et al, 2016). 

The computation of MapReduce takes a set of input key/value pairs, and produces a set of 

output key/value pairs. The computation of MapReduce is expressed as two functions written 

by the user: Map and Reduce. One iteration of map and reduce functions is called MapReduce 

Job. MapReduce computation could be simply described as the following steps (Dean and 

Ghemawat, 2008): 

1. Input data is read from the disk and converted to Key-Value pairs. 

2. The map function takes an input pair of data separately, processes it and produces a 

list of intermediate key/value pairs. 

ὑὩώρȟὠὥὰόὩρ O  ὰὭίὸὑὩώςȟὠὥὰόὩς    (2.8) 

3. The reduce function takes intermediate Key2 with a list of Values and processes them 

to form a new list of values.  

ὑὩώςȟὰὭίὸὠὥὰόὩς  O  ὰὭίὸὠὥὰόὩσ      (2.9) 

4. Once all input pairs have been processed, the output of the Reduce function is then 

written to the disk as Key-Value pairs. 
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MapReduce runs in a cluster of nodes; one node acts as a master node and the others act as 

workers. The master node is responsible for assigning tasks to idle workers whereas the worker 

nodes are responsible for running map and reduce tasks. A block diagram of the MapReduce 

framework is shown in Figure 2.2. 

Figure 2.2 Architecture of MapReduce framework (Dean and Ghemawat, 2008) 

There are some existing open source implementations of MapReduce such as Hadoop (Hadoop, 

2016), which has been widely used by many organisations such as Facebook, Yahoo!, LinkedIn.  

However, despite the popularity of MapReduce and being extensively used by both academia 

and industry, the MapReduce has also been the object of severe criticism (Doulkeridis and 

Nørvåg, 2014; Fernández et al, 2014; Mohebi et al, 2016), mainly due to its performance 

limitations, which arise in various complex processing tasks such as lack of loop-aware task 

scheduling. MapReduce does not support multi-staging of tasks in a single run. Whenever new 

MapReduce jobs are executed, the input data has to be reloaded from the disk every time during 

iterations and regardless whether or not the input has changed from the previous iterations.  

Recently, some researchers proposed several frameworks that support asynchronous execution, 

which is not allowed in MapReduce. For example, some approaches provide support for 

 



26 
 

iterative algorithms that use MapReduce execution models such as: Twister (Ekanayake et al, 

2010), HaLoop (Bu et al, 2010) and iMapReduce (Zhang et al, 2012). 

2.4 Summary 

Since the terminologies networks and graphs share the same definition, the first part of this 

chapter introduces the basic concepts of graph theory that are used in further chapters. This 

includes the definitions of adjacency matrix, degree of a node, completely connected graph, 

triangle, triple, reachability, homophily and hierarchical structure. 

This is followed by the literature review of state-of-the-art community detection algorithms 

and the discussion of different categories of clustering algorithms. The field of community 

detection is very rich and several algorithms to detect communities in networks are proposed.  

As an overview, the community detection algorithms could be classified based on 

methodological principles into five categories: link-centrality-based algorithms, modularity 

optimisation algorithms, spectral algorithms, random-walk-based algorithms and information-

based algorithms. For a more thorough discussion of community detection methods and 

algorithms and their principles, please refer to the work done by Fortunato who is one of the 

major authorities in the field of community detection (Fortunato, 2010) and Schaeffer 

(Schaeffer, 2007). 

Most of the community detection algorithms in the literature are classified as global algorithms 

and are designed to work on a single machine. However, in large-scale network scenarios 

which will not fit within a single machine, it is impossible for such community detection 

algorithms to find communities. Parallelizing the algorithms is one way to improve the 

scalability of community detection. However, it is worth noting that community detection 

algorithms, which use global information, are not suitable for parallelization. Hence, a 

Decentralized Iterative Community Clustering approach (DICCA) is proposed in this research. 
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The last part of this chapter addresses the parallelisation techniques that have been used to 

parallelise the community detection algorithms. Though there are several techniques available 

for implementing parallelisation, most of the algorithms used for big data scenario employ 

MapReduce scheme. This is due to its salient features that include scalability, flexibility, fault-

tolerance and simplicity. So, I have incorporated MapReduce scheme in parallelising the 

Decentralized Iterative Community Clustering approach (PDICCA). 
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CHAPTER 3                                                                     

NETWORK MODELS AND STATISTICAL METHODS 

FOR COMPARISON OF NETWORKS  

In the previous chapter, the basic concepts of community detection methods were introduced. 

In this chapter, the empirical properties of real-world networks are discussed. Following this, 

general metrics to evaluate the performance of community clustering algorithms and cluster 

quality on the networks are presented. . Then a comprehensive study to benchmark approaches 

for community detection in the networks is conducted. Finally, research methodology used in 

this work is discussed.  

3.1 Topology of Real Networks 

As it has been noted in the first chapter of this thesis, many real-world systems can be 

represented as complex networks. However, the real-world networks are non-random and they 

usually present interesting patterns and properties conveying that their inherent structure is not 

governed by randomness. Researchers have concentrated particularly on a few properties that 

seem to be common to many networks (the small-world effect, degree distribution and 

community effects), which will be discussed in the following subsections. 

3.1.1 The Small-World effect 

The small-world concept in simple terms describes the fact that even if the network has many 

nodes, there exists a relatively small number of intermediate steps (short path) connecting any 

pair of nodes within the network (Newman, 2003). It was first introduced in the 1960s by 

Stanley Milgram through a series of experiments (Travers and Milgram, 1967; Travers and 

Milgram, 1969).  
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The network is said to show a small-world effect if the value of the mean geodesic distance, 

scales logarithmically or slower with network size for fixed mean degree (Newman, 2003). 

However, nowadays, the small-world effect has been studied and verified directly in a large 

number of different networks such as, the well-known ñsix-degrees of separationò in social 

networks (Newman, 2003).  

3.1.2    Degree Distribution 

In real-world networks, not all the nodes in the network have the same number of edges. The 

spread in the node degrees is characterised by a distribution function ὖ . The degree 

distribution ὖ is defined as the fraction of nodes in the network with a degree k (Newman, 

2003). Degree distribution of the network gives important information about topological 

characterisation of the network. For example, many networks, such as the internet (Faloutsos, 

Faloutsos and Faloutsos, 1999), citation networks (Redner, 1998), telephone call networks 

(Aiello, Chung and Lu, 2000) have all been shown to display power-law degree distribution ὖ 

~ Ὧ  where the constant Ŭ is known as the exponent of the power-law with a scaling between 

2 Ò Ŭ Ò 3 (Newman, 2010).  

