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Signal Processing of Multimodal Mobile 
Lifelogging Data towards Detecting Stress in 

Real-World Driving 
Chelsea Dobbins, Member, IEEE, Stephen Fairclough 

Abstract— Stress is a negative emotion that is part of everyday life. However, frequent episodes or prolonged periods of stress 

can be detrimental to long-term health. Nevertheless, developing self-awareness is an important aspect of fostering effective ways 

to self-regulate these experiences. Mobile lifelogging systems provide an ideal platform to support self-regulation of stress by 

raising awareness of negative emotional states via continuous recording of psychophysiological and behavioural data. However, 

obtaining meaningful information from large volumes of raw data represents a significant challenge because these data must be 

accurately quantified and processed before stress can be detected. This work describes a set of algorithms designed to process 

multiple streams of lifelogging data for stress detection in the context of real world driving. Two data collection exercises have 

been performed where multimodal data, including raw cardiovascular activity and driving information, were collected from twenty-

one people during daily commuter journeys. Our approach enabled us to 1) pre-process raw physiological data to calculate valid 

measures of heart rate variability, a significant marker of stress, 2) identify/correct artefacts in the raw physiological data and 3) 

provide a comparison between several classifiers for detecting stress. Results were positive and ensemble classification models 

provided a maximum accuracy of 86.9% for binary detection of stress in the real-world. 

Index Terms— Mobile Computing, Pervasive Computing, Signal Processing, Physiological Measures, Lifelogging, Stress 

——————————      —————————— 

1 INTRODUCTION

ifelogging is a form of pervasive computing that is con-

cerned with automatically capturing a digital record of 

an individual’s life [1]. This idea was first proposed in 1945 

by Vannevar Bush, with the notion of the Memex [2]. Since 

this time, the value of automatically capturing and access-

ing daily experiences has been appreciated [3]. Earlier 

work in this domain focused on using wearable cameras to 

create lifelogging records for self-reflection [4, 5]. However, 

advancements in technology have enabled a range of sen-

sors to be embedded in smartphones, including cameras, 

accelerometers, GPS, heart rate sensors, and pedome-

ters, which can be utilized to automatically capture data to 

supplement lifelogs [6]. Furthermore, the wearable device 

market is capitalizing on these trends by developing 

smaller, more powerful and affordable devices that house 

a multitude of similar sensors.  

In order to create truly insightful lifelogs that feed the 

process of self-reflection, the inclusion of those objective 

physiological changes that underpin our experiences is vi-

tal. As such, leveraging the power of our mobile/wearable 

devices is essential to access a variety of physiological 

data, which can be utilized to recognize emotional states 

[7, 8]. The detection of negative emotions, such as anxiety, 

stress, sadness and anger, is particularly important as fre-

quent experience of these emotions is associated with in-

flammatory processes in the cardiovascular system [9]. 

This process of inflammation may play a significant role in 

the development of coronary heart disease (CHD) [9, 10]. 

CHD is the leading cause of death worldwide; however, 

stress management, via adaptive coping of negative emo-

tions, can reduce the risk of developing CHD [11–13].  

Nevertheless, whilst capturing multimodal data from 

mobile devices is relatively straightforward, the derivation 

of meaningful information from these sources presents sig-

nificant challenges. In order to be truly insightful, success-

ful lifelogging systems must integrate multiple streams of 

data together. This would allow the system to intelligently 

account for the context of physiological measures and their 

association with the current situation [14]. Context is vital 

for any lifelogging system and can be defined as “the state 
of knowledge of external and internal entities that causes a 
change in the user’s situation, thus necessitating a different 
interpretation of the data in hand” [14]. For example, high 

heart rate correlated to a set of location coordinates and 

supplemented by a photograph of a red traffic light could 

indicate an increased physiological response to the expe-

rience of journey impedance. In this case, context has 

been derived from the environment (i.e. from the GPS po-

sition and photo), which has then been correlated with the 

physiological parameters to establish the explanatory 

framework for the latter. However, the practical achieve-

ment of this inferential process is far from straightforward. 

Collecting and processing covert changes in physiology re-

quires sophisticated digital signal processing techniques 

and algorithms. Additionally, multiple streams of data (both 

driving and physiological) must also be synchronized onto 

a common timeline. This is a significant problem as devices 

record data at different frequencies. 
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This work presents our method of processing multi-

modal lifelogging data to detect stress within the context of 

real-life driving and forms part of the MultiModal Lifelogging 

Project (MMLP). This scenario has been chosen because 

it is a common activity that often includes naturally-occur-

ring episodes of stress. Driving also provides a relatively 

sedentary and stable environment in which to collect sen-

sor data, as participants remain in a seated position during 

this activity. 

Twenty-one participants took part in two data collection 

exercises, which required them to collect a variety of life-

logging data on their daily driving commutes to and from 

work. Their data has been subjected to our data processing 

pipeline and evaluated using several classification algo-

rithms designed to identify low and high periods of stress. 

As such, the work addresses the technical challenges of 

processing a diverse set of signals related to human be-

haviour on a common time/location basis in order to clas-

sify psychophysiological responses. 

The remainder of this paper is organized as follows. 

Section two discusses related work in the area of emotion 

detection. Section three presents our methodology for pre-

processing and extracting features from raw lifelogging 

data. Section four illustrates the results that have been ob-

tained from classifying our pre-processed data in order to 

detect stress before providing a discussion of these results 

in section five. Concluding remarks and directions for fu-

ture work are then discussed in section six. 

2 RELATED WORK 

The vision of lifelogging technologies is to, “allow us to cap-

ture everything that ever happened to us, to record every 

event we ever experienced and to save every bit of infor-

mation we have ever touched” [15]. The sophistication and 

pervasiveness of mobile and wearable devices has pro-

vided an opportunity for this vision to become a reality [16]. 

Using such devices, a wide range of data can be collected 

continuously and unobtrusively, enabling the logging of 

vast amounts of personal data. Extending this area into 

stress detection via biosensing is an ongoing and exciting 

research area that promises to deliver increasingly accu-

rate results. Contextual data, such as photos/location, 

which are typically captured using lifelogging technologies, 

can be cross-referenced with physiological data in order to 

identify sources of covert physiological changes. 

