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”I must not fear.

Fear is the mind-killer.

Fear is the little-death that brings total obliteration.

I will face my fear.

I will permit it to pass over me and through me.

And when it has gone past I will turn the inner eye to see its path.

Where the fear has gone there will be nothing.

Only I will remain.”

- Dune by Frank Herbert
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Abstract

Understanding the formation and evolution of our galaxy, the Milky Way, has been

an ongoing process, which with the development of large-scale surveys has picked up

considerable pace. Together with these new surveys, pipelines have been constructed

which allow for the rapid and automatic processing of this wealth of new data. These

codes are able to turn raw data files into tables of stellar parameters and chemical

abundances in far less time than if they were analysed by hand. The results from these

surveys open new windows on to the history of our galaxy and other disk galaxies.

In this thesis, we present the development of a new pipeline, the STellAR Parameter

AND Abundances pipeline (STARPANDA), which is able to rapidly derive stellar pa-

rameters, CNO abundances and other elemental abundances by utilising measurements

of spectral features in both observed and synthetic spectra. We take the observed spec-

tra, synthetic spectra and line lists employed by the APOGEE survey and produce new

values for the stellar parameters, CNO abundances and Al abundances of the APOGEE

stars. We then compare our results with those achieved by the APOGEE pipeline.
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”No man is an island entire of itself; every man

is a piece of the continent, a part of the main;

if a clod be washed away by the sea, Europe

is the less, as well as if a promontory were, as

well as any manner of thy friends or of thine

own were; any man’s death diminishes me,

because I am involved in mankind.

And therefore never send to know for whom

the bell tolls; it tolls for thee.”

- John Donne
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Chapter 1

The Milky Way

1.1 Galaxy Formation Theory

Modern cosmological models describe a universe which, after recombination, had an

almost smooth distribution of matter, with only small fluctuations in density. Low am-

plitude over-densities were over cosmic timescales able to gravitationally attract more

and more matter. These have led to the structures that we see in the local universe

today. However there are still many questions about how these small over-densities

became the stars and galaxies we see around us. In line with this, it is known that

the baryon content of the early universe was made up of hydrogen (H), helium (He),

a small trace of lithium (Li) and nothing else - no heavier elements such as oxygen,

nitrogen or carbon. These are elements which are relatively abundant (at least in com-

parison to the early universe), in the world around us and without some of them there

would be no life (at least not as we could imagine it). So how did the rich chemistry of

the local universe come about? We know that all of these elements (and many more)

are formed either in the life or death of stars - through nucleosynthesis in stellar cores

and supernovae explosions.

Current galaxy formation theory (see Benson, 2010, for a review) holds that the first

1



1.2. Formation & Structure of the Milky Way 2

stage of structure development is the formation of dark matter halos, in which all the

galaxies we see live. These collapse from the over-densities under gravity and draw in

the baryonic matter which makes up the luminous universe. The baryonic matter then

collapses further and eventually becomes cold and dense enough to form the first stars.

Over time more and more stars form, eventually leading to the first galaxies.

1.2 Formation & Structure of the Milky Way

Our galaxy, the Milky Way (MW), is a barred, spiral disk galaxy. Models of the forma-

tion of our Galaxy have put forward scenarios such as the monolithic collapse of gas

(Eggen et al., 1962) or a hierarchical build up of structure (Searle & Zinn, 1978) and

from these scenarios numerical simulations have been developed which have struggled

to reproduce the structure of the MW (see Rix & Bovy, 2013, for a review). Also, from

observations of the MW, we can see a structure which not only has a bulge and halo,

but 2 disks, one thin and one thicker, and a bimodality in the distribution of [↵/Fe] as a

function of [Fe/H] (e.g. Fuhrmann, 1998; Bensby et al., 2014; Mackereth et al., 2017).

The origin of this dual disk structure is uncertain, with simulations giving us many

possibilities that will need to be constrained using observational data (e.g. Mackereth,

in prep). The history of a galaxy is also heavily affected by the interactions it may have

with smaller satellite galaxies and also its more massive neighbours. The structure of

the galaxy may be heavily affected by close interactions with large neighbours, while

the make-up of stars in the galaxy will be affected by the capture of stars from either

the close interaction with satellites (where stars are stripped from the smaller galaxy)

or by the merger of small galaxies with the larger. All of these processes would leave

imprints in the dynamics and chemistry of stars (chemodynamical fingerprints), which

can be statistically detected using large-scale surveys of stars in our galaxy.
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The structure of the MW, as we currently understand it, is of 3 baryonic components:

the Halo, the Bulge, the Disk. Figure 1.1 (NASA , 2015; ESO et al., 2015) shows in

the top panel an artistic rendering of our current understanding of the structure of the

MW, while the bottom panel shows a mosaic of the MW as seen from Earth.

The MW formed from material which was considerably poorer in metals than the

current galaxy. Over cosmological time generations of stars together with material

accreted from extra-Galactic sources have changed the chemical composition of the

MW. By studying the chemical composition of individual stars and then analysing the

distribution patterns of elemental abundances over different regions of the galaxy we

can understand the evolution of the MW and the formation of the structures that we

observe today. Work has been going on in this area for many years and there are sev-

eral good reviews of the work which has been done (e.g., Freeman, 1987; Gilmore et

al., 1989; Majewski, 1993; Rix & Bovy, 2013; Feltzing & Chiba, 2013).

The Apache Point Galaxy Evolution Experiment (APOGEE; Majewski et al., 2017),

APOGEE-2, GALactic Archaeology with Hermes (GALAH; De Silva et al., 2015),

the Gaia-ESO survey (Gilmore et al., 2012; Randich et al., 2013) and surveys that will

use the William Herschel Telescope’s WEAVE instrument (Dalton et al., 2012) or the

Multi Object Optical and Near-infrared Spectrograph for the VLT (MOONS; Cirasuolo

et al., 2014), once they are built, are all examples of large-scale spectroscopic surveys

which have been, are or will be targeting stars in the MW with the aims of understand-

ing the formation and evolution of the Galaxy. APOGEE, having been completed and

the final data released (Holtzman et al., 2015) has provided us with a wealth of new

data to further this goal and will continue to provide insights for many years to come.

So, by combining a detailed understanding of the ages, kinematics and abundances of a

large sample of stars from all regions of our Galaxy it is hoped that we can understand

the formation and evolution of not just the MW, but also, of all similar disk galaxies.
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Figure 1.1: Views of the Milky Way. The top panel shows an artist’s impression of the Milky
Way; created for the 212th AAS meeting to highlight the best, then current, idea of what our
galaxy would look like in a view from above (NASA , 2015). The bottom panel comes from
ESO Gigagalaxy Zoom project and is a mosaic of the Bulge and disk of the Milky Way as seen
from Earth (ESO et al., 2015)
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1.3 Galactic Surveys

SDSS & APOGEE

APOGEE is a spectroscopic survey which has obtained high resolution (with a resolv-

ing power of approximately 22,500) spectra of over 150,000 stars through the bulge,

thin disk, thick disk and halo of the MW. It is one of the core surveys undertaken by

the Sloan Digital Sky Survey. The APOGEE project was part of SDSS-III (Eisenstein

et al., 2011) and this is continuing as APOGEE-2 in SDSS-IV (Blanton et al., 2017).

All data gathered by SDSS projects are eventually made available to the whole astro-

nomical community after a proprietary period; APOGEE data are available through

periodic SDSS data releases (e.g., Alam et al., 2015).

The observations have been undertaken from the 2.5m telescope at Apache Point Ob-

servatory in New Mexico, USA. The APOGEE survey made use of a bench-mounted

300 fibre multi-object spectrograph (MOS) fed by fibres from the focal plane. The

design of the instrument (Wilson et al., 2012) allows high signal-to-noise (S/N � 100)

observations in the near infra-red (NIR) range from 1.51-1.7µm, which lies within the

H band. The reason for this choice of using the NIR for the survey is to provide ac-

cess to dust-obscured regions in the Galactic bulge and also for disk stars (including

those on the opposite side of the Galactic centre to us). In the optical this would not

be possible due to obscuration and extinction by the high amount of dust present in the

Galactic plane - with interstellar extinction due to dust being much larger in the optical

than in the IR (AV /AH = 6). However NIR observations do not suffer as badly from the

presence of dust and so, spectra can then be obtained from representative samples of

stars of all environments in the MW, thus giving a more complete survey. A summary

of the APOGEE technical specification is provided in Table 1.1.

The scientific goals of the APOGEE survey are measuring the chemical abundances for

different Galactic environments of stars; studying star formation, feedback and chem-
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Resolving Power ⇠22500
Nominal Spectral Coverage 1.51-1.71µm

Number of Fibres 300
Typical Integration Time 3hrs

S/N &100
Limiting Magnitude H = 12.2

Detector Three 2048 HgCdTe Raytheon chips

Table 1.1: Some important technical details of the APOGEE spectrograph

ical mixing; studying the bar and spiral arms via dynamics of bulge and disk stars and

probing the formation and evolution of the MW using chemodynamical information.

In order to achieve these goals, much work went into the target selection for APOGEE

(Zasowski et al., 2013) and the primary target were Red Giant (RG) stars. RG stars are

evolved stars which have left the main sequence and entered the later stages of their

life cycles. During this phase they grow larger and more luminous (than they were dur-

ing the main sequence stage of their life cycle), making them observable over greater

distances. They are found in all stellar populations and Galactic environments making

them important tracers of Galactic chemodynamics.

APOGEE provides measurements of several stellar parameters: the effective temper-

ature of the photosphere (Teff ), the overall metallicity ([M/H]), surface gravity (log

g) and the micro-turbulent velocity, ⇠. Detailed analysis of the spectral lines found

in the H-band yields abundances for 20 elements: C, N, O, Mg, Al, Si, Ca, Ti, Cr,

Fe, Ni, Na, S, V, Mn and Co (originally), plus Ce, Nd, Yb and C13 (recently added).

This is achieved by passing all data taken through 2 pipelines and combining multi-

ple observations of stars (as most targets are observed more than once to achieve the

desired S/N as well as to identify RV variability from binary star systems). The first

pipeline generates the calibrated spectra from the raw data and measures the radial ve-

locity by cross-correlating with the rest frame spectral templates. The second pipeline,

the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP), cal-

culates the stellar parameters and abundances for each star - this is described in more

detail in the next section. Work is ongoing to fully characterise the precision of the
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results and improve them, where possible, in future data releases. The final output

provides us with important information with which to probe the the formation and

evolution of the Milky Way as well as providing insights on galaxy formation and evo-

lution more generally.

Other Surveys

The Gaia-ESO survey (Gilmore et al., 2012; Randich et al., 2013) started in 2011 with

the aims of obtaining high signal-to-noise, high-resolution spectra for over 105 stars in

all regions of the Milky Way (bulge, disk and halo). It is based at the VLT telescope in

Chile and uses the GIRAFFE and UVES spectrographs on FLAMES (Pasquini et al.,

2002). For the majority of stars spectra will be obtained at a resolution of R⇠20,000,

while for a smaller sample of stars (approximately 5,000 objects), spectra will be ob-

tained at higher resolution, R⇠47,000. As with APOGEE, the results are made public

after a proprietary period, and the final data releases will include the stellar parameters

(Teff , [Fe/H], log g & the micro-turbulence velocity, ⇠), CNO abundances and elemen-

tal abundances (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo,

Ba, Nd & Eu) for all target stars. The raw data will be released immediately however.

GALactic Archaeology with Hermes (GALAH; De Silva et al., 2015) uses the HER-

MES fibre-fed multi-object spectrograph on the Anglo-Australian Telescope in Aus-

tralia (3.9m). The survey is aiming to measure 29 abundances from 106 stars brighter

than V=14 with R⇠28000 over a 5 year period and obtain spectra from 4 CCDs in 4

wavelength regions, Blue (4718-4903 Å), Green (5649-5873 Å), Red (6481-6739 Å)

and IR (7590-7890 Å).

In addition to the APOGEE surveys, GAIA-ESO and GALAH, there are other sur-

veys such as ARGOS (Freeman et al., 2013) and LEGUE (Deng et al., 2012), either

completed or ongoing. In the years ahead instruments such as 4MOST (de Jong et al.,
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2016), MOONS (Cirasuolo et al., 2014) and WEAVE (Dalton et al., 2012) are being

built, which will allow further opportunities for new spectroscopic surveys. Thus, the

coming decades are sure to see great improvements in our understanding of the Milky

Way, in particular, and galaxy formation, in general.

1.4 This Work

The work described here has several aims. Firstly, to develop a new pipeline which

can be used to independently test the results produced by ASPCAP. To this end the

code will use a different methodology to that employed by ASPCAP, but take the same

line list and synthetic spectra. The code should be capable of matching the precision

of the ASPCAP pipeline, but do so in significantly less time using standard desktop

computer hardware. Secondly, the new pipeline should be capable of expansion to in-

clude the ability to analyse additional elements as well as being able to use different

input models, line lists, wavelength regions, etc. In short, the final aim of this work is

to start the development of a pipeline which is capable of providing fast, precise bulk

spectroscopic analysis for any data set in any wavelength region which is able to meet

the requirements of the methodology utilised.

The layout of the remainder of this work is as follows. Chapter 2 briefly reviews the

methodology of several pipelines developed to analyse spectroscopic data sets. Chap-

ter 3 describes in detail the structure and algorithms used by the new pipeline, details

the testing undertaken and briefly discusses the development of the code. Except where

noted, the work described in Chapter 3 has been undertaken by the author. Chapter 4

shows some of the current results obtainable by the pipeline with reference to results

from ASPCAP. Again, except where noted, the work shown has been produced by

the author. Chapter 5 contains concluding remarks. Chapter 6 briefly discusses work

currently ongoing and ideas for further work either on expanding or improving the

pipeline, or on what could be done with the results obtained using the pipeline. Fi-
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nally, Appendix A contains information on how to use the STARPANDA pipeline,

whilst Appendix B contains a brief description of Stellar Atmospheres & Line Forma-

tion as it applies to this work.



Chapter 2

Spectral Analysis Codes

Over most of the history of the spectroscopic study of stellar light, spectra have been

analysed interactively, with experienced researchers painstakingly measuring features

in spectra and comparing them to model predictions in order to calculate stellar pa-

rameters and find elemental abundances. With the advent of large-scale spectroscopic

surveys, this method has become too time-consuming to allow the data to be analysed

within the life-times of the researchers involved. If we are to fully explore this wealth

of new data, tools must be developed to delegate this task to computers - to greatly

speed up spectroscopic analysis and to provide more robust output with smaller and

better quantified errors. This task is being undertaken by many groups already and

many approaches are being utilised since there is no one method which clearly stands

out above the rest.

In the following sections of this chapter various spectral analysis codes will be de-

scribed. Brief descriptions will be given of codes developed specifically for the GAIA-

ESO survey (Section 2.1) and GALAH survey (Section 2.2), as well as for the Cannon

code (Section 2.3). A more detailed description is given of the EZ AGES code (Sec-

tion 2.4) and of the pipeline used by the APOGEE survey (Section 2.5); the former is

the inspiration for the new pipeline described in Chapter 3, while the latter is used as a

comparison for our new pipeline.

10
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2.1 The GAIA-ESO Pipeline

Since the GAIA-ESO survey makes use of two spectrographs on FLAMES, data re-

duction is handled separately for the output of Giraffe (Lewis et al. in prep) and UVES

(Sacco et al., 2014). From there the reduced spectra are passed to individual working-

groups which are responsible for deriving any further information which may be of

interest to them.