3.1.3   Community Effects.  

A number of measures have been developed for testing this tendency in the network. One of 

them is the clustering coefficient which measures the degree to which nodes in a network tend 

to cluster together. However, there are two well-known definitions of the clustering coefficient 

of an unweighted network: the local clustering coefficient and the global clustering coefficient  

(also referred as transitivity) (Newman, 2001; Costa et al, 2007).  

The local clustering coefficient is a local property, introduced by Watts and Strogatz (1998a) 

and used to describe the network structure of nodes that are close to each other. 
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Consider a node i in a network G, the clustering coefficient of a node i, ὅ, is defined as the 

ratio of the number of edges connecting the neighbours of i to the total possible number of such 

edges of i.  

ὅ         (3.1) 

Where, , is the number of edges between neighbours of node i, ὑ is the degree of node i 

(Costa et al, 2007). 

The clustering coefficient for the whole network is the average of the local values #. 

ὅ В ὅ       (3.2) 

Where n is the number of nodes in the network (Costa et al, 2007). 

An alternative definition of the clustering coefficient of a given node i is: 

ὅ
 
       (3.3) 

where N (i) is the number of triangles involving node i and N3(i) is the number of  connected 

triples having i as the central node (Costa et al, 2007). 

The global clustering coefficient is defined as the tendency among two nodes to be connected 

if they share a mutual neighbour (if aźb and bźc, then heightened probability that aźc and 

forming a triangle). The global clustering coefficient is based on the relative number of 

triangles in the network, compared to total number of connected triples of nodes and can be 

written as (Newman, 2001): 

 Ὕ
ᶻ
       (3.4) 

Where: N  is the number of triangles in the network and N3 is the number of connected triples.  
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In real networks, it is shown that the small-world property is often associated with the presence 

of clustering, denoted by high values of the clustering coefficient (Watts and Strogatz, 1998a).  

3.2 Overview of Validity Evaluation   

Since there is no universally accepted definition of what a community is, assessing the validity 

of community detection algorithms is a hard task and several validity approaches have been 

developed in literature to evaluate the performance of the community clustering algorithms. 

However, until this day, there is no formalisation of the problem of comparing and validation 

of community structure. In this section, the most commonly used cluster validity metrics are 

discussed. The cluster validity metrics could be classified into two types, cluster quality metrics 

and external evaluation metrics. 

3.2.1 Cluster Quality Metrics  

3.2.1.1 Coverage 

Coverage (Emmons et al, 2016) is one of the simplest quality functions, which compares the 

fraction of intra-cluster edges in the graph to the total number of edges in the graph. Coverage 

is given by: 

ὅέὺὩὶὥὫὩ
В ȟȟ

Вȟ
       (3.5) 

Where Si is the cluster to which node i is assigned and ɿ(a; b) is 1 if a = b and 0 otherwise. 

Coverage values usually range between 0 and 1. Higher values of coverage mean that there are 

more edges inside the clusters than edges linking different clusters. However, coverage metric 

does not take into account the internal cluster density and causes a strong bias toward partitions 

with a smaller number of clusters. Thus, it leads to a trivial clustering in which all nodes are 

assigned to the same cluster. 
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3.2.1.2 Conductance 

In contrast to coverage, which measures only the accumulated edge weight within clusters, the 

conductance, which is also known as Cheeger constant (Arias-Castro, Pelletier and Pudlo, 2012) 

is based on the idea that two clusters should have a small degree of connectivity between each 

other and in the ideal case they are disconnected. More formally, it computes the ratio of the 

number of inter-cluster edges for the cluster and either, the number of edges with an endpoint 

in the cluster or the number of edges that do not have an endpoint in the cluster, whichever is 

smaller (Kannan, Vempala and Vetta, 2004).  

Consider a cut that divides G into C non-overlapping clusters C1, C2, é.., Ck. The conductance 

of any given cluster ū(#) is denoted by (Kannan, Vempala and Vetta, 2004):  

   ὅ
Вᶰ ȟɵ

ȟ
       (3.6) 

Where:ὃὅ В ὃᶰ ȟɴ   which determine the total degrees of# , #  denotes the 

complement of #in graph G and A is the adjacency matrix of the graph G. 

The conductance of the graph G is (Kannan, Vempala and Vetta, 2004): 

 Ὃ άὭὲ  ὅ       (3.7) 

Conductance is widely used to capture quantitatively the notion of a good network community 

as a set of nodes that has better internal- than external-connectivity. The lower the conductance 

the better is the clustering (Leskovec, Lang and Mahoney, 2010). However, as more clusters 

in the network will probably lead to more cut-edges, it is pointed out that the conductance has 

a tendency of giving better scores to partitioning with fewer clusters (Almeida et al, 2011). 
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3.2.1.3  Modularity  

As presented in chapter 2, modularity is one of the most popular validation metrics for 

topological clustering and it is used as an optimisation method for detecting community 

structure in networks. Modularity states that a good cluster should have a bigger than expected 

number of connections between the nodes within modules and a smaller than expected number 

of connections between nodes in different modules. The higher the value of modularity the 

better its community strength. 

3.2.2 External Evaluation Metrics 

When working with a network that has well-defined clusters of ñground truthò, it is possible to 

evaluate a specific clustering algorithm by comparing the computed solution provided by the 

algorithm with this ñground truthò solution as shown in Figure 3.1. In the following subsection, 

the common indices that are used for measuring ñgoodnessò of a clustering result comparing 

to ground truthò solution are discussed. 

Figure 3.1 The way of benchmarking the algorithm using a network with ground-truth communities 

3.2.2.1 Rand Index 

The Rand Index (RI) is a statistical measure developed by Rand to measure the similarity 

between two clustering solutions (Rand, 1971). It is based on the relationship between pairs of 

nodes and requires two labels for each node. One label is corresponding to its true community 
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and the other one is corresponding to the predicted community. If X and Y are community 

clustering assignments for each node in the network, Rand Index is defined as the fraction of 

pairs of nodes that are correct to all possible pairs of nodes. A pair of nodes is considered 

correct either if the nodes share the same cluster in both clustering processes X and Y or if they 

are in different clusters in both solutions.  The Rand Index is then given by the equation: 

ὙὍὢȟὣ
 

  

 
      (3.8) 

Where:  

a11: i and j are assigned to the same cluster in both X and Y. 

a00:  i and j are assigned to different clusters in both X and Y. 

a10: i and j are assigned to the same cluster in X but to different clusters in Y. 

a01: i and j are assigned to different clusters in X but to the same cluster in Y. 

n: number of nodes in the network. 

