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Abstract—Recurrent neural networks are dynamical systems that provide for memory 

capabilities to recall past behaviour, which is necessary in the prediction of time series. In this 

paper, a novel neural network architecture inspired by the immune algorithm is presented and 

used in the forecasting of naturally occurring signals, including weather big data signals. Big 

Data Analysis is a major research frontier, which attracts extensive attention from academia, 

industry and government, particularly in the context of handling issues related to complex 

dynamics due to changing weather conditions. Recently, extensive deployment of IoT, sensors, 

and ambient intelligence systems led to an exponential growth of data in the climate domain. In 

this study, we concentrate on the analysis of big weather data by using the Dynamic Self 

Organized Neural Network Inspired by the Immune Algorithm. The learning strategy of the 

network focuses on the local properties of the signal using a self-organised hidden layer 

inspired by the immune algorithm, while the recurrent links of the network aim at recalling 

previously observed signal patterns. The proposed network exhibits improved performance 

when compared to the feedforward multilayer neural network and state-of-the-art recurrent 

networks, e.g., the Elman and the Jordan networks. Three non-linear and non-stationary 

weather signals are used in our experiments. Firstly, the signals are transformed into 

stationary, followed by 5-steps ahead prediction. Improvements in the prediction results are 

observed with respect to the mean value of the error (RMS) and the signal to noise ratio (SNR), 

however to the expense of additional computational complexity, due to presence of recurrent 

links.  

Keywords— Recurrent Neural Networks, Immune Systems Optimisation, Time Series 

Data analytics, weather forecasting. 

1. Introduction  

In the past two decades, significant improvements and the evolution of big data in weather 

forecasting attracted researchers to the big data domain mainly due to the large amount and 

variety of data that need to be handled [1]. Scientists are working with Big weather Data, 

characterised by complexity at one or more of the main 5 Values (5Vs) [2]. Big Data techniques 

need to store, process, and mine weather applications information in an effective and efficient 

manner to generate information that can improve the accuracy of weather prediction. The 

challenge in this field is to provide accurate predictions about weather status, in the context of 

challenges with regards to handling, processing and extracting valuable information from very 

large and complex weather data. 
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Time series analysis generally refers to a sequence of data points, measured typically in 

successive times, and spaced at regular time intervals. In practice, it is a collection of historical 

data of a system, such as the price of a stock, traffic data, and pollution rates [3-8]. A time series 

can be used in two ways with different objectives: 

 Looking backward – the use of historical data to analyse the previous behaviour of a 

system. Applications include diagnosis or recognition of machine faults [9] or human 

disease [10, 11]. 

 Looking forward – the use of data to predict or forecast the future behaviour of a system. 

Applications include stock or price prediction [12], market demand forecasting [13] and 

weathering forecast [14]. 

Time series usually contain a component associated with random variations. Analysis of 

such data is a challenging task considering the variety of  internal and external factors affecting 

a dataset. In their theoretical analysis, Herrera assumed that a time series is generated by a 

dynamical system [15]. Systems that generate time series possess complex properties, where 

the relationship between the elements of the time series is nonlinear and includes extensive 

dynamical behaviour. These properties make it difficult to accurately analyse the behaviour of 

such systems even when the underlying properties are completely known. Time series analysis 

has essentially helped in the development of both traditional and intelligent methods. 

Traditional methods require assumptions about the characteristics of the data. Intelligent 

techniques are based on training paradigms, which  learn the behaviour of the time series. 

Analysis of time series behaviour of complex signals such as the ones related to the human 

body, stock markets, weather signals or even country economies is a major challenge. The main 

advantage of using intelligent methods based on machine learning techniques is the ability to 

perform with little or no prior information about the time series.  

Machine learning is considered a field of science, aiming specifically at learning and 

extracting knowledge from data sets, in order to develop real world simulations, apply 

prediction,classification, and pattern recognition methodologies on the input data [16]. Among 

the several machine learning models in the sub-field of data prediction, neural networks 

techniques are effective and useful alternatives to statistical methods. The prediction process is 

used to detect values or events that have high probability to occur in the future. For many 

decades, artificial neural networks (ANNs) have been successfully used in prediction 

applications with remarkable levels of performance.  The main objective of this empirical study 

is to build a dynamic neural network architecture, optimized using the immune system 

algorithm for forecasting of big weather data. 

http://en.wikipedia.org/wiki/Data_point
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ANNs have been prevalent in most machine learning applications. The ‘popular’ multilayer 

perceptron (MLP) suffers from difficulties such as the determination of the optimal architecture 

and the values of the optimal weights. These parameters are important in the performance of 

the neural networks. Furthermore, the MLP is affected by some well-known learning problems, 

such as over-fitting [17-19]. This means that the neural network can perfectly perform the 

mapping between the inputs and outputs in the training data, however it will not be able to 

sufficiently generalize this performance to an unseen data set. There is a number of studies, 

which investigated possible methods to improve the generalization ability of feed-forward 

neural networks and automatically select the best number of hidden units and their weights. 

Widyanto et al. [19] proposed a new technique using a self-organized hidden layer inspired by 

the immune algorithm (SONIA). SONIA was used to predict temperature-based food quality, 

demonstrating an improvement of 18% when compared to MLPs [19]. 

However, SONIA is applicable to feed-forward neural networks, which means that it can solve 

static mapping problems, however it is not able to recall past behaviours and as a result it 

cannot produce a high performance in dynamical temporal data [20]. Subsequently, SONIA 

was extended to handling recurrent links in the output layer thus enabling its application in 

regression problems through the efficient processing of the temporal patterns present in the 

time series signals. The main advantage of recurrent connections in a neural network is their 

ability to deal with both static and dynamical situations [21, 22]. These links may enable 

aspects from cognitive functions, such as memory association, in the classification and 

prediction of dynamical systems. The work of Makarov et al.[23] showed that recurrent 

networks could be used to support the learning process in both dynamic and static problems. 

Furthermore, it has been proved that using recurrent feedback links can improve the network’s 

ability to analyse time series that are generated by complex systems.  