One working group is focussed on deriving stellar parameters (Teff , [Fe/H], log g &

the micro-turbulence velocity, ⇠), CNO abundances and elemental abundances (Na,

Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd and Eu)

for the 104 FGK-type stars observed by the UVES high-resolution spectrograph (Smil-

janic et al., 2014). In order to achieve this, the team employed 13 separate, parallel

pipelines using a variety of methodologies to ensure that they can get precise results

for stars with a wide variety of parameter values; this approach bypasses the problem

that single methodology pipelines can have where they work well for some regions of

parameter space, but not as well for others. Each pipeline is tested against reference

stars to determine precisely how well it performs in different parameter space regions.

While each pipeline is run on a separate node (a separate group using a separate com-

puting cluster), there are some commonalities to which all adhere - there is a common

line list (Heiter et al., 2015), though nodes do not all have to use the same lines from

that list; a set of model atmospheres (MARCS grid; Gustafsson et al., 2008); and a set

of calibration targets. Each node uses one of three general methodologies to then de-

rive parameters, either based on equivalent width measurements, reference to a library

of observed spectra or by computing synthetic spectra on-the-fly (full details of the

working of each node see Appendix A of Smiljanic et al., 2014). Individual nodes then
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derive stellar parameters for a target star and the results from all nodes are weighted

and combined on a line-by-line basis. The weighting is done using the values of the

parameters obtained and by reference to the results of each pipeline’s tests against the

calibration targets. If there are less than 3 nodes delivering results for a line, the re-

sults are discarded (as there are too few nodes to allow an accurate characterisation

of precision), otherwise the results are then combined to produce a final “best result”

set of stellar parameters. CNO abundances are obtained via a single node using the

best resulting stellar parameters, using C2 lines for C, CN for N and for O, a forbidden

[OI] line at ⇠6300Å. Elemental abundances are then calculated separately on all nodes

using the stellar parameters obtained from that node previously, rather than taking the

best result set and these were then combined in the same manner as the stellar param-

eters. Some nodes were able to derive values for additional elements, but these were

discarded as they were not available from 3 or more nodes.

2.2 The GALAH Pipeline

The data reduction and analysis pipeline for GALAH (Kos et al., 2017) makes con-

siderable use of IRAF (Tody, 1986) routines. The code has been designed to work

with observations made as part of the GALAH survey and replaces some of the data

reduction code that would normally run on data obtained by HERMES (this was done

in order to include solutions for specific problems encounter by this survey). Starting

from raw data files, the IRAF pipeline takes approximately two weeks to deliver radial

velocities and stellar parameters for the survey targets (⇠105 stars), running on a ‘high-

end’ desktop PC. Further analysis of the spectra can then be carried out by individual

teams as desired.

The pipeline has a mixture of manual and automated steps. The first stage is to use

the Blue, Green and Red regions of each spectrum to derive the radial velocity, Teff ,

[Fe/H] and log g parameters. Radial velocity is derived by comparing the observed
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spectra to a set of 15 AMBRE model spectra (de Laverny et al., 2012); these vary Teff

between 4000 and 7500K in steps of 250K, while fixing [Fe/H] = 0.0 and log g = 4.5.

This is done separately for each region and then the results averaged to give a final

radial velocity. Next, the stellar parameters are derived from a larger grid of 16783

AMBRE model spectra (see Table 2.1 for details on these). From this grid, the 10

closest matching spectra are found by computing the Euclidean norm for each model

spectrum relative to the observed spectrum. These 10 closest matches are then linearly

combined to produce a matching model spectrum, with the stellar parameters being

derived by taking the model stellar parameters and combining them in the same man-

ner.

Parameter Range Delta
Teff 2500 - 4000 K 200 K

4000 - 8000 K 250 K
[Fe/H] –5.0 - –3.0 dex 1.0 dex

–3.0 - –1.0 dex 0.5 dex
–1.0 - +1.0 dex 0.25 dex

log g –0.5 - +5.5 dex 0.5 dex

Table 2.1: The stellar parameter ranges (and step sizes covered) by the 16782 AMBRE model
spectra used by GALAH for deriving stellar parameters

The data are then passed to individual teams for further analysis and the derivation of

elemental abundances.

2.3 The Cannon

The Cannon (Ness et al., 2015) has been developed to be a project-independent pipeline

for analysing spectroscopic data from a wide variety of sources (e.g. supernovae, stars

& integrated-light observations of clusters/galaxies). It is capable of being used to de-

rive a wide range of stellar parameters and elemental abundances (called Labels) from

spectra in any wavelength region.
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It does not use line lists or grids of synthetic spectra, but uses a set of reference spectra

to construct a generative model (called the training step) which can then be used to

predict the parameters of a larger set of observed targets (called the test step).

The training step requires that the reference spectra be from objects for which the pa-

rameters of interest are well-known and cover a range of parameter space sufficient to

the task of analysing the full set of observed targets. They should be taken from the

same set as the targets of unknown parameters to ensure that any systematic errors are

the same. From these the Cannon then takes the flux from each pixel and generates

a polynomial function with coefficients given by all the parameters of interest. It is

assumed that the parameters being used are sufficient to describe the flux at each pixel

and that the flux changes smoothly as a function of the changing parameters.

The test step then takes the model constructed during the training step and applies it

to the full set of spectra for which parameters are required. This step is extremely

quick - the Cannon was able to derive 17 stellar parameters from the APOGEE data set

(150,677 stars) running on a small computing cluster in ⇠0.01 seconds per star (Casey

et al., 2016). During this step the Cannon both interpolates between the reference set

spectra and can, if necessary, extrapolate to areas outside of this parameter space.

2.4 EZ Ages

One method of analysing spectra is by measuring the strength of spectral features

which are sensitive to either a single stellar parameter/elemental abundance, or to mul-

tiple parameters/abundances which can be derived by reference to other features. This

method is described in Schiavon (2007) and from it a spectral analysis code was de-

veloped by Genevieve Graves (Graves & Schiavon, 2008), called EZ Ages.
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EZ Ages looks at the integrated spectra from whole stellar populations in galaxies and

clusters where individual stars cannot be resolved, rather than resolved stellar systems

or individual stars. It was developed to quickly find the mean ages and abundances of

C, Ca, Fe, Mg and N from medium (or higher) resolution spectra. This tool is available

for download and can be used by those interested in the mean ages and abundances of

whole stellar populations.

The method utilised in this code makes use of the Lick Indices (Burstein et al., 1984;

Gorgas et al., 1993; Worthey et al., 1994), which specify a series of lines in optical

spectra which are sensitive to mean stellar ages and chemical abundances. EZ Ages

makes use of a set of these as described in Schiavon (2007) and the sensitivity of the

indices to various stellar parameters and abundances has been shown by Tripicco &

Bell (1995) and Korn et al. (2005). Figure 2.1 shows the Lick Indices from the Single

Stellar Population models and some of these were used by EZ Ages. In this table,

H� shows no sensitivities (or only a weak sensitivity) to Ni, but it is a good tracer of

age. Indices which have multiple sensitivities can still be used, provided that one is

able to break degeneracies by using other indices which have already been analysed

to provide abundances (e.g. CN indicies are used to determine the N abundance, but

first C must be found using the C2 index and by assuming a value for O). In this way,

many indices can be used together to obtain the mean abundances of all 5 elements as

well as the mean stellar parameters. By iterating over this process several times (until

a pre-defined convergence criterion is achieved) a self-consistent set of results can be

obtained.

EZ Ages works by taking pairs of index measurements, the equivalent widths of the

indicies, from model spectra and plotting them together to form grids. An example of

such a grid can be seen in Figure 2.2. The parameters used to create these grids include

the age of a single stellar population, the overall metallicity (parameterised as [Fe/H])

as well as the elemental abundances that are to be found by the code. Lines of constant

age run quasi-horizontally, while lines of constant [Fe/H] run quasi-vertically. On top
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Figure 2.1: Table 1 from Graves & Schiavon (2008). This shows a number of the Lick Indicies,
some of which have been used in the EZ AGES code, and the element(s) to which they are
sensitive.

of these grids the equivalent widths measured from observed objects can be plotted and

by using linear interpolation, the value of the parameter or abundance can be found by

reference to those values at the model indicies.

EZ Ages starts by first looking at the H� and hFei (taken as the mean of the Fe5270

and Fe5335 indicies). H� is mostly sensitive to age and not to individual elemen-

tal abundances; hFei is sensitive to the overall iron abundance, which scales with the

metallicity of the star and the two chosen indicies are dependent mostly on Fe and very

little on other elements. If the measured equivalent widths do not fall on the grid at this

stage, then there can be no calculation of the age and [Fe/H], and so no calculation of
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Figure 2.2: Figure 1 from Graves & Schiavon (2008). The upper panels show the model grids
for H� versus hFei and H� versus Mg b for a solar metallicity stellar model. The lower panels
show the same, but for a stellar model with an enhanced Mg ([Mg/Fe] = +0.3. In all panels, the
solid quasi-vertical lines are lines of constant [Fe/H] with values of -1.3, -0.7, -0.4, 0.0 & +0.2
(going from left to right) and the dotted quasi-horizontal lines are lines of constant age with
values of 1.2, 2.2, 3.5, 7.0 & 14.1 Gyr (going from top to bottom).

any further parameters or abundances is done since they rely on these being found first.

If the measured values do fall within one of the grid boxes, then this relative position

within the grid forms a reference from which further model grids of other parameters

must match within a defined tolerance. From that point on an iterative process goes

through the other elements and uses indicies in the spectrum which are mostly depen-

dent on the element being calculated or on elements already calculated. These are, C

(using C24668), N (using the CN1 and CN2 indicies) and Ca (using Ca4227). Mg,

using the Mg b index, can be calculated at any point as this index is only sensitive to

[Fe/H], [Mg/Fe] and age; there is some slight sensitivity to [C/Fe], but this is small
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compared to the others and if C is found first, it can be used in the fitting of Mg. The

benefit of this process is that through iteration and convergence any assumptions made

at the start about the elemental abundances can be overcome. It is, of course, depen-

dent on the quality of the spectra, the accuracy of the measurements of the equivalent

widths and the models being used to compare to the observed objects to.

2.5 APOGEE Stellar Parameter & Chemical Abundance

Pipeline

The APOGEE pipeline consists of 3 stages (Majewski et al., 2017): the first processes

the raw data coming from the telescope; the second combines multiple observations

(where they exist) of the same target into a single calibrated spectrum; the third de-

rives stellar parameters and elemental abundances from the calibrated spectrum. The

first 2 stages are handled by the apred and apstar codes (Nidever et al., 2015), while the

third stage is dealt with by the APOGEE Stellar Parameter & Chemical Abundances

Pipeline (ASPCAP; Garcı́a Pérez et al., 2016).

The apred code deals with the data straight from observation, performing data re-

duction to turn the 3d data cubes into 1d spectra, and handles the following tasks:

flat-fielding, sky subtraction, telluric correction, etc (for a full list, see, Nidever et al.,

2015, their Figure 1). It can correct for known instrumental effects, such as differences

in sensitivity between the 3 detector chips. At this stage, an initial value is derived for

the radial velocity; this is done for each visit to the target. The reduced and calibrated

1d spectra are then passed to apstar, which combines spectra from several visits (in

cases where they exist) into a single 1d spectrum - this allows a greater final signal to

noise and also the identification of possible spectroscopic binary systems through the

determination of radial velocity variability (which is then flagged as such in the final

data product). A final value of the radial velocity can also be determined at this stage;
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the values of radial velocity found by apred are not saved through to the final data

product (the allStar file) as the values derived from the combined spectra were found

to be more reliable.

The final part of the pipeline then takes the calibrated spectra and derives firstly stellar

parameters (Teff , [M/H], log g and a first guess on [↵/Fe], [C/Fe] & [N/Fe]; since

DR13, ⇠), then calculates the abundances of the chemical elements (C, N, O, Mg, Al,

Si, Ca, Ti, Cr, Fe, Ni, Na, S, V, Mn and Co (originally); plus Ce, Nd, Yb and C13

(which have been recently added)). This is done by the ASPCAP code and it relies

upon synthetic spectra from model atmosphere.

The model atmospheres used by ASPCAP have changed between the data releases

used in this work. For DR12, the model atmospheres were generated using the AT-

LAS9 code (Kurucz , 1993). They are 1-d, LTE models and cover a wide range of

stellar parameters as well as abundances of ↵ elements (varying all ↵ elements to-

gether; O, Mg, Si, S, Ca Ti) and C. The ASS✏T code (Koesterke, 2009) was then

employed to generate spectra from these model atmospheres. For DR14, a second set

of MARCS model atmospheres (Gustafsson et al., 2008) have been used together with

the Turbospectrum code (Alvarez & Plez, 1998; Plez, 2012); these cover the same

range of parameters (with the same step values) as the ATLAS9/ASS✏T set, except in

Teff , where they start at 3500K and go in steps of 250K to 5500K. The resultant set of

synthetic spectra, ⇠3.4million, form a 7 dimensional grid which cover a wide range of

parameter space. The grid, in fact, consists of two overlapping sub-grids, one covering

the 3500-6500K effective temperature range and one covering the 5500-8000K range,

corresponding to GK and F type target stars. The details of the range of parameter

space covered by the grid can be seen in Figure 2.2.

The synthetic spectra are then treated so that they match the observed APOGEE spec-

tra in wavelength, resolution and sampling, which allows them to be properly used by

ASPCAP. For DR12, it was decided that in order to reduce the work that needs to be
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Parameter Starting Value Finishing Value Delta
Teff [K] 3500 8000 250

[M/H] [dex] –2.5 +0.5 0.5
log g [dex] 0.0 5.0 0.5

log ⇠t [Km s�1] –0.301 –0.903 0.301
[Alpha/M] [dex] –1.0 1.0 0.25

[C/M] [dex] –1.0 1.0 0.25
[N/M] [dex] –1.0 1.0 0.5

Table 2.2: Table of stellar parameters, plus ↵, C & N abundances found in the grid of synthetic
spectra generated using ATLAS9/ASS✏T. This shows the ranges, plus the step sizes, covered
by the synthetic spectra.

done by ASPCAP, and allow the analysis to be completed in an acceptable timescale,

the dimensionality of the grid is reduced by ignoring micro-turbulence and then cal-

culating these values from the surface gravity (assuming a linear relationship). This

reduces the dimensionality to 6d and leaves ⇠350,000 spectra for ASPCAP to work

with. This was then changed for DR14, where micro-turbulence was varied (values

were taken as either 0, 1, 2, 4 or 8 km s�1). Full details of the model atmospheres and

synthetic spectra can be found in Mészáros et al. (2012) and Zamora et al. (2015).

ASPCAP consists of a core FORTRAN90 code, called FERRE (for examples of its

previous adoption see Allende Prieto et al., 2006; Allende Prieto, 2016), and an IDL

wrapper; it is more fully described in Garcı́a Pérez et al. (2016). The IDL wrapper is

responsible for reading in the observations, preparing and submitting jobs to FERRE,

handling the output from FERRE and then writing the output files (in FITS format).

FERRE uses OpenMP1 to allow multiple spectral analyses processes to be run simul-

taneously, thereby reducing the overall code runtime.

