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ABSTRACT

Many systems in the world can be represeréisdmodels of complex networks and
subsequently be analysed fruitfully. One fundamental property of thevoelal networks is
that theyusually exhibit inhomogeneity in which the netwaekds to orgase according to
an underlying modular structure, commpnéferred to as community structure or clustering.
Analysing sucltommunities in large networks can help people better understand the structural
makeup of the network&or exampleit can beusedin mobile adhoc and sensor networis
improve the energyconsumption and communication task&us, community detection in
networks has become an important research areanwitany applicationfields such as
computer science, physil sciences mathematics and biology

Driven bytherecent emergence of big datlustering ofeatworld networks using traditional
methods and algorithmsalmost impossible to be processed in a single machine Xi3img
methods are limited by their computational requirementsnargt of thencamot be directly
parallelised.Furthermore, in many cases the datasseery biganddoes not fit into the main
memory of a single machinthereforeneeds to be distributed among several machines.
The main topic of this thesis is about network community deteetitinn thesebig ddaa
networks More specifically, m this thesisa novelapproach, namelpecentralized Iterative
Community ClusteringApproach (DICCA) forclusteringlarge and undirected netwaris
introducel. An important property of this approach is its ability to cluster the entire network
without the global knowledge of the network topologhareover an extension ahe DICCA
calledParallel Decentralized Iterative Community Clustering approach (PDICEpgoiposed
for efficiently processing data distributed across several machi2iCCA is based on
MapReduce computing platform to work efficiently in distributed and parallel fashion.

In addition,the realworld networksare usuallynoisy and imperfect with missingnd false
edges. These imperfections arften difi cult to eliminateand hghly affect the quality and



accuracy ofconventionalmethods used tdnd the community structurein the network.
However,in realworld networks,node attributeanformationis also available in addition to
topology information. Considering more than one source of information for community
detection could produce meaningful clusters and improve the robustness of the network.
Therefore,a pre-processing approach that consglattribute information, shared neighbours

and connectivity information aspects of the network for community detectjgmesentedn

this thesisas part of my research

Finally, a set of realvorld mobile phone usag#ata obtained from Cambridge Laboratories
(Device Analyzer) has been analysed as an exploratory step for viability to apply the algorithms
developed in this thesis.

All the proposedapproaches have been evaluaeadverified for feasibility using reaworld

large data sefThe evaluation results of these experimentations preke promisingfor the

type of large data networks considered

Keyword: Community analysis, community detection algorithms; decentralized clustering

algorithm; networks; graph; dréuted algorithms.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Many systems in the world can be represented as net{aiskseferred to agraphs ilimuch

of the mathematical literaturejomposed of nodes (vertices) and links (edgesjvhich
network links represent relationships between the interrelating parts (nodes) of the systems.
Examples includeechnological networksuch asthe Internet (Faloutsos, Faloutsos and
Faloutsos, 1999and the World Wide Web(WWW) (Albert, Jeong and Barabasi, 1999)
biological networkse.g.,Neuronal network, metabolic networksproteinprotein interaction
networksand food webgVocaturo and Veltri, 2017)and distribution network§Newman,
2003)like postal delivery routesitation networkssocial networks, orgasational networks

(Newman, 2003and even political election@damic and Glance, 2008jc.

Recently it has become common to analyse interactions in thevadd by looking at the
networks thatunderlie these interactioi€hen, Zaiane and @bel, 2009) However, real
world networksare not random networkthey usually exhibiinhomogeneityand reveal a high
level of order and organisatighlahata and Patra, 201@)n interesting feature that reaforld
networks usually present is the community structure property, wvlieh the topology of

network isorgansedinto modules commonly called communities or clustgemstunato, 2010)

The process of discovering the cohesive groups ortechia the network iknown as
community deteabn (Bedi and Sharma, 201,6) is also known as the graph partition problem
in modern graph they, andas the graph clustering oeile subgraph discovery problem

the graph mining are@Vang et al, 2015)



The problem of community or graph clustering is not well definad theconcepts of
communitydo not have aniversally accepted definitioflighlighting thedifficulties of the
problem in his reent work Fortunas t a t e the defimigoh oftén depends on the specific
system at hand and/ or (Fogpupato] 2080} Gomsidering Isozial h a s i
network asanexample, communitgan bedefined usingmany natural propertieg/hether the
nodegepresenhg peoplen a community should know each other, the commuiibykl have

a high edge density @ach detectable community ought to have a unideetity (Shah and
Zaman, 2010)

Informally, a clusters usuallydefined as a set of entii¢ghat are closer to each otliean with

the rest of the entities in the data @&tin, Murty and Flynn1999) The notion of closeness is
based on a similarity measure that is usually defii#d the use of a mathematical objective
function The task of clusteringisalsoreferreda s fAunsupervised | earnir
to group together similar data set without resorting to any a priori knowledge about the clusters
(Schaeffer, 2007)in thecase of networkghe similarity is usually measureitherbased on
thestructural similaritywhich considers the topological featucesheattribute features related

to the nodesr edges of the graph, or both of thgiMalliaros and Vazirgiannis, 2013)

There areseveral dénitions of the community detectioproblem In generglthe community
detection algorithms aim to divide a network into-®olbnmunities The general principlen

which most community definitiongre based is theendency forthe nodes to divide into
clusters with dense connections within clusters and only sparser connections between them
(Newman, 2004a)However communities may overlap as nodes belong to multiple clusters
simultaneously The overlapping ommunity is very common in reaorld networks for
examplein a social network, a person may belong to more than one social growgsdueimd

group and family group which are known as overlapping n@de®lio and Pizzuti, 2014)

More detailed definitions of community apeesented iranother work(Fortunato, 2010)



Figurel.1 shows a small network df2 nodeghat illustrates this idea of network structure
The network hathreecommunitiedenoted byhe circles inwhich a set of nodes are densely

connected internallgnd loosely connected to the rest @& nietwork.

Figure 1.1 A simple graph with three communities that are represented by different colours.

1.2 Impact of the Researchand its Impact

1.2.1 Social networks

Community structure is a common and important topological characteristic of esmyorld
complex networksNodes belonging to a tigtkinit community are more than likely to have
other properties in commafDanon et al, 2005)The determination of communities in the
networks can helf better understand the stural makeup of the networkspvide powerful
insights about the structure of netwqrksd help analyse complex phenomena at different
scales(Orman, Labatut and Cherif2011; Borgatti, Everett and Johnson, 20I@)us, this
research topic has applications in many fields suclbia®gy, social science, physics,

computer science, business science,(8haeffer, 2007; Orman, Latut and Cherifi, 2011)

In social networks, for example, analysis of community detection is extrameful in the

context of many applications, including customer segmentation, vertex labelling,



recommendations and link inferen¢khatoon and Banu, 2015AIso could be used to
estimating unknown features of users in social networks. If a given user does not give a certain
piece of information (like the school he/she went to), but a reasonable number in his/her

community do, the issing information can be imputed with a reasonable degree of confidence.

1.2.2 Impact on WWW

Community structure ismportant not only on social networks, but also v@arious other
networks.For the famous example of the Interraggtermination oEommunity stucturecan
address guestions such as, how to route data as packetsfiicient wayhow toreducethe

time consumption for such traffic anehat is the fast and safe path to consider reaching the
destination etclt can gofurtherin depth, by elucidang questions like how computer viruses
are spreading through the Internet, and what mechanisms they follow to hitsatigasetc

Also in dark networkscommunity structure can reveal the hidden relationships between
individual terrorists and help ddwp effective disruptive strategig®Varnke, 2016)Similarly,

in the case of thevorld wide web (WWW) pages related to the same subject are typically
organged into communities, so that the identification of these communities can help the task
of seeking foridentifying the category afhe network as well as understanding its dynamic

evolution and orgasation (Costa et al, 2007)

1.2.3 Routing in Ad-hoc andWireless Sensor Networks

Clustering without global knowledge is an important technique in mob#eoadand sensor
networks(Gehweiler and Meyerhenke, 20%0) the improvement of certain management e.g.

energy consumption and communication tasks

In wireless sensor networks (WSNs), nodes are usually condist lwiited and non
rechargeable energy resources. Thus in WSNs, energy consumption is the most critical problem

and large number of clustering routing protocols have been developed for WSNs to reduce



communications, efficiently optimize the energy of sensmles, organize messages among

the cluster head and their node members and optimize the netwdnéf@ iu, 2012)

In clustering routing protocols, the sensing field of sensor network is divided into number of
clusters where each cluster has a leader called cluster head. The cluster head collects the data
from its node members and transfer it to the destination (basend. Yu and Chong (2005)
reported thathe cluster structuris aneffectivetopology that could provide marpenefis in

the context of wireless sensor networks (WSNSs). It could be usettrease the system
capacityby spatial reuse aksources-urthermore, itmproves routingperformancesincethe

set of clusteheads and cluster gateways can normally form a virtual backbone feclundtzr
routing, and thus the generation and spreading of routing information can be regirtbisd

set ofnodes Additionally, they stated th#tte cluster structure makes an ad hoc network appear
smaller and more stable in the view of each mobile terntimalis because in WSNs when a
mobile node changes its attaching cluster, only mobile nodes residihg oorresponding

clusters need to update the information

For more information, interested readers mayrefafto and Ch o(WwaddsChang,r v ey

2005)

1.3 ResearchChallenges

In recent years, the problem of network clustering has received growing attention as an
important analytical technique ah@sbeen actively investigated in a varietifields, from
computer science and statistical phygdewman, 2004b; Newman and Girvan, 20@4lata
mining (Moghaddam et al, 2010} herefaoe, arich and diverse list of methods and algorithms

has been generated.

In thecurrent Big Data era, the amount of generated data is Bxigéng in various formats,

from a continuously increasing number of sourdée realworld networks can be very large



in size, even reaching billisof nodes. However, most of the community detectigonrghms

in the literature areclassified as global algorithmsvhich require access to the entire
information of the networlkndaredesgned to work on a single machine.

As the data size is scaling up, the need for computing power is exponentially increasing. In
many such situationst has become difficult for the stamdlone community detection
algorithms to find communities in larggale networks(Li et al, 2015)andthe required
processing power far exceeds the processapgtuilities of single machines. However, most

of the existing community detéon algorithmscamot be directlyparallelised Furthermore,

in many such cases the largeale data set does not fit into the main memory of a single
machine and needs to be distributed among several machines. These demanding requirements
make existingcommunity clustering algorithms evenore limited than beforeandso more
powerful and scalable clustering tools for big data anabgssn to béen urgent need

Additionally, in many reaivorld networks, node attribute is also available in addition to
topology information. It is pointed out thabdes containing similar content of communication

are much likelyto belong to the same commun{tyicPherson, Smitth.ovin and Cook, 2001;
Traud et al, 2011)Traud et al (20113how that set of noddsttributes can act as the primary
organising principle of the communities. An overwhelming majority of conventional
approaches to community detection focus on topology information and lagyelse the
attribute information. However, the collected topology information for networks is usually
noisy when there are missing edges. This makes the task of community detection for
inconplete networks very challenging.