 

RI gives a measure of similarity with a value ranging from 0, when there is no pair classified 

in the same way under both data clusters, to 1 when data clusters are exactly the same. In 

practice, the RI often lies within the narrow range of [0.5, 1]. However, RI is highly sensitive 

to the number of clusters considered in each clustering solution and has a tendency to give 

higher values as the number of clusters increases (Wagner and Wagner, 2007). 

3.2.2.2 Adjusted Rand Index 

The Adjusted Rand Index (ARI) is the chance-corrected version of the RI proposed by Hubert 

and Arabie and it is known to be less sensitive to the number of clusters (Hubert and Arabie, 

1985). ARI is equal to the normalised difference of the Rand Index and its expected value under 

the null hypothesis. The expression for ARI takes the general form (index - expected index)/ 
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(maximum index - expected index). More formally the Hubert-Arabieôs formulation of the 

adjusted Rand index is (Amodio et al, 2015): 

ὃὙὍὢȟὣ     

  
    (3.9) 

Like the RI, the adjusted Rand Index equals to 1 when both partitions are exactly similar.  

Because it is chance-corrected, a value equal to 0 represents the fact that the similarity between 

X and Y is equal to expected value under the generalised hypergeometric distribution 

assumption for randomness. However, negative values are possible and they indicate less 

agreement than expected value.  For further detailed description of ARI, the reader is referred 

to Hubert and Arabie (1985).  

3.2.2.3 Normalized Mutual I nformation (NMI)  

Normalized Mutual Information (NMI) is a similarity measure for comparing two partitions 

based on the information theory concept. It is introduced in the community detection domain 

by Danon et al. and since then it has been widely used to evaluate the accuracy of community 

detection algorithms (Danon et al, 2005).  

For an n-node network with two partitions X={X 1, X2, X3, é.Xk} and Y={Y1 ,Y2 ,Y3, é.9}  

where X and Y represent the real communities and found communities respectively, the 

normalized mutual information NMI(X,Y) of two divisions X and Y of a network is defined as 

follows (Labatut, 2015): 

ὔὓὍὢȟὣ
В В ȟ

ȟ

В В
    (3.10) 

Where: ὑȟὑ
᷊

 , ὖὑ   and   ὖ ὑ  
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If the found partition by the algorithm is identical to the real community, then NMI takes its 

maximum value of 1. If the partition found is totally independent of the real partition then 

NMI=0 (Labatut, 2015).  

3.2.3 Computational complexity 

Computational complexity theory is the study of the scalability of algorithms. The term 

scalability involves both the number of computation steps needed and the number of memory 

units that need to be allocated to run the computation. In the case of a graph, the number of 

nodes n and/or the number of edges m is usually used to indicate the complexity of algorithm. 

Big O notation is a symbolism used in complexity theory, computer science, and mathematics 

to describe the asymptotic behaviour of functions. It tells you how fast a function grows or 

decreased (Fortunato, 2010). 

3.2.4 Visualization for Cluster Validation 

Applying metrics is one way to evaluate the quality and correctness of the detected 

communities but ña picture is worth a thousand wordsò. Visualising networks is the most direct 

way of understanding them. However, large networks, particularly dense ones are very difficult 

to visualise due to inherent visual clutter caused by many edge crossings (Kang et al, 2014). 

Different graphical representations for data associated with networks and their layout 

algorithms to give an impression of graph layout issues and limitations with regard to 

scalability have been proposed. These algorithms include Yifan Hu (Hu, 2005), ForceAtlas 

(Jacomy et al, 2014), Barnes-Hut Algorithm (Barnes and Hut, 1986) and OpenOrd layout 

algorithm (Martin et al, 2011). How to design appropriate graph visualization technique 

depends on many factors, including the type of graph describing the data and the analytical 

task at hand. 
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An alternative visualisation method is to use the adjacency matrix representations. In an 

adjacency matrix, nodes are displayed twice, on the abscissa and on the ordinate. An edge 

between the two corresponding nodes in the network is represented by a non-zero entry. 

However, since each edge in the network is defined by itself in a non-shared space, there is no 

edge-crossing problem. According to studies performed by Ghoniem et al. the adjacency matrix 

outperforms the node-link diagram when the considered graph becomes large and dense 

(Ghoniem, Fekete and Castagliola, 2004).  

Furthermore, using adjacency matrix representations, coherent rectangular areas (blocks) 

appear in ordered matrix plots whenever strongly connected nodes are present in the underlying 

topology. In network analysis scenarios, these blocks would be referred to as clusters. Hence, 

with these representations, clear block patterns help counting clusters and identify larger and 

smaller clusters (Behrisch et al, 2016). The adjacency matrix representation has been used in 

many domains including: social science, artificial intelligence, biology, supply management, 

neurology and transportation (Behrisch et al, 2016). 

  In this research, I have used the matrix reordering visualisation technique for representing the 

community clusters. 

 However, the research in this work focuses on the problem of community detection in the 

networks and does not touch the visualization technique.  For more information, interested 

readers may refer to (Herman, Melançon et al. 2000) and (Von Landesberger, Kuijper et al. 

2011). 

3.2 Artificial Networks  

When evaluating the performance of community detection algorithms, there are two 

approaches that could be used. The fi rst approach is to test against the real-world networks 
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with prior information about communities and the second approach is to test against an artificial 

network whose community structure is already known, which is usually termed as ground truth. 

Among the former, Zachary's karate club (Zachary, 1977) and the college football network 

(Girvan and Newman, 2002) have been extensively used. However, due to the complexity of 

data collection and costs, real-world benchmarks are usually small-sized networks (Yang, 

Algesheimer and Tessone, 2016). Furthermore, obtaining a real network with a ground truth is 

not only difficult, but also costly in economic terms and time. Moreover, since it is not possible 

to control all the different features of a real network (e.g. average degree, degree distribution, 

community sizes, etc.), the algorithms could only be tested with a limited set of features. On 

the other hand, artificially generated networks can overcome most of these limitations. Thus, 

the literature has given much attention to algorithms' performance on benchmark networks and 

there are a number of models available to produce synthetic networks. The following 

subsections discuss the most well-known benchmarks that generate networks with ground truth. 