ASPCAP adopts a starting point in the 6d/7d parameter space and then it searches for

the best fit spectrum using the �

2 test as a quality measure. In order to search the pa-

rameter space for the lowest �2, the Nelder-Mead algorithm (Nelder and Mead, 1965)

is employed. This algorithm can work in n-dimensional parameter spaces using a sim-
1http://www.openmp.org
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plex of n+1 vertices (i.e. a triangle on a 2d plane is a 2d simplex with 3 vertices). The

�

2 is calculated at each vertex of the simplex. Then, either, the vertex with the highest

�

2 is discarded and that vertex moved through the opposite face of the simplex, before

recalculating the �2 values again or, if no vertex is discarded, then a vertex is moved by

some distance depending on a set of specified rules and pre-defined values. The algo-

rithm continues to shrink/grow (depending on the movement of vertices) and move the

simplex until a pre-defined convergence condition is met, which for ASPCAP, is that

the standard deviation of the �

2 values of the vertices falls below 10�4. The algorithm

was found to take on the order of a few hundred iterations to reach convergence using

the 6d ASPCAP synthetic grid. One potential pitfall of this method is the tendency of

the algorithm to get stuck in local �2 minima and in order to circumvent this problem,

the process is repeated 12 times using different starting positions in Teff , [M/H] and

log g and from these runs, the lowest overall �2 is taken as the best fitting spectrum.

Given the non-negligible distance between nodes in the spectral grid, it is necessary to

use an interpolation scheme to allow for the derivation of stellar parameters off grid

node points; this is faster than simply calculating more synthetic spectra (Mészáros

& Allende Prieto, 2013). The stellar parameters are then obtained from the final best

fitting spectrum as well as the first estimate of [↵/M], [C/M] and [N/M].

The next step is to calculate the elemental abundances for each of the 16 elements,

which includes re-calculating abundances for [C/M] and [N/M], and all ↵ elements.

Since the synthetic spectra include no information on how the spectra vary as func-

tions of any element other than C or N, to find the elemental abundances of all 15

elements, windows are defined around lines which are known to be sensitive to the

element being sought (the strength of the line being directly related to the abundance

of the element). The windows for each of the elements are shown in Figure 2.3, as well

as an example stellar spectrum with sky and telluric emissions/absorption. For Fe, C,

N & O, there are many windows within the APOGEE spectral range, while for other

elements there are significantly fewer (K having only 1 at the extreme blue end of the
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range).

Figure 2.3: At the top, an example stellar spectrum is shown (orange), together with the sky
(black) and telluric (blue, red & green) features. At the bottom, spectral windows used by
ASPCAP in determining the 15 elemental abundances are shown; the spectral windows have
been broadened by 30 km s�1. The grey bands are the chip gaps. Taken from Garcı́a Pérez et
al. (2016, Figure 4)

The stellar parameters are assumed to be fixed at this point, taking the values found

previously (with the exceptions described next). For determining C and N, the 5 re-

maining parameters are fixed while allowing the element being sought to vary. For

the ↵ elements, [↵/M] is varied holding the other parameters fixed and for all other

elements beyond CNO it is [M/H] which is varied. Again the grid of synthetic spectra,

this time reduced by fixing the other parameters, is searched using �

2 as a metric for

the best fit, and, so the abundance value of the element being sought. An overview of

the ASPCAP process can be seen in Figure 2.4.
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Figure 2.4: Flowchart showing the processes undertaken by ASPCAP. Taken from Garcı́a Pérez
et al. (2016, Figure 1)



Chapter 3

Stellar Parameter & Abundance

Pipeline

Many current surveys are using custom pipelines which have been developed at great

expense and this is likely to continue with those surveys being currently planned (see

Sections 2.1, 2.2 & 2.5 for examples). Generic spectral analysis pipelines are being de-

veloped which can either act as a comparison to other pipelines or could even remove

the need for their development in the first place (see Sections 2.3 & 2.4 for examples).

Any generic pipeline would need to be able to take spectra from a wide wavelength and

spectral resolution range, and would have to have flexibility in both the input models

and indices to be used in the analysis; it would also need to be able to handle stars

with a wide range of stellar parameters and elemental abundances. The methodology

used in EZ Ages is well suited to this purpose and an obvious extension of the pipeline

is the development of it to work with individual stellar spectra and not just integrated

spectra. Whilst it makes use of the Lick Indices, it could easily be used with other in-

dices if they could be shown to reliably trace parameters and abundances. This chapter

describes the development of just such a generic pipeline.

The new code is called STARPANDA (the STellAR Parameters AND Abundances

pipeline). There are several benefits to developing a new analysis pipeline in addition

24
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to ASPCAP and the others that either already exist or are being developed by differ-

ent groups. Firstly, this will provide an alternative path for processing APOGEE data

and allow the cross-checking of results being produced by ASPCAP; this has been

discussed and agreed with other members of the APOGEE project. Secondly, another

advantage of this method is that it should be much quicker than alternatives. Thirdly,

the method is physical, in that the values of stellar parameters and abundances of indi-

vidual elements are tied directly to the strength of spectral features which can be shown

to be sensitive to changes in those values. Finally, whilst the code is currently being de-

veloped to take advantage of the results of the APOGEE survey and its high-resolution

NIR spectra, it could in principle be extended to optical and near-UV wavelengths.

This method is, therefore, only limited by the presence, within the spectral region be-

ing considered, of spectral features that can be shown to be reliable indicators of stellar

parameters and elemental abundances, which can be probed by synthetic spectra from

model atmospheres.

The methodology used in EZ Ages is taken as a starting point for the STARPANDA

code. An overview of the process used by the code can be seen in Section 3.1. We use

the same model atmospheres and synthetic spectra that ASPCAP relies on (see section

2.5 for details), however these could be easily replaced by other sets of synthetic spec-

tra based on different line lists and/or model atmospheres. Most of the models used

in codes such as this are based on LTE calculations of stellar atmospheres as the com-

putational resources needed to perform NLTE stellar atmosphere calculations for large

model grids are still prohibitively expensive. However it is possible to take advan-

tage of a limited set of corrections to the models using NLTE calculations of hydrogen

lines; this could then be used to produce better values for Teff than can be produced

by using just Fe lines. Other corrections will also have to be done to the values of C

and N found by the code. This is because RG stars during this phase of their life cycles

undergo periods of convection in their photospheres which modify the abundances of

many elements, including C and N. Therefore, it is necessary to employ models of

stellar evolution in order to correct the observed abundance of elements and calculate
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the pre-mixed abundances, which can then be compared with the values calculated by

GCE models.

Once a working code has been developed it can be tested against ASPCAP and by

reference to literature values for stellar parameters and elemental abundances in well

studied reference stars. When it has reached a stage where it can reliably calculate

Teff , [Fe/H], log g, [C/Fe], [N/Fe], and [O/Fe], it can be released as a tool for the

whole astronomical community which will hopefully lead to the quicker and better

processing of spectroscopic data from the other current and upcoming large-scale re-

solved stellar surveys. Further development can continue to expand the number of

elemental abundances calculated by STARPANDA so that in the end it will be able to

match the output of the ASPCAP pipeline. Before this point it will need to be thor-

oughly tested and the results from a test set of APOGEE stars compared to the results,

for the same stars, from the ASPCAP pipeline.

Before delving into the details of what STARPANDA does and how it does it, it is

worth giving a quick description of the pipeline so that future sections can be placed

in context. STARPANDA is designed to be a fast, accurate spectroscopic analysis

tool, which works by comparing the equivalent width (EQW) measurements of lines

in spectra to those measured from synthetic spectra generated from model stellar at-

mospheres with known stellar parameters, CNO & elemental abundances. The lines

used are chosen for their sensitivity to the parameters of interest (i.e. Teff , [Fe/H], log

g, [C/Fe], [N/Fe], and [O/Fe], plus additional elemental abundances) and may be com-

binations of several lines, either as averages, weighted averages or ratios. The model

parameters form a multi-dimensional parameter space and a function is generated of

how the EQW values of the lines vary with parameter values. From this, the parame-

ter values of observed stars can be derived, evaluating these functions using the EQW

measured from the observed spectra, and the associated errors are derived by consid-

ering the errors on the measured EQW values. The code iterates its analysis until a

convergence point is reached. It then loops over all the observed stars.
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The user can specify many configuration options by setting variables in a text file, in-

cluding what type of analysis to run. Either Stellar Parameters & CNO Abundances,

or just CNO Abundances using imported Stellar Parameters; Elemental Abundances

can be calculated using either STARPANDA-derived parameters, or using imported

parameters.

The code requires no training, but users do have to identify suitable lines for analysis

(if the spectra being analysed are not taken from the APOGEE survey) and measure

them in both observed and synthetic spectra. The input and output files are in FITS

format, with the exception being a logfile, which is plain text.

In the following sections we present the structure of STARPANDA (Section 3.1), a

detailed description of the algorithms used (Section 3.2), a brief overview of the devel-

opment of the algorithms (Section 3.3) and tests used to show that the algorithms are

working satisfactorily (Section 3.4).

3.1 Structure of STARPANDA

In order to aid in the development of the code, it has been broken down into several

sections. This allows different functions to be isolated from each other and helps to

reduce the number of lines of code being worked on at any one time. All user-defined

options are placed in a single file, meaning that end-users only have to edit the contents

of a single file before running the code. A flowchart showing the overall layout of the

code blocks can be seen in Figure 3.1. In the following subsections, broken down by

Input, Main Code and Output, the basic functions of each of the different code blocks

are described.
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Figure 3.1: Overview flowchart of the STARPANDA code, showing the input files (Green for
user-editable & Blue for FITS formatted data files, the internal code blocks (Cream) and the
output files (Purple). The code is run from the command line by invoking “python starpac.py”

All of the code files are found in the main directory and, by default, there are 2 sub-

directories, Input and Output, which hold the input and output files. The code com-

prises 5 Python files and a plain text file:

• starpac.py - Main code - handles data input & output

• sp params.py - Derives stellar parameters & CNO abundances

• sp abunds.py - Derives elemental abundances

• sp plot.py - Plotting routines

• sp config.py - User editable configuration file
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• sp readme.txt - Readme text file

For a full description of how to install STARPANDA, its Python dependencies and

how to run the code, see Appendix A.

3.1.1 Input Files

There are several input files which must be present for the code to run. If any of these

are missing or are not correctly formatted then the code will fail to run successfully.

Details of how the data these files contain are used can be found in Section 3.2.

One is the STARPANDA file, sp config.py, which contains all the user configurable

options, including:

• Control options for what analysis code runs

• Control options for what plots the code produces

• Input file location & names

• Output file location & names

• Column names for stellar parameters, CNO & elemental abundances in model

data input files

• Column names for stellar parameters, CNO & elemental abundances indicator

lines

• Analysis order

• Column names for input parameters

• Initial surface gravity & CNO abundance values
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• Iteration counter maximum & tolerances for the output parameters

Details for the formatting of each entry in this file can be found in the readme file

(sp readme.txt), which is included in Appendix A.2. The values of the variables set

in this file are directly referenced by STARPANDA during runtime and any change to

variable names or the formatting of the data they contain will cause a fatal error.

Depending on what analysis options have been chosen, further input files may be re-

quired. While the number and contents of the files required will depend on the analysis

option, in all cases there must be a FITS formatted file containing the observational

data. This will need to have a column containing IDs for each target object and then

columns containing the measured EQWs and the associated errors for each line used

in the analysis. Additional columns may be present that are not used by STARPANDA

for analysis and will not affect the functioning of the code. Also, it is vital that the

column names used in files are consistent across input files (e.g. lines to be used in

deriving [C/M] must have exactly the same names in both observed data and model

data files).

If an analysis of stellar parameters and CNO abundances is requested, then a second

file must be present which contains information on the models against which the ob-

served data are compared. The model data file should have columns listing the stellar

parameters and CNO abundances of the model atmospheres and measurements of the

EQWs of lines from the synthetic spectra (generated from the model atmospheres).

The lines should match those present in the observed data file.

If an analysis of just CNO abundances is requested, then in addition to the files needed

for a full stellar parameter and CNO abundance analysis, an additional file is needed

which contains the IDs of the target objects and stellar parameter values for each.
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If an analysis of elemental abundances is requested, then in addition to the file con-

taining the observed EQWs, there should be a second model data file containing in-

formation similar to that which is needed for stellar parameter and/or CNO abundance

analysis. The difference between the two files is that in this case additional columns

should be present giving elemental abundances for each element of interest from the

model atmosphere and the measured EQWs from the synthetic spectra for each line to

be used in analysis. These should be given as floating point arrays in each case, e.g.

for element [X/M] there should be a column containing an array of abundances in the

model atmosphere and a column containing an array of EQW values from a line in the

synthetic spectra.

The code is able to use multiple lines from a spectrum to derive stellar parameter and/or

elemental abundance values, but only by taking an average of the values of all lines

specified in the sp config.py file. It does this when data are read in from the observed

and model data files before they are stored in working data structures prior to analysis.

This could also be done outside of the code by using other code or tools to combine

values from multiple columns before saving them as a new column. If the user requires

multiple lines to be combined in any other method than a straight average, such as a

weighted mean, then this would have to be done prior to running STARPANDA.

3.1.2 Output Files

The files produced by STARPANDA are dependent on the control options chosen by

the user and specified in the configuration file, sp config.py. A description of these

files and what they contain can been seen in Section 3.2 and subsections. However,

in all cases running STARPANDA will result in a logfile being produced, even if no

analysis options have been chosen.
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3.2 STARPANDA Algorithm

STARPANDA comprises 4 software blocks, with each block being responsible for

specific functions. A schematic representation of the working of the STARPANDA

algorithm can be seen in the Figures 3.2, 3.5, 3.11 & 3.13, and the details of how it

accomplishes this is described more fully in the following sections.

Figure 3.2: Flowchart of the STARPANDA code, showing the overall structure of the code
(Red denotes internal code processes, Green are decisions & analysis options, Blue are data
read-in processes, Cream are calls to analysis methods in other code blocks, and Purple are
output processes.

3.2.1 Starting Tasks

The code is started from the command line by the user invoking Python together with

the main code file, e.g. “python starpac.py” - if run from the directory containing the
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STARPANDA code files. Immediately upon launch, the code reads some of the vari-

ables set in sp config.py, notes the start time, and creates the logfile (with the filename

of splog output name.txt in the directory specified by output dataloc). The logfile at

this stage just records the current date.

The next step is to decide what analysis options have been selected by checking the

param analysis, cno analysis & abund analysis boolean variables in sp config.py.

param analysis is the derivation of stellar parameters and CNO abundances, while

cno analysis is the derivation of CNO abundances using stellar parameters imported

from elsewhere - both of these can be run either with or without iterating. abund analysis

then is elemental abundance analysis for all the elements listed in abund labels and

does not iterate - stellar parameters and CNO abundances are provided, either by a pre-

vious run of STARPANDA or from elsewhere. The options are checked in this order

and if True, then the specified analysis is run; if False, then for param analysis and

abund analysis, a note is made in the logfile to indicate that these options have not

been selected.