To summariseBig data exhibitdifferent characteristicsuch asivolume, varietyvelocity,

value, thus it is very difficult to analyseBig data and obtain information with traditional

techniquegHu et al, 2014)



Given these scenaridbgre is theemergence ainew research directido develop a powerful
and scalable community clustering method for big data analykish will make use of the
relationship between the attribute and limformationto improve the robustness of the existing

community clustering methods unreliable envionmentgincomplete or noisy networks)
1.4 Aim and Research Objectives

The main goalof this thesis is to design and implemantel techniqueandalgorithmsfor
the problem of clustering and community detection in large and undirected netimottks.
light of the above discussed research challengesnéie objectivesand motivationf this
research worlare summarised below

1. To designandimplement an efficient commun#yetection approach that could work

at the local leveand d@snot require any global knowledge of the network

As the networks being operated on become larger and larger, the ability to process them in
the main memory of a single machine becomes impractical due to both time and memory
constraints. Moreover, commuyitdetection algorithms are often computationally
expensive and are not scalable to large networks with hundreds of millions or even billions

of nodes and billions of edges.

The above issues motivated me to design, implement, and evaluate an efficienhaymm
detection solution for largecale networks. More specifically, the proposed approach
works at the local level and does not require any global knowledge of the network. From
the heuristic point of view, it is worth notirthat theoptimisation of global clustering
methodswhen only restricted to the local knowledgemore difficult. That is whymost

of the existing approaches and algorithms make use of global knowledge.

2. To extend the proposed approach for lasgale networks to work in parallehé@in a

distributed fashion



Being a localised algorithmit can be un in parallelor in a distributed fashioamong
clusterswhen the size of thmput network or thecomputation complexitys beyond the

resources of a single computer

3. To design and implement a community clustempgroachconsidering botfattribute
information and topological structure information to improve the performance of

existing community detection algorithms.

Sincein many realword networks,the nodes andinks in the network may contain
attributeinformation, ths attribute information h&important significance in completely
presenting the community structure of the netwamki couldimprove the robustness of

community detection algorithms in unrelialgisvironments.

4. To analyse a set of realorld mobile phone usage data as an exploratory step for

viability to apply the algorithms developed in this thesis.

The smart phones ithe telecommunication industry generate a massive amount of data.
These data usually include call detdadlata and network details. The amount of datois

big that manual management and analysis of these data is almost imp&ssitlehis
perspectiveo explore the viability of applyinghe proposedmethod and algorithra to
analyseahebig data sets generated by smart phones. Aifedlig data (Device Analyzer)

set from Cambridge Laboratories is used for this proposed objective

5. To propose a set of ad guidelines and future design from the understanding gained.

Under this objective, the potential usage of the developed approaches proposed in this
thesis will be demonstrated. Also, recommendations, guidance information, and

suggestions to improve th#exctiveness othedeveloped algorithm will be made.



1.5 Scope of Research

This thesis studies in the scope of community detection in big networks. In other words, the
main goal of this thesis is to design and implement novel techniques and algorithnes for th
problem of clustering and community detection in large and undirected networks. The
approaches proposed in this thesis all assume that the given network structure is needed to be
divided into communities in such a way that every node belongs to one obmthmunities
(nonoverlapping communities). Although doing some modifications of the proposed
approaches can achieve overlapping communities, the focus of this thesis isomeriamping

communities.

1.6 Contribution s of the researchto state of the art

This thesis aims talesign and implement meth®dor the problem ofextracting non
overlapping communitiem large networksHowever, since thelgbal community clustering
approacheslemand shared memyoto access global information, they anappropria¢ for
this goal Thus in this work attention is given to thecal communityclusteringas it is more

accessible for paralletation.

The following summaryrovidesa short overview of théour key contributions of this work

thataddress all of the chafiges introduceah the previous secti@n

1. A novel Decentralized Iterative Community Clustering Approach (DICCA) to extract
an efficient community structure for large networks is proposed. Animportant property
of this approach is its ability to clusteetkntire network without the global knowledge
of the network topology. This ability means that the entire network does esbtmbe
loaded into one memormgnd DICCA could be easily adapted to run in parallel on as
many processors as available to find community clusters in big netWidrisscannot

be done inthe majority of the existing community detection algorithnes they

9



implicitly assume that the engiistructure of theig network is known and is available.
Another perspective of DICCA approach is reducing the problem size by aggregating
the nodes in the network, allowing the approach to cluster the-daeje data set
efficiently.

2. A Parallel Decenttzed Iterative Community Clusteringpdproach (PDICCA), which
does not require any global knowledge of the graph topology is proposed. PDICCA is
a distributed memory parallel processing approach that trarstberserial steps of
DICCA approach into pateel tasks. Itis scalable and will work with a range of
computer architecture platforms (e.g. cluster of PCs, rate distributed memory
servers, GPUS).

3. A pre-processing approach for existing community detection algorithms is proposed to
improve theaobustnessf community detection algorithms in unreliable environments.
The proposed approach is applicable to the existing weighted community detection
algorithms and it seeks to improve their performance by considering attribute
information, shared neidjours information and connectivity between nodes in the
network. Therefore, if either attribute information or topological structure information
IS noisy or missing, the other could make up for it.

4. Using a set of realife android smartphone usage datas#te different features of

mobile phone uageis analysed

1.7 Thesis Structure

The thesis contains eight chapters, which are osgdras follows. Theresent chaptergives
an overall picture of the thesis, highlights the importance of the field of community detection
in the networks and states ttieallengesaim, objectives andhe contribution®f the research.

The rest of the thesis is orgagul as follows:

10



Chapter 2 gives some basic definitisrof gaphtheory, whichareused in further chapters.
Furthermore, the literature review of stafiethe-art community detection algorithmend
related work in the area of paralkaition technique for the community detectin algorithms

are alsaiscussed.

Chapter 3 presents some specific structural properties and models of real networks.
Additionally, the current work available in literature for models that generate synthetic
networks with community structures along witle tnost popular quality metrics for assessing
the network clustering results are discussed.

Chapter 4 addresses the first technical objective of the research. It gives a dééstegbtion

of my proposed Decentralized lterativ@ommunity Clustering Appich, for detecting
community and then the effectiveness and efficiency of tigCBlapproach igvaluated

Chapter 5 centres around the design and implementation gbdinallelframework version of
DICCA approach named POCA. In this chapter, therinciple and implementation of the
proposed PBTCA approach is detailed and its performance is evaluated.

Seekingto improve the robustness of existing community detection algorithther than
lookingto identifycommunities in the network based justtopological structure information,

a new preprocessing approach that consglattribute information, shared neighbours
information and connectivity between nodes in the network is presertdbdpter 6. Chapter

7 shows thalata analysisf thedataset from therealworld telecom network.

Finally, chapter 8 concludes the research activities within this thesis by surdangrihe

contributions angbroposing a set gfossible suggestions for future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter introduces some fundamental conceptariatdely used throughout this thesis

and reviews existing work on the community clustering and distributed technitjsests

with a short introduction into the basics of graph theory, including the concepts required to
understand further chaptef&his is bllowed by a discussion of the definitions and concepts
around community clusteringrhen adetailed literature lgvey on the statef-the-art in
community approaches and the parallelisation techniquesxtaactingnetwork clustes is

presented.
2.1 Basic conceptf graph theory

Many practical problems imarious fields of study such asientiic computing, data angis

etc, can be modelled in their essential form by graphs and salsied appropriate graph
algorithms.In graph theory, a simple graph G = @) is defined as an abstract representation
of a set ohodes(or vertices)V = {1, . . . ,n} anda set of edges (or links) E £i{j)|i, jN V}
which connect pairs of nodes togeth&rpair (i, j) belongs to E if there is an interaction
between th@odes i andj and the cardinality of the set Ehe number of nodes in the graph is
n = |V| and the amber of edgesn = |E|.In some graphs it is possible to find adge that

connects a node to itself, (i,V)E, it is called aself-loop (Silva and Zhao, 2016)

The edges in the graph can be assigned witleight, which represents the strength of
connection between two nodes; in this case, the graph is called a weighted graph. If each edge
has unit weight, the graph is callehunweighted grapSilva and Zhao, 2016onsdering

the nature of the edges, theghs can be clagsedinto two: undirected and directed graph.

graph is called directe@lsoreferred to asligraph if the orientation of the edges is important

for the tasi(Silva and Zhao, 2016A directed graph G= (\E) consists o nonempty set of
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nodes V and a set of directed edges E. Each edge e:(u, v) of E is specified by an ordered pair
of nodequ, v) and comes out from node u, namely the origingiy, and raches a destination

v (or head)

Directed graphs arise imany realworld applicationssuch as the web graphhosenode
represents a web host and each directed edge représemtyperlinksThesehyperlinks are
onewayfrom web page®nthe source host tweb pagesn the destination hof€anright and
Eng@Monsen, 2008)On the other hand, mndirectedgrapts, the edges have no orientation
and the graph halges that represent symmetric relationsimpghich whenever the edgei (
V) exists in an undirected graph then so does the @dge (Costa etal, 2007) For example,
in friendshipnetworks where each relationship is considered recipnotiaé sense that if you

are friends with someone, then they are friends with you

From the mathematical point of view andirected unweightedraph G =(V, E) can be
represented by a matrix @alled adjacency matri&k N Tip

Definition 2.1 Adjacency Matrix: The adjacency matrix A of a graph G = (V, E) is an |V|x|V]|
matrix, such that:

p QTHON Oh

0 r
h T €& VA Q

2.1)

The adjacency matrix for an undirected graph is symma@this, fact implieghatAgj = Ag,j-
However for a directed grapthe adjacency matrix may not be symme(8dva and Zhao,

2016)

Throughouthisthesist he t er ms @ g r am hsedterchanhgedbtye thevsamek o
spirit, the data reteonships that make up a graph are termed structure or topology of the

network.Unless stated otherwisggraph G = (V, E)s unweighted, undirected andnsists of

13



a set of nodes V and a settbédges. Nodes and vertiogsnvey the same type wiformation

and are used interchangeahbhyd the same principle appliesadges and links.

Labeled graph Adjacency matrix

momop op T

U T p T T,

A=wp p T p p>

‘b mp T o

P s o

Figure 2.1 An example of unweighted undirected graph and its adjacency matrix.

Definition 2.2 Degree of a nodeThe degre® of a nod&d' in undirected graph G = (V;E) is
equal to the number of edges connecting to n¢8evia and Zhao, 2016%iven anadjacency
matrix A, thedegree of node i is the sum of row entries corresponding to node i, which can be

expressed as:
O B b (2.2)

However, for directed graphs, the concept of degree is split into two categoridegoeg and

in-degree.