Measuring stress within drivers usually occurs via simu-

lators [17–19] as there is considerable difficulty, effort and 

risk involved in collecting data in the natural environment 

[20]. For instance, Katsis et al. [17] utilized facial electro-

myography (fEMGs), electrocardiogram (ECG), respiration 

and skin conductance within support vector machines 

(SVMs) and adaptive neuro-fuzzy inference system (AN-

FIS) to detect high stress, low stress, disappointment, and 

euphoria within a simulated car racing environment. The 

SVM achieved an overall accuracy of 79%, whilst the AN-

FIS model achieved 77%. Similarly, Jansen et al. [18] uti-

lised ECG to measure heart rate in order to detect both in-

cidental and integral anger in participants who drove for 

approximately 12 minutes in a driving simulator. The 

experience included 9 hazard events (e.g., car swerving 

into their lane, deer in the road) and afterwards participants 

rated their affective states using a subjective question-

naire. The results demonstrated that physiological meas-

urements were a valid measurement to use for identifying 

both incidental and integral affect. However, as these were 

simulated environments the experimenters could precisely 

control the road conditions and stability of the sensors. 

For the majority of studies who have conducted experi-

ments outside of a laboratory it has been noted that partic-

ipants often have to follow strict supervision and drive pre-

planned routes, for a limited time [20]. For instance, Singh 

et al. [21] have utilised Photoplethysmogram (PPG), Gal-

vanic Skin Response (GSR) and respiration data within a 

Cascade Forward Neural Network (CASFNN). Data was 

collected from participants as they drove around three pre-

planned driving scenarios. The CASFNN achieved an 

overall accuracy of 80%, using 25 hidden neurons and a 

25 second window. However, Vhaduri et al.’s [20] study is 

similar to this work whereby continuous data has been col-

lected from uncontrolled and unscripted driving episodes 

over one week. Their work has developed the GStress 

model that estimates driver’s stress using only smartphone 

location (GPS) traces. The model was trained using a Gen-

eralized Linear Mixed Model (GLMM) and obtained a Pear-

son Correlation of 0.722 for predicting stress using only 

GPS.  

Utilizing measures of heart rate variability is an accepta-

ble method to quantify stress [22]. However, coupling these 

measures with lifelogging technologies can provide insight 

into those psychological processes, which we may not be 

consciously aware of. However, in order to advance these 

fields, conducting experiments outside of the lab and in the 

field, is an essential step in order to assess the viability of 

the approach in everyday life. 

3 MATERIALS AND METHODS 

Our approach capitalizes on the advancements and avail-

ability of smaller and more powerful ambulatory sensors 

that has enabled us to: 

1 Collect instances of raw lifelogging data within real-

world driving. These data have been collected from 

two categories: physiological (wearable) and driving 

(mobile) sensor data. Physiological data includes 

raw electrocardiogram (ECG) and photoplethysmo-

gram (PPG). These signals have been used to cal-

culate heart rate, time and frequency-domain 

measures of heart rate variability (HRV) and pulse 

transit time (PTT). Driving data includes speed of 

the vehicle, location, and first-person photographs 

of the environment. 

2 Pre-Process the physiological sensor data to filter 

noise, calculate various measures, extract features 

and synchronize with the driving data 

3 Detect stress from the synchronized and processed 

lifelogging data with a high degree of accuracy 

However, in order to detect stress, a data processing 

pipeline is required (see Fig. 1.).  
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Fig. 1. Data processing pipeline that has been developed to process 
raw sensor and mobile lifelogging data in order to detect stress. 

This pipeline has been developed to pre-process and 

extract features from the collected raw lifelogging data. The 

remainder of this paper describes this pipeline in more de-

tail. 

3.1 Raw Data Collection 

Two data collection exercises (DCE) have been under-

taken to collect a variety of real-life lifelogging data from 

participants on their daily driving commutes to and from 

their place of work. 

3.1.1 Participants 

The data collection exercises included a total of twenty-one 

participants – thirteen females and eight males, with an age 

range from 25 to 57 (mean = 40.86, SD = 11.28). Partici-

pants did not have any history of heart disease and were 

not currently taking any medication that could influence 

cardiovascular activity. The University Ethical Committee 

has approved all procedures for participant recruitment and 

data collection prior to commencement of these studies. 

3.1.2 Data Collection Exercise 

Raw data was collected using our mobile sensor platform 

(see Fig. 2) twice a day from participants during their nor-

mal driving journeys to and from work, over a period of one 

week. The protocol included driving for a minimum of 10 

minutes (continuously) per journey, driving the same route 

to/from work at approximately the same time for each jour-

ney, being alone in the car (i.e. no passengers) and not 

listening to music. The journey’s ranged from 10:44 

minutes to 01:48:30 hours (mean = 34:07 min, SD = 15:52 

min). 

This mobile sensor platform setup included two weara-

ble Shimmer3™ sensors, which captured both raw electro-

cardiography (ECG), via a five-lead ECG unit, and photo-

plethysmogram (PPG) signals, via an optical pulse ear-clip. 

PPG can be obtained from several areas on the body, in-

cluding the earlobe and fingertip. The earlobe was chosen 

because this area provided a stable site for signal collec-

tion as opposed to the fingertip, which is highly susceptible 

to motion artefacts [23], particularly during the driving task. 

 
Fig. 2. Subjects wore a Shimmer3 electrocardiogram (ECG) Unit on 
the chest and clipped a photoplethysmogram (PPG) Optical Pulse 
Ear-Clip to their ear lobe. An accelerometer was placed in a flat posi-
tion in the car during DCE A. During DCE B, a smartphone was placed 
in a holder with the rear camera facing out of the front windshield. 

During DCE A, raw acceleration data was collected via 

a Shimmer3™ accelerometer unit, which was affixed in a 

flat position in the car. However, during DCE B the range 

of driving data that was collected increased to include more 

contextual information, including photographs, location 

and speed, which were captured using a custom-built An-

droid application running on a Samsung™ Galaxy S5/S6 

smartphone. Photographs were captured every 30 sec-

onds. A mobile phone holder was also provided to place 

the phone into so that photographs could be taken out of 

the front windshield. 

The Shimmer3™ sensors were configured at a sample 

rate of 512 Hz. This sampling rate was selected as it was 

considered to be a suitable frequency at which to obtain a 

signal that did not suffer from jitter [24]. Data was stored on 

the internal micro SD card of each device. 

Before commencement of the DCE’s, participants were 

briefed and provided with a description of the task and had 

a demonstration with the equipment. A total of almost 106 

hours (525,697,711 instances) of raw lifelogging data have 

been collected across both DCE’s. 

3.2 Data Pre-Processing 

Collecting lifelogging information produces an extraordi-

nary amount of raw data. In particular, physiological data 

collected in the field is often susceptible to noise and data 

loss [25]. For example, the quality of contact that occurs 

through attaching adhesive electrodes to the skin, can de-

cay over time and even limited physical movement can dis-

tort the signal. Therefore, these data must be pre-pro-

cessed before meaningful markers of stress can be ex-

tracted. In the example below, these data were analysed 

using MATLAB vR2016a. 