3.2.2 Parameter & CNO Abundance Analysis

If the user has selected param analysis, then the first action is to update the logfile to

indicate this and to record the lines being used for analysis (temp label, feh label,

logg label, cm label, nm label & om label) together with the filenames of the ob-

served and model data files, obs datafile and model datafile respectively. Next the

structures used to hold the Observational, Model and Output data are created and the

observation and model data are read in using astropy.io.fits1 methods (astropy; As-

tropy Collaboration et al., 2013). The reading in of the observational data requires that

the first column in the data file be the unique ID of the target object and from this the

number of objects to be analysed can be found. The EQW and EQW error values are
1http://docs.astropy.org/en/stable/io/fits/index.html
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read in using the values in the label variables to identify the columns of interest - each

column is multiplied by one over the number of labels for each parameter before being

added together and saved in the observational data structure. The model data can then

be read in, starting with the construction of sets of values for the stellar parameters

and CNO abundances used to generate the model atmospheres, before copying these

values into the model data structure and then, as with the observed data, the model

EQW values are, for each parameter, multiplied by 1 over the number of labels used

by that parameter before being summed and then saved into the model data structure.

Finally, in order to meet the requirements of an interpolation scheme used later, the

model data gets sorted in ascending order with the priority order being: Teff , [Fe/H],

log g, [O/Fe], [C/Fe] and [N/Fe] (so the first row contains the lowest value for each

parameter and the last row contains the highest for each).

Once the data are read into the working structures, the code then creates a function to

interpolate the model data. The model data, then, represents a 6 dimensional param-

eter space. Each node point within this parameter space is defined by the values of

the stellar parameters and CNO abundances used to create the synthetic spectra, and

additionally each node point has associated with it the EQW values of the lines be-

ing used to trace those 6 parameters. The whole structure forms a regularly gridded

hyperrectangle, with well-defined start and end points for each dimension and nodes

labelled with a 1 dimensional array of EQW values (even if multiple lines are speci-

fied for tracing a parameter, only the average EQW value is stored in the model data

structure, hence the labelling is always a 1d array). Thanks to the regular nature of the

parameter space being used, we can make use of a SciPy interpolation method called

RegularGridInterpolator2 [RGI].

RGI takes arrays of points representing positions in N dimensional parameter space,

together with arrays of values representing data at those positions. The method re-
2https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/

scipy.interpolate.RegularGridInterpolator.html
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quires that the position arrays form a regular grid with no missing points. This allows

it to save computational time in generating a function to describe the input data by

dispensing with the triangulation of input positions which would be necessary for non-

regularly structured data sets. RGI is only able to use nearest neighbour or linear

interpolation. Any attempt to evalute positions outside of the input data ranges can be

set to either return a pre-defined value or raise an error.

For STARPANDA the RGI is constructed such that any attempt to evaluate the EQW

values of a point outside of the defined parameter ranges will return a NaN value;

this was decided upon as using this interpolator to extrapolate values outside of model

parameter space would result in errors which are relatively large and hard to fully quan-

tify. Linear interpolation was chosen as we required some form of interpolation, which

cannot be satisified by nearest neighbour. For linear interpolation, a multi-dimensional

linear interpolation scheme (Weiser & Zarantonello, 1988) across the N dimensions of

the input data is utilised. For simplicity, imagine we are working with only 3 dimen-

sions (x, y, z) and that our data forms a regular lattice, while we wish to evaluate a

point p at some position within this parameter space. Starting from the nearest nodes

in each dimension, a single “cube” (in reality a 6-sided irregular polyhedron) is de-

fined surrounding the point p. Considering the x dimension first (though the order of

interpolations is actually unimportant), the value is interpolated along x at each of the

4 points defined by the variations of y, z. Next, interpolation is considered along the

y dimension between each pair of values created previously holding the z value fixed;

this creates 2 new points directly above and below p in z. Finally, interpolation is con-

sidered between the final 2 points, giving the value at point p. As can be seen from

this method, it is easily scaleable to an arbitrary number of dimensions as long as the

condition that the data form a regular grid is met.

Next, a check is made to see if 2 diagnostic plots are required, as specified by the

boolean variables full grid plot and comp plot in sp config.py. The first of these 2

plots generates an initial Teff -[Fe/H] grid (Figure 3.3) using the initial values of sur-
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face gravity and CNO abundance specified by the user and on to this plots all the

target objects. From this plot it is possible to get a rough (by eye) estimation on the

upper limit of the number of target objects for which stellar parameters and CNO abun-

dances can be derived. The actual number of successful derivations is usually lower

than this as it is possible that objects which are within parameter space ranges for Teff

and [Fe/H], will be out of the range covered by the models for the other parameters.

Additionally, it is also possible that during iteration objects will move out of model

parameter ranges. The second plot (Figure 3.4) then shows histograms of the EQW

values of the tracer lines for both the model and observed data, which provides another

way of checking the compatibility of the model measurements to interpolate the ob-

served data.

Figure 3.3: An example of an initial Teff -[Fe/H] grid produced, assuming initial values for the
other parameters (shown in the sub-title), by Find Params showing the position of all target
objects (green dots) in model parameter space. The quasi-vertical lines (dashed grey) are lines
of constant [Fe/H], with values shown above the grid; the quasi-horizontal lins (solid red) are
lines of constant Teff , with values shown to the right of the grid.
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Figure 3.4: An example of the comparison of indices used to evaluate the suitablility of specific
indices to trace stellar parameters & CNO abundances. EQW values of indices are compared
between the observed & model data (top and bottom respectively). Here the indices being used
are: ‘CO 15997’, ‘CO 15582’, ‘CO 15982’ & ‘CO 16620’; these are averaged and then used
to derive [C/M].

The code then loops over all target objects and calls the Find Params method in

sp params.py passing the observed, model and output data structures together with

the interpolated model function, logfile and a house-keeping iteration counter. The

overall structure of the Find Params algorithm can be seen in Figure 3.5.

The Find Params method starts by saving the ID of the object being analysed to the

output data structure. It then reads initial values for log g, [C/Fe], [N/Fe], and [O/Fe]

from sp config.py (model init logg, model init cm, model init nm & model init om

respectively). With those values it can then start deriving the stellar parameters and

CNO abundances; if iteration has been selected, by setting a non-zero value, in the

variable iter max, then a loop is started that will continue until one of the following
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Figure 3.5: Flowchart of the STARPANDA code, showing how the Find Params method (part
of sp params.py) works. Objects coloured cream are calls from/to other code blocks, red rep-
resents internal code processes, green shows decision points and purple relates to output files.

criteria has been met:

• Convergence - all parameters reach a point during iteration where they change

by less than specified values between iterations

• The iteration limit is reached

• Divergence - one of the parameters moves outside of model parameter space

For STARPANDA, convergence of all 6 parameters is determined by the difference be-

tween the current iteration and the previous iteration, with convergence being reached

if these values are less than those specified by the user in the variables tol temp,

tol feh, tol logg, tol cm, tol nm and tol om. The iteration limit, specified by a non-

zero value for iter max, prevents issues where the code could become stuck in an
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infinite loop where the parameter values fail to either converge or diverge (the most

often observed example being when the code bounces between 2 values of one or sev-

eral parameters which have differences greater than the convergence tolerances set by

the user; in this case, the logfile is updated to indicate that the analysis failed to con-

verge within the iteration limit. Divergence, then, is the case where a parameter moves

outside of the range of values covered by the model data; in these cases, rather than

either extrapolating values or discarding the “bad” value and returning to a previous

“good” value to try again, we simply end the analysis and indicate in the logfile that a

parameter moved out-of-bounds and which parameter it was.

Effective temperature and metallicity are always the first parameters to be derived and

are done together by interpolating the target on a 2 dimensional model Teff -[Fe/H]

grid (e.g. Figure 3.6). If this is the first iteration then the initial values of log g, [C/Fe],

[N/Fe], and [O/Fe] are used to generate the Teff -[Fe/H] grid; in subsequent iterations,

values derived by STARPANDA are used. These fixed values are then used to evaluate

the model RGI function created in starpac.py and evaluate the EQW of the Teff and

[Fe/H] lines for all the Teff and [Fe/H] value combinations. This forms a 2 dimen-

sional grid, which, using the EQW values of the target object for the same lines allows

the Teff and [Fe/H] values to be derived. This second interpolation is done using the

SciPy interpolation scheme griddata3.

The griddata method takes arrays of positions in N dimensions together with an ar-

ray of values associated with those positions and from these it creates a function. The

input positions do not need to form a regular grid and can be randomly distributed,

though each point in the parameter space can only be represented by a single value.

The method is able to utilise different kinds of interpolation, including nearest neigh-

bour, linear and cubic (though the latter is only available for 1d or 2d data sets) and

any attempt to evaluate the function outside of the range of input positions will either
3https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/

scipy.interpolate.griddata.html
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return a NaN or pre-defined floating-point value (no extrapolation is possible).

For STARPANDA we make use of the 2d cubic interpolation option and specify that

any attempt to evaluate out-of-bounds points return a NaN value. In the 2d case, where

the positions are represented by the coordinates x and y, with values z at those po-

sitions, griddata would create a function of the form z = f(x, y). The first task in

generating this function is to triangulate the positions of the input data (this is done

using Qhull4) on to a 2d surface of Clough-Tocher triangles (Clough & Tocher, 1965),

which are then further subdiveded into 3 sub-triangles. Each Clough-Tocher triangle

is defined by 12 parameters, including the positions of the vertices and the gradients

of each sub-triangle. A cubic interpolating Bezier polynomial is fitted to each sub-

triangle. The final 2d surface is smooth and minimises changes of gradients between

triangles. While griddata is a slower interpolation scheme than some others (due to

its use of triangulation of input data to create the function), it is still relatively fast and

it does enable a non-linear interpolation of the data. In our case the increase in time

needed for generating the function and evaluating it is not significant, so it is worth

using given the increased precision gained in Teff and [Fe/H] when using a cubic in-

terpolation scheme.

A check is then made to see if debugging plots are required (as specified by the boolean

variable debug plots), and if so, a Teff -[Fe/H] grid showing the target object, the de-

rived Teff and [Fe/H] values, together with the current assumed values of log g, [C/Fe],

[N/Fe], and [O/Fe] is produced; if iteration is specified, plots will be produced each

time new Teff and [Fe/H] values are derived. Finally, a check is made to see if the de-

rived values are out-of-bounds; if so, analysis ends, otherwise the analysis continues.

After Teff and [Fe/H], the order of derivation is flexible and determined by the user

through the sp order string variable. The permitted values in this variable are: ‘log g’,

‘C’, ‘O’ & ‘N’. The code loops over the entries and runs each derivation as specified.
4http://www.qhull.org/
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Figure 3.6: An example of a Teff -[Fe/H] grid showing the position of a target object in pa-
rameter space, with specific values of the other parameters. The title shows the ID of the star
being analysed and the number of the current iteration. The sub-title shows the values for Teff

and [Fe/H] interpolated from this plot, together with the values of the other parameter from the
previous iteration; the values shown in parentheses are those of the nearest model node values
in each dimension. The quasi-vertical lines (grey) are lines of constant [Fe/H], with values
shown above the grid and the quasi-horizontal lins (red) are lines of constant Teff , with values
shown to the right of the grid; solid lines show the interpolated grid derived from the values
found in the previous iteration, while the dashed lines show the grid for the nearest node. The
star being analysed is show as a green star, with error bars within the grid.

The details of the derivation for the remaining parameters are essentially the same in

each case with just the actual numbers in variables/arrays changing, so assuming log g

is the first parameter to be derived the following description can be re-read replacing

that parameter with [C/Fe], [N/Fe] and [O/Fe] as required. The model RGI function is

evaluated using the initial/previously derived parameters for all but log g, giving a set

of model log g values and the EQW of the line(s) tracing that parameter at those values.

This is then interpolated further using the SciPy interpolation scheme interp1d5.
5https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/

scipy.interpolate.interp1d.html
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The interp1d method takes two arrays of x & y coordinates and creates a function of

the form y = f(x) to describe the data. The kind of interpolation performed by the

scheme is flexible and can be a nearest neighbour interpolation (e.g. a step function

between points), a simple point-to-point linear interpolation, or a spline interpolation

of either first, second or third order (i.e. slinear, quadratic and cubic respectively).

Through this method, users are also able to specify how to handle attempts to evaluate

points outside of the input data ranges, with the options being either to return a pre-

defined value (such as an integer or NaN), raise an error or extrapolate to the new point

(this only works when using nearest neighbour or linear interpolation).

The kind of interpolation chosen for this work is a cubic spline and any attempt to

evaluate a value out-of-bounds returns a NaN value. The cubic spline is a series of

piecewise third order polynomials (of the form y = ax

3 + bx

2 + cx + d) which are

forced to go through all input data points. The resultant function is smooth, easy to

evaluate and bounded by the range of the input data. Evaluating this function at the

EQW of the target then gives a new value for log g.

Next a check, again debug plots, is made to see if a plot of the interpolated variation

in model EQW value with log g is required. Finally, the value is checked to ensure that

it is within model parameter ranges before any further analysis is undertaken. The new

value for log g can then be used in future parameter derivations, both in this and the

next iteration. The code then continues on to the next parameter specified in sp order.

Figure 3.7 shows an example of the plot that is generated for debugging log g or CNO

abundances. It shows the interpolated variation of the EQW of the indicator line(s)

against the parameter value and in addition to the interpolated curve, the target EQW

value is plotted as a horizontal line together with the nearest node curve line (as a check

of the interpolation’s accuracy).
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Figure 3.7: An example of an interpolated [O/M] curve showing the position of a target object
in parameter space, with specific values of the other parameters. The title shows the ID of
the star being analysed and the number of the current iteration. The sub-title shows the value
for [O/M] interpolated from this plot, together with the values of the other parameter from the
previous iteration; the values shown in parentheses are those of the nearest model node values
in each dimension. The solid blue line shows the interpolated variation of [O/M] with EQW
of the indices being used at the values of the parameters found in the previous iteration; the
dashed blue line is the same relationship at the nearest node point. The horizontal green line is
the measured EQW for the star being analysed and the yellow shaded regions denotes the error
range on this measurement.

Once values for all 6 parameters have been obtained, and if they are all in-bounds, the

code then checks to see what iteration it is on and what value for the maximum number

of iterations has been specified by the user in iter max. If this is the first iteration and

no iterations are required or if this iteration is the same as the number set in iter max,

then again the analysis ends here and flags are set to either indicate the iteration was not

required or that analysis failed to converge within the iteration limit. If this is the first

iteration of n, then the analysis returns to derive new values using those found in this

iteration. If, however, this is not the first iteration of n, then before returning to make
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another derivation of the parameters, a check is made to see if the values have con-

verged according to the limits set by the user (in tol temp, tol feh, tol logg, tol cm,

tol nm and tol om); if the convergence criteria have been met then analysis ends.

Regardless of how the analysis ends (convergence, divergence, etc), the code then

checks if a set of final analysis plots (e.g. Figures 3.6 & 3.7) are required by testing the

boolean variable final plots. These are the same plots that debug plots produces, but

this just does the last iteration of analysis, so producing only 5 plots per target object.

Next a check is made to see what the outcome of analysis was. If the result was di-

vergence, then null values (currently set at –999.99) are saved into the output structure

for parameter and parameter error values, parameter and parameter error flags are set

to show that values are untrustworthy, the number of iterations completed, and the

STAR FLAG flag is set to show which parameter moved out-of-bounds first. If the

result was that the iteration limit was reached before convergence, then, the same val-

ues are set in the output structure, with the exception of the STAR FLAG flag, which

is now set to show a failure to converge within the iteration limit. If the result was

that analysis was successful, then the converged parameter values are saved to the out-

put structure together with flags to show that they are considered trustworthy, and the

STAR FLAG flag is set to show successful analysis; the code can then proceed to de-

rive error values for each parameter.