Definition 2.3 In-degree and outdegree The outdegree of a nodédin a directed graph is
the number of edges that leahe nodd, and the irdegree is the number of edges that enter

thenodei (Silva andZhao, 2016)

Definition 2.4 A completely connected (fully connectedyraph: In undirected graph @he
fully connectedyraphis a graph in which every pair of distinct nodes is connected by a unique
edge. Thus te total number of edg@sacompletely connectegraph with n number of nodes

is equal ton(n-1)/2 (Tomassini, 2010)

Definition 2.5 A triangle: Ingraph G =(V, Eptriangle( &8) i s a t hree node

={v1, V2, va} OV and E= {(v1, \2), (v2, v3), (va, v1)} O E (Schank and Wagner)
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Definition 2.6 A triple: In graph G = (V, Eptriple N3(i) at noded iis'a,path lengtlof two
for whichi is the centre nodé&chank and Wagneifforundirectedgraph, he number of triples

of nodei is defined as:

5 Q - (2.3)

andthe number of triples in graph & defined as theummingof triples of all nodesn the

graph:

65 B 0§ Q (2.4)

To illustrate the concept of triangdad triples thenetwork inFigure 2.1has 1 trianglend 8

connected triples

Definition 2.7 Reachability: In graph theory, reachability refers to the ability to get from one
node to another within a graph. Given a graph G(V, k9 siid that ¥V V is reachable from

V1N Vif there is at least a walk that starts fromand ends at ¥(Silva and Zhao, 2016)

Definition 2.8 Homophily:

Apart fromthe previous patterns that concern network architecture, there are also some other
patterns that relate to how links depend on other characteristics of nodes. For instance, if nodes
are people, tn they have some attributes suchaage, gender, ethnicity, profession, political
attitudes, their Hobies and so forth. In realorld networks it has been shown that the similar
nodes in terms of their characteristics tend to be more frequently linlethother than to

nodes that are less similar to themselves in characteristics. This is referred to as homophily, as
originally named byLazasfeld and Merton(McPherson, Smitthovin and Cook, 2001,

Jackson, 2010)

Definition 2.9 Hierarchical structure: Another important aspect related to community

structure is the hierarchical orgsation (multiscale or multilevel) exhil@tlin most realworld
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networksin which communities contain smaller comanities thatnay be further divided into

sub-communities(Fortunato, 2010)
2.2 Community DetectionAlgorithms

The problem of unveiling the community structure of a network is called community detection
Community detection is an active area of network science resaadolver the yearsawide

variety of community detectioalgorithmshave been proposedfiod the communities ithe
network Community detection islso named as gragdartitioningin much of theliterature
(Aggarwal and Wang, 2010; Wang et al, 2016)s tempting to suggest thatigslcommunity
detection andyraphpartitioningare really addressing the same questinrboth, the@ aim is

to identify groups ohodesn anetworkthat are better connected to each other than to the rest
of the network However, itis very important to stress that the task of graph partitioning and
community detection can be distinguished from onelarbised onvhether the experimenter

fixes the number and size of the groups or it is unspe¢fledman, 2010)Graph partitioning

is the problem of partitioning a graph into a predefined numbesizeof clusters. lhas been
pursued particularly in conaper science and related fieldgth applications in parallel
computing andvery-largescale integration (VLSI) desigrHowever, in the community
detection, whichhas been pursued by sociologists and more recently by physicists and applied
mathematicians, with applications especially to social and biological netiterksimber and

size of clusters arenspecified Furthermore, thea@nl in the former is usually to identify the

best division of a network regardless of whether or not a good division existed. In case there
are no good divisions exist, the least bad one will be done as a solution. On the other hand, in
community detectionthe algorithm only divides the network when good divisions exist and

leave the network undivided in case there arexstinggood divisiongNewman, 2010)

Community structuréentification has been an important research topic in complex networks

Given henumber and range of community definitions, it is not a surprise that the number of
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methods proposed for detecting and revealing the community structures in networks are even
larger.Furthermore, the community detection algorithcas be classified in different ways,

and depending on the selected criteria, one algorithrbelang to more than one categofy

brief summary of existing community detection algorighgintroduced in thesections below.

The algorithms are classified based on methodological principles as preseri@eahan,
Labatut and Cherifi (2011)n which most of the existing community detection algorithms

mainly fall intothefollowing categories:

2.2.1 Link -Centrality -Based Algorithms

The centrality measuresuch asdegree centralitySilva and Zhao, 20163nd betweenness
(Girvan and Newman, 2002pare used to rank how imptant an edge (or nodéd in the
structure of the networklThus, the ihk-centrality-basedalgorithms are usuallyhierarchical
divisive approachethatstart with a single community comprising all the nodes of the network
Then repeatedly removing/¢ung edgesand dviding the network progressively into smaller

and smaller disconnected subnetworks that are viewed as communities until further splitting is
no longer worthwhileThe centrality measureare used for theelection of the links to be cut,
which arelinks connectinghe communities and not those within thé@rman, Labatut and

Cherifi, 2011)

The firstand most known algorithm using this approaclhhis Girvan-Newman algorithm
introduced inGirvan and Newman (2002)he algorithm estimates tleentrality of a link by
considering the edge betweenness measure, which is defined as the number of shortest paths
between pairs of nodes that go through an edge in a graph. The algorithm is based on the fact
that edges connecting communities are expetdeuave high edge betweeass. Thus, by
iteratively removing these edges, the network is separated into groups from one another and
the underlying community structure of the network is revealed. Though the algorithm obtains

good results, it is very slowd highly complex thus it is not well suited for very large networks.
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2.2.2 Modularity Optimi sation Algorithms

The most popular method widely used to find community in the network relies on the
optimisation of a quantity called modularity. Modularity (Q) israminent measure for the
quality of a community structure introduced by Newman and Girvéidewman and Girvan,

2004)and it has become a widely accepted quality of measure for community detection.

The general concept @hodularity optimsation algorithmss to detect the best community
structure in terms of modularityy searching over possible divisions of a network that have

high modularity.

Definition 2.10 Modularity (Q)
Modularityis based on the ide¢hat a random graph is not expected to have a cluster structure,
so it quantifies theommunity strength by comparing the fraction of edges that fail within a

community with the expected fraction value of the same quantity of edges failing at random.

Let g be the fraction of edges in the network that connedss in group i to thosaodes in
group j, thenthe modularity score Q for a clustering is given thg following euation

(Newman and Girvan, 2004)
0 B Q B Q (2.5)
Formally,modularity can be defined @ortunato, 2010)

0 —B & —1 (2.6)

WhereAj is an element of thadjacency matrixy is the degree of noded is the total
number ofedges in the network. is theKronecker delta symbpivhichis equalto 1 if

¢i=g and0 otherwiseand ¢is the label of the community to which node assigned.

The modularity calsobe equivalently defined g5ortunato, 2010)
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Here,k is the number of clusters, the total number ofdges joiningnodes in community ¢

andQ is thetotal degree of nodes in c.

The higher the value of @ the networkthe better its community strength. Networks with

high modularity have dense connections between nodes within the same communities and
sparse connections between noftesn different communities. Thusa Q value close to 0
indicates that fraction of edges within communities is no better than for a randoalass.

other than 0O indicate deviations fraandomnesddowever, Newman et.al reported that in real
networks the modularityalues typically fall in the range from about 0.3 to, @7d values 0.3

or more,usually indicate good divisior{®lewman and Girvan, 2004)

Fortunato and Barthélemy (20Q79inted out that the modularity measure suffers from serious
resolution limits, and claimed that the soféhe detected comunity, by enforcing modularity
optimisation Q depends on the size of the whole network, which may fail to identify modules
smaller thara certain sizeThe main reason is that the modulantgiexdoes notonsiderthe
information of the number of nodes amcommunity and the choice of partition is highly

sensitive to the total number efigesn the network

However, despite the fact thadodularityis subject to a resolution limit is still one of the

most popilaly accepted metrifor measuring th@uality of communitystructure as well as
an optimgation criterionused by some algorithms to identigpmmunities in networks
(Newman, 2016)In the following paragraphs, twmodularity optimsation algorithms are

considered in some detail.

Fastgreedy algorithm is an agglomerative hierarchical clustering mdthpyoposed by

Newman(Newman, 2004b)r'he algorithngreedily maximses the modularitfunction Q,and
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starstheprocess byssigning a different community to each node in the network. Then at each
stagein the process, the pair of clustéinat yieldsgreatest increase afoduarity or smallest
decrease isnerged until only onelusterremains containing all nodes the network The

whole procedure can be represented by a dendrogram (hierarchical tree) that illustrates the
order of themergers Cuts through the dendrogram at different levels give different partitions
into communities. Té& optimal community cluster can be found by cuttimg dendrogram at

the level ofmaximumQ.

Louvain algorithm is a hierarchicakhgglomerative optinsation methogroposed byBlondel
et al andattempts to optinge the modularity of a partition of threetwork. The optingation is

performed in two steps that are repeated iterati{i&iyndel et al, 2008)

This algorithm startsvith each node in theetwork belonging to its owoommunity Then in

the first step and for each node in the network, the algorithm uses the local moving heuristic to
obtain an improved community structure by moving each node from its own community to its
nei ghbour s & evauaingthe gain gimodubadtyassociated with the moving of

the nodeThe node is then placed in the community for which the modularity change is the
most positive. If none of these modularity changes is positieenodestays in its original
community. This process is diga repeatedly and sequentially for each node until all the nodes

in the network are considered, and no further improvement can be achieved. This concludes
the first stepThe second step of the algorithm consists of building a new network from the
commurities discovered in the first step. Therefore, the individual nodes in the new network
are the individual communities from the first step. In this new network, there will be an edge
between two nodes if there were edges between the corresponding two d¢t@snirihe
previous step. The weights of those new edges are the sum of the weights of the edges between
nodes in the corresponding two communities. The edges between nodes of the same community
in the first step will lead to selbops for this communytnode in the new network. Once the
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second step is completed, it is possible to replay the first step and iterate again if necessary.
The two steps repeat iteratively and stop when there is no more change in the modularity gain

and consequently a maximunodularity is obtained.

2.2.3 Spectral Algorithms

Thespectrahlgorithms are mostly based on the analysis of the eigenvectors of matrices derived
from the networks and designed to find the partitronimising the links lying in between the

node groupsLeading eigenvectoris one of the effective spectral algorithms proposed by
Newman (2006b)The algorithmris based on the spectral optimisation of modularity. Newman
showed that the modularity could be expressed in terms of the eigenwd@asaracteristic
matrix for the nework, callal modularity matrix and therefore spectral techniques thoe
optimisation process could be applied. He exploits the spectral properties of the modularity
matrix by using the leading eigenvectors (associated with the largest eigenvalues) of the
modularity matrix to maximse the modularity in his proposed algorithm. The algorithm
initially divides the network by assigning all the nodes into two communities according to the
signs of the leading vector elements of the modularity matrix. The negative sigtesaziun

one group and positive signs in the other. The algorithm then runs recursively on each
subnetwork to divide those parts, and so forth. At any stage when there is no division of a
subgraph that will increase the modularity of the network the igdhgorleaves the
corresponding subgraph undividddis happens when all the elemeintdhe eigenvector of

the proposed split subgraph have the same sign, and when the entire network has been
decomposed into indivisible subgraphs the algorithm ends. Eantdrested readefdewman

(2006b)discusses the algorithm in more detail.