A new dynamic self-organized neural network inspired by the Immune Algorithm is 

proposed in this work. The network consists of three layers. The first layer accommodates for 

the input data and previous output values. The hidden layer is created  using the self-organized 

learning rules based on the Immune Algorithm, while the output layer holds the output values 

of the forecasted signals. The rationale behind the use of recurrent links from the output to the 

input layers is to improve the prediction and generalization ability of the network by providing 

a memory feature of past behaviours. This is achieved in the expense of computational 

complexity and having to resolve the stability issues associated with the use of recurrent links. 

The main contribution in this paper is the design and application of the dynamic self-organized 

multilayer neural network inspired by the immune algorithm (DSMIA) for the prediction of 
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weather signals. This is employed to address the complexity, high-volume, and non-linear 

nature of big weather data signals, using neural computing techniques with a view to gaining 

optimal weather forecasting outcomes.  

 

The reminder of this paper is organized as follows. Section 2 discusses Big Weather Data 

and associated challenges, while section 3 provides an overview of the self-organized neural 

network inspired by the immune algorithm (SONIA). Section 4 introduces the proposed 

dynamic self-organized multilayer neural network inspired by the immune algorithm (DSMIA). 

The methodology for the experiments in this contribution is presented in section 5, while 

section 6 presents the simulation results. Finally, section 7 is dedicated to the conclusions and 

future directions of this research.   

2. Big ‘Weather’ Data and Challenges 

Over the last two decades, Big Data has become an important and primary knowledge 

discovery approach for large-scale datasets in many domains [24-26]. Big data typically 

comprises datasets with sizes beyond the capability of frequently utilised software platforms 

to process, capture, manage and curate within tolerable scales [27]. This field can be divided 

into three application areas, namely, structured, semi-structured and unstructured data; 

therefore, one of the main concerns is how to understand and process unstructured data. This 

requires a set of technologies and methods that can reveal insight about datasets that are 

complex, diverse, and of massive scale [27]. With the large amount of data available today, Big 

data analytics techniques promise to offer transformative potential and opportunities for 

advances in several areas, including weather forecasting. As the size of data keeps on getting 

bigger, machine learning techniques including ANNscan play a crucial role in provide optimal 

solutions and suggestions in big data predictive analytics [28, 29].  

Zikopoulos et al. (2012), describe ‘Big Data’ as consisting of a set of three main ‘V-words’, 

i.e., volume, velocity and variety, and two additional Vs, i.e., veracity and value [30]. In what 

follows, we will briefly discuss the 5 Vs  of big data [27, 31]: 

 Volume: This category refers to the total size of data, which used to be measured in 

Gigabytes and currently measured in Yottabytes (YB). The data size determines the 

potential and value insight to be considered big data or otherwise. The size of data that 

comes from various sources is presenting a huge challenge, which renders old-style 

database technology inappropriate in storing, collecting and analysing of big 

data.  What is instead required is advanced distributed management systems, where parts 

https://en.wikipedia.org/wiki/Data_acquisition
https://en.wikipedia.org/wiki/Data_curation
http://onlinelibrary.wiley.com/doi/10.1002/isaf.1336/full#isaf1336-bib-0035
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of the data are stored in several warehouses and can be accessed through special software 

such as Hadoop. Ismail et al [32] proposed a new prediction framework for Big Data 

analytics based on the Hadoop MapReduce algorithm. Hadoop is considered an effective 

platform that offers efficient functionalities for processing and storing of large amounts 

of data. In relation to volume, every day, the meteorological weather department receives 

a hug amount of weather data sets from various sources. The analysis of such big 

weather datasets is considered a major research challenge.  

 Velocity: The second characteristic of big data refers to the speed in which data is 

produced, collected, processed and analysed. Big data technology currently permits the 

analysis of large volume of data, as it is being produced in real-time, without the need to 

transfer it into database warehouses. In the example of weather forecasting, Radar 

observations play an increasingly significant role in weather prediction, where real-time 

forecasts of actual storms, initialized by current data, are within reach [33]. 

 Variety: This aspect refers to the various types of data that are being produced. 

Typically, the vast majority of weather data is unstructured and difficult to be tabulated 

or categorised.  In the weather domain under consideration, there are various sources that 

produce big weather data, such as sensors, satellite images, and information about solar 

lightintensity.  

 Veracity:  This kind of Big Data characteristic is considered one of the biggest 

challenges. It refers to the trustworthiness or messiness of the data which can be related 

to various forms of data abnormalities and imperfections. Organizing weather data in a 

meaningful manner is not an easy task, particularly when the data itself changes quickly. 

 Value: It is paramount that significant value or payoff can be discovered in big data. 

Accurate weather predictions have been established as offering high value and having 

various applications, e.g., in agriculture, energy efficiency, natural disaster management, 

etc.  

In summary, Big Data deals with the analysis and management of huge amounts of data with 

highly varying dynamics, characterized by complex structure [2]. Moreover, this field has the 

potential for major advances so as to reduce data redundancy, and speed up access, distribution 

of stored data and improve their availability [34]. The field of Big Data is one of the most 

discussed topics in the state of the art, and this trend is predicted to continue in the future [35, 

36]. In  [37], it is stated that Big Data is “a collection of data with complexity, diversity, 

heterogeneity, and high potential value that are difficult to process and analyse in reasonable 

time”.  
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The main challenges facing Big Data in the weather forecasting domain are due to the nature 

of its very large volume, speed and inherently complex underlying behaviour and characteristics 

[38]. Weather data changes and develops in real time, and it is essential that, the methods 

utilised for weather forecasting can accurately produce dynamic predictions.  

 

2.1 Related works 

 The development of technology for weather forecasting has played an important role in the 

environmental domain [39]. The aim of these developments is to improve the utilisation of 

technology in the environmental community, particularly in the area of weather forecasting. 

Expert systems and various Artificial Intelligence (AI) techniques have been used and developed 

to improve decision support tools, e.g., in flood management [40]. Machine Learning models 

(ML) are considered to be powerful techniques in the field of scientific research that enable 

computers to learn from data [16, 41]. ANNs have been particularly popular in this application 

area.  

ANNs consists of elementary processing units, known as neurons, which are grouped in 

layers and are interconnected, via weights, so as to form network structures [42, 43]. The 

weights of a neural network are trained using a training algorithm, which could be based on 

supervised or unsupervised learning. In supervised learning, a target output is used to modify the 

weights of the network, through an error minimization process, for a specific set of input 

patterns. Unsupervised learning on the other hand does not require a target output, but rather 

exploits correlations in the input data.  