3.2.1 Filtering 

A variety of filtering techniques have been utilized to re-

move noise and baseline wander. The raw ECG data has 

been filtered using a Chebyshev Type I second order high 

pass and lowpass filter, with a cut off frequency between 

0.5 Hz and 200 Hz and a passband ripple of 1 dB [26]. The 

raw PPG data has been filtered using a Chebyshev Type I 

Lowpass filter, with a passband frequency of 5 Hz and a 

passband ripple of 1 dB [27]. Once the data were filtered, 

the next step required heart rate measurements to be cal-

culated from the data.  
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During DCE A, the acceleration signals were filtered us-

ing a Butterworth lowpass filter, with a cut-off frequency of 

30 Hz. The signal has also been converted from meters per 

second squared (m/s2) into velocity (m/s) using the meth-

ods described in [28]. 

3.2.2 Calculating Physiological Measurements 

Raw ECG signals record the electrical activity of the heart. 

The beats of the heart are identified from waves known as 

the QRS complex [29]. The length of time between consec-

utive R waves (or beats) is known as the Inter-Beat Interval 

(IBI). Once a heartbeat occurs, blood flows to different ar-

eas of the body and reaches a peak before it progressively 

decreases [30]. However, a raw PPG signal records the 

rate of blood flow, which occurs after a heartbeat, as two 

types of peaks – systolic and diastolic. We were interested 

in the systolic Peak-to-Peak Interval (PPI), as these are the 

maximum peaks within the PPG signal. In order to correctly 

detect stress, accurate detection of the IBI and PPI is es-

sential [31]. In this instance, physiological measurements, 

including Inter-Beat Interval (IBI) from the ECG signal and 

the Peak-to-Peak Interval (PPI) from the PPG data, were 

calculated from the filtered data. However, in order to cal-

culate the IBI and PPI, peaks within both signals must first 

be detected. 

The ECG and PPG data were first segmented using 30-

second non-overlapping windows. For each window, the 

location of the peaks within the ECG and PPG signals were 

detected. Once the location of the peaks was identified, the 

IBI and PPI intervals were calculated. This calculation was 

achieved using the equation in (1). Here, x is the location 

of the peaks, which was stored as a vector, l is the length 

of the signal and f is the sample frequency. 

 

𝑖𝑏𝑖/𝑝𝑝𝑖 = (𝑥(𝑙) − 𝑥(𝑙 − 1)) ÷ 𝑓 × 1000              (1) 

 

This equation calculated the difference between adjoin-

ing peak locations and then converted this into units of time 

(milliseconds). Once the IBI and PPI measurements were 

calculated, the next step required artefacts within the signal 

to be identified and corrected. 

3.2.3 Artefact Identification and Correction 

When undertaking HRV analysis, artefacts can significantly 

influence the metrics used to express variability in the heart 

rate time series [32]. Therefore, it is very important to iden-

tify and correct these artefacts. Having a continuous signal 

is another important issue for HRV analysis hence there is 

no option to simply discard these artefacts from the record, 

as this strategy would produce inaccurate metrics [32]. In-

terpolation is a widely used method to overcome this prob-

lem, which corrects artefacts and sustains the integrity of 

the time series. Our algorithm identified and corrected two 

types of artefacts, 1) missing peaks and 2) false positives. 

Fig. 3 illustrates an example of the peaks that have been 

detected in an ECG signal, the IBI intervals and an exam-

ple of an identified artefact (this process was also repeated 

for the PPG signal to generate PPI intervals). 

 
Fig. 3. Example of detected peaks (), intervals and artefact in ECG 
signal. 

3.2.3.1 Identifying Missing Peaks and False Positives 

Algorithm 1 and Fig. 4 presents the process for identifying 

missing and false positive peaks. The algorithm used the 

calculated IBI/PPIs from section 3.2.2 (IBI) and returned 

two new binary vectors indicating the position of any 1) 

missed peaks (missedPeaks) and 2) false positive peaks 

(fpPeaks) that have been detected in the windowed signal.  

The algorithm looped through each row in the windowed 

IBI signal (line 1). For each row, if the IBI value was greater 

than 1.5 of the mean (line 2) this illustrates a significant 

deviation from normality and so the detection algorithm 

identifies that a peak has been missed. In this instance, the 

corresponding row in the missedPeaks vector was flagged 

as 0 (line 3). In the case of identifying false positives, for 

each row in the windowed IBI signal, if the IBI value was 

less than 0.5 of the mean (line 7) the detection algorithm 

identifies that a false positive has occurred. In this in-

stance, the corresponding row in the fpPeaks vector was 

flagged as 0 (line 8). In both instances, if a peak was ac-

ceptable then this was flagged with a 1 (lines 5 and 10). 

Since IBI follows a pronounced normal distribution, these 

settings were chosen as a method to identify missed peaks 

and false positives that has been achieved by looking at 

the deviations from the normal range of values that is spe-

cific to each participant during each drive. This process 

was repeated for the PPG data. 

 

 
Fig. 4. Flowchart of Algorithm 1 that has been developed to identify 
missed peaks and false positives 
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3.2.3.2 Correcting Missed Peaks and False Positives 

Once the missing and false positives peaks had been 

flagged, Algorithm 2 then corrects these instances by inter-

polating new peaks and IBI/PPIs (see Fig. 5).  

Algorithm 2 uses the flagged missedPeaks and fpPeaks 
vectors from Algorithm 1, to obtain all flagged instances 

that were associated with missing and/or false positives 

peaks. It then established the number of flagged peaks that 

occurred and inserted an empty row underneath each 

flagged instance.  

 

 
Fig. 5. Algorithm 2 that has been developed to correct missed peaks 
and false positives 

The first item that needed to be corrected were the 

peaks in the signal. Therefore, the next steps were to get 

the location of the flagged peaks (targetIndex) and loop 

through each row in the targetIndex. For each flagged peak 

in the targetIndex, another index was then created that 

consisted of the locations of acceptable peaks (accepta-
blePeaks) that occurred prior to the flagged peak. A new 

peak (np) was then calculated using equation 2. 