Errors are derived in the same manner as the actual parameter values. The order of

derivation is not important and is fixed as, Teff -[Fe/H], log g, [C/Fe], [N/Fe], and

[O/Fe]. Currently the errors are not treated as being dependent on anything other than

the errors in the measured observed EQW values of the line(s) being used for each pa-

rameter; see Chapter 6 for a discussion on how this may be improved in future. Since

the relationship between a parameter and EQW of the line(s) used is rarely linear, it is

necessary to consider the positive and negative error on the EQW separately and since

a target may fall on the edge of model parameter ranges in any of the 6 parameters, it
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is possible that while one of the errors is in-bounds, the other may be out-of-bounds.

Therefore, the positive parameter error is derived by adding the EQW error to the

EQW value and then re-deriving a value for that parameter (using the same methods

as described above) with the new EQW value; the negative parameter error is derived

by subtracting the EQW error from the EQW value. After each pair of parameter er-

ror values are derived, they are checked to see if they are in-bounds or out-of-bounds

and a flag is set to indicate the reliability of the pair. This continues for all 6 parameters.

The final step undertaken by sp params.py is to update the logfile with the results of

the analysis for this target. Regardless of the success or failure of the analysis attempt,

the following details are always saved to the logfile:

• STAR ID

• STAR EQW - The EQW values used for each of the 6 parameters

• Teff - An array of all Teff values derived at each iteration, plus the final Teff

error values for both directions

• [Fe/H] - An array of all [Fe/H] values derived at each iteration, plus the final

[Fe/H] error values for both directions

• log (g) - An array of all log g values derived at each iteration, plus the final log

g error values for both directions

• [C/M] - An array of all [C/M] values derived at each iteration, plus the final

[C/M] error values for both directions

• [N/M] - An array of all [N/M] values derived at each iteration, plus the final

[N/M] error values for both directions

• [O/M] - An array of all [O/M] values derived at each iteration, plus the final

[O/M] error values for both directions
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Then, depending on the success of the analysis, a note is made to indicate either that

the analysis was completed successfully, that analysis failed due to the iteration limit

being reached before convergence or that one of the parameter moved out-of-bounds

and at which iteration that occurred (the actual parameter which caused the failure can

be seen by looking at the parameter array values for the first appearance of a NaN

value). Once this has been done, control passes back to starpac.py to either begin anal-

ysis of the next target object or if that was the last/only object, then to start outputting

the analysis results.

Once analysis of all input objects has been completed, the task of writing out the results

can begin. First, the logfile is updated to show that analysis was completed, how long

it took and how many target objects were successfully analysed, how many failed to

converge and how many failed. Next the output FITS table is constructed using the

astropy.table method and the following columns are created:

• STAR ID - The ID of the target object

• STAR FLAG - The flag indicating the analysis result

• ITER FLAG - The flag indicating the number of iterations required

• [PARAM] - The final derived parameter value or a null value

• [PARAM] FLAG - The flag indicating the trustworthiness of the parameter value

• [PARAM] ERR NEG - The parameter error value with the EQW error sub-

tracted

• [PARAM] ERR POS - The parameter error value with the EQW error added

• [PARAM] ERR FLAG - The flag indicating the trustworthiness of the parameter

error values

The last 5 columns are repeated for each of the 6 parameters (TEMP, Fe H, log g, O M,

C M & N M). The file is then written out with the filename spdata output name params.fits.
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An example of the table can be seen in Figure 3.8.

Figure 3.8: An example of a FITS file generated when using Find Params from the
STARPANDA code showing some of the values (given as separate columns, e.g. Success
flag, Iteration flag, Teff value, Teff success flag, Teff errors, etc) derived for each star (given
as separate rows and identified by the STAR ID).

Finally, a check is made to see if results histograms are required, using the boolean

variable histo plot. These 2 plots (Figures 3.9 & 3.10) show, firstly, the number of

successfully analysis cases, failures due to divergence and failures due to either Teff -

[Fe/H], log g, [C/Fe], [N/Fe] or [O/Fe] values moving out-of-bounds; secondly, the

number of iterations required in all cases (including divergence and out-of-bounds fail-

ures).

3.2.3 CNO Abundance Analysis

If CNO abundance analysis has been selected (cno analysis), then a check is imme-

diately made to see if full param analysis has just been made, and if so, the CNO

analysis will be skipped, with a note being made in the logfile to indicate this. This

is to prevent accidental running of both analyses. Assuming that this is not the case,

then the code updates the logfile with details of this analysis run, including the labels

of the lines to be used in analysis and the filenames of the observed, model and stellar

parameter data files (cm label, nm label, om label, obs datafile, model datafile and

param datafile respectively). Data structures are then created to hold the observed,

model and output data. The stellar parameters are copied from the param datafile

directly to the output structure; thus they are available to be used for further analysis

together with the CNO abundances derived during this analysis. The observational
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Figure 3.9: An example of an Analysis Flag Count histogram generated when using
Find Params from the STARPANDA code. This shows the number of successful code com-
pletions, the number of times analysis failed due to divergence and the number of times that
analysis failed due to one of the parameters being sought moving out of bound (represented by
the bars labelled with those parameters).

and model data are read in exactly as described previously, with the addition this

time of stellar parameters being read in from a separate file, param datafile, where

the string variables io temp label, io feh label and io logg label specify the column

names containing the parameter values.

Once the data have been read in, the SciPy method RegularGridInterpolator is again

used to construct a 6 dimensional function describing the model data, though this time

each node point in parameter space is only labelled with the 3 EQW values for the

CNO abundance tracers. The code then loops over all target objects in the observed

data file and calls the Find CNO method in sp params.py. The Find CNO method is

identical to the Find Params method, with the exception of the removal of code de-
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Figure 3.10: An example of an Iteration Flag Counts histogram generated when using
Find Params from the STARPANDA code.This shows the number of iterations completed by
the code during each analysis, regardless of whether analysis was successful or failed, either
due to lack of convergence or by a paramter moving out of bounds.

signed to derive the parameter and error values for the stellar parameters. The overall

structure of the Find CNO algorithm can be seen in Figure 3.11.

The code iterates, if required over the CNO abundance, in the order specified in cno order

and evaluates the interpolated model data to derive CNO abundances. Then if those

values are in-bounds, error values are derived for both positive and negative EQW er-

ror cases. Finally the details are written to the logfile, before control passes back to

starpac.py to either start analysis of a new target object or write out the results. The

logfile is again updated to indicate the analysis was completed, how long it took and

how many target objects were successfully analysed and how many failed. The FITS

output table is similar to that generated at the end of Find Params, but this time has

slightly fewer columns, with the last 5 only being repeated for the 3 CNO abundances.
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Figure 3.11: Flowchart of the STARPANDA code, showing how the Find CNO method (part
of sp params.py) works. Objects coloured cream are calls from/to other code blocks, red rep-
resents internal code processes, green shows decision points and purple relates to output files.

An example of this table can be seen in figure 3.12.

• STAR ID - The ID of the target object

• STAR FLAG - The flag indicating the analysis result

• ITER FLAG - The flag indicating the number of iterations required

• TEMP - Teff copied from the input stellar parameter file

• Fe H - [Fe/H] copied from the input stellar parameter file

• log (g) - log g copied from the input stellar parameter file

• [CNO] - The final derived CNO abundance value or a null value
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• [CNO] FLAG - The flag indicating the trustworthiness of the CNO abundance

value

• [CNO] ERR NEG - The CNO abundance error value with the EQW error sub-

tracted

• [CNO] ERR POS - The CNO abundance error value with the EQW error added

• [CNO] ERR FLAG - The flag indicating the trustworthiness of the CNO abun-

dance error values

Figure 3.12: An example of a FITS file generated when using Find CNO from the
STARPANDA code showing some of the values (given as separate columns, e.g. Success
flag, Iteration flag, imported Teff value, imported [Fe/H] value, imported log g value, [O/M]
value, [O/M] success flag, [O/M] errors, etc) derived for each star (given as separate rows and
identified by the STAR ID).

Finally, histo plot is checked to see if results histograms are required. The results his-

togram will be essentially the same as for the Find Params method (see Figures 3.9

& 3.10), but there will be no entries in the columns indicating that the Teff -[Fe/H] or

log g values moved out-of-bounds since these are not analysed here.

3.2.4 Elemental Abundance Analysis

If elemental abundance analysis has been selected via abund analysis, then the logfile

is updated to indicate this and includes a list of the elements to be analysed (model abund labels),

the observed data file (obs datafile), the abundances model data file (abunds datafile),

and the stellar parameter & CNO abundances data file, which if parameter analysis
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has been run will be spdata output name params.fits, and if not, will be param-

cno datafile. The structures for the observed, model and output data are created and

the observed data are read in exactly the same manner as for other analyses. The han-

dling of the values for stellar parameters and CNO abundances of the target objects

will depend on whether parameter analysis has been carried out already this run and

if so, the values are used directly from the output structure used then; if parameter

analysis has not been carried out, then this information will be read in from an input

file and copied to the abundance output structure, so that this information is preserved

for future further analysis.

In order to minimise the workload done by the code, each elemental abundance is

derived separately, for each target object. The code loops over the elements to be

analysed and reads in the model data to be used in deriving the elemental abundance

values and errors for each object. The data file containing information on elemental

abundances is treated a little differently - now, together with the values for the stellar

parameters and CNO abundances used in the model atmospheres, it also has values

of abundances for the elements to be analysed and values of the EQW measurements

for the lines being used to trace the elements. These last 2 sets of values are saved as

columns of arrays, e.g. the column containing the EQW measurements will have an

n-element array for each combination of stellar parameter and CNO abundance values,

where n is the number of abundances for that element for which synthetic spectra were

generated and EQWs measured.

Again, the model data are interpolated using RGI, but this time it is a 7-dimensional

parameter space with each node labelled with a single value describing the EQW of the

line(s) being used to trace the elemental abundance. Values outside of this parameter

space are set to deliver NaN values when evaluated. The code then loops over all tar-

gets in the input data and calls the method Find Abunds in sp abunds.py to derive the

abundances and errors for each target object. The overall structure of the Find Abunds

algorithm can be seen in Figure 3.13.
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Figure 3.13: Flowchart of the STARPANDA code, showing how the Find Abunds method
(part of sp abunds.py) works. Objects coloured cream are calls from/to other code blocks, red
represents internal code processes, green shows decision points and purple relates to output
files.

The Find Abunds method has been adapted from the algorithm used in determining

the values and errors of log g, [C/M], [N/M] and [O/M]. In order to future-proof the

code as much as possible, the method is written in such a way that it can be used for

any element that has lines present in the spectra, tracers reliable enough to be used in

deriving the abundance values and model data available to do the derivation.

The first step is to evaluate the RGI function, using the stellar parameters and CNO

abundance values supplied, to derive the EQW values of the tracer line at the model

elemental abundance values. These are then interpolated, again using the method in-

terp1d, with all values outside of the model parameter ranges set to return NaN values.
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This is then evaluated at the measured EQW values to give the elemental abundance

value. The result is then tested to see if it is valid (i.e. the result does not contain a NaN

value) and the value is saved to the output structure together with the appropriate flag

value. If the abundance value is in-bounds, then the error values can be derived next,

using the same method as previously. Abundance errors are derived asymmetrically

with the error on the measured EQW values being first added to, then subtracted from

the value before re-evaluating the interp1d function; the error values are tested to see

if they are in-bounds and then saved, with appropriate flags to the output structure.

Since we have generated model spectra with varying elemental abundances, stellar pa-

rameters and CNO abundances, then the derived elemental abundance is dependent

solely on the amount of element present, and not on the values the stellar parameters

or CNO abundances. Thus, no iteration is required at this stage and so the values de-

rived above are taken to be the final values. Also, in order to prevent the logfile from

becoming too large, no notes are made to the logfile during this analysis. Control then

passed back to starpac.py to either continue on to the next target object, move to the

next element to be analysed, or write out the results to file.

The logfile is then updated to show that elemental abundance analysis has been com-

pleted, the runtime duration and how many objects were analysed. Finally, the FITS

output table is constructed (in the same manner as for previous options), this time with

the stellar parameters and CNO abundance copied directly from the input file, and with

the last 5 columns being repeated for each element included in model abund labels.

An example of the output table can be seen in figure 3.14.

• STAR ID - The ID of the target object

• TEMP - Teff copied from the input stellar parameter file

• Fe H - [Fe/H] copied from the input stellar parameter file
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• log (g) - log g copied from the input stellar parameter file

• C M - [C/M] copied from the input stellar parameter file

• N M - [N/M] copied from the input stellar parameter file

• O M - [O/M] copied from the input stellar parameter file

• [ABUND] - The final derived elemental abundance value or a null value

• [ABUND] FLAG - The flag indicating the trustworthiness of the elemental abun-

dance value

• [ABUND] ERR NEG - The elemental abundance error value with the EQW er-

ror subtracted

• [ABUND] ERR POS - The elemental abundance error value with the EQW er-

ror added

• [ABUND] ERR FLAG - The flag indicating the trustworthiness of the elemental

abundance error values

Figure 3.14: An example of a FITS file generated when using Find Abunds from the
STARPANDA code showing some of the values (given as separate columns, e.g. Success flag,
Iteration flag, imported Teff , [Fe/H], log g, [O/M], [C/M], & [N/M] values, [Al/Fe] value,
[Al/Fe] success flag and [Al/Fe] errors) derived for each star (given as separate rows and iden-
tified by the STAR ID).

3.2.5 Final Tasks

Once all selected analysis options have been successfully completed, the code calcu-

lates the total runtime of those options and makes a note in the logfile to indicate that
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analysis has finished, how long it took and how many spectra were analysed. The code

then ends.

The contents of the logfile will depend on what analysis has been run, but figure 3.15

shows an example of a logfile generated during a run where stellar parameters and

CNO abundances have been derived for a single target object. The analysis was suc-

cessful after 7 iterations, though some error values could not be calculated due to them

being out-of-bounds of model parameter ranges.

Figure 3.15: An example of a logfile output from the STARPANDA code where only 1 tar-
get object is being analysed for stellar parameters & CNO abundances, with iteration. The
first section shows the date; the second section shows the indices being used for deriving each
parameter and the input filenames; the third section shows the analysis results for each ob-
ject, including its name, the EQW values from observed spectra, the parameter values at each
iteration (in square brackets), the errors on the final parameter values (in parentheses), a suc-
cess/failure notice and the number iterations needed; the final section shows the results of the
analysis overall, including the numbers of objects analysed, details of how many were success-
ful/failed, and how long analysis took and the code ran for.

3.2.6 Remarks

As mentioned at several points, the code checks if debug plots is set and if so produces

a diagnostic plot. If this is set and if iteration is also specified, then it is possible for

the code to generate a very large number of plots. At the minimum, assuming no pa-
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rameter value is out-of-bounds, it would generate 5 plots per target object if there is no

iteration. So, for a data set like APOGEE with ⇠106 objects and assuming an average

of 5 iterations to reach convergence (this will be shown later to be a good assumption),

the code would generate a not insignificant number of plots! In addition, it takes non-

zero time to generate each plot and so the code will be significantly slowed by having

this option selected when running on anything other than a small set of targets. This

option should be used with care.