Extensive researches have indicated that dynamic neural network architectures generate 

significant improvements when used in the pre-processing of weather forecasting time-series 

data signals and have assisted in obtaining a high degree of accuracy in the prediction of weather 

data sets [44-47]. Grimes et al [48] proposed a model, where Cold Cloud Duration (CCD) 

imagery derived from Meteosat thermal infrared imagery is used in integration with numerical 

weather analysis data as  input to an artificial neural network. Principal component analysis 

(PCA) is used to reduce the data dimensionality in weather analysis in addition to a pruning 

method which recognises redundant input data. The original dataset contains rain gauge data 

from central Africa collected over a period of 4 years. Calibration and validation were conducted 

by employing rainfall estimation data from the daily rain gauge data. The neural network 

approach demonstrated higher prediction accuracy, when compared to the traditional CCD 

model. 
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 Mandale and Jadhawar developed an efficient technique based on Data Mining for weather 

forecasting [49]. The study was conducted using Decision Tree Algorithms and ANN. In order 

to classify the data sets, rainfall, maximum temperature, minimum temperature, wind speed, and 

evaporation parameters were used as the main weather inpout data in this study to predict future 

weather conditions. The performance of this approach was evaluated using metrics such as the 

correlation coefficient, the mean squared error, and the normalised mean squared error.  

The massive accessibility of weather forecasting data in the last decades, such as radar, 

satellite maps, and observational records requires increased attention in order to find an effective 

platform to analyse and extract hidden knowledge embedded in big data. Dutta et al [50] applied 

data mining method for forecasting rainfall in the region of Assam on a monthly basis. The 

original data sets were collected from the Regional Meteorological Centre in a six-year period 

between 2007 to 2012. The MLP network and multi-linear regression were applied to this 

forecasting problem. In order to verify the performance and accuracy of the proposed approach, 

cross-validation was used. The performance was measured using the adjusted R square, and the 

mean squared error metrics. 

in summary, the main purpose of collecting, processing, and storing weather data is to 

provide accurate prediction for weather trends. Various types of sensors are used by 

meteorological departments for data collection, such as humidity, temperature, and water level 

sensors. The overview of the state of the art demonstrates that current contributions are still 

limited and further investigation is still required [48, 49]. The aim of the current study is to 

demonstrate the superior performance of the proposed dynamic neural networks architecture in 

weather prediction, using a variery of performance metrics, such as the Normalised Mean 

Square Error (NMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and Signal 

Noise Ratio (SNR). The case study addressed in the current contribution involves the prediction 

of three important features of weather forecasting. These are valley sunshine, valley max 

temperature, and valley rainfall. These features can provide significant support to meteorological 

departments in the context of weather status prediction. For comparison purposes, we use 

various neural network architectures to investigate their accuracy and performance on the 

problem at hand.  

  

3. Self-organised Network Inspired by the Immune Algorithm (SONIA)  

The immune system is a biologically inspired pattern recognition and classification system 

[51]. By observing the mechanisms of immune systems occurring in biological beings, 
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researchers identified many interesting processes and functions, which can provide useful 

metaphors for computation. The Artificial Immune System (AIS) algorithm can learn to 

distinguish the ‘self’ from ‘non self’ and solve relevant classification problems [52]. 

Additionally, naturally occuring immune systems perform important maintenance and repair 

functions [53]. Artificial immune systems are one of the most rapidly emerging biologically 

motivated computing paradigms. There is significant growth in the applications of immune 

system models across many fields [54]. Examples include computer security, function 

optimization, control engineering, data mining, pattern recognition, image interpretation, 

anomaly detection, sensor fusion, and process monitoring [55].  

The Artificial Immune Recognition System (AIRS) is an immune system inspired supervised 

learning algorithm [56]. It uses immune mechanisms of resource competition, clone selection, 

maturation, mutation and memory cells generation. The training and test data items are viewed 

as ‘antigens’ in the system. These antigens induce the B-cells in the system to produce artificial 

recognition balls (ARBs), which compete for the given resource number. ARBs with higher 

resources get more chances of producing mutated offspring to improve system performance. 

Memory cells generated after all training antigens are introduced are subsequently used to 

classify test data. 

The SONIA network [19] is a single hidden layer neural network, which consists of a self-

organising hidden layer, optimized through the use of the immune algorithm and an output layer 

trained using the traditional back-propagation algorithm. The immune algorithm is simulated as 

the natural immune system, which is based on the relationship between its components, which 

involve antigens and cells; this is called a recognition ball (RB). The recognition ball in the 

immune system consists of a single epitope and many paratopes, where the epitope is attached 

to the B cell, and paratopes are attached to antigens [57]. The B cell here represents several 

antigens. In the context of biology, a B cell can be created and mutated to produce a diverse set 

of antibodies to remove and fight viruses attacking the body. Thus, the immune system can 

allow its components to change and learn patterns by changing the strength of connections 

between individual components. In the case of the SONIA network, the input units are called 

antigens and the hidden units are considered as the recognition ball (RB) of the immune 

system. The input vector represents an antigen, while the hidden layer of the network is 

considered as a recognition ball as shown in Fig. 1. The recognition ball is used to create 

hidden units. The relation between the antigens and the RB is based on the definition of local 

pattern relationships between input vectors and hidden nodes. These relationships help SONIA 

to easily recognise and define the input data’s local characteristics, which increases the 
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network’s ability to recognise patterns. In SONIA, the mutated hidden nodes are designed to 

deal with unknown data, i.e., test data, so as to enhance the generalisation ability of the 

network.  

 

 

Fig. 1. Input vector and hidden units of the Backpropagation-NN are considered as antigen and the recognition ball 

of the immune algorithm, respectively  [18]. 

4. Dynamic Self-Organised Multilayer network Inspired by the Immune Algorithm 

(DSMIA) 

In this research, we build on past work and propose a new dynamic neural network 

architecture that incorporates recurrent links within its structure to create a self-organising layer, 

inspired by Artificial Immune System theory [53]. In short, recurrent links are introduced in the 

SONIA network architecture, thus allowingthe capture of complex patterns found in the natural 

time series.   