 

𝑛𝑝 = 𝑓𝑝 − (�̅� (𝑖𝑏𝑖𝑛))                     (2) 

 

This equation uses the flagged peak, fp, and the aver-

age of the previous five acceptable IBI values, ibi, that oc-

curred before the flagged peak. However, if the acceptable 

IBIs occurred at the beginning of the signal and contained 

less than five values (i.e. acceptablePeaks < 5) then ibi 
contained the first n < 5 acceptable IBIs that occurred at 

the start of the signal. In all other instances, ibi was based 

on the previous five acceptable IBIs that occurred prior to 

the flagged peak. Once the new peak was created, a new 

corresponding IBI (nIBI) value was also created using 

equation 3. 

 

𝑛𝐼𝐵𝐼 = 𝑛𝑝 − 𝑝(𝑓𝑝−1)        (3) 

 

This equation uses the newly created peak (np) from 

equation 2 and the previous acceptable peak (p) that oc-

curred before the flagged peak, fp. The new peak (np) and 

corresponding IBI (nIBI) were then inserted into the empty 

row underneath the flagged peak and the flagged IBI was 

removed. The algorithm terminated once all flagged IBIs in 

the targetIndex were processed and flagged peaks re-

moved. 

Using TABLE 1 as an example of this process, a missed 

peak has been flagged at row 7 and so a new row was 

inserted underneath (row 8). In order to correct this, a new 

peak (np) was first calculated using equation 2, whereby 

the average IBI of the previous 5 acceptable IBI’s that oc-

curred before the missed peak (cell C2 – C6) were sub-

tracted from the identified missed peak (cell B7) to gener-

ate the new peak (cell B8). 

 
TABLE 1 

EXAMPLE OF CORRECTING MISSED PEAKS AND IBIS IN 

ECG/PPG SIGNAL 

 A B C D E 

 R Peak Sam-

ple Location 

R Peak 

Sample 

Time (ms) 

IBI (ms) 
Missed 

Peak 

False 

Posi-

tive 

1 121 234.38 0 1 1 

2 433 843.75 609.38 1 1 

3 735 1433.59 589.84 1 1 

4 1049 2046.88 613.28 1 1 

5 1348 2630.86 583.98 1 1 

6 1662 3244.14 613.28 1 1 

7 2248 4388.67 1144.53 0 1 

8  3786.72 542.58   

 

 

Algorithm 1. Identify missing peaks and false positives in 

ECG/PPG signals 

 

Data: IBI 

Result: missedPeaks and fpPeaks 

 

1: for each row (j) in IBI 

2:    if IBI(j) > (mean_ IBI + (mean_ IBI /2)) 

3:        missedPeaks(j) = 0 

4:    else 

5:        missedPeaks(j) = 1 

6:    end if 

7:    if IBI(j) < (mean_ IBI /2) 

8:        fpPeaks (j) = 0 

9:    else 

10:        fpPeaks (j) = 1 

11:    end if 

12: end for 

13: return missedPeaks, fpPeaks 
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A new corresponding IBI (nIBI) was also created (cell 
C8) by subtracting the previous acceptable peak that oc-

curred before the flagged peak (cell B6) away from the 

newly created peak (cell B8). Once all flagged items were 

corrected the flagged rows were removed (i.e. row seven) 

and so the updated matrix now does not contain any 

missed peaks and/or false positives. This process occurred 

for all flagged ECG and PPG peaks. Once the artefacts 

have been identified and corrected, the next stage involved 

calculating the Pulse Transit Time and removing any outli-

ers. 

3.2.4 Pulse Transit Time and Outlier Removal 

Pulse Transit Time (PTT) is indirectly related to blood pres-

sure (BP) and is measured as the time (ms) between an R 

peak in the ECG and the subsequent S Peak of the PPG 

signals [33]. As the S Peaks occur after the heartbeat (i.e. 

ECG) there is a delay, which corresponds to the time it 

takes for the blood to reach the site of the PPG signal (in 

our case the earlobe) [30]. However, to get conclusive re-

sults, the method relies on these signals being calibrated 

[27, 33]. Therefore, prior to calculating PTT, the ECG/PPG 

signals must be inspected for drift, as even the slightest 

amount of drift within a time window can produce inaccu-

rate data. 

Using the processed data from section 3.2.3, Algorithm 

3 (see Fig. 6) inspected the PPG signal to determine syn-

chronicity with the ECG signal and returned a matrix of syn-

chronised peaks (syncPeaks).  

 

 
Fig. 6. Flowchart of Algorithm 3 that has been developed to inspect 
the PPG signal for synchronicity with the ECG 

 
 

Using the location of the ECG/PPG peaks as inputs 

(R_Peak_Location_ms_ECG and S_Peak_Loca-
tion_ms_PPG), the algorithm first created a vector (max-
ECG) of the maximum amount of time that should occur 

between an ECG peak and the subsequent PPG peak (line 

1). In this instance, the maximum time should be within 900 

ms [34]. 

For each row in the signal (line 2), the algorithm re-

trieved the corresponding PPG Peak (rowPPGdata), max-

imum ECG peak time (maxECG) and ECG peak (rowECG) 

(lines 3 – 5). If the PPG peak (rowPPGdata) was greater 

than the ECG Peak (rowECG) and less than the maximum 

ECG peak time (maxECG) then it was an acceptable PPG 

peak and the corresponding row in the corrPPG(j) vector 

was flagged as 1 (line 7). However, if the peak was outside 

of these constraints then the peak was unacceptable and 

the corresponding row in the corrPPG(j) vector was flagged 

as 0 (line 9). All rows that were flagged as unacceptable 

(i.e. corrPPG = 0) were removed (line 13). The corrected 

ECG/PPG signals (syncPeaks) were then returned (line 

14). 

PTT was then calculated using equation (4). In this 

equation, each R Peak ECG sample (rPeakECGi) was sub-

tracted from the corresponding PPG S Peak sample 

(sPeakPPGi). 

 

𝑝𝑡𝑡 =  𝑠𝑃𝑒𝑎𝑘𝑃𝑃𝐺𝑖 − 𝑟𝑃𝑒𝑎𝑘𝐸𝐶𝐺𝑖      (4) 

 

The final stage was to use Algorithm 4 to identify outliers 

within the data (see Fig. 7). Using the calculated PTT data, 

from equation 4, Algorithm 4 returned a vector of updated 

PTT values (PTTupdated) where any outliers have been 

removed. 