Starting values for log g and CNO abundances should be chosen such that they are

within model parameter ranges and not either out-of-bounds (which will cause a code

error) or right at the edges of the model parameter space. The value specified for the

maximum number of iterations to allow in the search for convergence should be set at

a reasonable limit. As mentioned in the previous paragraph, it was found during test-

ing that the mode of an iteration histogram was 5, though convergence was still seen,

though infrequently, at iteration numbers greater than 10.

The analysis order would be unimportant if all tracers used in deriving parameter val-

ues were independent of everything other than the parameter they are tracing. However

this is not the case for all of indices that have been adopted during this work and care

should be taken to ensure that parameters are analysed in an appropriate order, e.g. if

C indices are being used to trace [C/M] and CN indices for [N/M], then it is obvious

that C should precede N in the analysis order.
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3.3 Development of STARPANDA

Interpolating Model Data

At its core, STARPANDA operates by first interpolating the model data and generating

a function to describe it, and then evaluating this for the target object at the measured

EQW for a specific line (or an average of a group of lines). When running analysis for

stellar parameters and/or CNO abundances, the model data will be 6-dimensional in

nature and each node is labelled with the EQW values of the lines chosen as indicators

for each of the 6/3 parameters; for elemental abundance analysis, the model data now

becomes 7-dimensional, but with only a single value labelling each node. While the

code is designed such that the interpolation of the model data need only happen once,

the evaluation will be repeated once per parameter, per iteration.

Therefore, the choice of interpolation methods is of vital importance to the successful

running of the code. The methods used must be reliable, accurate and quick - this last

part is doubly important for the evaluation of the function which will happen over and

over again during analysis. During the development of the code, several methods were

tried and discarded in the search for a suitable interpolation scheme. Described below

are some of these other methods and reasons for their eventual rejection.

Initially, the algorithm was designed more along the lines of EZ AGES (see Section

2.4) - it would take a 2-dimensional grid of Teff and [Fe/H], and check each box to

find the one containing the observed point (defined by the EQW measurements of the

Teff - and [Fe/H]-sensitive lines). From this it would then interpolate the position of

the point within the box and therefore derive Teff and [Fe/H]. Errors could then be

obtained by adding and subtracting the EQW errors from the central one, searching

the grid for the box which contains the point and interpolating new values for Teff and

[Fe/H]. This would be repeated for a grid of Teff and log g, and so on for other param-

eters. However, it quickly became apparent that this method suffered from a number
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of problems. Firstly, identifying if a point is inside a box, while apparently a simple

task, is not so straightforward computationally, especially given some of the irregular

shaped boxes that are found within the model grids used in this work. EZ AGES works

using the equation of a straight line to draw boundary lines between nodes to form the

box surrounding the point, then derives the horizontal and vertical transects and if the

point had a value between the vertical and horizontal transect values, then it was inside

the box. However, this does not generalise for a arbitrary 4-sided polygon and there

are many examples where a point can be inside a box, but fail this check. After a con-

siderable period of trial and error, a possible solution was found, whereby you can test

the membership of a point in a box, by considering the number of times a vertical or

horizontal line drawn from the point crosses a vertical and horizontal boundary line.

Take a line (vertical or horizontal) from a point at the centre, and in order to leave the

square it would have to cross a boundary line once in either direction. If the point is

outside the box, then it would cross either 0 or 2 boundary lines, depending on its offset

in the other plane. Generalising this, if a point is inside an arbitrarily-shaped polygon,

then it would have to cross boundary lines an odd number of times in both planes, oth-

erwise it would be outside the polygon. However, this solution is not straight forward

to implement and alternate solutions were still being sought. At this stage, we dealt

with only a 2-dimensional parameter space (the other parameters had not being imple-

mented yet as we had no tracers for these) and there were possible solutions utilising

SciPy interpolation schemes. Several of these were investigated and tested, and grid-

data was found to offer a faster and more easily implemented solution to this problem.

After lines suitable for deriving log g were identified, the plan for using the same

method for this parameter as for Teff and [Fe/H] was revisited and it was thought that

a better method for deriving a log g value would be to use the, now 3-dimensional

model data, to interpolate the variation in EQW values for the log g line(s) as a func-

tion of the model log g parameter value. Investigating interpolation schemes for n-

dimensional data (to allow for future expansion of the model data set), several possible
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schemes were identified, Rbf6 (Radial Basis Functions), RegularGridInterpolator7

[RGI], interpn8 and griddata9. RegularGridInterpolator was chosen as it appeared

to offer the fastest method, both in terms of implementation and in terms of the run-

time of the code; it also offered expandability, allowing us to use this for the 6 and 7

dimensions that we would end up with. In comparison, while the Rbf method could

match the speed of RGI, this was only when using a linear interpolation scheme and

higher order interpolation schemes were significantly slower on the hardware being

used for development and testing of the code; griddata, even when considering linear

interpolation, was too slow beyond the 2-dimensional case of the Teff -[Fe/H] grids to

consider. After deciding to use RGI in deriving log g, it was realised that this method

could also be used to generate a Teff -[Fe/H] grid for further interpolation by griddata.

With the implementation of the new interpolation scheme, we are now able to evalu-

ate the 6/7-dimensional model data, holding 5/6 parameters fixed and derive how the

EQW values of the remaining parameter would vary as a function of the parameter

value. This would give us a two dimensional array, that would need to be interpolated

and then evaluated at the measured EQW of the target object. SciPy offers many op-

tions for univariate interpolation; interp1d10 appeared to offer the simplest solution

and in testing worked well.

6https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/
scipy.interpolate.Rbf.html#scipy.interpolate.Rbf

7https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/
scipy.interpolate.RegularGridInterpolator.html

8https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/
scipy.interpolate.interpn.html#scipy.interpolate.interpn

9https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/
scipy.interpolate.griddata.html#scipy.interpolate.griddata

10https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/
scipy.interpolate.interp1d.html#scipy.interpolate.interp1d
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Diagnostic Tools

During development of the code, it was necessary to test the output of the many func-

tions and methods used to ensure that they are returning reliable values and working

appropriately. Therefore, it was necessary to develop procedures to assist with under-

standing what was happening during each stage of analysis and iteration. It is also

useful to have access to interim parameter values, but not at the expense of cluttering

the FITS output files. Therefore, it seemed reasonable to have the code produce a ‘log-

file’ containing additional information that could be checked by eye or by script (see

Figure 3.15). This would provide a way of monitoring convergence or divergence of

parameters, give details on the runtime of the various stages of the code, ensure that

the read in and write out of data are being done correctly and provide a record of the

details (e.g. the date, input files, etc) of the analysis run.

The logfile, by itself, is a useful addition to the FITS output data files, but it does not

provide a way to ensure that the interpolation and evaluation of the model data are ac-

curate. To this end a more visual set of tools would be required and plots of the model

data together with the observed data seemed appropriate. To that end, plots would be

needed for each parameter (or pair in the case of Teff and [Fe/H]) for each iteration and

it would be useful if they could show the interpolated model data, the observed EQW

of the line(s) being used for this parameter, and the nearest model data node points

(see Figures 3.6 & 3.7 for examples); the first two points allow a visual check that the

derived parameter value does appear to be correct, while the latter point allow a quick

and dirty check that the interpolated model data are ‘reasonable’. A final addition to

these plots can be made in cases where the analysis reaches successful convergence

and this is the addition of the error values from the observed EQW data and the de-

rived error values, once again allowing a visual check of these values.

Another way of checking if lines are a good tracer of a parameter is to compare the

EQW values in the observed and model data in bulk, rather than individually (which
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is effectively what STARPANDA does). To this end, histograms can be plotted with

the values from both data sets and the results compared. To be useful as a tracer, the

observed EQW values must occupy the range, or some subset thereof, of model EQW

values for that index or average of several indices, assuming, of course, that the syn-

thetic spectra have been generated using model parameters which cover the expected

range of the stars being observed.

Finally, a useful addition to the above are the results histograms (see Figures 3.9 &

3.10), which allow us to see the overall success and failure cases of an entire analysis

run. The ‘Analysis Flag Counts’ histogram can be useful in identifying if analysis is

failing because of divergence due to a particular parameter, which could be the result

of a problem with the indices being used to trace that parameter. The ‘Iteration Flag

Counts’ shows how many iterations the code has run through before either succeeding

or failing, or how many reach the iteration limit without either succeeding or failing.

The above diagnostic tools can be used to study the effects of varying the indices used

to trace parameters, the effect of altering the initial parameter values for log g, [C/M],

[N/M] and [O/M], the effect of tightening/relaxing the convergence values, etc. It

is worth mentioning again (see Section 3.2.6), that while these plots are useful, they

should be switched on with caution, as if used during a large, iterating data analysis

run, then the number of plots that can be produced will be extremely large, causing the

code to slow down drastically and filling the Output directory with many files.

3.4 Testing STARPANDA

In this section tests highlighting the suitability and reliability of the algorithms used

in the STARPANDA code are discussed. Firstly, tests of the interpolation schemes

are shown - interpolation methods are central to the algorithms behind STARPANDA
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and ensuring their suitability to this work is of vital importance. So, the interpolation

methods are tested (RegularGridInterpolation and interp1d), in Sections 3.4.1 and

3.4.2 respectively.

Finally, the pipeline as a whole is tested using a set of mock observations (Section

3.4.3). Since one of the design goals of this work has been to develop a pipeline which

is both fast and capable of running on comparatively low-powered computing hard-

ware (when compared with other pipelines), it is necessary to run some general tests

showing the overall working of the code and its speed. The results of these tests and

details of the hardware on which the code has been run is included here also.

3.4.1 Testing the RGI method

The RGI method works by taking an n-dimensional set of parameter space coordinates

together with a (n, m) array of values corresponding to the node points of that param-

eter space and constructing a function to describe how the values change as a function

of the coordinates. It can work in nearest and linear interpolation methods only, but

due to the restriction that the parameter space coordinates must form regular grid, it is

much quicker that other multi-dimensional interpolation methods such as griddata or

Rbf. The function can then be evaluated to give a set of values corresponding to a new

set of parameter space coordinates.

In order to test the RGI method, we have removed nodes from the model data prior

to interpolation and then fill these holes by evaluating the function at those positions.

A comparison between the actual model values and the evaluated values at the miss-

ing nodes gives a good sense of how well the method is able to interpolate positions

between nodes in the input data, though the errors associated with this method will be

overestimated in this test.
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To accomplish this, we started by removing one value from each of the 6 parameter

ranges to create a large number of holes in the model grid. Table 3.1 shows the values

of each of the 6 parameters which were removed from the model parameter space. The

full model grid has 343,035 nodes covering the full range of all 6 parameters. With

the values in table 3.1 removed, this new test grid has only 189,435 nodes, which is

⇠55% of the full model grid. Removing this many nodes from the full grid should

give a good test of the methods ability to accurately interpolate values between those

that we input. It is important to note here that we cannot simply remove a single node

from the grid, as the RGI method requires that there be a node point at each combi-

nation of specified parameters and any holes in this grid would cause the method to fail.

Parameter Value
Teff 4250.0 K

[Fe/H] -0.5
log g 2.5
[C/M] 0.0
[N/M] 0.0
[O/M] 0.0

Table 3.1: The values of each parameter removed from each dimension of the model grid in
order to create holes in the grid to use for testing the RGI interpolation method.

Once the chosen values have been removed from the model grid, the reduced test grid

can be interpolated and the resultant function can be evaluated at the positions of the

removed nodes. The values that RGI is able to interpolate can then be directly com-

pared to those removed, which are the EQW values measured from the model spectra.

To see how well the RGI method is able to deal with interpolating the model data,

the residuals between the full and test model grids have been calculated and for each

parameter, these have been plotted as histograms, together with the mean and standard

deviations for each set of residuals. The following 6 figures show these histograms

for each parameter, Figure 3.16 for the Teff tracers, Figure 3.17 for the [Fe/H] tracers,

Figure 3.18 for the log g tracers, Figure 3.19 for the [C/M] tracers, Figure 3.20 for the

[N/M] tracers and finally Figure 3.21 for the [O/M] tracers.
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Figure 3.16: The residual J-K values for the of the Teff tracers between those measured in
the full model grid and those interpolated from the reduced test grid; values for the mean and
standard deviation of this distribution are shown above the plot. The count shown on the y-axis
is logged. The subtitle gives the mean and standard deviation.

Figure 3.17: The residual values for the EQW (in Å) of the [Fe/H] tracers between those
measured in the full model grid and those interpolated from the reduced test grid; values for
the mean and standard deviation of this distribution are shown above the plot. The count shown
on the y-axis is logged. The subtitle gives the mean and standard deviation.
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Figure 3.18: The residual values of the log g tracers between those measured in the full model
grid and those interpolated from the reduced test grid; values for the mean and standard de-
viation of this distribution are shown above the plot. Only residuals with values less that 100
have been plotted. The count shown on the y-axis is logged. The subtitle gives the mean and
standard deviation.

Figure 3.19: The residual values for the EQW (in Å) of the [C/M] tracers between those mea-
sured in the full model grid and those interpolated from the reduced test grid; values for the
mean and standard deviation of this distribution are shown above the plot. The count shown on
the y-axis is logged. The subtitle gives the mean and standard deviation.
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Figure 3.20: The residual values for the EQW (in Å) of the [N/M] tracers between those mea-
sured in the full model grid and those interpolated from the reduced test grid; values for the
mean and standard deviation of this distribution are shown above the plot. The count shown on
the y-axis is logged. The subtitle gives the mean and standard deviation.

Figure 3.21: The residual values for the EQW (in Å) of the [O/M] tracers between those mea-
sured in the full model grid and those interpolated from the reduced test grid; values for the
mean and standard deviation of this distribution are shown above the plot. The count shown on
the y-axis is logged. The subtitle gives the mean and standard deviation.
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As can be seen from all but Figure 3.18, the values recovered by the RGI method

are in fairly good agreement with the measured values present in the full model grid.

This can be taken as showing that even when using a coarse model grid, one with only

⇠55% of the nodes of our actual model grid, the interpolation method is able to suc-

cessfully recover values which show only small differences relative to those which can

be measured directly in the missing spectra.

The values plotted in Figure 3.18 are only those for which the residual value is less

than 100. If we plot the full range of values recovered, then the results are significantly

affected by outliers. The results for log g, appear at first sight to present a significant

problem: Why are the values for the log g tracers not showing the same accuracy as

those for the other parameters? The answer for this appears to lie in the lines (see

Tables 4.2 & 4.5 in Section 4.2) that we are using to derive log g and if we look at

the range of measured EQW values for these lines, which is shown in Figure 4.12 (in

Section 4.3), we can see that the lines chosen have a large range of values. As we are

using the average of two ratios of lines, if the line used in the denominator approaches

zero, which it does, then the final value of the indicator can become quite large. This

in turn gives rise to a large range of residual values and in addition it appears that such

variations are proving more difficult for the RGI method to accurately interpolate.

3.4.2 Testing the interp1d method

The interp1d method is a simple 1-dimensional interpolation scheme which takes two

arrays (e.g. x and y) and then generates a function of the form, y = f(x) to describe

them. It can perform several kinds of interpolation (linear, nearest, zero, linear spline,

quadratic or cubic); perform extrapolation beyond the original array ranges or return

specified values outside of these ranges; and be evaluated quickly to find new values

of y given new values of x.
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In order to test the interp1d method, we employ one of the diagnostic plots used ear-

lier in this chapter - see Figure 3.7.