However, thee are twadrawbacksn thespectral algorithm described abovérst, it only takes
the leading eigenvector of the modularity matoxgenerate the solution and ignores all the

information providedy the otherigenvectorsSecondit splits a network into more than two
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communities byecursive partitioningnstead of getting all the communities directly in a single

step(Chen and Hero, 2015)

2.2.4 Random-Walk-Based Algorithms

Random walk is a proce®f traversing nodes at random airttbis beemwidely used to partition
the network intocommunities. There are several algorithwisich have been proposed in
literature based on the random walk. An example inclidaltrap (WT) algorithm which

is proposed byons and Latapy (2006)

The walktrap algorithm is based on the princigpplatrandomwalks on a network tend to get
Atrappedo into densely ¢ onnlethis methodtheauthas def i r
proposeusinga node similarity measure based on short walksapture structural similarities
between nodemstead ofmodularity to identify community via hierarchical agglomeration.
The algorithm starts bgssigning each node its own communityand thedistance for every
pair ofcommunitieds compued. Communities are merged according tontir@mum  of their
distance and the process iterated f t e r ps,itHe algotitem finishes angives a
hierarchical structure of communities calleddendrogram The best partition is then

considered to be the one that maxdesimodularity.

2.2.5 Information -Based Algorithms

InformationBased algorithmsare also known ascompressiotbased approaches. Tlee
approaches use the concept of information theory to find community clusters in the network.
They basically consider the community structure as a set of regularities iattherk topology,
which can be used to represent the whole network in a more compathavathe whole
adjacency matriXOrman, Labatut and Cherifi, 2012hfomap algorithm is an example of
information theoretic algorithms proposed IRosvall and Bergstrom (20Q8)nfomap
algorithm characterises the problem of finding the optimal community clusterirnigein

network as the problem of findinfge most compressed (shortest) description length of the
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random walks on the network. It uses a random walk as a proxy for informationnflaw
network and minimgesa map equation, whicimeasures the description length of a random
walker, over all the etwork clusters to reveal its community structure. To represent the
community structure, the algorithm uses a-texel nomenclature based on Huffman coding:

a level to distinguish communities in the network and the other to distinguish nodes in the

commurity.

In practie, the random walker is likely to stay longer inside communities, therefore in the
process of finding a community containing few intemmunity links, only the second level

is needed to describe its path, leading to a comegresentationHowever, gen though
Infomap is a competitive community detection algoritlna shows very good performance
across several benchmalkortunato, 201Q)t cannot handle big networks with millions and

billions of edges that alscoming commonplace with the advent of Big O{Be et al, 2017)

For a more thorough discussion of community detection methods and algorithms and their
principles, please refer to the work done by Fortumdto is one of the major authorities in

the field of communityetection(Fortunato, 2010andSchaeffe(Schaeffer, 2007)

2.3 Parallelisation of Centrality Algorithms

Presentlythe realworld networks are often complicatethdaccompaniedby extremely large

sizes. Using conventional algorithms to analyse networks is almost impossible to process

in a single machine and they usually require spee@irocessing methods, especially parallel
ones Furthermore, many data paralalion methods are proposed to extend storage
capabilities and to improve performance by distributing data and related tasks into disparate
hardwargHu et al, 2014) MapReduc€Dean and Ghemawat, 2008)one of the most popular
distributed computadin framework thatis beingwidely applied to large scale datgensive

processing.
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2.3.1 MapReduce

MapReduces a distributed computing model proposed ®goglein 2004 for processing
massive data sets with a parallel distributed algoritkimg alarge number of computens an
efficient and fault tolerant mannéean and Ghemawat, 2008Nowadays, MapReduce is
widely used as an efficient distributed computation tool in nagpficationse.g., search,
clustering, analysis of social networksg analysis ananatrix multiplicationto name but a

few (Derbeko et al, 2016)

The computatiorof MapReducdakes a set of input key/value pairs, and produces a set of
output key/value pairs. The computatioiiMapReducas expressé as two functionsvritten

by the userMap and Reduc®©ne iteration of map armgducefunctions is called MapReduce
Job. MapReduce computation could banply described as the following stefBean and

Ghemawat, 2008)

1. Input data is read frorihnedisk and converted to Keyalue pairs.
2. The map function tes an input pair of data separately, processes it and produces a
list of intermediate key/value pairs.

0 Q@b ¢ apd @ & Qb Baby ¢ dgd Q 2.8)

3. The reduceunction takes intermediakeey2with a list of Valuesand processes them
to form a new list of values.

0 Qahtx Qi @ agd @ & Qi @ acd Q (2.9

4. Once all input pairs have been processed, the output of the Redudenfund¢hen

written tothedisk asKey-Valuepairs.

24



MapReduceuns ina cluster of nodes; one node acts as a master node and the others act as
workers. Theanaster nodes responsible for assigningstes to idle workers whereas tverker
nodes are responsible for running map and reduce t&dMsck diagram ofthe MapReduce

frameworkis shown inFigure 2.2.
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Figure 2.2 Architecture of MapReduce framewofRean and Ghemawat, 2008)

There are some existing opeyusce implementations of MapReduce such as Haftéagoop,
2016) which has been widely usbg manyorganisationsuch as Facebook, Yahoo!, LinkedIn
However, despite the popularity BfapReduce andbeingextensively used by both academia
and industry, the MapReduce has also been the object of severe cribmstkeridis and
Ngrvag, 2014; Fernandez et al, 2014; Mohebi et al, 20h&)nly due to its performance
limitations, which arise invarious complex processing taskich aslack of loopaware task
scheduling. MapReduce does not support rati#tging of tasks in a singlermruWhenever new
MapReduce jobs aexecuted, the input data has to be reloaded from the disk evergiaring

iterations and regardless whether or not the input has changed from the previous iterations.

Recentlysomeresearchers proposed several frameworks that support asynchronous execution,

which is not allowed in MapReduce. For exam@eme approabes provide support for
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iterative algorithmghat useMapReduce execution modauch as: TwistefEkanayake et al,

2010) HaLoop(Bu et al, 2010and iMapReducé&Zhang et al, 2012)

2.4 Summary

Since the terminologies networks andpra share the same definition, the first part of this
chapter introduces the basic concepts of graph theory that are used in further chapters. This
includes the definitions of adjacency matrix, degree of a node, completely connected graph,

triangle, triple reachability, homophily and hierarchical structure.

This is followed by the literature review of staikBthe-art community detection algorithms
and the discussion of different categories of clustering algorithms. The field of community
detection is veryich and several algorithms to detect communities in networks are proposed.
As an overview, the community detection algorithms could be classified based on
methodological principles into five categories: hoéntralitybased algorithms, modularity
optimisation algorithms, spectral algorithms, randaalk-based algorithms and information
based algorithmskFor a more thorough discussion of community detection methods and
algorithms and their principles, please refer to the work done by Fortwhatis oneof the

major authorities in the field of communityetection (Fortunato, 2010)and Scaeffer

(Schaeffer, 2007)

Most of the community detection algorithms in the literature are cledsi global algorithms

and are designed to work on a single machine. However, in-dasje network scenarios
which will not fit within a single machine, it is impossible for such community detection
algorithms to find communities. Parallelizing the altons is one way to improve the
scalability of community detection. However, it is worth noting that community detection
algorithms, which use global information, are not suitable for parallelization. Hence, a

Decentralized Iterative Community Clusterimgproach (DICCA) is proposed in this research.
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The last part of this chapter addresses the parallelisation techniques that have been used to
parallelise the community detection algorithms. Though there are several techniques available
for implementingparallelisation, most of the algorithms used for big data scenario employ
MapReduce scheme. This is due to its salient featuresithadie scalability, flexibility, fauk
tolerance andsimplicity. So, | have incorporated MapReduce scheme in parallelisang

Decentralized Iterative Community Clustering approach (PDICCA).
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CHAPTER 3
NETWORK MODELS AND STATISTICAL METHODS

FOR COMPARISON OF NETWORKS

In the previoushapter the basiconceptf community detection methoagereintroduced.

In this chapter, the empirical properties of realrld nedworks are discusse&ollowing this
general metrics tevaluate the performance of community clustering algorithms and cluster
guality on the networkare presented Then acomprehensivetudy tobenchmark approaches

for community detection in the networks is conductédally, researchmethodology used in

this work is discussed.

3.1 Topology of Real Networks

As it has beemotedin the first chapter of thisthesis, many reakorld systems can be
represented as complex networdswever, the realvorld networks are nearandom andhey
usuallypresent interesting patterasd properties conveying that their inherent structure is not
governed by randomnedResearchers have concentrated particularly on a few properties that
seaen to be common to many networkthd small-world effect, degreedistribution and

community effecty whichwill bediscusedin the followingsubsectios.

3.1.1 The SmalkWorld effect

The smahlworld concept in simple terms describes the factekanh if the network has many
nodes there existarelativelysmall number of intermediate steghdrt path connecting any
pair of nodes within th@etwork (Newman, 2003)It wasfirst introducedin the 1960s by
StanleyMilgram through a series axperimentqTravers and Milgram, 1967; Travers and

Milgram, 1969)
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The network is said to show a smaibrld effect if the value of the mean geodesic distance
scales logarithmically or slower with network size for fixed mean de(@teevman, 2003)

However, mwadays, the smallorld effect has been studied and verified directly in a large
number of different networksuch asthe weltkk n o wn-defirees @ e par at i ono

networks(Newman, 2003)
3.1.2 Degree Distribution

In realworld networls, not all the nodes inthe network havehe same number of edgdhe
spread in the nodeegrees is characteed by a distribution function 0 . The degree
distribution0 is definedasthe fractionof nodesin the networkwith a degree KNewman,
2003) Degree distribution othe networkgives important information about topological
charactesation of the networki-or example, mangetworks, such ahe nternet(Faloutsos,
Faloutsos and Faloutsos, 1996itation netwoks (Redner, 1998)telephone calhetwoks
(Aiello, Chung and Lu, 200@)aveall been shown to displayowerlaw degree distribution
~"Q wherethe o n st a nwn atlthei esponient af the powaw with a scalingoetween

2 OUO3 (Newman, 2010)

3.1.3 Community Effects.

A number of measures have been developed for testing this tendency in the n@tveod.
themis the d¢usteringcoefficient which measures the degree to which nodes in a network tend
to cluster together. However, there are two skalbwn definitions of the clustering coefficient

of an unweighted networkhe local clustering coefficient and the global clustecoefficient

(also referred as transitivityNewman, 2001; Costa et al, 2007)

The local clustering coefficient is a local property, introducedMayts and Strogatz (188)

and used to describe the network structure of nodes that are close to each other.
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Consider a node i in a network G, the clustering coeffiadrat nodei, 0 , is defined as the
ratio of the number of edges connecting the neighbours of i to the total possible number of such

edges of i.

5 —— (3.)