 

Algorithm 3. Inspect PPG to determine synchronicity with 

ECG 

 

Data: R_Peak_Location_ms_ECG, S_Peak_Location_ms_PPG 

Result: syncPeaks 

 

1: maxECG = R_Peak_Location_ms_ECG + 900 

2: for each row (j) in the signal 

3:    get rowPPGdata = S_Peak_Location_ms_PPG(j) 

4:    get rowMaxECG = maxECG(j) 

5:    get rowECG = R_Peak_Location_ms_ECG(j) 

6:    if rowPPGdata > rowECG && rowPPGdata < rowMaxECG 

7:        corrPPG(j) = 1 

8:    else 

9:        corrPPG(j) = 0 

10:    end if 

11: end for 

12: create syncPeaks [R_Peak_Location_ms_ECG, 

S_Peak_Location_ms_PPG, corrPPG] 

13: remove all rows in syncPeaks where corrPPG == 0 

14: return syncPeaks 
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Fig. 7. Flowchart of Algorithm 4 that has been developed to identify 
and remove outliers from the PTT data 

 
In order to identify outliers, the algorithm first calculates 

the mean (meanPTT) and standard deviation (STD) 

(stdPTT) of the PTT data (line 1 – 2). Using these outputs, 

the mean PTT plus three standard deviations 

(meanPTTpSD) (line 4) and the mean PTT minus three 

standard deviations were calculated (meanPTTmSD) (line 

5). 

For each row in the PTT vector (line 7), if PTT was 

greater than meanPTTpSD or less than meanPTTmSD 

(line 8) than the corresponding row in the largeSmallOut(j) 
vector was flagged as 0 (line 9), else an outlier was not 

detected and largeSmallOut(j) was flagged as 1 (line 11). 

All rows that were flagged as outliers (i.e. largeSmallOut = 

0) were removed (line 15). 

To summarise, the developed algorithms in section 

3.2.3 have identified and corrected artefacts in the filtered 

ECG and PPG data, whilst the developed algorithms in 

section 3.2.4 have calculated pulse transit time (PTT) and 

have identified and removed outliers. TABLE 2 reports on 

the number of artefacts that have been identified and re-

moved during this process of artefact correction and outlier 

removal. The next stage required features to be extracted 

from this data. 

 
TABLE 2 

ARTEFACTS THAT HAVE BEEN IDENTIFIED AND REMOVED FROM 

THE DATA 

D

C

E 

Missed 

Peaks (%) 

False Posi-

tives (%) 

Large Outli-

ers (%) 

Small Outli-

ers (%) 

Mean SD Mean SD Mean SD Mean SD 

A 6.2 
28.

9 
0.7 7.0 0.1 0.5 0.1 0.7 

B 2.4 6.0 0.2 2.6 0.1 0.6 0.1 0.7 

 

3.2.5 Feature Extraction 

Using the corrected IBI and PTT signals, several statistical 

features were extracted from each 30-second non-overlap-

ping window. This is an essential stage as information is 

difficult to gather from raw data [35].  

3.2.5.1 Physiological Features 

Eleven physiological features have been obtained from the 

processed IBI and PTT signals in both DCEs. These fea-

tures included six standard time domain features – Mean 

IBI, Standard Deviation IBI, Heart Rate, Mean PTT, Stand-

ard Deviation PTT and Root Mean Square of the Succes-

sive Difference of RR intervals (RMSSD). RMSSD is a 

measure of parasympathetic heart rate activity, with low 

values being indicative of reduced parasympathetic activa-

tion and high periods of stress [36, 37]. Five features from 

the frequency domain were also extracted, including: 

• Total power (TP) of the signal from 0 – 0.4 Hz  

• High frequency (HF) occurring between 0.15 – 0.4 Hz 

• Low frequency (LF) occurring between 0.04 – 0.15 Hz 

• Very low frequency (VLF) occurring between 0.0033 – 

0.04 Hz 

• The ratio between low/high frequency (LF/HF) 

3.2.5.2 Driving Features 

Sixteen features related to speed were extracted during 

DCE A, including driving time (morning/evening), distance 

travelled (m), mean, median, standard deviation, variance, 

Algorithm 4. Identify and Remove Outliers from PTT 

 

Data: PTT 

Result: PTTupdated 

 

1: calculate mean PTT (meanPTT) 

2: calculate standard deviation PTT (stdPTT) 

3: 

4: meanPTTpSD = meanPTT + (3 * stdPTT) 

5: meanPTTmSD = meanPTT - (3 * stdPTT) 

6: 

7: for each row (j) in the PTT signal 

8:    if PTT(j) > meanPTTpSD || PTT(j) < meanPTTmSD 

9:        largeSmallOut(j) = 0 

10:  else 

11:      largeSmallOut (j) = 1 

12:  end if 

13: end for 

14: create matrix PTTupdated [PTT, largeSmallOut] 

15: remove all rows in PTTupdated where largeSmallOut == 0 

16: return PTTupdated vector 
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range, minimum, maximum and interquartile range of 

speed (m/s), as well as the time (sec) spent in various 

speed bands, which ranged from 0-4.5 m/s – 22.4-26.8 

m/s. 

During DCE B, features extracted from the smartphone 

included, location (latitude/longitude), speed (m/s), dis-

tance travelled (m) and driving time (morning/evening). 

The photographs have been manually analysed to extract 

features pertaining to contextual information that are re-

lated to the traffic environment, such as traffic density (car 

count in the lane(s) immediately ahead of the vehicle), road 

complexity (number of lanes) road type and weather. In to-

tal, twelve driving features have been extracted from the 

smartphone. 

In total, twenty-seven features have been extracted dur-

ing DCE A, whilst twenty-three features have been ex-

tracted during DCE B. The physiological, photograph and 

driving features from DCE B were amalgamated into one 

matrix on a common time basis of 30 second windows. Lo-

cation data (i.e. latitude/longitude coordinates) were also 

matched and appended to each time window. 

4 DATA ANALYSIS 

4.1 Data Labelling 

Questionnaires were used to capture the subjective 

changes in mood that occurred due to each journey. DCE 

A utilized a short-version of the State–Trait Anger Expres-

sion Inventory 2 (STAXI 2) [38] questionnaire, which was 

composed of fifteen statements (e.g. I am furious, I feel like 

yelling at somebody, etc.). Participants had to score their 

current feeling in relation to each statement on a Likert 

scale, whereby 1 = not at all, 2 = somewhat, 3 = moderately 
so and 4 = very much so. However, it was noted that social 

desirability may have influenced the responses as there 

seemed to be a reluctance to admit negative feelings. 

In response to this issue, a short-version of the UWIST 

Mood Adjective Checklist (UMACL), which has been devel-

oped and validated by Matthews et al [39], was used in-

stead during DCE B. The questionnaire is composed of 

fourteen words that described feelings (e.g. happy, re-

laxed, sad, angry, etc.). Participants were required to rate 

how well each word described their current mood state on 

a Likert scale, where 1 = definitely, 2= slightly, 3 = slightly 
not and 4 = definitely not.  