In this plot, the solid line is the interpolated variation of the EQW value of the lines

being used to probe [O/M] and the value of the [O/M] parameter; the values of the

5 other parameters used to generate this curve can be seen in the sub-heading. The

dashed line is then the same relationship, but for an actual node point in the 6-d param-

eter space, with the values of this node point shown in parenthesis. It can be clearly

seen how close the 2 lines are for the majority of the range of [O/M].

3.4.3 Testing the Pipeline

Mock Observation Tests

In order to get a feel for how well the code is able to derive stellar parameters and

CNO abundances, we have taken two sets of synthetic spectra and run them through the

pipeline before comparing the derived parameter values against the model parameter

values used to generate the synthetic spectra. We use the same grid of model spectra to

interpolate our the parameters for our set of “observed” spectra as we use throughout

this work.

So, to start, we took a sub-sample of the model spectra used in the pipeline and added

noise to them consistent with the signal-to-noise ratios typical of the APOGEE ob-

servations. These mock observations are then treated as observational measurements,

running them through the code using a full analysis option. The results can then be

compared to the parameters used to generate the model spectra to see how well the

code is able to recover model parameters, around node-points in the model grid, given

the noise which has been added.

Starting from spectra generated from model atmospheres with parameters shown in
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Table 3.2, the above procedure gives 144 baseline spectra. To each of these spectra,

noise has been added by multiplying the flux value of each pixel by a gaussian distri-

bution with a µ of 1.0 and � of 0.01. This matches the cut made in the APOGEE data

for signal-to-noise of 100 or higher. We repeated this 100 times for each spectrum, to

produce a set of mock observed spectra with the same underlying stellar parameters,

but slightly different EQWs for the lines we are using; this allows us to ensure that

the pipeline returns parameter values in line with the high signal-to-noise ratios. In the

end, there are 14400 spectra being analysed by STARPANDA; these mock observa-

tions were generated by Mackereth.

Parameter Values
Teff 4000, 4500 & 5000 K

[Fe/H] –1.0, –0.5 & 0.0 dex
log g 1.0 & 2.5 dex
[C/M] –0.25 & 0.0 dex
[N/M] 0.0 & 0.5 dex
[O/M] 0.0 & 0.25 dex

Table 3.2: The model atmosphere parameters used as the starting point for the set of mock
observations used to test the STARPANDA pipeline.

The results of the analysis of the mock observations can be seen in the figures below -

Figures 3.22, 3.23, 3.24, 3.25, 3.26 and 3.27 show the difference between STARPANDA

and the input model parameter as a function of the model parameter for, respectively,

the Effective Temperature, [Fe/H], log g, [C/M], [N/M] & [O/M].

In all six cases, the mean difference between the STARPANDA derived parameter and

the input model atmosphere parameter is small compared with the input parameter, and

the standard deviation is of the order expected given that the noise has been generated

to mimic a signal-to-noise of ⇠100. Furthermore, in all cases but one, the spread of

differences between STARPANDA and model input parameters is symmetrical about

0, which can be expected given the random gaussian nature of the noise generation.

The only exception is for Teff , where at 4000K, the mean residual is 60K, with a
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Figure 3.22: The Effective Temperature used to generate the model atmospheres and the results
of the STARPANDA analysis using mock observations based on the same model atmospheres
for 3 different temperatures. The x axis is shared by all 3 subplots. The parameter value,
together with the mean and standard deviation are shown above each plot.

Figure 3.23: The [Fe/H] used to generate the model atmospheres and the results of the
STARPANDA analysis using mock observations based on the same model atmospheres for
3 different [Fe/H] values. The x axis is shared by all 3 subplots. The parameter value, together
with the mean and standard deviation are shown above each plot.
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Figure 3.24: The log g used to generate the model atmospheres and the results of the
STARPANDA analysis using mock observations based on the same model atmospheres for
2 different log g values. The x axis is shared by both subplots. The parameter value, together
with the mean and standard deviation are shown above each plot.

Figure 3.25: The [C/M] used to generate the model atmospheres and the results of the
STARPANDA analysis using mock observations based on the same model atmospheres for
2 different [C/M] values. The x axis is shared by both subplots. The parameter value, together
with the mean and standard deviation are shown above each plot.
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Figure 3.26: The [N/M] used to generate the model atmospheres and the results of the
STARPANDA analysis using mock observations based on the same model atmospheres for
2 different [N/M] values. The x axis is shared by both subplots. The parameter value, together
with the mean and standard deviation are shown above each plot.

Figure 3.27: The [O/M] used to generate the model atmospheres and the results of the
STARPANDA analysis using mock observations based on the same model atmospheres for
2 different [O/M] values. The x axis is shared by both subplots. The parameter value, together
with the mean and standard deviation are shown above each plot.
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standard deviation of 38K; this is something that will require further analysis to try to

understand why this occurs in only this test.

So, from these tests, it can be seen that the pipeline is able to accurately recover the

model atmosphere parameters without introducing any significant systematic errors

and within expected accuracy given the level of noise added prior to analysis. While

this test verifies the performance of STARPANDA at grid nodes, it is vital that it per-

forms well more generally, i.e. at positions off the grid nodes.

In order to test the general performance of STARPANDA, a second set of synthetic

spectra was generated using FERRE through interpolation within the APOGEE grid

of model spectra (C. Allende Prieto 2017, priv. comm.), but at points away from the

nodes in our model grid. The stellar parameters and CNO abundances used to create

these new synthetic spectra are shown in Table 3.3, and comprise 216 objects.

Parameter Values
Teff 4100, 4700 & 5300 K

[Fe/H] –1.3, –0.8 & –0.3 dex
log g 1.2, 2.2 & 3.2 dex
[C/M] –0.4 & 0.2 dex
[N/M] 0.2 & 0.7 dex
[O/M] –0.2 & 0.4 dex

Table 3.3: The stellar parameter and CNO abundance values used to create 216 new synthetic
spectra for testing the overall effectiveness of the STARPANDA pipeline.

This set of new synthetic spectra have been run through the STARPANDA pipeline

twice. Firstly, we have used them as they are, so giving us 216 input objects, and the

results of their analysis should tell us about the reliability of the interpolations scheme

used in STARPANDA. Secondly, we have added noise to them (in the same manner as

earlier), resulting in 21,600 simulated spectra, with S/N = 100.
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So, when using these spectra without added noise, we would hope that the results

derived by STARPANDA are very close to the parameter values used to create the

synthetic spectra. Running a 6 parameter analysis of these 216 objects we find that

STARPANDA is only able to successfully derive parameters in 15 cases and that anal-

ysis most frequently appears to fail due to problems converging on a log g solution.

While the point of failure is in derivation of log g, the cause appears to be due to dif-

ficulties in deriving C and N abundances at higher Teff (4700K & 5300K) together

with lower metallicities and C or N abundances (e.g. [Fe/H] = –1.3 & [C/M] 0.4), as

the indication lines we use become very weak in these regions. This in turn will effect

the derivation of log g during the next iteration of analysis. So, in an effort to increase

the number of successful analysis cases, we chose to run a CNO abundance analysis

option (using the model parameter values for the stellar parameters). Now, 143 objects

successfully complete analysis (⇠66%), with the failures mainly occurring when at-

tempting to derive C at iteration counts greater than 1 (again these failures are much

more common at high Teff and low metallicity). We do the same with the noisy spec-

tra and out of the 21,600 input objects, 12,902 successfully complete analysis (⇠60%),

and again the bulk of the failures are when attempting to derive C.

Since we now have CNO abundances for both the noiseless and noisy synthetic spectra,

we can compare the results obtained for the different input sets. In order to compare

the quality of the parameters obtained, we start by calculating the difference between

the STARPANDA results and the input model parameter for each of CNO; this is a

similar analysis to that performed in Chapter 4 (c.f. Section 4.4). We then calculate the

mean difference and standard deviation of objects in each sub-set (we only do this for

objects for which STARPANDA was able to derive parameters). Additionally we have

done the same for the APOGEE observations which are shown in Section 4.4, where

we compare the STARPANDA results to those obtained in ASPCAP DR12 (taking

those objects in the range –0.05  [x/M]  +0.05). This comparison is then shown in

Table 3.4.
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Input Parameter Set Mean [Dex] Std Dev [Dex] Number of Objects

[C/M] = –0.4
SYN 0.00285 0.07966 61

SYN+N 0.05473 0.13879 5484
ASPCAP 0.06507 0.17509 203

[C/M] = 0.2
SYN –0.09204 0.14753 82

SYN+N –0.04464 0.13930 7418
ASPCAP –0.01530 0.13112 1918

[N/M] = 0.2
SYN 0.07321 0.13694 62

SYN+N 0.01511 0.23587 5882
ASPCAP 0.08894 0.12619 17522

[N/M] = 0.7
SYN –0.19071 0.17187 81

SYN+N –0.17033 0.14687 7020
ASPCAP –0.28593 0.22233 47

[O/M] = –0.2
SYN –0.02991 0.03253 61

SYN+N –0.02224 0.06424 5678
ASPCAP 0.25094 0.06995 22

[O/M] = 0.4
SYN 0.01472 0.02408 82

SYN+N 0.01611 0.03793 7224
ASPCAP 0.00998 0.08522 733

Table 3.4: Comparing the differences in results obtained by STARPANDA for 3 sets of ob-
jects - Noiseless synthetic spectra (SYN), Synthetic spectra with added noise (SYN+N) and
APOGEE observations with ASPCAP DR12 results (ASPCAP). The first column shows the
input parameter and its value being marginalised over, the Set shows which set the Mean and
Std Dev (both in Dex) are being shown for and finally the last column shows the number of
objects in each group.

We can see that in most cases the offset is quite small; the exception being when con-

sidering [N/M] = 0.7. The reason for this is unclear at this point. It is also worth noting

the values obtained for [O/M] = –0.2, where STARPANDA achieves a much smaller

offset than ASPCAP, which is in part due to problems encountered by the latter when

working with low [O/Fe] values. Of greater interest are scatter results (given by the

Std Dev values), which gives us an idea of the precision of the interpolation schemes

used in different regions of parameter space. It is clear that while in some areas of

parameter space, and for some parameters, the interpolation schemes are doing a good

job at recovering values close to those used to create the input spectra, there are many

cases where this is not true. This will be mainly due to the piecewise linear interpola-

tion employed by the RGI interpolator, which will obviously return poorer results in

areas of parameter space where the EQWs of indicators do not vary linearly with the
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parameters they are tracing (such as towards the edges of the model grid). It would,

therefore, be a significant improvement if a new scheme could be found, which uses

higher-order interpolation, but can still deliver results quickly in multidimensional pa-

rameter space when using low-powered computer hardware - not a trivial challenge!

Finally, we need to understand why so few objects successfully completed analysis

when the full 6 parameter option was chosen. Close inspection of the log file shows

that the problem starts with log g and that during iteration the values of this parameter

move towards either the upper or lower boundaries of the parameter range, which in

turn is taking us toward the edges of our parameter space. While we may still be just

inside parameter space for log g, when either C, N or O come to be derived we find

that it is one of these parameters which have moved outside of paramater space first.

This, again, shows the need for new tracers for log g.

Exploring Degeneracies

While it is known that there are degeneracies between parameters in stellar atmo-

spheres, it is necessary to explore potential degeneracies added by the methods em-

ployed by STARPANDA. To that end, we can use the synthetic specta that were de-

scribed in the previous section. Now, we plot histograms for each of the 3 CNO param-

eters as well as plots comparing parameters (C vs N, C vs O and C vs N). The former

can be seen in Figure 3.28, while the latter is shown in Figure 3.29.

So, starting with Figure 3.28, we can see that that for C, most of the results obtained

show good agreement with the model C value, though there are some cases where

STARPANDA is not able to achieve such good results. For N, the results are not

quite as good and it appears that STARPANDA has a tendency to underestimate the N

value. Finally, for O, we see very good agreement between the values of O obtained

by STARPANDA and the model value. Looking at Figure 3.29, we can explore the
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degeneracies between the parameters. Comparing O and C (top panel), we can see no

significant degeneracy; this is also the case for O and N (middle panel). However, when

we look at C and N (bottom panel), we do see a problem, especially at higher N values.

In order to understand why we get these results, we explored the model stellar param-

eters for those objects which showed residual values greater than 0.2. While O shows

no objects with residuals this larger, in all the other cases, the majority of objects with

high residuals also have Teff of 5300K We can illustrated this by re-plotting the bot-

tom panel from Figure 3.29, but adding the Teff values from the model; objects with

large residuals tend to be warmer, while those with small residuals tend to be cooler.

This can be explained by our use of molecular lines, which become weak and disap-

pear at higher temperatures; here we see how this affects the quality of the results that

STARPANDA is able to achieve. In order to derive parameters for stars with higher

effective temperatures we will need to exploit atomic lines.

Speed Tests

One of the prime aims for developing this code has been to deliver a method which

is able to very quickly analyse spectroscopic measurements and derive stellar param-

eters, CNO abundances and/or elemental abundances. To this end, one of the criteria

used in evaluating how well the pipeline works is the runtime of each analysis option.

Table 3.5 shows both the total runtime and the runtime per target object analysed, for

the same input list of objects (a subset of the DR12 APOGEE data release), when

analysed using each of the 3 different analysis options in STARPANDA. Even when

deriving both stellar parameters and CNO abundances, the code was able to complete

its analysis in less than a tenth of a second per target, while just CNO abundances

can be derived in approximately five hundredths of a second per target and elemental

abundances in less than a hundredth of a second per target. From this it can be seen

that we have been more than successful in achieving this aim, even with the pipeline
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being run on a relatively modest computer, without any serious attempt at optimisation.

Analysis Option Runtime (s)
Total Per Target

Stellar Parameters & CNO Abundances 6758.348 0.085
CNO Abundances 3891.926 0.049

Elemental Abundances 584.308 0.007

Table 3.5: The time taken to complete the 3 different STARPANDA analysis options (without
plotting options enabled), shown first as the total running time and secondly as the running
time per target object (assuming zero time associated with data read in and read out). These
values are based on a subset of the DR12 APOGEE data release, containing 79519 stars.

As a comparison to the times recorded in Table 3.5, a run of the code with all plotting

options switched on and analysing stellar parameters & CNO abundance values, com-

pleted to generate the plots showing in this work, took approximately 16 times as long

as those with all plotting options switched off. The debug plots option is the biggest

cause of this increase due to the large number of plots that that option generates.

The overhead time for the code, i.e. that time needed to read in the data files and read

out the results files, is small compared to the time taken by the analysis options. Ad-

ditionally, the time needed to analyse elemental abundances will scale as the number

of abundances, so as more lines are identified which can be used to derive additional

elemental abundances, the code will remain as efficient as it is for a single element i.e.

the per abundance per target computational time required is the same regardless of the

number of abundances or targets.

During development and testing, the code has mostly been run on a fairly modest com-

puter, namely a MacBook Air. The technical specifications of this machine can been

seen in Table 3.6. The code has also been run on other hardware and will operate as

long as the Python dependencies are met - see the sp readme.txt file for details of these

(Appendix A.2).
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Computer MacBook Air
Model 13-inch, Mid 2013

Operating System 10.11.6
Processor 1.3 GHz Intel Core i5 (Duel Core)
Memory 8 GB 1600 MHz DDR3

Table 3.6: The technical specifications of the primary computer used to develop and test
STARPANDA.