Where,, is the number of edges between neighbafrnodei, 0 is the degree of node i

(Costa et al, 2007)

The clustering coefficient for the whole network is the average of the local walues

5 -B & (32)

Wheren is the number of nodes in thetwork(Costa et al, 2007)

An dternative definition of the clustering coefficient of a given noe i

5 — (3.3)

where N (i) is the number of triangles involving node i aXgli) is the numbeof connected

triples having ias the centratode(Costa et al, 2007)

The global tustering coefficients defined as the tendency among two nodes to be connected

if they share a mutual nei ghbour (i f azb and
forming a triangle).The global dustering co#icient is based on the relative number of

triangles in the network, compared to total number of connected triples of nodes and can be

written as(Newman, 2001)

(3.4)

Where: N is the number of triangles in the network ands\the number of connected triples.
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In real networksit is shown thathe smaHlworld property is often associated with the presence

of clustering, denoted by high values of the clustering coeffi¢Watts and Strogatz, 1998a)

3.2 Overview of Validity Evaluation

Sincethere isnouniversally accepted definitiaaf what a community issssessing the validity
of community detectiorlgorithmsis a hard task andegeral validity approaches have been
developedn literatureto evaluate the performanoé the community clustering algorithms.
However, untilthis day, there is nformalisation of the problem of comparingnd validation

of community structuren this sectionthe mostcommonly usedluster validitymetricsare
discussedThe duster validitymetricscould be classified into two typesusterquality metrics

and eternalevaluationmetrics

3.2.1 Cluster Quality Metrics
3.2.1.1Coverage

Coveragg Emmons et al, 20163 one of thesimplestquality functiors, which compares the
fraction of intracluster edges in the graph to the total number of edges in the graph. Coverage
is given by:

N - N h

6 &0 Qi w—@@h— (3.5)

Where Sis the cluster to which node i is assigned gf&d b) is 1 if a = b and 6therwise.

Coverage values usually range between 0 and 1. Higher values of coverage mean that there are
more edges inside the clusters than edges linking different clusters. Howoseeage metric

does not take into account timernal cluster density arcduses atrong bias towargartitions

with a smallemumber ofclusters.Thus it leads to a trivial clustering in which all nodes are

assigned to the same cluster.
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3.2.1.2Conductance

In contrast to coverage, which measures only the accumulated edge weighthvgtars, the
conductancewhichis also known as Cheeger constghtias-Castro, Pelletier and Pudlo, 2012)
is based on the idea that two clusters should have a small degree of connectivegnbath
other and in the ideal cafieey are disconnected. More formally, it computesratio of the
number of intercluster edges for the cluster and either, the numbedges with an endpoint
in the cluster or the number of edges that do not haem@point in the cluster, whichever is

smaller(Kannan, Vempala and Vetta, 2004)

Consider a cut that divides Gan€ noroverlapping clustersCC,,  éC«. The conductance

of any given clustei (# ) is denoted byKannan, Vempala and Vetta, 2004)

L L— (3.6)

Where:0 0 B. s« O which determine the total degreef# , # denotes the

complement o# in graph G and\ is the adjacency matrix of tlgraph G.
The conductance of the graph GKsannan, Vempala and Vetta, 2004)
O aQe o (3.7)

Conductance is widely udeo capture quantitatively thtion of a good network community
as a set of nodes that has better intethah externatonnectivity. The lower the conductance
the better is the clusterirgieskovec, Lang and Mahone3010) However, as more clusters
in the network willprobably lead to more catdgesit is pointed out that the conductance has

atendency of giving better scores to partitioning vier clustergAlmeida et al, 2011)
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3.2.1.3 Modularity

As presented in chapter 2, modularisy one of the most popular validation metrics for
topological clusteringand itis usedas anoptimisation method for detecting community
structure in networkdModularity states that a good cluster should have a bigger than expected
number of connections between the nodes within modules and a smaller than expected number
of connections between nodes in different modulé® higher the valuef modularitythe

beter its community strength.

3.2.2 External Evaluation Metrics

When working witha networkthat haswell-defined clusters fg rfio u n d it i possibldto

evaluatea specificclustering algorithm bgomparing the computed solution provided by the
algorithmwi t h t hi s @ gr @ushown ifrigutet3.hliothefatldwing subsetion,
thecommon indiceshatar e used for measuring Agoodnesso

to ground trdstubséd sol uti on ar e

Similarity measure

Ground Truth

Figure 3.1 The way of benchmarking the algorithm using a network with grdwutdh communities

3.2.2.1Rand Index

The Rand IndexXRlI) is a statisticalmeasuredeveloped byRandto measure the similarity
between twalustering solutiongRand, 1971)It is based on the relatiship between pairs of

nodes andequires two labels for eactode. One labas correspondingo its true community
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andthe other one icorrespondingo the predicted communitylf X and Y are community
clusteringassigments for each noda the networkRand Index iglefined aghe fraction of
pairs ofnodes that are aoect to all possible pairs of nagleA pair ofnodes is considered
correct either if th@odes share the same cluster in both clustgmgesseX and Yor if they

are in different clugrs in bothsolutiors. The Rand Index is then given by the equation:

Y @ty (3.8

Where:

a1 and j are assigned to the same cluster in both X and Y

aoo. 1and j are assigned to different clusters in both X and Y

awo: 1 and j are assigned to the same cluster in X but to different clusters in Y
a0 1 and j are assigned to different clusters in X but to the same cluster in Y

n: number ofhodesn thenetwork

RI gives a measure of similarity withvalue ranging from Ovhen there is0 pair classified
in the ame wayunder both data cluster® 1 whendata clusters are exactly the sarme
practice the RI often lies within the narrow range[0f5, 1]. However Rl is highly sensitive
to the number of clustersonsidered in each clustering solutiand has a tendency to give

higher values athe number of clusters increas@&agner and Wagner, 2007)

3.2.2.2Adjusted Rand Index

The Adjusted Rand Index (ARI) tee chanceorrected versioof the Rl proposed bubert
and Arabieand t is known to be less sensitivettte number of clustei@iubert and Arabie,
1985) ARl is equal to the normaded difference of thRand Indexand its expected value under

the null hypothesisThe expressiofor ARI takes the general form (indexexpected index)/
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(maximum index- expected index). More formally the Hub&tr abi eds f the mul

adjusted Rand index (&modio et al, 2015)

0 Y @hd (3.9)

Like the RI, the adjusted Randdlex equaldo 1 when both partitions are exactly similar.
Because it is chanemrrected, a value equal to 0 represents theHatthe similarity between

X and Y is equal to expectedalue under the generakd hypergeometric distribution
assumption for randomneddowever, negative values are possible and they indicate less
agreement thaexpected value. For further detailed description of ARI, the reader is referred

to Hubert and Arabie (1985)
3.2.2.3Normalized Mutual | nformation (NMI)

Normalized Mutual InformatiofNMI) is a similarity measure for comparimgo partitions
based on thenformation theory concept. i$ introduced in tB community detection domain
by Danon et aland since then it has beetdely used to evaluate the accuracyommunity

detection algorithméDanon et al, 2005)

For an Anode network with two partition&={X 1, X2, X3, X} and Y={Y1,Y2,Y3 € .9-}
where X and Y represent the real communities and found communities respectively, the
normalized mutual informatioNMI(X,Y) of two divisionsX andY of a network iglefined as

follows (Labatut, 2015)

0 0 O ~ (3.10

Where: U
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If the found partition by the algorithm is identical to the real community, thdh takes its
maximum value of 1If the partition found is totally independent of the real partitioen

NMI=0 (Labatut, 2015)

3.2.3 Computational complexity

Computational complexity theory is the study of the scalability of algorithms. The term
scalability involves both the number of computation steps needed and the number of memory
units that need to be allocated to run the computation. In the case of atgepbmber of

nodes n and/or the number of edges m is usually used to indicate the complexity of algorithm.
Big O notation is a symbolism used in complexity theory, computer science, and mathematics
to describe the asymptotic behaviour of functionsellstyou how fast a function grows or

decrease@ortunato, 2010)

3.2.4 Visualization for Cluster Validation

Applying metrics is one way to evaludtee quality and correcéss of the detected
communited ut fia picture i s wosingmetwarksisithe mostalirect wo r o
way of understanding them. However, large netwgéagticularly dese onesre very difficult

to visualse due to inherent visual clutter caused by many edge crog$iagg et al, 2014)

Different graphical representations for data associated with networks and their layout
algorithms to give an impression of grafdyout issues and limitations with regard to
scalability have been proposed. These algorithms include YifarfHdy 2005) ForceAtlas
(Jacomy et al, 2014BarnesHut Algorithm (Barnes and Hut, 198&nd OpenOrd layout
algorithm (Martin et al, 2011) How to design appropriate graph visualization technique
depends on many factors, including the type of graph describing thardhthe analytical

task at hand.
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An alternative visuatation method is taisethe adjacency matrixepresentationsin an
adjacency matrixnodes are displayed twice, on the abscissa and on the ordinate. An edge
between the two correspondimpdes in thenetwork is represented by a npero entry.
However, since each edge in the network is defined by itself in-ahremed space, there is no
edgecrossing problem. According to studies performe&hgniemet al.the adjacency matrix
outperformsthe nodelink diagram when the considered graph becomes large and dense

(Ghoniem, Fekete and Castagliola, 2004)

Furthermore, using adjacency matrix representatiooBerent rectangular aredblocks
appear in ordered matrix pgowhenever strongly connected nodespresent in the underlying
topology.In network analysis scenaridbese blocks would be referredasclusters Hence,
with these representatiordear blockpatterns help counting clusters addntify larger and
smaller cluster¢Behrisch et al, 2016)he aljacencymatrix representation has been used in
many domains includingsocial science, artificial intelligence, biology, supply management,

neurology and transportatigBehrisch et al, 2016)

In this research, | have used the matrix reordering visualisation technique for representing the

community clusters.

However, the research in this work focuses on the problecoramunity detection in the
networks and does not touch the visualization technidtm. more information, interested
readers may refer tHerman, Melancon et al. 200@hd (Von Landesberger, Kuijper et al.

2011)

3.2 Artificial Networks

When evaluaing the performance of community detection algorithnisere are two

approacheshiat could be usedhefirst approach is to test againke realworld networks
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with prior information about communities and the second approach is to test agaitiicial

networkwhose community structure is already known, whiaksigally termed as ground truth

Among the formerZachary's karate clufZachary, 1977and the college football network
(Girvan and Newman, 200R2pave been extensively usddowever, die to the complexity of
data collection and costsealworld benchmarksare usually smalsized networkgYang,
Algesheimer and Tessone, 201BJrthermore, obtaining real network with a ground truth is
not only difficult, but also costly in economic terms and tiMereove, since it is not possible
to control all the different features of araetwork (e.g. average degree, degreeiligton,
community sizes, etg.jhe algorithmsould only be tested with a limited set of featur@s
the other hand, artificially generated networks can overcome most of these limitétioss.
theliterature has given much attentitalgorithms' performance dcr@nchmarketworks and
there are a maber of models \ailable to produce synthetic networkfhe following

subsectioadiscusghe most welknown enchmark that generate networks wighoundtruth.
3.2.1 Girvan and Newman(GN) Benchmark Networks

The Girvan and Newmarbenchmark(GN) is one of the first benchmarks proposed for
community detection algorithms by Girvan and NewmaxGirvan and Newman, 2002)he

GN benchmark network consists of 128 nodes that are divided equally into 4 communities of
32 nodes each. The strength ofthe mmu n iistgiyen jythe fraction of the edges placed
between two communities to the total number of edges in the netWwekower value of this
parameter will result in networks with clear separable communitiesvever, the GN
benchmarkhas some limitations such adlthenodes of the network have essentially the same
degreethe communities are all of the same sizd #re network is small.