3.2.1   Girvan and Newman (GN) Benchmark Networks 

The Girvan and Newman benchmark (GN) is one of the first benchmarks proposed for 

community detection algorithms by Girvan and Newman in  (Girvan and Newman, 2002). The 

GN benchmark network consists of 128 nodes that are divided equally into 4 communities of 

32 nodes each.  The strength of the community (ɚ) is given by the fraction of the edges placed 

between two communities to the total number of edges in the network. The lower value of this 

parameter will result in networks with clear separable communities. However, the GN 

benchmark has some limitations such as: all the nodes of the network have essentially the same 

degree, the communities are all of the same size and the network is small.  

Since the real-world networks are characterised by heterogeneity in the distributions of node 

degrees and of community sizes, which is not the case in the GN benchmark, this benchmark 

is not entirely suitable for real-world network clustering (Newman, 2003). 
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3.2.2   LFR Benchmark Networks 

The LFR benchmark model was proposed by Lancichinetti et al. to generate undirected and 

unweighted networks that closely resemble real-world networks with community structure 

(Lancichinetti, Fortunato and Radicchi, 2008). LFR model has become a popular choice for 

assessing the performance of community detection algorithms and the model was subsequently 

extended to generate weighted and/or directed networks, with the possibility of overlapping 

communities. However, in this work, the focus is given to the undirected unweighted networks 

with non-overlapping communities.  

The LFR model is proposed to address most characteristics of real networks, e.g., size of the 

network and heterogeneous degree distribution. In the LFR benchmark, both the node degrees 

of a network and the size of each community are controlled by a power-law distribution with 

exponent ɔ and ɓ respectively. However, it has been observed that real-world graphs have such 

a power-law degree distribution (Newman, 2003) with typical values of: 2 Ò ɔ Ò 3, 1 Ò ɓ Ò 2  

(Lancichinetti, Fortunato and Radicchi, 2008). 

An important parameter of the LFR model is the mixing parameter ɛ, which represents the ratio 

between the external degree of each node with respect to its community and the total degree of 

the node. Each node shares a fraction 1ī ɛ of its links with the other nodes of its community 

and a fraction ɛ with the other nodes of the network. Essentially this parameter can be viewed 

as the amount of noise in the graph. The larger the ɛ value of a network is, the harder it is to 

detect communities in it. If µ > 0.5 then each node shares more than half of its edges with nodes 

in other communities, ɛ = 0 means all edges are within community edges and ɛ = 1 means all 

edges are between nodes in different communities. The model also allows controlling directly 

the following parameters: number of nodes and maximum degrees. The code of LFR mode is 

publicly made available by the authors (Fortunato). 
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3.3 Research Methodology 

The aim of the research is to develop an accurate and effective community clustering 

approaches for large-scale networks.  This section presents research methodology for achieving 

the objectives of this thesis.  Figure 3.2 shows the research methodology framework used to 

achieve these objectives. Each stage of the methodology for this research is explained briefly 

in the following lines. 

Studying the background information and a careful review of the relevant literature (presented 

in chapter 2 and 3), revealed the insufficiencies of existing community detection techniques. 

This provided the direction for the research and helped me to formulate the problem definition 

along with the research objectives that listed in section 1.4.  However, to achieve these 

objectives three approaches are proposed and evaluated extensively.  

 

Figure 3.2 Research methodology framework 
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1- Decentralized Iterative Community Clustering Approach (DICCA) 

A novel Decentralized Iterative Community Clustering Approach to extract an efficient 

community structure for large social networks are proposed. The proposed approach 

works at the local level and does not require any global knowledge of the network. It 

based on random walk and reachability, which is done by message propagation between 

neighbours.  

2- Parallel Decentralized Iterative Community Clustering Approach (PDICCA) 

PDICCA is a distributed memory parallel processing approach that transforms the serial 

steps of the DICCA approach into parallelised tasks.  

3- An optimization approach for improving the robustness of community detection in the 

existing weighted community detection algorithms, especially in networks with missing 

information is proposed. This is done through considering attribute information, shared 

neighboursô information and connectivity between nodes in the network, for the 

detection process.  

The following chapters (chapter 4, 5 and 6) explain in details about these three proposed 

approaches.  

For implementation of the proposed approaches, list of software were used in the process:  

¶ Matlab software  

¶ Igraph ( R ) software packages 

In this work, the synthetic dataset is generated by the LFR benchmark model along with their 

ground-truth communities in order to be able to evaluate the effectiveness of the proposed 

community detection approaches on a range of network-structural properties and network sizes. 
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In addition, anonymised Facebook datasets are used to evaluate the effectiveness of the 

Prepressing approach (3rd  proposed approach ).   

Evaluating the validity of community detection algorithms based on a single measure alone can 

lead to misleading conclusions. Thus, in this work, a range of performance measurements, 

Normalized Mutual Information (NMI), modularity (Q) and Adjusted Rand Index (ARI) have 

been applied as evaluation criteria to evaluate the quality of community clusters. These three 

performance measurements are based on three different approaches. The ARI is performed on 

pair counting whereas, NMI is based on the information theory approach. The third approach 

is the modularity measure, which relies strictly on the network topology. This modularity 

measure allows to quantify the quality of a community structure in a blind way and without the 

use of a reference (ground-truth).  

Going a step further, the matrix reordering visualisation is used as a visual representation for 

networks by encoding visually an adjacency matrix to show community clusters in the network.  

3.4 Summary 

Real-word networks have specific topological features, which characterize their connectivity. 

Measurements of the connectivity are essential to describe, analyse, model, validate the 

networks and exploit network structure to achieve certain aims. In this chapter, the empirical 

properties of real-word networks that describe the structure of the network are presented. This 

specifically focuses on the statistical properties of networks that have received particular 

attention, including the small-world effect, degree distribution and community effects.  

Furthermore, in this chapter various performance measures for assessing the quality of 

community clustering algorithms are discussed. This includes, cluster quality metrics such as 

coverage, conductance and modularity, and some external evaluation metrics such as Rand 
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index, adjusted Rand index and Normalized mutual information. Also, adjacency matrix 

representation is discussed.  