Both questionnaires were administered using a custom-

made Android application and were completed before and 

after each journey to account for any changes in mood that 

occurred during the duration of the drive. The scores from 

the subjective questionnaires were processed to derive a 

change score (post-drive – pre-drive). Change scores re-

lated to the feeling of negative emotions were used as sub-

jective labels for the data to describe the level of stress as-

sociated with each journey. Those journeys that scored a 

change score a) above zero were labelled as stressful, b) 

below zero were labelled as non-stressful and c) equal to 

zero were discounted as a change was not noted. Fig. 8 

illustrates the frequency of journeys for each category. 

 

 
Fig. 8. Change scores across DCE A and B 

For each DCE, data pertaining to each drive/participant 

were amalgamated and physiological data were normal-

ized by calculating the z-score of each feature to account 

for individual differences between participants. These two 

labelled datasets (DCE A and DCE B) formed the basis for 

our analysis into detecting stress from multimodal lifelog-

ging data. 

However, as the datasets are unbalanced, it was nec-

essary to balance the minority class before the analysis 

could occur. The Synthetic Minority Over-Sampling Tech-

nique (SMOTE) has been used to generate new synthetic 

records to balance the dataset. This approach is an ac-

cepted technique for solving the problems related to unbal-

anced datasets [40].  

4.2 Feature Selection 

Feature selection was performed to reduce the datasets 

into a subset of those features that clearly contributed to a 

discrimination between stressful and non-stressful jour-

neys. However, the analysis involved utilizing a number of 

supervised machine learning algorithms to classify the data 

using a) only driving features, b) only physiological features 

and c) an amalgamation of a and b (i.e. both driving and 

physiological features were merged together into one da-

taset of features). The purpose of this was to investigate 

the most appropriate type of features to use for detecting 

stress. As such, the process of feature selection was un-

dertaken separately on both types of features to select the 

best driving and physiological features, on each dataset. 

In order to remove irrelevant attributes features were 

ranked using the RELIEFF algorithm [41]. This algorithm 

uses a k nearest neighbour approach to find the average 

contribution of all k nearest hits and misses. This average 

is then weighted with the prior probability of each class to 

estimate the quality of the features. The ranked weights 

and features were plotted and eliminated based on the “el-

bow” of the graph, the point whereby the graph goes from 

“steep” to “flat”. Fig. 9 illustrates an example of a graph that 

has been plotted for DCE A’s driving features. 

TABLE 3 illustrates the features that have emerged as 

the top ranked variables that distinguished Stressful from 

Non-Stressful journeys within DCE A and B’s data. This 

analysis has removed 69% and 58% of the driving features 

and 55% and 27% of the physiological features from DCE 

A and B’s datasets (respectively). 
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Fig. 9. Example of RELIEFF feature selection. Features that occur 
after the “elbow” of the graph have been removed. 

TABLE 3 
TOP RANKED FEATURES THAT HAVE BEEN SELECTED FOR EACH 

DATASET 

Driving Feature Weight Physiological Feature Weight 

DCE A 

0 – 4.5 m/s 0.0214 Mean PTT 0.0063 

AM_PM 0.0207 HR 0.0046 

8.9 – 13.4 m/s 0.0110 STD PTT 0.0020 

4.5 – 8.9 m/s 0.0050 LF_HF 0.0015 

Max Speed 0.0013 HF 0.0009 

DCE B 

Time Day 0.1246 Mean PTT 0.0264 

AM_PM 0.0995 Mean IBI 0.0172 

In Traffic 0.0501 STD PTT 0.0166 

Distance Travelled 0.0266 RMSSD 0.0161 

Car Count 0.0241 STD IBI 0.0150 

  HF 0.0121 

  TP 0.0084 

  LF 0.0038 

 

The features identified in TABLE 3 were then used 

within the subsequent evaluation. 

4.3 Classifier Performance 

The evaluation is based on a user-independent model that 

utilized both parametric and non-parametric classifiers, in-

cluding Linear Discriminant Analysis (LDA), Decision Tree 

(DT) and k-Nearest Neighbours (kNN), to differentiate be-

tween stressful and non-stressful journeys. An ensemble 

classifier was also built, which weighted and combined the 

predictions of the above classifiers using the Hill-Climbing 

algorithm [42, 43]. The benefit of using an ensemble ap-

proach is that bias, variance and overfitting are reduced. 

Each classifier and the ensemble approach were evalu-

ated independently using a) only the driving features, b) 

only the physiological features and c) an amalgamation of 

a and b (i.e. both driving and physiological features were 

merged together into one dataset of features). Fig. 10 illus-

trates the approach that has been used for the classifica-

tion analysis. 

 
Fig. 10. Classification approach that has been used during the evalu-
ation. 

The results were validated using repeated k-fold cross-val-

idation, whereby k = 10 and repetitions = 100. The perfor-

mance measurements that were calculated included: 

• Accuracy – An index of overall performance 

• F1 Score – The harmonic mean of Precision [Positive 
Predictive Value] – the proportion of results that have 

been marked as positive (stressful) where a true posi-

tive (stress) has actually occurred and Recall [True 
Positive Rate/Sensitivity] – the proportion of stressful 

drives (positives) that are correctly identified as being 

stressful (positive). 

• Balanced Error Rate (BER) – The average errors of 

each class. 

• Receiver Operating Characteristics (ROC) Curve – 

Summary of performance that plots the True Positive 
Rate (TPR) [Recall/Sensitivity] against the False Posi-
tive Rate (FPR) [Type I Error] – false alarms that indi-

cates that an instance has been classified as stressful 

when stress is actually not present. 

 

TABLE 4 illustrates that during DCE A, the independent 

classifiers LDA and DT produced comparable accuracies 

to the ensemble approach (61.33%, 61.06% and 61.29% 

respectively) and error rates (38.61%, 38.91% and 38.61% 

respectively). This pattern demonstrates that these classi-

fiers were similar in their performance of detecting stressful 

journeys and in the amount of errors that were produced 

for each class. However, DT outperformed the others and 

had the highest F1 (65.43%), which illustrates that there 

was a higher balance between precision and recall, i.e. cor-

rectly detecting a stressful drive when stress has actually 

occurred. This illustrates that for features related only to 

speed a simple linear model will suffice. However, during 

DCE B, the ensemble approach outperformed the inde-

pendent classifiers in terms of the highest accuracy, F1 

and lowest BER. This pattern demonstrates that when con-

textual data is introduced, in addition to speed, and the 

classifiers are combined the results improve. Overall, the 

ensemble approach in conjunction with contextual features 

about the drive achieved the best performance across both 

DCEs. 