Since the realvorld networks are characterised by heterogeneity in the distributions of node
degrees and of community sizes, which is not the case in the GN benchmark, this benchmark

is not entirely suitable for reavorld networkclustering(Newman, 2003)
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3.2.2 LFR Benchmark Networks

The LFR benchmark model was propod®y Lancichinettiet al.to generate undirected and
unweighted netarks that closely resemble reabrld networks with community structure
(Lancichinetti, Fortunato and Radicchi, 200BFR model has become a popular choice for
assessing the performance of community detection algorithms and the model was subsequently
extended to generate weighted and/or directed networks tivethossibility of overlapping
communitiesHowever, in this work, the focus is givemtheundirected nweightedhetworks

with nonoverlapping communities.

The LFR model is proposed to address most characteristics of real networks, e.g., size of the
network and heterogeneous degree distributiothdhFR benchmark, both the node degrees

of a network andhe size of each comumity are controlled by a powdaw distribution with
exponent o a.rHdweger rhasdbgerabdeived that seadrld graphs have such

a powerlaw degree distributioNewman, 2003ywi t h t ypi c al values of:
(Lancichinetti, Fortunato and Radicchi, 2008)

Animportant paameterotheLFR model i s the mixing paramet e
between the external degree of each node with respect to its community and the total degree of
the node. Each node shares a fracsctomounityli & ¢
and a fraction ¢ wiktivdlk. Bsdediallpthishparametercahdesviewed t h e
as the amount of noi se i ofametwerkig thahaidderitiFthe | ar
detect communities in it. If > 0.5 then each nskdares more than half of its edges with nodes

in other communities, €€ = 0 means all edges
edges are between nodes in different communities. The model also allows controlling directly

the following parametersiumber of nodes and maximum degrees. The obd€R modeis

publicly madeavailableby the authors(Fortunato)
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3.3 Research Methodology

The aim of the researcts to develop an accurate and effectisemmunity clustering
approachefor largescale networksThis section presentesearch methodolodgr achieving
the objectives of this thesidrigure 3.2 shows the research methodoldggmeworkused to
achieve these objectiveS8ach stage of the methodology for this research is explaineitly

in the followinglines.

Studyingthe background information and a careful review of the relditardture(presented

in chapter 2 and 3Yevealed the insufficiencies of existing community detection techniques
This provided thedirection for the resear@nd helped me to formulate the problem definition
along with the researchbjectives that lise in section 1.4. However, to achieve these

objectives three approaches are proposed and evaluated extensively.

Related works

Reviewing Related
. « Graph theory.
literatures » Community detection algorithms.
* Parallelisation techniques for the community
detection algorithms.

* Properties and models of real networks.

Problem Formulation

Definition of Research
Objectives

Design an efficient community-

detection approach that work at the
local level.

+DICCA —~ Extend proposed approach to work in
+PDICCA parallel/distributed fashion
Pl’OpOSCd Models * Pre-processing approach to improve the performance

Proposed approaches

of for existing community detection algorithms

Used data set

Alllal)’SlS and *Syntactic data set (LFR).
Experlmental results *Real word data set (Facebook data set and smart
phones dataset).

Design optimisation tool for robust
community detection algorithms.
Comparison (NMI, RI, ART)

Experimental .
Evaluation Scalability Sensitivity Accuracy

Quality (Modularity)
Visualization (adjacency matrix
representations)

Figure3.2 Research methodology framework
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1- Decentralized Iterative Community Clusteridagproach (DICCA)
A novel Decentralized Iterative Community Clustering Approach to extract an efficient
community structure for large social networks are proposed. The proposed approach
works at the local level and does not require any global knowleddeeafetwork. It
based on random walk anehchability, which is done byessage propagation between
neighbours.

2- ParallelDecentralized Iterative Community Clustering ApproaeRICCA)

PDICCA is a distributed memory parallel processing approach that transstioe serial

steps of the DICCA approach into parallelised tasks.

3- An optimization approach for improving the robustness of community detection in the
existing weighted community detection algorithms, especially in networks with missing
information is poposed. This is done through considering attribute information, shared
nei ghboursdéd information and connectivity

detection process.

The following chapters(chapter 4, 5 and 6) explain in detagbout thee threeproposed

approaches.

Forimplementatiorof theproposed approachdsst of software were used in the process:

I Matlab software

1 Igraph ( R) software packages

In this work, the synthetic dataset is generated by the LFR benchmark model along with their
groundtruth communities in order to be able to evaluate the effectiveness of the proposed

community detection approaches on a range of netatouktural properties and network sizes.
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In addition, anonymised Facebook datasets are usedaiwate theeffectveness of the

Prepressing approach{3roposed approach ).

Evaluating the validity of community detection algorithms based on a single measure alone can
lead to misleading conclusions. Thus, in this work, a range of performance measurements,
Normalized Mutual Information (NMI), modularity (Q) and Adjusted Rand Index (ARI) have
been applied as evaluation criteria to evaluate the quality of community clusters. These three
performance measurements are based on three different approaches. The ARhiegenio

pair counting whereas, NMI is based on the information theory apprblaethird approach

is the modularity measure, which relies strictly on the network topology. This modularity
measure allows to quantify the quality of a community structuaebimd way and without the

use of a reference (growtidith).

Going a step further, the matrix reordering visualisation is used as a visual representation for

networks by encoding visually an adjacency matrix to show community clusters in the network.

3.4 Summary

Realword networkshavespecific topological features, which charaizertheir connectivity.
Measurement®f the connectivity are essentitd describe,analyse model, validag the
networks and exploit network structure to achieve certain dmthkis chapter, the empirical
properties of realvord networkghatdescribe the structud thenetworkarepresentedThis
specifically focusesn the statistical propertie®f networks that have received particular

attention,includingthe small-world effect,degreedistribution anccommunity effects

Furthemoreg in this chaptervarious performance measures for assessing the quality of
community clustering algorithms adescussedThis includes, kusterquality metricssuch as

coverage conductace and modularity, and some externaiakiation metrics such asRand
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index, adjusted Randndex andNormalized mutual nformation Also, adjacency matrix

representatiors discussed.

Finally, a comprehensive benchmarking studytbaapproache$or communty detection in
the networks isonductedGirvan and Newma(iLancichinetti, Fortunato and Radicchi, 2008)
and LFR Benchmark mode{kancichinetti, Fortunato and Radicchi, 20@8at are proposed
to generate sythetic networks to mimic the rewalorld networks areliscussedn more detail
The GN benchnt& has some limitations such a#l,the nodes of the network have essentially
the same degree, the communities are all of the same size and the seteisrimall. Since
the realworld networks areharacterisetly heterogeneity in the distributions of node degrees
and of community sizes, this benchmark is not entirely suitable fdrwald network
clustering. Son this work, the synthetic dataset is gereddbdythe LFR benchmark model
along with their groundruth communitiesis usedin order to be able to evaluate the
effectiveness of the proposed community detection approaches on a range of-sgtvetukal

properties and network sizes.

43



CHAPTER 4
DECENTRALIZED ITERATIVE COMMUNITY

CLUSTERING A PPROACH (DICCA)

In this chaptera novel Decentralized Iterative Community Clusteriagproach@ICCA) for
detecting communit&in complex networkis proposedThe DICCA approach idased orthe
random wallkprocedureand reachability of nodes in the netwohk important property of this
approachsits ability to cluster the entire network withdbeglobal knowledge of the network
topology. This ability means that this method could be easilapted toany parallel/
distributed processing to find community clusters in big networks

Some parts of this chapterare published in the proceedings of thEEE 28" Annual
International Symposium on Personal, Indoor and Mobile Radio Communications PIMRC,
Montreal, QC, Canadgp.1-7) in October 201.7However, n reference to IEEE copyrighted
material which is used with permission in this thesis, the |IEEE do¢ endorse any of
[Liverpool John Moores University]'s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for cmegtinew collective works for resale or
redistribution, please go tdtp://www.ieee.org/publications_standards/publications/rights/

rights_link.html to learn how to obtain a License from RightsLink.
4.1 Related Literature and Previous Studies

The problem ofnetwork clusteringhas received considerable attention from researchers in
recent years and the list of propdsilgorithms is rich and diversémong themthose based
on modularity maxingation form the most prominent family of community detection

algorithmsclosely followed by theategory of algorithms based on randemalks (Fortunato,
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2010) However, nost of the research on community detection algorithmseaesdesigned
to work on a single machiremployinga form ofbasicrandom access to the entire network,

so theyrequire access tiheentire network aall times(Fortunato, 2010)

In the modern era of technolgggtremendous amount of data is generated at an incredible
speed fom everywhereAs the data size is scaling up, the need for computing power is
exponentially increasingn many such situations, the required processing power far exceeds
the procesing capabilities of single machin€arthermorein many such caselse largescale

data set does not fit into the main memory of a single machine and needs to be distributed
among several machineBhese demanding requiremehtsveled tothe needfor parallel and

distributed algorithms$or big data analysis.

In this chater, a novelDecentralized Iterative Community Clusteridgproach(DICCA) for
accurately clustering netwaks presented his scheme is completely decentralized and does
not requirethe global knowledge of the networl&part from DICCA, there exissome other
algorithms that operate based on partial information. For example, the Distributed Diffusive
Clustering algorithm (DIiDiC) is proposed byoachim and HennindGehweiler and
Meyerhenke, 2010based on the method of disturbed diffusiwhich is designed to eliminate

all the global operations for assigning nodes to partitions. However, the nodes executing DiDIC
algorithm need to communicate with their diraeighbour@andDiDiC requires knowledgeof

all theneighbouring nodes.

Another algorithm somewhat similar to the proposed DICCA @onnectivitybased
Decentralized Node Clustering scheme (Cp&)posed byRamaswamyet.al (Ramaswamy,
Gedik and Liu, 2005)The CDC algorithnadopts some ideas from the diffusibased models,
andis patrticularly designed for pe@r-peer networks. Even though the algorithm assumes that

each node has lanited view of the entire networksimilar to theDIiDiC algorithm, CDC
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algorithm requires knowledge about ahe neighbouring nodesAnotherdistributed graph
partitioning algorithm, called Jae-Ja, proposeth (Rahimian et al, 2013} a decentralized
local algorithm that does not require any global knowledge of the graph topdtmgympute

the partitioning, the nodeonly requiressome local information about its neighbouring nodes,
and a small subset of random nodes in the graph. However, tindk@oposed DICCA
approach, the algorithm prodwgeartitions of equal sizes. In fact, it tends to find haé size
partitions rather than goeshaped partitions, and therefore, the number and size of yielded
partitions is controlled, and does not depend on the topology of the input Ghegobfore, the

outcome does not match the réfd scenario.