Finally, a comprehensive benchmarking study on the approaches for community detection in 

the networks is conducted. Girvan and Newman (Lancichinetti, Fortunato and Radicchi, 2008) 

and LFR Benchmark models (Lancichinetti, Fortunato and Radicchi, 2008) that are proposed 

to generate synthetic networks to mimic the real-world networks are discussed in more detail. 

The GN benchmark has some limitations such as, all the nodes of the network have essentially 

the same degree, the communities are all of the same size and the network size is small. Since 

the real-world networks are characterised by heterogeneity in the distributions of node degrees 

and of community sizes, this benchmark is not entirely suitable for real-world network 

clustering. So in this work, the synthetic dataset is generated by the LFR benchmark model 

along with their ground-truth communities is used in order to be able to evaluate the 

effectiveness of the proposed community detection approaches on a range of network-structural 

properties and network sizes. 
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CHAPTER 4                                                        

DECENTRALIZED ITERATIVE  COMMUNITY 

CLUSTERING A PPROACH (DICCA)  

In this chapter, a novel Decentralized Iterative Community Clustering approach (DICCA) for 

detecting communities in complex networks is proposed. The DICCA approach is based on the 

random walk procedure and reachability of nodes in the network. An important property of this 

approach is its ability to cluster the entire network without the global knowledge of the network 

topology. This ability means that this method could be easily adapted to any parallel/ 

distributed processing to find community clusters in big networks. 

Some parts of this chapter are published in the proceedings of the IEEE 28th Annual 

International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC, 

Montreal, QC, Canada (pp.1-7) in October 2017. However, in reference to IEEE copyrighted 

material which is used with permission in this thesis, the IEEE does not endorse any of 

[Liverpool John Moores University]'s products or services. Internal or personal use of this 

material is permitted. If interested in reprinting/republishing IEEE copyrighted material for 

advertising or promotional purposes or for creating new collective works for resale or 

redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/ 

rights_link.html to learn how to obtain a License from RightsLink. 

4.1  Related Literature and Previous Studies  

The problem of network clustering has received considerable attention from researchers in 

recent years and the list of proposed algorithms is rich and diverse. Among them, those based 

on modularity maximization form the most prominent family of community detection 

algorithms closely followed by the category of algorithms based on random walks (Fortunato, 
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2010). However, most of the research on community detection algorithms has been designed 

to work on a single machine employing a form of basic random access to the entire network, 

so they require access to the entire network at all times (Fortunato, 2010). 

In the modern era of technology, a tremendous amount of data is generated at an incredible 

speed from everywhere. As the data size is scaling up, the need for computing power is 

exponentially increasing. In many such situations, the required processing power far exceeds 

the processing capabilities of single machines. Furthermore, in many such cases the large-scale 

data set does not fit into the main memory of a single machine and needs to be distributed 

among several machines. These demanding requirements have led to the need for parallel and 

distributed algorithms for big data analysis. 

In this chapter, a novel Decentralized Iterative Community Clustering Approach (DICCA) for 

accurately clustering networks is presented. This scheme is completely decentralized and does 

not require the global knowledge of the network. Apart from DICCA, there exist some other 

algorithms that operate based on partial information. For example, the Distributed Diffusive 

Clustering algorithm (DiDiC) is proposed by Joachim and Henning (Gehweiler and 

Meyerhenke, 2010), based on the method of disturbed diffusion, which is designed to eliminate 

all the global operations for assigning nodes to partitions. However, the nodes executing DiDiC 

algorithm need to communicate with their direct neighbours and DiDiC requires knowledge of 

all the neighbouring nodes. 

Another algorithm somewhat similar to the proposed DICCA is Connectivity-based 

Decentralized Node Clustering scheme (CDC) proposed by Ramaswamy et.al (Ramaswamy, 

Gedik and Liu, 2005). The CDC algorithm adopts some ideas from the diffusion-based models, 

and is particularly designed for peer-to-peer networks. Even though the algorithm assumes that 

each node has a limited view of the entire network, similar to the DiDiC algorithm, CDC 
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algorithm requires knowledge about all the neighbouring nodes. Another distributed graph 

partitioning algorithm, called Ja-be-Ja, proposed in (Rahimian et al, 2013) is a decentralized 

local algorithm that does not require any global knowledge of the graph topology. To compute 

the partitioning, the node only requires some local information about its neighbouring nodes, 

and a small subset of random nodes in the graph. However, unlike the proposed DICCA 

approach, the algorithm produces partitions of equal sizes. In fact, it tends to find balanced size 

partitions rather than good-shaped partitions, and therefore, the number and size of yielded 

partitions is controlled, and does not depend on the topology of the input graph. Therefore, the 

outcome does not match the real-life scenario. 

Table 4.1 Comparison of the algorithms 

Algorithm  
Short 

name 

Concept of the 

algorithm 
Features Comments 

Distributed 

Diffusive 

Clustering 

algorithm 

DiDiC 

Uses the concept of 

disturbed diffusion to 

identify dense graph 

regions 

Requires 

knowledge of all 

the neighbouring 

nodes 

DiDiC initially was 

implemented to balance the 

loads on virtual P2P 

supercomputers 

Connectivity-

based 

Decentralized 

Node 

Clustering 

scheme 

CDC 

The central idea in the 

CDC scheme is to 

simulate flow in 

the network where every 

edge considered as a 

road between two points 

Requires 

knowledge about 

all the 

neighbouring 

nodes 

Model is suitable for 

discovering connectivity-based 

clusters in peer to peer 

network and handle  highly 

dynamic nodes 

Ja-be-Ja Ja-be-Ja 

It is a  distributed edge 

partitioner that creates 

balanced partitions while 

reducing the vertex cut 

Does not require 

any global 

knowledge of the 

graph topology 

The algorithm produces 

partitions of equal sizes. 

However, this is usually not the 

case for real networks. 

Decentralized 

Iterative 

Community 

Clustering 

approach 

DICCA 

The algorithm is based 

on the random walk 

procedure and 

reachability of nodes in 

the network 

Able to cluster the 

entire network 

without the global 

knowledge of the 

network topology 

The algorithm adaptable to any 

parallel/ distributed processing 

to find community clusters in 

big networks when the size of 

the input network or the 

computation complexity is 

beyond the resources of a single 

computer. 