TABLE 5 illustrates that using only physiological fea-

tures improved upon the driving features. Furthermore, 

during both DCEs, the ensemble approach outperformed 

the independent classifiers in terms of higher accuracy 

(65.04% and 80.04%), F1 (66.3% and 78.98%) and lower 

BER (34.96% and 19.91%).  
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TABLE 4 
CLASSIFIER PERFORMANCE FOR DRIVING FEATURES ONLY 

 DCE A DCE B 

Measurement LDA DT kNN Ensemble LDA DT kNN Ensemble 

Accuracy 61.33% 61.06% 58.11% 61.29% 74.92% 75.31% 75.27% 77.28% 

F1 59.32% 65.43% 57.78% 62.80% 74.69% 75.64% 74.64% 76.92% 

BER 38.61% 38.91% 41.88% 38.61% 25.07% 24.68% 24.73% 22.72% 

 
TABLE 5 

CLASSIFIER PERFORMANCE FOR PHYSIOLOGICAL FEATURES ONLY 

 DCE A DCE B 

Measurement LDA DT kNN Ensemble LDA DT kNN Ensemble 

Accuracy 58.96% 62.75% 63.72% 65.04% 73.16% 75.66% 78.65% 80.04% 

F1 59.37% 65.66% 64.59% 66.30% 70.86% 75.47% 76.49% 78.98% 

BER 40.96% 37.33% 36.29% 34.96% 27.02% 24.02% 21.60% 19.91% 

 
TABLE 6 

CLASSIFIER PERFORMANCE FOR MERGED DRIVING AND PHYSIOLOGICAL FEATURES  

 DCE A DCE B 

Measurement LDA DT kNN Ensemble LDA DT kNN Ensemble 

Accuracy 63.29% 64.29% 69.26% 69.73% 81.73% 78.86% 86.02% 86.86% 

F1 64.06% 67.44% 69.72% 70.40% 80.42% 78.05% 84.72% 85.89% 

BER 36.69% 35.82% 30.75% 30.27% 18.31% 20.92% 14.12% 13.16% 

 

This illustrates that the overall performance and qual-

ity were greatly improved and a high level of balance 

between precision and recall, as well as a lower error 

rate, was produced when the independent models were 

combined. 

TABLE 6 demonstrated the best results, which oc-

curred when both driving and physiological features 

were amalgamated into one dataset and used in con-

junction with ensemble learning. This approach gener-

ated the highest overall accuracy (86.86%), F1 

(85.89%) and lowest BER (13.16%) across TABLE 4, 

TABLE 5 and TABLE 6. 

ROC curves have been produced to summarise the 

performance of the ensemble classification method for 

each set of features (see Fig. 11). As it can be seen in 

Fig. 11, merging both driving and physiological features 

into one dataset produces a high probability of detecting 

that a stressful drive will be correctly identified when 

stress was present, whilst ensuring that falsely classify-

ing an instance as stressful when stress is not present 

is minimized. 

To summarise, the results confirm the conclusions 

that may be drawn from these results, which illustrates 

that using both driving and physiological features, in 

conjunction with ensemble learning, may be the most 

appropriate classifier for the detection of stress. 

             
a) b)              c) 

Fig. 11. ROC Curves of the Ensemble classification approach for DCE A and DCE B using a) driving features b) physiological features and c) 
an amalgamation of driving and physiological features 
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5 DISCUSSION 

This paper demonstrates the feasibility of applying our 

signal processing approach to real-world multimodal 

lifelogging data. These data were collected using mo-

bile/wearable devices during everyday driving with the 

aim of detecting those journeys that were associated 

with increased stress.  

In order to demonstrate the feasibility of our ap-

proach, we performed two data collection exercises 

(DCE A & B). The first piece of data collection relied ex-

clusively on speed data to characterise the driving envi-

ronment and data were labelled on the basis of re-

sponses to the STAXI questionnaire, which specifically 

captures the subjective experience of anger. This expe-

rience led to two key developments of our experimental 

protocol for DCE B. In the first instance, we coded 

events captured on the camera to increase the range of 

variables obtained from the driving environment, e.g. 

number of vehicles, weather, road type. In addition, we 

switched from the STAXI to the UMACL, which is a 

questionnaire designed to index subjective mood. This 

latter decision represented a response to the shortcom-

ings of the STAXI questionnaire. It was apparent during 

the first data collection exercise that responses to the 

STAXI was influenced by social desirability. Many par-

ticipants were either reluctant to acknowledge increased 

anger or their experience of anger was transitory and 

had disappeared when the journey was over. This trend 

is apparent in Fig. 8 by the number of subjective re-

sponses where no change was observed. The UMACL, 

on the other hand, takes the form of a mood adjective 

checklist, which is a less direct method of assessment 

than STAXI and shifts the emphasis towards feelings of 

tension, which are more socially acceptable than an ex-

pression of anger. The choice of self-report tool is par-

ticularly important for this type of evaluation, where la-

bels for classification are derived from subjective self-

assessment. It is important that any subjective question-

naire that is incorporated into this type of investigation 

is capable of quantifying self-reported states with a high 

degree of accuracy and sensitivity. 

Our approach to classification involved a number of 

distinct phases that were designed in order to gauge the 

relative contribution of variables derived from driving 

and physiology. The application of the RELIEFF algo-

rithm (TABLE 3) demonstrated that driving features that 

captured episodes of journey impedance (e.g. slow 

speed, high car count) were well represented, as was 

time of day. With respect to the latter, we would con-

clude that traffic density was higher in the late afternoon 

compared to the morning, hence variables related to 

time of day were effectively proxies for journey imped-

ance. It was noted that PTT was the physiological fea-

ture with the highest score for both data sets, presuma-

bly due to its association with blood pressure. Heart rate 

and measures related to heart rate variability were also 

selected, particularly high frequency of heart rate varia-

bility (HRV), which is associated with parasympathetic 

activation and inflammation. 