Table4.1 Comparison of the algorithms

Short

Concept of the

Algorithm . Features Comments
name algorithm
Distributed Uses the concept of Requires DiDiC initially was
Diffusive DIDIC disturbed diffusionto = knowledge of all implemented to balance the
Clustering identify dense graph = the neighbouring loads on virtual P2P
algorithm regions nodes supercomputers
Connectivity The central |dea_ in the Requires Model is suitable for
based CDC scheme is to . . .
i ) ; knowledge about discovering connectivitpased
Decentralized simulate flowin :
Node CDC the network where even _aII the _ clusters in peer to peer
. . © neighbouring network and handle highly
Clustering edge considered as a .
. nodes dynamic nodes
scheme road between two points
Itis a distributed edge Does not require The algorithm produces
JabeJa JabeJa partitioner that creates any global partitions of equal sizes.
balanced partitions while knowledge of the However this is usually not the
reducing the vertex cut  graph topology case 6r real networks.
The algorithmadapableto any
Decentralized The algorithm is based Able to cluster the pargllel/ d'St”bUt.ed processing
. . to find community clusters in
Iterative on therandom walk entire network : ;
. : big networkswhen the size of
Community = DICCA procedure and without the global .
. > . the input network or the
Clustering reachability of nodes in  knowledge of the . o
computation complexity is
approach the network networktopology be

yond the resources of a sinc
computer

4.2 Description of the ProposedDICCA

DICCA is an agglomerative clustering algorithm, it starts with everge belongingto a
community cluster on its owand iteratively merigg theclusters that have high similariyith
each otherDICCA is based on random walk and reachapiby broadcasting message
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through the network to compute similarity between community clusters and identify clusters

in the network.

The pseudo code outlining the entire procedure is listédhiorithm 4.1below and it consists
of two phaseghat run inan iterative fashion. The first phase, namechl clusteringis to
define originatorsone for eactcommunity cluster an@dssociateeach noddo the besfit
originator. The second phase, named netwedkiction, isused to build a new network based

onthe detectedommunitiesn the firstphase

In thelocal clusteringphaseof each round of the iteratippnenode isselectedandomlyas

the originator Then tls originator node sensla message (Msglo all its neighbours The
messageontainsthe following three fieldsOriginatornodelD (OnID), Time to Live (TTL)

and Messag@/eight(WMsg). OnID is used founiquely identifying the originator nod&€TL

is the maximum number of hopisat the Msgcan be recirculatedefore being discardedhe
message eightfield (WMsg) isthe weight carried by the messa@lae Weightrepresents the
estimated probability of reaching any node in the network starting from the originator node.
However, the WMsgs initialised to one and assigdto the originatortself, to avoid the
originator being assigned to any other clust@tee function used to calculate the weight of
message sent from tleiginator( to its neighbouring nodé depends on the edges between

the originator) and the nodé and is defined as:

=y

Wi "® ho

_ (4.1)

Each node in the network maintains a set of values, represented as Total Message Weigh
originator ID. TheTotal Message Weiglvalue represents the sum of the wesgbt all the
message thatreached Ni and has the same Originator nodéNlBen the nodé receivesa
messagé®/sg, it updates the total weight functisorresponding to thmessage originatorode.

Then, the receiving node checks whethesr notthe TTL of the message is greater thzaamo.

47



If so, thenodedecrementd TL value by one, updates WMsg of the Msg afwwards the
updatedmessage to all its neighbouhe updatedveight of the n& messag&/Msg(Vi, V)

being resentfrom node6 to its neighbouring nodé is definedas

GOi B Gbi B - 4.2)

However, Node 6 halts the message circulation TTL is zero or WMsg becomes
insignificantly low.When the TTL reaches zertie message will no longer be forwardexd
the nods jointhecommunityled by the originatonode/ that hageceivedotalweight values
greater than the specified threshadttbwever, if the atal weight valuesreceivedfor some

nodedie below a predefined threshold, thensknodes will remain & outliers.

In thenext step, thalgorithm adds one more originator nptdg randomly seleatg one of the
nodes from the outliers that do not belong to any community. figenew originator repeats
the same process that waaried outby the former originator andpdates communities and
their correspondingriginator as well athe outlier node list. The algorithm keeps iteratively
adding one more originatoand updahg communities and outlier nodes until each node is
joined to a communityand thereis no outlier node remainingdiowever, each node in the
network may receive multiple messageserated from different originator nodésthat case,

the nodgoinsthecommunityled by the originatonode that hathe highest totalveight

The secongbhaseof the algorithm consists of building a new network from the communities
discovered in thérst phasewherethe individual nodes in the new network are the individual
communities from the first step. In this new network, there will be an edge between two nodes
if there were edges between the corresponding two communities in the previouBhstep.
weights of those new edges are the sum of the weights of the edges between nodes in the
corresponding two communities. The edges between nodes of the same community in the first

step will lead to selfoops for this community node in the new network.
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The twophases mentioned above aepeaed with the rebuilt networlikteratively andthe
processstops when there is no more change ind@munitiesand consequentlgptimised

community clusterareobtained

Although the exact computational complexity of DICCA is harder to formalize, this algorithm
behavesad a 1 1 €& , in whichn is the totahumber of nodem the networkand m

thenumber of edgedHowever, themosteffort is in the first phase of the algorithm.

Theproposeaoncepis shownn Figure 4.1The figure illustrates how the proposed algorithm
works at different stages of execution of the algorithm with 11 nodes labelled from 1 to 11 and
17 unweighted edxs. The algorithm process is initiated by choosing node 4 as originator in
the first iteration and threshold value is set to 0.28s$4ge in the figurearedefined by three

fields that provide information about the messagpresenting theriginator, TTL and current
weight of the message respectively. For example, ifighetvalue ofthe message received by
node 5 is §:2: 0.23, it mears that the message datasoriginated by node 4 and the weight

of current message is 0.25 with TTL=2.

By compiling the notions above, a community clustartihe proposed algorithm can be
described as:

1. The nodes and only these nodes which are mutuallglgesennectedbelong to the same
cluster.

2. If node Vdoes not have many neighbours &nd reachable from one or sevenaldes, then
V belongs tahecluster thats more densly connected.

3. If V does not have any neighbours, thedoes not belong to any cluster.

4. The obtained communities are not overlapping and consequently, they agfantition C

of nsuchthav=" Ci and Ci z Cj =1 for any il
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Stepl: Initialisation
Node 4 choseas originator TTL=3
outlier nodes={1,2,3,4,5,6,7,8,9,10,11}

4:2:0.25 4:2:0.25
4:1: 0.0625 4:1:0.0625
4:1: 0.0625 4:1: 0.0625
(3—3) (9—10 (35 (9—0
| i )
41 0.062$
A7 4:1:0.0629 [ 1
an (2 4 |r|
k £ L3
4:2:0.25 4:1:0.062!
4:1: 0.0625 4:1:0.083
4:1:0.0625

(k 77 8)

[ez0z5 ](6 )

Step2: The aiginator(Node 9 sends
messages to ats neighboursTTL=2
outlier nodes={1,2,3,4,5,6,7,8,9,101}

(7

“\\i
[rro=Jo
Step3: At TTL=1

outlier nodes={1,2,3,4,5,6,7,8,9,101}

[4:0:0.4375]

[4:0:0.4340]

(35

a’

4:0:0.4340
7:2:0.3333]

3—5)

4:0:0.1875

4:2:0.25 4:0:0.25
4: 1: 0.062 4:1:0.062!
4:1:0.062 4:1:0.062
4: 0:0.031. 4: 0:0.015!
4: 0:0.015 4: 0:0.015!
4: 0:0.015 4:0:0.027!
}3 50 (9—i0
(1
A 4:1:0.0625\ [4:0:0.0278]
4:1:0.0833
4:1:0.25 »_1 I 4:0:0.0156 1 1
41 0_052:( 2 4 4:0:0.0156 -
4:0:0.0156! [ 4:0:0.0279
4:0:0.0156)
4:0:0.0156| 4:2:1
4000156 v |4:0:0.0186| \(7 8
4 gfg.glsg 4:1:0.0837
4:2:0.25 4: -0 15 4 0:0.0208
4:1: 0.0625 jj gjg'gigg 4:0:0.0278
4:1:0.0625| [4: 0:0. AL —
4:0:00313 [4:0:00156| (6] |+Z025
4: 0:0.0156 - 900
4:0:0.0156

Step 4: At TTL=0.
Outlier nodes={1,2,3,4,5,6,7,8,9,101}

oozd 6
Step 5: Total weighted message receiveq
by the nodes frororiginator(Node 4),
threshold value =0.2%utlier nodes
{1,7,8,9,1011}

(1)
|4:o?o.1875|
(2— 4] an
4:0:0.204
4:0:0.4375| |4:0:1.0938) 7:31

[_

8 4:0:0.1319
7:2:0.333,

Step 6: Start new round by choosimpde7
as originator andepeat the previous proce
Outlier nodes={1, 8,9,1011}

(9—10

Step7: Output for the first iteratiomvhere
nodes #,7,10,1}arechosen as originater

Outlier nodes={}

A}

e

‘UH
w']

3

(3 D>

Step 8: Rebuld the networkand start new
iterationwhere\/1={1,2,3}, V2={4,5},
Vv3={6,7,8} andVv4={9,10,11}

Step 9: Final outputwith three optimised
community clusters

Figure 4.1 lllustrates the concept of the algorithm
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Algorithm 4.1. The proposed method

Input: underlying network grap, time_to_live and threshold value
Output: C communities as a final division of G.
Repeat
Outlier list Y all nodes// local clustering phase
While outlierlisti { }
Oi Y Rand select (outlidist) // choose a node randomly to be an originator
/lcreat new message (MsQ)
Onld Y Oi // originator ID
TTL Y time_to_live
WMsgV¥ 1
MsgVY { Onld, TTL, WMsg}
While TTLO O
Total weight(Oi, Vi) = sendmessag€G, Oi ,Onld, TTL, Msg)// Total
/lweight between Oi and its neighbout nodé} (
TTLY TTL-1
Oi Y Vi
Msgce{ Onld, TTL, Total_weight (Oi Vi) }
end while
for each Node&/iN G
if Total weight(Vi,onlD) O t hr @éherhoul d
C(Vi) Y Join the cluster lead by maxID

else
Remain outlier
end if
L end
L endwhile
A=Aggregate(G,C) // Network reductiop hase fACompact each con
/'l new node and build new networ
if (C_currentC_ previous // no membership change
break;
_return C// return the final division of G
end Algorithm

Function sendmessagels, Oi ,Onld, TTL, Msg)
for each Nodé/i N Nbr (Oi) do
SendWMsg toVi Y WMsg(Oi ,Vi)=WMsg(Oi ,Vi) *W(Oi,
Vi) B ® oo
If Ni have seen message from onlD befitwen
Total weight(Vi, Oi) Y Total weight(Vi, Oi) + WMsg
else
Total weight(Vi,Oi) Y WMsg
end if
L end
Return Total weight(Vi,Oi)
end function
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4.3 Experimentation and Results

4.3.1 LFR Synthetic Dataset (network)

Many reatworld complex networks such as the Internet, social networks, biological networks,
infrastructure network®tc are heterogeneous and show a pelaer degree wtribution
(Newman, 2003)in such networksot all their components such as nodes, links and subgraphs
carry the same role or importance in the netwerkich has cucial effects on the resulting
performanceof the algorithms deployedConsequently, the performanceasfy community
detection algorithnvariesdependingdn the networé characteristics-urthermore,d analyse

the efficiency othe community detection algorithrane needs to applyti® networks which

have ground truth communitiegthe actual partitiods and thenthe performance of the

algorithmneeds to beneasured as the accuracy in receiggithe ground truth communities.