The proposed network has three layers, the input layer, the hidden layer and the output layer, 

as illustrated in Fig. 2. It includes the dynamic self-organisation of hidden-layer units, and 

feedback links to the input layer. As such, the previous behaviour of the network is used as an 

input affecting the current behaviour. Similar to the Jordan recurrent network [9], the output of 

the network is fed back to the input through the context units. This represents a major 
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improvement compared to feed-forward networks, which can only implement a static mapping 

of the input vectors. In order to model dynamic functions, it is essential to exploit the structure 

of a system capable of storing internal states and implementing complex dynamics. Neural 

networks with recurrent connections are dynamic systems with temporal/state representations, 

which, because of their dynamic structure, have been successfully used in solving a variety of 

problems.  

This section provides an overview of the Dynamic Self-Organising Multilayer network, inspired 

by the Immune Algorithm (DSIA), as shown in Fig. 2. 

 

Fig. 2. The structure of DSMIA network. 

        In the self-organising Kohonen networks (SOM), each unit j of a map (1<=j<=nh), where 

nh is the number of hidden units, is compared with the weight vector wj and an input x(t) and 

t=1,…,ni, and ni is the number of input units and the output. The Euclidean distance function is 

used for the comparison between wj of the hidden map and input 𝑥(𝑡) : 

Ej = √∑(x(t)i − wji)

ni

i

 (1) 

     For an input vector, the best matching unit is the unit that minimizes the error function:  

E = ||x(t) − wj||  (2) 

        The learning rule is based on updating the weights of neurons that are related to a 

neighbourhood of the best matching unit: 

wj = hk(x(t) − wj) (3) 
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 where  is the learning rate, k is the index of the best matching unit and h is the 

neighbourhood function, which decreases the distance between units j and k on the map.  

Suppose that N is the number of external inputs x(n) to the network, and yk(n-1) is the 

output of the network from the previous time step (n-1) and let O represents the number of 

outputs. In the proposed DSMIA, the overall input to the network will be the union of the 

components of x(n) and yk(n-1) and thus, the number of inputs to the network is N+O defined 

as U where 

    𝑈(𝑛) =   {
  𝑥𝑖(𝑛)                𝑖 = 1, … , 𝑁    

𝑦𝑖(𝑛 − 1)        𝑖 = 1, … , 𝑂 
 (4) 

      The output of the hidden layer is computed as  

𝑣ℎ𝑗(𝑛) =  𝛼 √∑ (𝑤ℎ𝑗𝑖 −  𝑥𝑖(𝑛))2
𝑁

𝑖=1
   (5) 

𝑧ℎ𝑗(𝑛) =  𝛽 √∑ (𝑤𝑧ℎ𝑗𝑘 −  𝑦𝑘(𝑛 − 1))2
𝑂

𝑘=1
   (6) 

𝐷ℎ𝑗(𝑛) =  𝑣ℎ𝑗(𝑛) + 𝑧ℎ𝑗(𝑛)   (7) 

𝑥ℎ𝑗(𝑛) =  𝑓ℎ𝑡 (𝐷ℎ𝑗(𝑛))    (8) 

�̂�𝑘 =  𝑓𝑜𝑡 [∑ 𝑤𝑜𝑗𝑘  𝑥𝐻𝑗 +  𝑏𝑜𝑘

𝑁 𝐻

𝑗=1

]   (9) 

where fht, fot are nonlinear activation functions for the hidden and output layers, respectively, 

N is the number of external inputs, bok is the bias term, O  is the number of output units. whj are 

the hidden layer weights corresponding to the external inputs, while wzhjk are the hidden layer 

weights associated with the previous outputs, wojk are the output later weights, bok is the bias of 

output unit k, n is the current time step, while α, β are user-selected parameters with  α>0 and 

β>0.  

The first layer of the DSMIA is a self-organised hidden layer trained similarly to the 

recursive self-organized map (RecSOM) [58]. In this case, the training rule for updating the 

weights is inspired by the use of the immune algorithm in the SONIA network [17]. However, 
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in DSMIA, the weights of the context nodes wzhjk are updated in the same way as the weights of 

the external inputs whj. This is done by first finding Dhj, which is the distance between the input 

units and the centroid of the j
th

 hidden unit:  

𝐷ℎ𝑗(𝑛) =  α√∑( 𝑋𝑖(𝑛)− 𝑊ℎ𝑗𝑖(𝑛))2

𝑁𝑖

𝑖=1

+  𝛽 √∑( 𝑦𝑘(𝑛−1)− 𝑊𝑧𝑗𝑘(𝑛))2

𝑁𝑜

𝑘=1

 (10) 

      From )(nDhj , the position of the closest match is determined as: 

𝐷𝑐(𝑛) = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝐷ℎ𝑗(𝑛)} (11) 

      If the shortest distance cD  is less than the stimulation level value, s1 ∈ (0, 1), then the 

weights of the external input vectors and the context vectors are updated as follows: 

𝑤ℎ𝑗𝑖(𝑛 + 1) =  𝑤ℎ𝑗𝑖(𝑛) + 𝛾𝐷𝑐(𝑛) (12) 

𝑤𝑧ℎ𝑗𝑖(𝑛 + 1) =  𝑤𝑧ℎ𝑗𝑘(𝑛) + 𝛾𝐷𝑐(𝑛)   (13) 

where wzhji are the weights of the previous outputs and whji are the weights of the external 

inputs, and ɣ is the learning rate, which is updated during the epochs. 

    The purpose of hidden unit creation is to form clusters from the input data and to 

determine the centroid of each cluster. The centroids are used to extract local characteristics of 

the training data and to enable the DSMIA network to memorise the characteristics of training 

data. The use of the Euclidean distance to measure the distance of the input data and these 

centroids enables the network to exploit local information in the input data, while the recurrent 

links enable recall ofpast behaviours.  