 

4.2 Description of the Proposed DICCA  

DICCA is an agglomerative clustering algorithm, it starts with every node belonging to a 

community cluster on its own and iteratively merging the clusters that have high similarity with 

each other. DICCA is based on random walk and reachability by broadcasting messages 
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through the network to compute similarity between community clusters and identify clusters 

in the network. 

The pseudo code outlining the entire procedure is listed in Algorithm 4.1 below and it consists 

of two phases that run in an iterative fashion. The first phase, named local clustering, is to 

define originators, one for each community cluster and associate each node to the best-fit  

originator. The second phase, named network reduction, is used to build a new network based 

on the detected communities in the first phase. 

In the local clustering phase of each round of the iteration, one node is selected randomly as 

the originator. Then this originator node sends a message (Msg) to all its neighbours. The 

message contains the following three fields: Originator node ID (OnID), Time to Live (TTL) 

and Message Weight (WMsg). OnID is used for uniquely identifying the originator node. TTL 

is the maximum number of hops that the Msg can be recirculated before being discarded. The 

message weight field (WMsg) is the weight carried by the message. The Weight represents the 

estimated probability of reaching any node in the network starting from the originator node. 

However, the WMsg is initialised to one and assigned to the originator itself, to avoid the 

originator being assigned to any other clusters. The function used to calculate the weight of 

message sent from the originator ὕ to its neighbouring node 6 depends on the edges between 

the originator ὕ and the node 6 and is defined as: 

ὡὓίὫ ὕȟὠ
ȟ

В ȟᶰ
         (4.1) 

Each node in the network maintains a set of values, represented as Total Message Weight, 

originator ID. The Total Message Weight value represents the sum of the weights of all the 

messages that reached Ni and has the same Originator node ID. When the node 6 receives a 

message Msg, it updates the total weight function corresponding to the message originator node. 

Then, the receiving node 6 checks whether or not the TTL of the message is greater than zero. 



48 
 

If so, the node decrements TTL value by one, updates WMsg of the Msg and forwards the 

updated message to all its neighbours. The updated weight of the new message WMsg(V i, Vk) 

being re-sent from node 6 to its neighbouring node 6 is defined as: 

ὡὓίὫὠ ȟὠ  ὡὓίὫ  ὼ 
ȟ

В ȟᶰ
     (4.2) 

However, Node 6  halts the message circulation if TTL is zero or WMsg becomes 

insignificantly low. When the TTL reaches zero, the message will no longer be forwarded and 

the nodes join the community led by the originator node /that has received total weight values 

greater than the specified threshold. However, if the total weight values received for some 

nodes lie below a predefined threshold, then those nodes will remain as outliers. 

In the next step, the algorithm adds one more originator node, by randomly selecting one of the 

nodes from the outliers that do not belong to any community. Then the new originator repeats 

the same process that was carried out by the former originator and updates communities and 

their corresponding originator as well as the outlier nodes list. The algorithm keeps iteratively 

adding one more originator, and updating communities and outlier nodes until each node is 

joined to a community, and there is no outlier node remaining. However, each node in the 

network may receive multiple messages generated from different originator nodes. In that case, 

the node joins the community led by the originator node that has the highest total weight. 

The second phase of the algorithm consists of building a new network from the communities 

discovered in the first phase where the individual nodes in the new network are the individual 

communities from the first step. In this new network, there will be an edge between two nodes 

if there were edges between the corresponding two communities in the previous step. The 

weights of those new edges are the sum of the weights of the edges between nodes in the 

corresponding two communities. The edges between nodes of the same community in the first 

step will lead to self-loops for this community node in the new network. 
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The two phases mentioned above are repeated with the rebuilt network iteratively and the 

process stops when there is no more change in the communities and consequently optimised 

community clusters are obtained.  

Although the exact computational complexity of DICCA is harder to formalize, this algorithm 

behaves as ὕά ÌÏÇ ὲȢά , in which n is the total number of nodes in the network  and m 

the number of edges. However, the most effort is in the first phase of the algorithm. 

The proposed concept is shown in Figure 4.1. The figure illustrates how the proposed algorithm 

works at different stages of execution of the algorithm with 11 nodes labelled from 1 to 11 and 

17 unweighted edges. The algorithm process is initiated by choosing node 4 as originator in 

the first iteration and threshold value is set to 0.25. Messages in the figure are defined by three 

fields that provide information about the messages representing the originator, TTL and current 

weight of the message respectively. For example, if the field value of the message received by 

node 5 is {4:2: 0.25} , it means that the message data was originated by node 4 and the weight 

of current message is 0.25 with TTL=2. 

By compiling the notions above, a community cluster in the proposed algorithm can be 

described as: 

1. The nodes and only these nodes which are mutually densely-connected, belong to the same 

cluster. 

2. If node V does not have many neighbours and it is reachable from one or several nodes, then 

V belongs to the cluster that is more densely connected. 

3. If V does not have any neighbours, then V does not belong to any cluster.  

4. The obtained communities are not overlapping and consequently, they define a partition C 

of  n such that V= ᷾  Ci  and  Ci ž Cj = Ï for any iÍ j. 
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Figure 4.1 Illustrates the concept of the algorithm 
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Algorithm 4.1. The proposed method 

Input:  underlying network graph G, time_to_live and threshold value 

Output:  C communities as a final division of G. 

Repeat 

      Outlier list   Ŷ  all nodes // local clustering phase 

      While outlier list Í{} 

               Oi  Ŷ  Rand select (outlier list) // choose a node randomly to be an originator. 