Due to thescarceavailability of real networkghat haveground truth communitiesnd n order
to measurehe performance of the proposed community detection algorithnothnetwork
structuralpropertiesand network sizeéhesynthetic datases generated btheLFR benchmark
modelalong withtheir groundtruth communities and used test theproposedalgorithm in

this work.

4.3.2 Evaluation Metric

Since the true community structure is known for the benchmatwork the proposed
algorithmis evaluated by comparing the obtainetition in the experimentsith the ground

truth provided by th& FR benchmarkNormalized mutual information (NMnetric is used

to quantify the accuracy of community detection methods by evaluating the level of
correspondence between detected and grtrurtid communities. In addition modularity
measurement is used wvaluatehow effective the algorithm is in terms of modularity

optimisation.
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4.3.3 Parameter Selection $rategy

The proposed algorithm usevo parameters, which aéme to livedandé&hreshold valu@ if
thesetwo parameters are optimally séten it will highly improve the performance of the
algorithm. So some strategies about the choice of these two initial parameters are discussed in

this section.

4.3.3.1Time to Live

TTL is a parametarsed by the algorithm to control the number of nodes visitdwindtwork.
TTL value must be a positive integgeater than zero. In reality, choosing an appropriate TTL
value isnotan obviougask On one handgsmall timeto-live may expire before reaching many
relevant nodes which are further aw@y the other had, high time to live means more nodes
than needed are visited, thus increasing bwmessage load on the netwarld the running
time of the algorithm Therefore in the proposed algorithm, rebuilding the network before
starting a new iteration is considered as a solution for this issue. For example, with a small
value of TTL,some nodes\;) that aredlenselyconnected with the neighbourstb&originator
(intermediate nodes between them and the originator)madeot receive messagfeom the
originator Oiasthe TTL valuanight have expired in the current iteratidien in the following
iteration, the intermediate nodedl be mergel with the originator nodenaking them as one
node. Themn the next iteration thesé& nodeswill be reached btheoriginator Oi withasmall

value of TTL.

In order to determine the effect of TVhlueon thecommunityclustering accuracyhe TTL
value rangingrom 1 to 4 hasbeen usedh this evaluationFigure 4.2indicatesthe accuracy
values ofsyntheticnetworks with 500 and 100@o0des|n this work, modularityand NMI have

been used to evaluate the quality of community detedtioorder to give a condensed picture
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of the resultsthe computing timen second and the message complexiggultsas a function

of theTTL arepresenedin Figure 4.3.

From the figure, it is clear thalére is a correlation between THhd bothcomputing time

andmessage complexitfhe smaller th@TL, the faster the algorithnithis can be qualified
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Figure 4.2 Performance of the DICCAlgorithm using different TTL values
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Figure 4.3 Comparison between computing time and the message complexities over different TTL values
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by the fact thathe run time ofthe DICCAalgorithm depends on the total number of exchanged
messagewhichin turn isaffected by tl total number bhopsthat amessagés permitted to

travel before being discard€@TL).

However, the proposed algorithimthis workis implementedn Matlab from scratch, which
is not optimsed for speedTherefore, lte total number of exchanged messages (Message

Complexity)will be computed as a score for running timehis work

Thegraphsn Figure 4.2demonstratéhat the algorithm yields good community clusters when
the TTL is set to be 3. Furthermorecallfrom chapter 3 thdtig networks from reaiworld
applications are often smallorld networks(Watts and Strogatz, 1998k%ilva and Zhao,
2016) so increasing the TTL value does not have significant impacthenquality of
community detectiobbut mayresult ina very high communication loatiowever, selecting a
small TTL value can reduce the broadcast ovethimawill compromise the accuracy. For
example, whed@ TL = 1 i WMsg messhge istohlyebeingropagatedonce from
originator to its neighboyw hi ¢ h means only the direbet orig
merged in that iteration. For thisenario,the NMI andtotal number of messages generated
by the algorithnfor N~ {500; 100G were{0.661;0.769} and{4832; 9019} andrespectively.
On the other hand when a value of TTLwas used fon~ {500; 1000, the NMI results were
{0.918 0.946} and theotal number of messagesere {1,347,024, 3,735475. Furthermore,
when TTL =scerewere {082201M6} which aralmostsame ashe NMI yielded

by the algorithm when TTL is.®n the contrarythe total number of messaggsnerated ere
{29,680,547:87,794,210which aresignificantlyhigher tharthatgenerated when TTL was 3
Based on the abowdiscussion, it is clear that the algorithwill stabilize very fast on the

networkswith small value of TTL.but quality is worsén most case$On the contrary, using a
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large valueof TTL can ensure that all nodes will receive the messhge introduces

unnecessary broadcast messages for nodes beyond thehastging region.

The number of messages sehitring an iteration clearly depends ¢time number of nodes in

the network anan the size of th@-neighbourhoods of theodes (network structure). This

meanshigh communication loads requiredfor extracting clusterand may result ina

scalability problem irlarge and dense network environmeritkis scalability issue greatly

hinders the application of modudxtraction to network analysis where most of the networks

consist of high number of nodes. However big networks, the message weight become

extremelylow compared to a threshol@lue.A nodeé s d eto joirsaicloster is basedn

thetotal weightof themessagefrom the originatoto thenodeexceedinghe threshold value.

Consequentlyextremely low message weight does not affecttmiracy otlusters and the

process could be halted.

To avoidan excessivenumber ofmessages being forwarded, adaptive termindggchnique

has beenimplemented in the DICCA approach. Whehe messagewneight becomes

insignificantly low, the messags discarded by the received node even though the TTL may

still be greater than zerdn this work the minimum value ohessageveight Min_VALUE)

is specified to be three hundred less than threshold value.

By comparingrFigures 4.2-4.3 with Figure 4.4 it can be observed that there are negligible

differences between the performance of the algorithm in terms of NMI and Modutarises
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Consideringnessageamplexityandrunning time the performance of the algorithm when the

Min_VALUE is applied is by far better thats performancevhen Min_VALUE is not applied.
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Figure 4.4 Performance of DICCA algorithm using adaptive termination via different TTL values

4.3.3.2Threshold Value

The threshold is a numerical value ranging between 0 and 1, which defines the minimum weight
of the message required to jamclusterlt is defined by the user at the beginning of the process
The node is allowed to join trdmmunity cluster led bgriginator G, if the total weight of

the message received by the node frons@qual to or greater than the threshold vaise.

the threshold value increases, the difficulty of merging communities also increases. Thus, the
size of the community clusters depends on the threshold vadukigh threshold is set, more
smaltsize @mmunities areletected. On the contrary, setting a lower threshold leddsvey

but largesizedetected cluster3 hereforethesize of thecommunityclustersproduced byhe

proposed algorithnsould be controlledusingthe thresholdparameterThe threshold value is
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in the range of §; 1}, 0 yielding a single communitgnd 1 producing clusters of singleton
nodesTuning this parameter could be seen as a possible practical remedy to control the desired

size and the number of communities.

In order to understand how the threshold value affects the ac¢csiaeyand the number of
community clustes; the effecof different thresholdalueshas been studied asmall network
with 50 nodes and 83 edgdse results presented Trable 42 showthat wherthe threshold
valueincreases, more smaized communities are detectdd. contrastjower threshold/alue
leads to larger detectedusters For example, when the threshold value is thiee clusters
have been detected atitk biggestdeteced clusterhas21 members. Thatumber of clusters
becomes whenthe threshold parameter ¢ghange to 0.7. That is because largehreshold
value means more strict requiremerits community intraconnectivity and only strongly

connected nodes can beldoghe same cluster.

Table4.2 The experimental results obtained by the DICCA algorithm on a small network of 50 nodes

Threshold Number = Modularity Min N.of Max N.of Avg N.of
value NMI of clusters (Q) members = members = members
0 0 1 0 50 50 50
0.1 0.664672 3 0.623675 14 21 16.66667
0.2 0.810166 5 0.674046 5 21 10
0.3 0.88515 6 0.717521 5 16 8.333333
0.4 0.85165 9 0.658151 1 10 5.555556
0.5 0.900606 12 0.622587 1 9 4.166667
0.6 0.900606 16 0.622587 1 9 3.125
0.7 0.723512 39 0.18682 1 5 1.282051
0.8 0.670295 50 -0.02584 1 1 1
0.9 0.670295 50 -0.02584 1 1 1
1 0.670295 50 -0.02584 1 1 1
0.223x* 0.950701 9 0.68907 2 10 5.555556

Figure 4.55hows the visualization of synthetic network with 50 nodes and the detkctests

when the thresholgarameter is varied from 0 to 1 in steps of 0.1.[&keut for all the different
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visualizationsof the network is &pt constanto beableto draw contusionseasilyby looking

at the figuresMembers in the same community agpresentewvith the same colour.

Using the proposed DICCA algorithm the maximum modularity is obtaiumeah the threshold
value is 0.2y the partition ir6 communities achieving Q=0.71 (graph d). HoweVer ground
truth partitioning is 8 communities with Q= 0.71DICCA merged three communities into one.
Beside this, there are 5 communities classified corragttythe exception of one node (node

23) whch is misclassified

Clearly, he success dhealgorithm is heavily dependent on the proper tuning oftitesshold
value. However, there is no standaréscription forthreshold value for all type of data sets
and applicatios. The most appropriate rissholdvaluefor a givendata set is usually derived
experimentallydefined by the user accordingttweir knowledge or estimated on the basis of

data from previously completed similar projects.

4.3.3.3Automated ldentification of Appropriate Threshold Value

Althoughthe threshold value contradiise numberand the size of clusters thaill be extracted
which couldbe considered aan advantage ahe algorithm, choosing the right threshold
without a priori knowledge of the network structure is a tfrading task. Furthermore,
generatinga priori knowledge requikhuman expeise and is time consuming singeal
networks are usually big and contain huge an®ahtnformation(De, 2016) In this work,
based on theaboveobservationa mathematical modé$ proposedo automatically calculate
thethresholdvalue.The model calculatghe optimal threshold value based ongize density
and layout strature of thenetwork Equations 4.3 to 4.5 present thedsholdcalculation

model for undirected networks designed by the author to help calculate the threshold value
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Figure 4.5 Community detection result for a small network with 50 nodes as extracted by the proposed DICCA
algorithm using TTL=3 and with different threshold values. (a) threshold value =0, (b) threshold value =0.1, (c)
threshold value =0.2, (d) threshold value =Qe},threshold value =0.4, (f) threshold value =0.5, (g) threshold
value =0.6, (h) threshold value =0.7, (i) threshold value >=0.8, (j) ground truth clusters, (k) Modularity via
threshould value. The values of the other parameters were iixe@:, b =1 .
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