4.1   Recurrent neural networks (RNN) 

In the last couple of years, various weather applications based on RNN have been 

developed [59-61]. One of the most prominent applications of RNN is pattern recognition, 

such as in weather forecasting systems [62]. RNN form complex nonlinear decision boundaries 

and utilise memories of the internal state of the network, which is crucial in dynamic 

prediction and classification tasks [63-65]. A number of studies confirmed that RNN have the 

ability to discover both linear and nonlinear relations in weather data [66]. However, previous 

studies have undertaken the classification of sequence-oriented data, for which the 
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dependencies between elements of data are exploited in learning. In this work, we intend to 

explore the use of RNN for pattern recognition tasks, where data elements are assumed to be 

independently drawn.  

In addition, it has been shown that RNN have the ability to provide an insight into the 

features used to represent biological signals [67]. Therefore, the employment of a dynamic tool 

to deal with time series data predictions is highly recommended [68]. This type of neural 

network has a memory that is capable of storing information from past behaviours [69, 70]. 

One of the most important applications of RNN is in modelling and identifying temporal 

patterns. Chung et al. [71] provide a relevant commentary of this aspect, highlighting that 

"recurrent (artificial) neural network models are able to exhibit rich temporal dynamics, thus 

time becomes an essential factor in their operation". Different studies indicated that RNN can 

be applied to non-linear decision boundaries [63]. In addition, the main advantages of recurrent 

neural networks is their ability to deal with static and dynamical behaviours [23, 72].  One of 

their powerful capabilities is finite state machine approximation, which makes recurrent neural 

networks suitable for learning both temporal and spatial patterns [73]. This kind of network is 

very useful in real-time applications, such as weather signal processing and analysis.  

In principle, RNN can utilise the feedback network connections to store representations of 

new input events in the form of activations as in the Long Short-Term Memory neural network 

(LSTM) [74]. LSTM are a special kind of RNN introduced by Hochreiter and Schmidhuber in 

1997, which can be used for both classification and regression, with any compatible objective 

(e.g., MSE) and capable of learning long-term dependencies [74]. LSTM can solve many tasks 

compared to previous RNN learning models [75]. It is a particularly promising type of 

recurrent neural networks, which is capable of forming a ‘bridge’ with long delays between 

inputs and outputs, and thus enabling access to long range temporal context [76]. A number of 

researchers applied LSTM in solving a wide variety of real-world problems, such as speech 

recognition [77, 78], protein secondary structure prediction [79], handwriting recognition [80], 

and reinforcement learning [81]. One of the key features of the LSTM is its ability to identify 

between recent and early examples through the use of dedicated weights, which allow for 

forgetting memories which are irrelevant in predict the output [82]. Thus, it is a good candidate 

approach in tackling long sequence inputs, compared to other RNN architectures, which able 

to memorise short sequences.  

The LSTM network is an RNN with a specialised kind of hidden layer(s) that uses memory 

gates to overcome the vanishing/exploding gradient problem which renders backpropagation 

over deep networks ineffective. It can be considered a form of deep learning, since the network 
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is equivalent to a feed-forward network with many layers that share weights, hence the need to 

overcome the vanishing/exploding gradient issue.  This approach has the ability to remember 

information, which remains unchanged for long periods.  Moreover, another benefit of  LSTM 

is the ability to determine the optimal time lag in time series problems [83]. The model 

involves one input, one output, and one forgetting gates. In contrast to the traditional neural 

network, the basic unit of the hidden layer is the memory block [84]. 

Zhang et al., [85] presented a new approach based on the LSTM neural network for 

prediction of sea surface temperature (SST), which provides short-term prediction on a one 

day basis, three days prediction, and long-term prediction, as inweekly mean and monthly 

mean basis. In this research, two types of LSTM networks are used: a FC LSTM and a LSTM 

layer. The FC LSTM is used to map the output of the LSTM layer. While the LSTM layer is 

used to tackle the time series connection. The SST anomaly data were used in testing the 

network’s prediction accuracy.  

Zaytar and El Amrani [59] proposed a novel deep neural network architecture (DLNN) for 

weather prediction and applied it in time series data sets. The model concentrates on multi 

stacked LSTMs in order to map sequences of weather parameters of the same length. The aim 

is to generate two kinds of models for each city in Morocco in regards to forecasting three 

important values, i.e., wind speed, temperature, and humidity. The time series data was 

collected in a period of 15 years and was used to train the classifier. The outcomes illustrated 

that LSTM based DLNN are more effective, compared to traditional methods.  

As previously indicated, there are promising outcomes to be achieved using RNN, 

including LSTM. This approach was proved to be powerful and particularly effective in 

sequence labelling, thus presenting a promising alternative for tackling the weather forecasting 

problem considered in this research. However, one of the main limitations of using LSTM is 

that it only deals with one input, which limits its potential to minimise the expected error. The 

activation function in LSTM is considered more complex than in other ANN architectures. 

Several studies seem to also suggest that LSTM higher complexity thanother models [74, 86, 

87], and this in turn could hinder the use of LSTM in the case of real-time problems with 

instant feedback, as in the case of the current weather time series prediction scenario.  In this 

research, we apply instead the Dynamic Self Organized Neural Network Inspired by the 

Immune Algorithm, and the Elman and Jordan neural networks which offer promising 

opportunities to address the weather prediction time series problem.   

In particular, we propose a Dynamic Self Organized Neural Network Inspired by the 

Immune Algorithm, where learning focuses on the local properties of the signal and the aim of 
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the network is to adapt to the local properties of the present data, while remembering past 

behaviours of the observed signal using the self-organised hidden layer inspired by the 

immune algorithm and recurrent links. Thus, the proposed network has the potential to offer a 

detailed mapping of the underlying structure within the data and is able to respond more 

readily to any significant changes, which common occur in non-stationary time series, such as 

the weather data. 

5. Methodology  

Three noisy weather time series are utilized in our experiments obtained from the Valley 

weather station in Anglesey (North Wales, UK). For experimental purposes, 400 points are 

selected for the prediction. They correspond to the period from November 1980 until February 

2014 (per month) and represent the maximum temperature, rainfall in mm and sunshine in 

hours. As commonly encountered in practice, the three weather times series exhibit two distinct 

characteristics, i.e., nonlinearity and nonstationary. Fig.  3 shows that the correlograms of the 

three weather signals indicate that the signals are periodic, and the autocorrelation coefficient 

drops to zero for large values of the lag. Thus, we conclude that the time-series are 

nonstationary in nature.  