               //creat new message (Msg) 

             OnId  Ŷ  Oi // originator ID 

              TTL  Ŷ  time_to_live 

             WMsg Ŷ  1 

             Msg Ŷ{ OnId , TTL, WMsg } 

While TTL Ó 0 

Total_weight (Oi, Vi) = sendmessages(G, Oi ,OnId, TTL, Msg) // Total 

//weight between Oi and its neighbout nodes (Vi) 

TTL Ŷ  TTL-1 

Oi Ŷ  Vi 

Msg œ{ OnId , TTL, Total_weight (Oi, Vi) }  

      end while 

for  each Node Vi  ɴG 

if  Total_weight(Vi, onID)  Ó threshould then 

   C(Vi)    Ŷ  Join the cluster lead by max onID 

else 

    Remain outlier 

end if 

             end  

              end while 

    Ǡ=Aggregate (G,C) // Network reduction phase ñCompact each community to one  

 // new node and build new networkò 

       if  (C_current=C_ previous) // no membership change 

break;   

    return  C / / return the final division of G 

end Algorithm  

Function sendmessages  (G, Oi ,OnId, TTL, Msg) 

for each Node Vi  ɴNbr (Oi) do 

Send WMsg to Vi  Ŷ  WMsg(Oi ,Vi)=WMsg(Oi ,Vi) *W(Oi, 

Vi)/ В ὡ ὠȟὠᶰ  

If  Ni have seen message from onID before then 

    Total_weight(Vi , Oi) Ŷ   Total_weight (Vi, Oi) + WMsg 

else 

    Total_weight(Vi,Oi) Ŷ   WMsg 

end if 

      end  

Return Total_weight(Vi,Oi) 

end function 
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4.3 Experimentation and Results 

4.3.1 LFR Synthetic Dataset (network) 

Many real-world complex networks such as the Internet, social networks, biological networks, 

infrastructure networks etc. are heterogeneous and show a power-law degree distribution 

(Newman, 2003). In such networks not all their components such as nodes, links and subgraphs 

carry the same role or importance in the network, which has crucial effects on the resulting 

performance of the algorithms deployed. Consequently, the performance of any community 

detection algorithm varies depending on the networkôs characteristics. Furthermore, to analyse 

the efficiency of the community detection algorithm, one needs to apply it to networks which 

have ground truth communities (the actual partitions), and then the performance of the 

algorithm needs to be measured as the accuracy in recognising the ground truth communities.  

Due to the scarce availability of real networks that have ground truth communities, and in order 

to measure the performance of the proposed community detection algorithm on both network-

structural properties and network size, the synthetic dataset is generated by the LFR benchmark 

model along with their ground-truth communities and used to test the proposed algorithm in 

this work.  

4.3.2 Evaluation Metric  

Since the true community structure is known for the benchmark network, the proposed 

algorithm is evaluated by comparing the obtained partition in the experiments with the ground 

truth provided by the LFR benchmark. Normalized mutual information (NMI) metric is used 

to quantify the accuracy of community detection methods by evaluating the level of 

correspondence between detected and ground-truth communities.  In addition, modularity 

measurement is used to evaluate how effective the algorithm is in terms of modularity 

optimisation. 
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4.3.3 Parameter Selection Strategy 

The proposed algorithm uses two parameters, which are ótime to liveô and óthreshold valueô; if 

these two parameters are optimally set, then, it will highly improve the performance of the 

algorithm.  So some strategies about the choice of these two initial parameters are discussed in 

this section. 

4.3.3.1 Time to Live  

TTL is a parameter used by the algorithm to control the number of nodes visited in the network. 

TTL value must be a positive integer greater than zero. In reality, choosing an appropriate TTL 

value is not an obvious task. On one hand, small time-to-live may expire before reaching many 

relevant nodes which are further away. On the other hand, high time to live means more nodes 

than needed are visited, thus increasing both the message load on the network and the running 

time of the algorithm. Therefore, in the proposed algorithm, rebuilding the network before 

starting a new iteration is considered as a solution for this issue. For example, with a small 

value of TTL, some nodes (Vf) that are densely connected with the neighbours of the originator 

(intermediate nodes between them and the originator node) cannot receive messages from the 

originator Oi as the TTL value might have expired in the current iteration. Then in the following 

iteration, the intermediate nodes will be merged with the originator node making them as one 

node. Then in the next iteration these V f nodes will  be reached by the originator Oi with a small 

value of TTL. 

In order to determine the effect of TTL value on the community clustering accuracy, the TTL 

value ranging from 1 to 4 has been used in this evaluation. Figure 4.2 indicates the accuracy 

values of synthetic networks with 500 and 1000 nodes. In this work, modularity and NMI have 

been used to evaluate the quality of community detection. In order to give a condensed picture 
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of the results, the computing time in seconds and the message complexity results as a function 

of the TTL are presented in Figure 4.3. 

From the figure, it is clear that there is a correlation between TTL and both computing time 

and message complexity. The smaller the TTL, the faster the algorithm. This can be qualified 

 
(a)                                                                                       (b) 

Figure 4.2 Performance of the DICCA algorithm using different TTL values 

 

(a)                                                                                       (b)

 

(c)                                                                                       (d) 

Figure 4.3 Comparison between computing time and the message complexities over different TTL values 
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by the fact that the run time of the DICCA algorithm depends on the total number of exchanged 

messages which in turn is affected by the total number of hops that a message is permitted to 

travel before being discarded (TTL).  

However, the proposed algorithm in this work is implemented in Matlab from scratch, which 

is not optimised for speed. Therefore, the total number of exchanged messages (Message 

Complexity) will be computed as a score for running time in this work. 

The graphs in Figure 4.2 demonstrate that the algorithm yields good community clusters when 

the TTL is set to be 3. Furthermore, recall from chapter 3 that big networks from real-world 

applications are often small-world networks (Watts and Strogatz, 1998b) (Silva and Zhao, 

2016), so increasing the TTL value does not have significant impact on the quality of 

community detection but may result in a very high communication load. However, selecting a 

small TTL value can reduce the broadcast overhead but will compromise the accuracy. For 

example, when TTL = 1 is used, the WMsg message is only being propagated once from 

originator to its neighbour, which means  only the direct originatorôs neighbour nodes could be 

merged  in that iteration. For this scenario, the NMI and total number of messages generated 

by the algorithm for N ɴ  {500; 1000}  were { 0.661; 0.769} and {4832; 9019} and respectively. 

On the other hand when a value of TTL=3 was used for n ɴ  {500; 1000}, the NMI results were 

{ 0.918; 0.946} and the total number of messages were {1,347,024; 3,735,475}. Furthermore, 

when TTL = 4, the NMI scores were {0.922; 0.956} which are almost same as the NMI yielded 

by the algorithm when TTL is 3. On the contrary, the total number of messages generated were 

{29,680,547; 87,794,210} which are significantly higher than that generated when TTL was 3.  

Based on the above discussion, it is clear that the algorithm will stabilize very fast on the 

networks with small value of TTL, but quality is worse in most cases. On the contrary, using a 
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large value of TTL can ensure that all nodes will receive the message, but introduces 

unnecessary broadcast messages for nodes beyond the target-clustering region.  