The methodology for classification was designed to 

test both driving and physiological data from both data 

sets using a range of algorithms both alone and as an 

ensemble (TABLE 4 – TABLE 6). With respect to driving 

data and using F1 as a performance indicator, there was 

little differentiation between the three algorithms for 

DCE B, whereas Decision Trees (DT) showed a signifi-

cant advantage for DCE A (TABLE 4). As a general 

trend for classification using driving data, particularly 

when looking at ensemble performance, DCE B per-

formed substantially higher (76.92%) compared to DCE 

A (62.8%). We assume this advantage was achieved by 

extending the range and variety of driving variables in 

DCE B beyond those measures of speed used in DCE 

A. If we consider the results of classification using phys-

iological data (TABLE 5), once again using F1 as a 

measure of performance, it is noted that both DT and 

kNN models deliver superior classification to LDA. A 

comparison of ensemble performance shows a clear ad-

vantage for DCE B (78.98%) over DCE A (66.3%), pre-

sumably due to the higher number of physiological fea-

tures selected by the RELIEFF algorithm during the fea-

ture selection phase (TABLE 3).  

Those subjective states experienced by the driver 

during a commuter journey, whether they are associ-

ated with anger or anxiety, represent an amalgamation 

of the driving environment and the physiological re-

sponses of the individual to that driving environment. 

This is the reason why those classification models that 

merged both sets of features delivered higher classifica-

tion accuracy compared to those based on either driving 

or physiology alone (TABLE 6). If we look at ensemble 

performance (using F1) for DCE A, we see classification 

performance of 70.4% (TABLE 6) compared to 62.8% 

(driving) and 66.3% (physiology) from the equivalent 

models in TABLE 4 and TABLE 5. The same trend was 

observed for DCE B where ensemble classification was 

85.89% (TABLE 6) compared to 76.92% and 78.98% for 

driving (TABLE 4) and physiology (TABLE 5) respec-

tively. The use of physiological features for classification 

of psychological states in the real world is significantly 

enhanced by the inclusion of features related to the con-

text of those psychological states. 

The availability and miniaturization of sensors has 

enabled the continuous measurement of quantifiable 

data in everyday life. However, as observed by Hovse-

pian et al. [25], we are still lacking a well-validated stress 

model that can be used for managing stress in the nat-

ural environment. For a model to be considered a “gold 

standard” for continuous stress assessment, a high ac-

curacy of ≥ 70% outside a lab setting (in the field) is re-

quired [25]. The results from this study are positive and 

provide a successful method of pre-processing mobile 

lifelogging physiological and driving sensor data to 

achieve a maximum accuracy of 86.9% in detecting 

stress (TABLE 6). 

Our work demonstrated an improvement over similar 

works in the area of detecting stress “in the wild”. For 

instance, Hovsepian et al. [25] utilized ECG, HRV and 
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respiration features within a support vector machine 

(SVM) to classify stress. Their data has been labelled 

using self-reports of stress that have been obtained us-

ing an adaptation of the Perceived Stress Scale (PSS). 

Their results demonstrate an accuracy of 72% in the 

field. However, our work has improved upon this by 

achieving a maximum accuracy of 86.9% (TABLE 6), 

which could be attributed to the method that has been 

applied to pre-process our data and the selection of fea-

tures that has been used. This work [25] utilized 37 fea-

tures, whereas in our work we have reduced our feature 

set to five using feature selection to select a subset of 

those features that effectively discriminated stressful 

drives from non-stressful ones. Most importantly, we 

have utilized primarily HRV-related features, including 

RMSSD, which can be calculated in real-time and is cor-

related with markers of inflammation [22]; for critical as-

sessment of this link, see [44]. 

The collection of ambulatory data outside of a labor-

atory presented a number of challenges, such as data 

loss (due to physical artefacts), a reliance on partici-

pants operating the sensors properly and completing 

the data collection protocol consistently and correctly. 

Although laboratory experiments offer greater control 

over experimental variables, they suffer with respect to 

ecological validity of the phenomenon under investiga-

tion [45]. The presence of potential confounds and loss 

of control over the environment that characterizes work 

in the field is the price to be paid for taking research on 

stress out of the laboratory. This transition can also in-

form the development and testing of mobile applications 

as their usability can only be properly evaluated in the 

field [45]. Furthermore, as discussed in previous work 

[46], lifelogging research tends to lack robust data ana-

lytical approaches and real-world datasets. As such, 

there is a pressing need to develop validated ap-

proaches to pre-processing real-world data so that such 

applications can be taken forward for use in that re-

search community. The novelties of the work that we 

have described include: 

 

1) Providing a set of algorithms for pre-processing 

raw lifelogging data that has been obtained 

from mobile/wearable devices in order to calcu-

late valid measures of heart rate variability 

2) Providing a set of algorithms for artefact identi-

fication and interpolation so that missing peaks 

and false positives can be corrected 

3) Providing a comparison between several clas-

sifiers to determine the most appropriate ap-

proach for detecting stress. The accuracy of the 

stress detection is significantly enhanced when 

features related to the physiology and context 

are included in the classification task. 

 

This work also has implications for advancing the 

field of lifelogging. By combining traditional lifelogging 

techniques with psychophysiological signals to quantify 

negative states and their physiological correlates, which 

we may not be overtly aware of, can deliver a greater 

understanding of environmental triggers for those nega-

tive states. This benefit may have implications for long-

term health as the repeated experience of stress can in-

duce a chronic inflammatory process that can culminate 

in atherosclerosis (a build-up of fatty material inside ar-

teries that makes a major contribution to heart at-

tacks/strokes) [47]. 

6 CONCLUSIONS AND FUTURE WORK 

Our work demonstrated a viable method of pre-pro-

cessing raw lifelogging data in order to calculate valid 

measures of heart rate variability and correct artefacts 

for the purpose of classifying periods of stress during 

real-world driving. 

Our approach has also provided an improvement 

over the level of accuracy achieved in comparison to 

other works in the area of detecting stress “in the wild”. 

Nevertheless, there are limitations in the study that 

could be improved upon via further investigation. For in-

stance, this work has labelled data based on the results 

of the subjective questionnaires that were captured be-

fore/after each drive, however this approach has signif-

icant limitations for labelling psychophysiological data 

and measures from the driving environment, both of 

which fluctuates in real-time. In addition to subjective 

self-report data being associated with retrospective bias 

and having limited fidelity, questionnaire data can only 

represent the conscious experience of the individual, 

whereas psychophysiological data responds to both 

conscious and subconscious processes. An interesting 

line of enquiry would be to label the data based on either 

psychophysiology or driving conditions and compare 

those results with the subjective labels. Labelling via 

physiology/driving conditions would overcome those 

limitations associated with self-reporting. Additionally, 

exploring user-dependent models is another line of en-

quiry that is worth pursuing in order to build models that 

can be personalised to the individual. Further research 

is required to explore these ideas and to assess if the 

findings can be replicated in other domains of emotion 

detection. 
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