The prediction performance of the neural networks is evaluated using four statistical 

metrics, which are used to provide accurate tracking of the signals as shown in Table 1. These 

include the Normalised Mean Square of the Error (NMSE), the Mean Square of the Error 

(MSE), the Mean Absolute value of the Error (MAE) and the Signal to Noise Ratio (SNR). 

 

(a) 

 

 
 

 

(b) 
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Fig. 3. The correlograms of the weather time series: (a) Valley temperature, (b) Valley rainfall and (c) Valley 

sunshine. 

 

a) 

 
 

b) 
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Fig. 4. The histogram of a) the original sunshine signal of the Anglesey valley, b) the transformed sunshine signal 

of the Anglesey valley. 

 

Table 1 

Performance metrics and formulae 
 

Metrics Calculations 

NMSE 
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𝑚 = max (𝑦) 
 

n is the total number of data patterns 

y and ŷ represent the actual and predicted output value 

 

        As previously discussed, the raw signals to be used in the experiments are non-stationary. 

Therefore, it is crucial to apply some pre-processing on the raw data before passing them to the 

neural network. The original non-stationary signals are transformed into stationary signals as 

follows:  

𝑅(𝑛) =  
𝑆(𝑛)

𝑆(𝑛 − 1)
− 1 (14) 

         where S(n) is the input signal and R(n) is the one-step increased value at time n. This 

transformation has been shown to achieve better results [23].  R(n) has a relatively constant 

range of values even if the input data represent values over periods of many days, while the 

original data S(n) vary greatly, thus complicating the use of a valid model for long periods of 

time [24].   Another advantage of using this transformation is that the distribution of the 

transformed data becomes more symmetrical and resembles more closely the normal 

distribution. 

        Fig. 4 shows the histogram of the original sunshine signal of the Anglesey valley and its 

transformed signal. Although the transformed signal is not perfectly symmetric and does not 

accurately follow the normal distribution, the data is condensed more towards the zero bands. 

Fig. 5 shows that the original signals were transformed to stationary, indicated by less 

variation, hence improving the chances for better prediction.  

 

(a) 

 
 

(b) 
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(c) 

 
 

Fig. 5.  The signals transformed to stationary: (a) Valley rain, (b) Valley sunshine, (c) Valley max temperature. 

5.1  Experimental setup and environment   

The experimental setup in this section covers the design of the test environment used in our 

experiments, the configuration of each model, and the models tested. Performance evaluation 

techniques were used to assess the results of the ANN in the weather datasets. The total 

proportion of the weather data set is divided into training and testing phases for evaluating the 

performance and generalisation ability. This method ensures that the generalisation error of the 

classifiers can be evaluated and also evaluates the capability of the neural networks to 

performance on unseen data.  

         In order to accommodate for dynamic links in the SONIA network, partially recurrent 

networks were used in this research. This type of recurrent neural network has feed-forward 

links as well as a selected set of feedback links. The feedback connections provides a memory 

to the network that will help the network to remember information from the past without 
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excessively complicating network learning. Two different types of partially recurrent neural 

network topologies were utilised in order to develop new network architectures. The first type is 

the dynamic DSMIA, where the feedback links receive past data from the output layer. The 

second type is the dynamic DSIA, where the recurrent links receive past information from the 

hidden layer. In the next sections, the SONIA network and the two proposed networks are 

presented. The main motivation of these networks is to provide memory capabilities for the 

feed-forward self-organised network inspired by the immune algorithm.   

      In the case of DSIA, each unit j on the map has two weights, 𝑤ℎ𝑗𝑖 and 𝑊𝑧𝑗 , where 𝑤ℎ𝑗𝑖 are 

the weights linking the map with the input and 𝑊𝑧𝑗  are the weights linking the context unit, 

which is the output of the hidden layer at the previous time step, with the unit on the map:  

𝐷ℎ𝑗  (𝑡) =  𝜎(𝛼 ‖𝑥 (𝑡) −  𝑤ℎ𝑗𝑖‖ +  𝛽 ‖𝑋𝐻𝑗 (𝑡 − 1) −  𝑊𝑧𝑗𝑗 ‖ )  (15) 

𝑋𝐻𝑗 (𝑡) =  𝑓ℎ (𝐷ℎ𝑗 (𝑡))    (16) 

where 𝛼 >0 and  𝛽 >0, || || denotes the Euclidean distance of vectors and 𝑓 is a bipolar sigmoid 

function. The best matching unit is defined as the unit that minimises  𝐷ℎ𝑗  (𝑡)):   

𝑐(𝑡) = 𝑎𝑟𝑟𝑔𝑚𝑖𝑛 {𝐷ℎ𝑗  (𝑡)} (17) 

𝑐(𝑡) = 𝑎𝑟𝑟𝑔𝑚𝑖𝑛 {𝐷ℎ𝑗  (𝑡)}     (18) 

       Then the learning rule is applied to update the weights of input units and context units:  

𝑊ℎ𝑗(𝑡 + 1) =  𝑊ℎ𝑗(𝑡) +  𝛾𝐷𝑐 (𝑡) (19) 

𝑊ℎ𝑗(𝑡 + 1) =  𝑊ℎ𝑗(𝑡) +  𝛾𝐷𝑐 (𝑡) (20) 

     Where 𝑊𝑧𝑗 is the weight of the previous hidden unit and 𝑊ℎ𝑗𝑖   is the weight for the external 

inputs, and 𝛾 is the learning rate, which is updated during the epochs.   

The results of the proposed DSMIA were benchmarked against state of the art neural network 

architectures. Figure 6 shows the proposed schematic for forecasting weather time series. 
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Fig. 6. Proposed framework for the prediction of weather time series  

        The main aspect of time series is that observation values are not created independently or 

ordered randomly; data in time series represents sequences of measurements arranged 

according to time intervals. Therefore, time variables are very important in time series analysis 

because they show when the measurements were recorded. Hence, [15] asserted that the time 

values must be stored along with observations that were recorded, and they should be used with 

the time series as a second piece of information. Therefore, the model that will be used to fit 

and analyse the time series data must have the ability to process the temporal pattern of the 

time series. Two main features characterise the time series data concepts. It is important to 

identify these two concepts before time series analysis, as this will assist in finding the best 

mathematical model to deal with this type of data. The simplest way to observe stationary and 

nonstationary data is the plotting of the observations. The concept of stationarity in time series 

means that the probability distribution between data does not change when shifted in time. 