The number of messages sent during an iteration clearly depends on the number of nodes in 

the network and on the size of the n-neighbourhoods of the nodes (network structure). This 

means high communication load is required for extracting clusters and may result in a 

scalability problem in large and dense network environments. This scalability issue greatly 

hinders the application of module extraction to network analysis where most of the networks 

consist of high number of nodes. However, in big networks, the message weight becomes 

extremely low compared to a threshold value. A nodeôs decision to join a cluster is based on 

the total weight of the messages from the originator to the node exceeding the threshold value.  

Consequently, extremely low message weight does not affect the accuracy of clusters and the 

process could be halted.  

To avoid an excessive number of messages being forwarded, adaptive termination technique 

has been implemented in the DICCA approach. When the message weight becomes 

insignificantly low, the message is discarded by the received node even though the TTL may 

still be greater than zero. In this work the minimum value of message weight (Min_VALUE) 

is specified to be three hundred less than threshold value. 

By comparing Figures 4.2-4.3 with Figure 4.4, it can be observed that there are negligible 

differences between the performance of the algorithm in terms of NMI and Modularity scores.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280845/figure/f12-sensors-09-01012/
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Considering message complexity and running time, the performance of the algorithm when the 

Min_VALUE is applied is by far better than its performance when Min_VALUE is not applied. 

 
              (a)                                                                                       (b) 

 
                (c)                                                                                       (d) 

Figure 4.4 Performance of DICCA algorithm using adaptive termination via different TTL values 

4.3.3.2 Threshold Value  

The threshold is a numerical value ranging between 0 and 1, which defines the minimum weight 

of the message required to join a cluster. It is defined by the user at the beginning of the process.  

The node is allowed to join the community cluster led by originator Oi, if the total weight of 

the message received by the node from Oi is equal to or greater than the threshold value. As 

the threshold value increases, the difficulty of merging communities also increases. Thus, the 

size of the community clusters depends on the threshold value. If a high threshold is set, more 

small-size communities are detected. On the contrary, setting a lower threshold leads to fewer 

but large size detected clusters. Therefore, the size of the community clusters produced by the 

proposed algorithm could be controlled using the threshold parameter. The threshold value is 
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in the range of {0; 1} , 0 yielding a single community and 1 producing clusters of singleton 

nodes. Tuning this parameter could be seen as a possible practical remedy to control the desired 

size and the number of communities.  

In order to understand how the threshold value affects the accuracy, size and the number of 

community clusters, the effect of different threshold values has been studied on a small network 

with 50 nodes and 83 edges. The results presented in Table 4.2 show that when the threshold 

value increases, more small-sized communities are detected. In contrast, lower threshold value 

leads to larger detected clusters. For example, when the threshold value is 0.1, three clusters 

have been detected and the biggest detected cluster has 21 members. That number of clusters 

becomes 5 when the threshold parameter is changed to 0.7. That is because larger threshold 

value means more strict requirements in community intra-connectivity and only strongly 

connected nodes can belong to the same cluster.   

Table 4.2 The experimental results obtained by the DICCA algorithm on a small network of 50 nodes 

 

 

 

 

 

 

 

Figure 4.5 shows the visualization of synthetic network with 50 nodes and the detected clusters 

when the threshold parameter is varied from 0 to 1 in steps of 0.1. The layout for all the different 

Threshold 

value 
NMI  

Number 

of clusters 

Modularity 

(Q) 

Min N.of 

members 

Max N.of 

members 

Avg N.of 

members 

0 0 1 0 50 50 50 

0.1 0.664672 3 0.623675 14 21 16.66667 

0.2 0.810166 5 0.674046 5 21 10 

0.3 0.88515 6 0.717521 5 16 8.333333 

0.4 0.85165 9 0.658151 1 10 5.555556 

0.5 0.900606 12 0.622587 1 9 4.166667 

0.6 0.900606 16 0.622587 1 9 3.125 

0.7 0.723512 39 0.18682 1 5 1.282051 

0.8 0.670295 50 -0.02584 1 1 1 

0.9 0.670295 50 -0.02584 1 1 1 

1 0.670295 50 -0.02584 1 1 1 

0.223xt1 0.950701 9 0.68907 2 10 5.555556 
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visualizations of the network is kept constant to be able to draw conclusions easily by looking 

at the figures. Members in the same community are represented with the same colour. 

Using the proposed DICCA algorithm the maximum modularity is obtained when the threshold 

value is 0.3 by the partition in 6 communities achieving Q=0.71 (graph d). However, the ground 

truth partitioning is 8 communities with Q= 0.717. DICCA merged three communities into one. 

Beside this, there are 5 communities classified correctly with the exception of one node (node 

23) which is misclassified. 

Clearly, the success of the algorithm is heavily dependent on the proper tuning of the threshold 

value. However, there is no standard prescription for threshold value for all type of data sets 

and applications. The most appropriate threshold value for a given data set is usually derived 

experimentally, defined by the user according to their knowledge or estimated on the basis of 

data from previously completed similar projects. 

4.3.3.3 Automated Identification of Appropriate Threshold Value 

Although the threshold value controls the number and the size of clusters that will be extracted, 

which could be considered as an advantage of the algorithm, choosing the right threshold 

without a priori knowledge of the network structure is a challenging task. Furthermore, 

generating a priori knowledge requires human expertise and is time consuming since real 

networks are usually big and contain huge amounts of information (De, 2016). In this work, 

based on the above observation, a mathematical model is proposed to automatically calculate 

the threshold value. The model calculates the optimal threshold value based on the size, density 

and layout structure of the network. Equations 4.3 to 4.5 present the threshold calculation 

model for undirected networks designed by the author to help calculate the threshold value  
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Figure 4.5 Community detection result for a small network with 50 nodes as extracted by the proposed DICCA 

algorithm using TTL=3 and with different threshold values. (a) threshold value =0, (b) threshold value =0.1, (c) 

threshold value =0.2, (d) threshold value =0.3, (e) threshold value =0.4, (f) threshold value =0.5, (g) threshold 

value =0.6, (h) threshold value =0.7, (i) threshold value >=0.8, (j) ground truth clusters, (k) Modularity via 

threshould value. The values of the other parameters were fixed: =2, ɓ=1. 

 
(a)                                                     (b)                                                    (c)

 
(d)                                                     (e)                                                    (f)

 
(g)                                                     (h)                                                    (i)

  
(j)                                                                             (k)                                                     
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