Hence, the statistical properties (e.g., mean, variance and autocorrelation) of the data are stable 

with respect to time [25], such as climate oscillations [26]. In mathematics, stationarity can be 

defined as follows, when the distribution of (𝑥(𝑡1) , . . ., 𝑥(𝑡𝑛)) is the same as the distribution 

of (𝑥(𝑡1+𝑘) , . . ., 𝑥(𝑡𝑛+𝑘) 𝑥(𝑡𝑘+1)), where 𝑡1, . . ., 𝑡𝑛 refers to time step, and k is an integer. 

The behaviour of any intervals in this series is like one another, even if the segments have been 

taken from the beginning of the time series or the end. In order to apply multi-steps ahead 

prediction, two approaches could be pursued, namely direct and recursive. One-step prediction 

is carried out by utilising one or a number of measured past values. Direct multi-steps ahead 

prediction may utilise past values that were measured, as shown in Fig. 7. Recursive multi-step 

prediction can be used, y when a number of values are needed to be calculated. In other words, 

recursive prediction uses predicted values, rather than measured past values.     
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Fig. 7. One-step and multi-steps prediction of weather data 

To evaluate the performance of the proposed models, we conducted a series of empirical 

simulations, using the previously described weather time series data setsWe provide full details 

of our analytical parameters in the methodology section, where aspects of the procedural setup 

are presented.  

6. Simulation results  

The simulation results for the prediction of the weather time series using the proposed DSIA 

network are presented in this section. The performance of the DSIA neural network is compared 

to the following non-hybrid Neural computing algorithms for predictors: 

 Traditional MLP network 

 Recurrent Elman neural network [51] 

 Recurrent Jordan neural network [52] 

 Feedforward SONIA neural network 

Figs. 8, 9 and 10 show the original and predicted signals for the maximum valley 

temperature, valley sunshine, and valley rainfall using the DSMIA network for stationary data 

using 5 steps ahead prediction, respectively. The main parameters that been used in our 

experiment to estimate the predictions are NMSE, MSE, MAE, and SNR.  

      Tables 2 to 6 illustrate the average results for 30 simulations for the stationary prediction of 

the MLP, Elman, Jordan, SONIA, and the proposed DSMIA networks, respectively. 
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   Fig. 8. Five steps ahead prediction for stationary maximum valley temperature signal using the DSMIA network. 

 
Fig. 9. Five steps ahead prediction for stationary valley sunshine signal using the DSMIA network. 

 

 
 

Fig. 10. Five steps ahead prediction for stationary valley rainfall signal using the DSMIA network. 

 

 

 

 

 

Table 2 
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MLP networks simulation results for five steps ahead prediction 
 

Signal NMSE MSE MAE SNR 
Valley 

sunshine 
0.91987 0.007105 0.06127 17.65 

Valley max 

temp 
0.70530 0.003736 0.05018 19.63 

Valley 

rainfall 
1.027654 0.0009102 0.02052 22.75 

Average 0.8843 0.0039 0.0440 20.0100 
 

Table 3 

Elman networks simulation results for five steps ahead prediction 

 
Signal NMSE MSE MAE SNR 

Valley sunshine 1.1306 0.0087 0.0684 16.7721 
Valley max temp 1.3881 0.0073 0.0646 17.2620 

Valley rainfall 1.9227 0.0017 0.0284 20.5172 
Average 1.4805 0.0059 0.0538 18.1838 

 

Table 4 

Jordan networks simulation results for five steps ahead prediction  

 
Signal NMSE MSE MAE SNR 

Valley sunshine 0.8359 0.0064 0.0588 18.06 
Valley max temp 0.5707 0.0030 0.0434 20.55 

Valley rainfall 1.3011 0.0011 0.0244 21.97 
Average 0.9026 0.0035 0.0422 20.1933 

 

Table 5 

SONIA networks simulation results for five steps ahead prediction 
 

Signal NMSE MSE MAE SNR 
Valley sunshine 0.454872 0.011113 0.085950 13.16 

Valley max 

temp 
0.3512 0.005509 0.060488 20.18 

Valley rainfall 1.0014 0.000887 0.020383 22.87 
Average 0.6469 0.0058 0.0556 20.2167 

 

Table 6 

DSMIA network simulation results for five steps ahead prediction  
 

Signal NMSE MSE MAE SNR 

valley sunshine 0.200705 0.00415 0.048618 21.28 
Valley max 

temp 
0.062739 0.001527 0.029230 25.89 

Valley rainfall 0.736493 0.007573 0.065009 17.17 
Average 0.3333 0.0044 0.0476 21.4467 

 

      As it can be seen from Tables 2 to 6, the proposed DSMIA offered better results than the 

SONIA network for most of the weather signals using the NMSE and the SNR measures. This 

clearly indicates that the recurrent links provided the network with memory and hence better 

prediction with an average improvement of 1.23 dB in terms of the SNR. Furthermore, the 

proposed network shows slightly improved results than all the benchmarked networks.  

      Further experiments were conducted using the nonstationary weather data.  Tables 7 to 11 

show the average results for 30 simulations for the nonstationary prediction using the MLP, 
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Elman, Jordan, SONIA, and the proposed DSMIA networks, respectively. While Figs. 11, 12 

and 13 show the original and predicted signals for the maximum valley temperature, valley 

sunshine, and valley rainfall using the DSMIA network for nonstationary data prediction.  

  
Fig. 11.  Five steps ahead prediction for the non-stationary maximum valley temperature signal using the DSMIA 

network. 

 

 
 

Fig. 12. Five steps ahead prediction for the non-stationary valley sunshine signal using the DSMIA network. 
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Fig. 13. Five steps ahead prediction for the non-stationary valley rainfall signal using the DSMIA network 

 

Table 7 

Simulation results for the MLP network in five steps ahead prediction for the non-stationary signals 

 
Signal NMSE MSE MAE SNR 

valley sunshine 0.8085 0.0153 0.0889 16.2208 
Valley max temp 0.3877 0.0061 0.0626 19.7504 

Valley rainfall 0.9289 0.0107 0.0808 17.3117 
 

Table 8 

Simulation results for the Elman network in five steps ahead prediction for non-stationary signals 

 
Signal NMSE MSE MAE SNR 

valley sunshine 0.6770 0.0128 0.0814 18.2988 
Valley max temp 1.0950 0.0172 0.0945 17.5980 

Valley rainfall 1.1137 0.0129 0.0892 16.5567 

 

Table 9 

Simulation results for the Jordan network in five steps ahead prediction for non-stationary signals 

 
Signal NMSE MSE MAE SNR 

valley sunshine 0.3410 0.0620 0.0064 19.9732 
Valley max temp 0.1663 0.0026 0.0396 23.4705 

Valley rainfall 1.8175 0.0210 0.1086 15.8251 

 

Table 10 

Simulation results for the SONIA network in five steps ahead prediction for non-stationary signals 

 
Signal NMSE MSE MAE SNR 

valley sunshine 0.578262 0.010928 0.085222 17.68 
Valley max temp 0.350782 0.005502 0.060503 20.18 

Valley rainfall 0.985458 0.011383 0.083236 17.06 

 
Table 11 

 The simulation result for DSMIA network for five steps ahead predication for non-stationary signal 
 

Signal NMSE MSE MAE SNR 
valley sunshine 0.5478 0.0824 0.0104 17.9119 

Valley max temp 0.1481 0.0392 0.0023 23.9300 
Valley rainfall 0.9690 0.0112 0.0838 17.1298 
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        The Normalised Mean Squared Error (NMSE) shows the overall deviations between the 

predicted and measured values. NMSE is a useful measure because if a system has a very low 

NMSE, then it indicates that it is correctly identifying patterns. As it can be seen in Tables 7 to 

11, the proposed DSMIA produced better results in terms of the NMSE, when compared to the 

MLP, Elman, Jordan, and the SONIA networks for nonstationary time series prediction. The 

Signal to Noise Ratio (SNR) compares the level of a desired signal to the level of background 

noise; in this case, it is the ratio of useful information of a signal compared to false or irrelevant 

data.  The 5-step ahead predictions show consistent results. Again, the DSMIA has the best 

SNR for the valley maximum temperature. The results also indicated that the proposed network 

generated significantly better results than the SONIA networks. 

       It is evident from the nonstationary and stationary prediction simulation results that the 

transformation of the signals from nonstationary to stationary improved the results for most of 

the neural network architectures. For stationary prediction, the proposed DSMIA showed better 

results than the SONIA network for most of physical signals using the NMSE and the SNR 

measures. Furthermore, the proposed network show slightly improved results than all the 

benchmarked networks.  

Table 12 

Number of Hidden nodes in the proposed DSMIA and the SONIA networks for five steps ahead stationary signals 

using the best simulation results. 
 

Signals Nonstationary 

prediction 

Stationary prediction 

SONIA DSMIA SONIA DSMIA 

Valley sunshine 4 4 3 3 

Valley max temp 5 5 4 3 

Valley rainfall 4 4 4 3 

 

Table 12 shows the number of hidden nodes utilized for the prediction of the physical signals 

on the best out of the sample simulation results between the proposed and the SONIA 

networks. The results indicate that the proposed network required a similar number of hidden 

units for the prediction of nonstationary signals. In addition, the results indicate that when the 

data is transformed to stationary,  a smaller number of hidden units is required for both the 

DSMIA and the SONIA network. 

To further analyse the significance of the results, we conducted a paired t-test [88] on the 

best simulation results to determine if there is any significant difference among the proposed 

DSMIA and the other neural network architectures based on the absolute value of the error. The 

calculated t-value showed that the proposed technique outperforms ANN with α = 5% 

significance level for one tailed test.  

http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Information
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6.1  DISCUSSION 

In this work, several existing classification algorithms and the proposed DSMIA neural 

network are compared in weather data prediction. The evaluation of prediction performance has 

been measured using widely utilised evaluation measures for time series prediction. Two sets of 

experiments were conducted, for stationary and nonstationary time series prediction.  

        From the results obtained, the results show that the self-organized hidden layer using the 

immune system algorithm and dynamic links improve the predictive capabilities of the model. 

More importantly, the proposed DSMIA model shows promise, as the results indicate that it 

outperforms several neural networks. This improvement can be associated with the 

combination of supervised and unsupervised learning techniques used in the DSMIA model 

[50]. The hidden layer can cluster the input nodes to the centroids of hidden units, which gives 

the local network pattern of the input data. The Euclidean distance was utilized to compute the 

distance between the input units and the centroids of hidden units.  

7. Conclusions and future work 

Weather data exhibits a range of big data characteristics, for example volume, velocity, and 

veracity. The challenges of weather forecasting data therefore can be considered as a time 

series data analytics problem. In this work, the dynamic self-organized neural network inspired 

by the immune algorithm is proposed for the prediction of weather data signals. The 

nonstationary weather signals have been transformed to stationary. The main point that the 

dynamic self-organized multilayer neural network inspired by the immune algorithm (DSMIA) 

has assisted to optimise the performance due to novel combination of supervised and 

unsupervised learning techniques. In addition, this method performed well in data weather 

prediction, because it has used SOM unsupervised methods in the hidden layer and recurrent 

links. The simulation results showed a relative improvement achieved by the proposed network 

when using the average results of 30 simulations. 

Since clustering methods have been widely used in various applications of data mining, 

changing the learning process with the adoption of unsupervised learning in the DSMIA might 

serve other applications, such as medical diagnostics and pattern recognition for large 

databases, containing many attributes. The structure of the proposed network can be adapted 

for clustering tasks by changing the back-propagation algorithm in the output layer, which is 

supervised learning algorithm to unsupervised learning algorithm.  
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We consider for future work the use of global optimisation algorithms such as genetic 

optimisation to explore more comprehensively the space of possible recurrent network 

architectures. We note that the current study has addressed only weather forecasting 

applications, which may not expose the full potential of the RNN in the classification setting. 

We suggest therefore that an algorithmic model search may be implemented with various 

application such as, flood predcation and earthquake prediction that can expand the scope and 

scale of this study. 
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