We can compare the hardware and runtime of our pipeline against the ASPCAP pipeline

(Allende Prieto & Holtzmann, priv. comm.). ASPCAP utilises a 27 node cluster, each

of which has 16 cores (Intel Xeon CPU E5-2650 v2, 2.60GHz). The pipeline then

derives stellar parameters and elemental abundances in ⇠100 sec/star on a single core.
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Figure 3.28: Histograms showing the residual values from a comparison between the results
obtained by STARPANDA and the CNO values used to create the synthetic spectra being anal-
ysed. The top panel shows the histogram for C, the middle for N and the bottom for O. In all 3
cases, the x axis has the residual (STARPANDA - Model Input) in Dex and the y axis has the
count.
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Figure 3.29: Plots showing the comparisons of residual values from a comparison between
the results obtained by STARPANDA and the CNO values used to create the synthetic spectra
being analysed. The top panel shows the plot for [O/M] vs [C/M].The middle for [O/M] vs
[N/M]. The bottom for [C/M] vs [N/M]. In all 3 cases, the x and y axes have the residual
(STARPANDA - Model Input) in Dex.
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Figure 3.30: Plot showing the comparisons of residual values from a comparison between the
results obtained by STARPANDA and the CNO values used to create the synthetic spectra
being analysed. This is a repeat of the bottom panel of Figure 3.29, but with the Teff of the .
In all 3 cases, the x and y axes have the residual (STARPANDA - Model Input) in Dex.



Chapter 4

Results

In this chapter, the results from the first application of STARPANDA to the APOGEE

data are presented. As a comparison, the APOGEE results derived from the ASPCAP

pipeline are presented too.

The following sections describe the work that was undertaken in preparing the input

data files (Section 4.1), the lines that have been found over the course of this work with

commentary on their suitability as tracers of the relevant parameters (Section 4.2), re-

sults of a full stellar parameter and CNO abundance analysis (Section 4.3), results of

CNO abundance analysis using stellar parameters derived by ASPCAP (Section 4.4)

and finally the results of elemental abundance analysis for Al (Section 4.5) using stellar

parameters and CNO abundances derived by ASPCAP. Separate analyses are shown in

the following sections to assist in our understanding of where the pipeline is getting

good parameter values and where it may be obtaining poor values. Therefore, run-

ning a six parameter analysis separately from a CNO abundance analysis shows how

the stellar parameters obtained by STARPANDA affect the CNO abundances derived

with those values. By using just ASPCAP parameters for the Al abundance analysis,

we can directly compare the results obtained by both pipelines using different methods.

84
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4.1 Data Preparation

The starting point for the input files used during this work is the model atmospheres

used by ASPCAP; generated using ATLAS9 (Kurucz , 1993) and ASS✏T (Koesterke,

2009), see Chapter 2.5 for more information. The synthetic spectra were downloaded

for a wide range of model atmosphere parameters (see the Initial Ranges in Table

4.1) together with the combined visit spectra for all targets observed by APOGEE.

A custom code was then used to measure the EQW of all the indices that have been

identified as being of interest in this work - see Section 4.2 for more details on the

lines in both the synthetic and observed spectra; the code was developed as part of

the Masters work undertaken by Mackereth, who subsequently made all the line mea-

surements used in this work. Finally, the SDSS DR12 APOGEE allStar file1 and the

internal DR14 allStar file2 were downloaded to be used for comparison to the results

produced by STARPANDA and were also used in preparing the input files prior to run-

ning STARPANDA on a large dataset (the reasons for this are explained below). The

allStar files contain 1 row for each target observed as part of the APOGEE surveys.

The columns then list, for each target, a variety of identifying information, photomet-

ric data, astrometric data, APOGEE survey data, and the results of ASPCAP analysis.

Firstly, due to the use of the RGI method in the STARPANDA code, it was necessary

to reduce the range of model parameters from those available (and used by ASPCAP)

to a smaller subset. This is because RGI requires there to be no missing node points in

model parameter space, so in cases where there is no model atmosphere for one com-

bination of parameters, an entire row of one dimension of the model parameter space

must be eliminated in order to satisfy the RGI method. The missing node points are

due to the failure of the model atmospheres to reach convergence for a specified set

of stellar parameters; this means that no synthetic spectra are available. These holes

appear at the edges of our model parameter space, in areas where we do not expect to
1https://data.sdss.org/sas/dr12/apogee/spectro/redux/r5/

allStar-v603.fits
2http://data.sdss.org/sas/dr14/apogee/spectro/redux/r8/stars/l31c/

l31c.2/allStar-l31c.2.fits
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find many stars, and necessitated cuts to the lowest and highest effective temperatures

and surface gravities only. The synthetic spectra were generated and downloaded us-

ing the APOGEE code (Bovy, 2016). Secondly, more cuts to the input range of the

model parameters were needed to deal with cases where the model inputs gave rise

to non-unique solutions when interpolating parameters. This happens, again, at the

edges of our model parameter space, and is only partially solved by the previous cuts

necessitated by the use of RGI method. So, further cuts were made to the remaining

parameters (no additional cuts were needed in effective temperature or surface grav-

ity). The combined effect of these cuts can be seen in Table 4.1.

Finally, to ensure that we are only dealing with target stars which have no identified

observational problems, those targets with poor signal-to-noise or with specific error

flags set by the ASPCAP pipeline should be removed from the analysis inputs. To

that end we removed stars for which the signal-to-noise ratio was less than 100, where

the ASPCAP STARFLAGS identifier indicated that there were either significant num-

bers of bad pixels in the spectrum (BAD PIXELS) or that there was a very bright

close neighbour to the target (VERY BRIGHT NEIGHBOR), and finally where the

ASPCAP TARGFLAGS identifier indicated that there was significant telluric contam-

ination (APOGEE TELLURIC) in the spectrum.

Thus, the above cuts were applied to the model input file and also to the ASPCAP

results file, which was then cross-matched with our Observed data file to remove target

stars which were removed by the ASPCAP cuts described above. This allowed us to

focus only on stars for which we expected to be able to derive results and also stars

for which our results could be compared with the ASPCAP values, as those targets

for which ASPCAP failed to derive stellar parameters and CNO abundances are elim-

inated from the input files.

Following the cuts outlined above, and for the DR12 set of ASPCAP results, this re-

duced the 163,278 observed stars to 79,519 (49%). For the DR14 results, 277,371
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Parameter Initial Range Final Range
Teff [K] 3500 - 6500 4000 - 6000

[Fe/H] [dex] –2.5 - +0.5 –2.0 - +0.5
log g [dex] 0.0 - 5.0 0.5 - 4.5 dex
[C/M] [dex] –1.0 - +1.0 –0.5 - +0.5
[N/M] [dex] –1.0 - +1.0 –0.5 - +1.0
[O/M] [dex] –1.0 - +1.0 –0.5 - +0.5

Table 4.1: The initial value ranges of the model atmospheres downloaded for use by
STARPANDA and the final model parameter ranges after the outlined cuts have been applied.

observed stars were reduced to 105,823 (38%) initially, however this was further re-

duced to 63,795 objects; the additional stars were observed as part of the APOGEE-2

survey, for which we have not downloaded the spectra.

For the analysis of the elemental abundances, while ASPCAP uses a wide range of

stellar parameters and CNO abundances in the synthetic spectra model grid, it does

not use any spectra where individual elemental abundances are varied, instead vary-

ing overall metallicity and assuming a relationship between the abundance of a given

element, the strength of the line(s) chosen and the overall metallicity of the star. In-

stead of following this path, Mackereth used Bovy’s APOGEE code to create model

mini-grids, where synthetic spectra were calculated for varying individual abundances

while all other parameters remain fixed. For Al, this has been done for values between

-0.5 and +1.0, in 0.25 dex steps, and this is repeated for the range of model atmosphere

parameters used in deriving stellar parameters and CNO abundances. In order to keep

the mini-grids as small as possible, the step size has been altered for CNO values to be

0.5 dex steps between -1.0 and +1.0, while keeping the stellar parameter steps size the

same.
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4.2 Indices

Over the course of this work, many indices have been identified as being potential

probes of parameters. These have come from the line list used by ASPCAP (Shetrone

et al., 2015) and then checked by studying differential spectra (over a range of values

of Teff , [Fe/H], log g, [C/M], [N/M] & [O/M]) and looking for indices which only vary

significantly as a function of one parameter and remain usable across a wide range of

other parameters. This work was carried out by several students as part of their Masters

projects. Presented in Tables 4.2, 4.3 and 4.4 are the indices which have been identified

and tested by STARPANDA for use in deriving stellar parameters, CNO abundances

and elemental abundances respectively. These are broken down, in each case, by the

parameter being probed and then sorted alphanumerically, with the index shown as a

combination of species and wavelength (given in Å). Comments on the suitability of

each index to the parameter in question is shown in the final column of the table. In

terms of the quality of a index, this is judged on the basis of how well the parameter

values derived by STARPANDA match those obtained by ASPCAP.

In addition to the indices identified as described above, the de-reddened J-K colour has

been used in this work as a probe of effective temperature and is therefore included in

this table and shown in the following sections. For the observed stars the de-reddened

J-K colour has been calculated using the values provided in the allStar files. The model

J-K colour was calculated by Mackereth as part of his Masters work, and is based on

the Colour-[Fe/H] relationship used in González Hernández & Bonifacio (2009) which

can be solved to give the J-K colour (see Equation 10 and Table 5 of that paper). This

is due to our current lack of a good single index or combination of indices suitable for

probing this parameter.

In many cases it is advantageous to combine two or more indices and use the average

EQW values during the analysis. This has been done extensively during the devel-

opment of STARPANDA and, currently, the best results obtained by the code utilise
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Parameter Index Designation Quality

Teff
J-K JK Ok

FeI 16230 / FeI 16522 T1 Poor
[Fe/H] (FeI 15969 + FeI 15399) / 2 Fe IR Uncertain

log g

MgI 15753 / MgI 15917 MgA Poor
MgI 15770 / MgI 15917 MgB Poor
MgI 15753 / MgI 15959 MgC Ok
MgI 15770 / MgI 15959 MgD Good

MgI 15753 / (MgI 15917 + MgI 15959) MgE Poor
MgI 15770 / (MgI 15917 + MgI 15959) MgF Ok
(MgI 15753 + MgI 15770) / MgI 15917 MgG Poor
(MgI 15753 + MgI 15770) / MgI 15959 MgH Good

(MgI 15753 + MgI 15770) / MgJ Poor(MgI 15917 + MgI 15959)

Table 4.2: The indices identified for use in STARPANDA to probe stellar parameters, broken
down by parameter and sorted alphanumerically. Designations are given for cases where in-
dices are combined as ratios, etc. Comments on the suitability of each index are given in the
Quality column.

multiple indices for almost all parameters. The results shown in the following sections

of this chapter use the indices or combination of indices shown in Table 4.5.

4.3 Analysis of Stellar Parameters & CNO Abundances

In this section, we show the results produced when running STARPANDA on the input

files described in Section 4.1, using all the indices listed in Table 4.5 and the code set

to analyse all 6 parameters. Firstly we derive the stellar parameters and CNO abun-

dances using STARPANDA and then compare them to those derived by ASPCAP as

reported in the DR12 data release; secondly we compare our results to those reported

in the DR14 data release.

In addition, for this analysis option and all the others shown in this chapter, we have

used the initial parameters and iteration tolerances shown in Table 4.6. We chose a

starting value of 2.0 for log g and 0.0 for CNO abundances. No initial values are re-



4.3. Analysis of Stellar Parameters & CNO Abundances 90

[C/M] [N/M] [O/M]
Index Quality Index Quality Index Quality

CI 16009 Bad CN 15226 Ok CO 15582 Untested
CI 16026 Bad CN 15232 Good CO 15982 Untested
CI 16859 Poor CN 15290 Bad CO 15990 Untested
CI 16895 Poor CN 15290 Bad CO 15997 Untested
CO 15582 Ok CN 15518 Ok CO 16007 Untested
CO 15982 Ok CN 16388 Bad CO 16020 Untested
CO 15990 Poor CN 16564 Bad CO 16030 Untested
CO 15997 Ok CN 16586 Poor CO 16190 Untested
CO 16007 Bad CO 16386 Untested
CO 16020 Very Bad CO 16620 Untested
CO 16030 Bad CO 16840 Untested
CO 16190 Poor OH 15395 Poor
CO 16386 Very Bad OH 15413 Poor
CO 16620 Ok OH 15573 Poor
CO 16840 Poor OH 15576 Poor

OH 15724 Poor
OH 15761 Poor
OH 16057 Poor
OH 16369 Good
OH 16877 Poor
OH 16877 Very Bad
OH 16719 Very Bad

Table 4.3: The indices identified for use in STARPANDA to probe CNO abundances, broken
down by parameter and sorted alphanumerically. Comments on the suitability of each index
are given in the Quality column.

Parameter Index Quality

[Al/M]
Al 16723 Ok
Al 16755 Unmeasured
Al 16767 Good

Table 4.4: The indices identified for use in STARPANDA to probe elemental abundances,
broken down by parameter and sorted alphanumerically. Comments on the suitability of each
index are given in the Quality column.

quired for Teff and [Fe/H] as they are derived first under the assumption of the other

values. Likewise for [Al/M], no initial value is required, just the values of the stellar

parameter and CNO abundances supplied via input file. The iteration tolerances are

set for the stellar parameters and CNO abundances and the iteration limit is set to 20

iterations. As no iteration is performed during elemental abundance analysis, there is
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Parameter Index/Indices Used
Teff J K

[Fe/H] Fe IR
log g MgD, MgH
[C/M] CO 15997, CO 15582, CO 15982, CO 16620
[N/M] CN 15226, CN 15232, CN 15518
[O/M] OH 16369
[Al/M] Al 16767

Table 4.5: These are the best indices, or combination of indices, found during the development
of STARPANDA. These have been used (by taking an average of their values) in producing the
results shown elsewhere in this chapter.

no requirement to set a tolerance for [Al/M].

Parameter Initial Parameter Value Iteration Tolerance
Teff - 20 K

[Fe/H] - 0.02 dex
log g 2.0 0.1 dex
[C/M] 0.0 0.02 dex
[N/M] 0.0 0.02 dex
[O/M] 0.0 0.02 dex
[Al/M] - -

Table 4.6: The initial parameter & iteration tolerance values used in STARPANDA. The initial
parameter values for log g and CNO abundances are used to derive values during the first
iteration; Teff , [Fe/H] & [Al/M] do not require initial parameter values to be set. The iteration
tolerances are used to determine when iteration should cease due to successful convergence of
analysis; since no iteration is performed during elemental abundance analysis, then no iteration
tolerances are needed for [Al/M].

4.3.1 DR12 Analysis

STARPANDA took 6758 seconds to analyse 79519 stars (therefore averaging ⇠0.08

sec/star) and it achieved results for 28642 of these. As can be seen in Figure 4.1, the

number of stars that failed due to lack of convergence was small (1520 stars), with

the bulk of the failures being due to the star falling outside of model parameter space

either on the first or subsequent iterations and most commonly while either deriving
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the Teff and [Fe/H] (since they are derived together) or [O/M]. An idea of the number

of stars which fall outside of the model parameter space in the Teff -[Fe/H] plane on

the first iteration (where initial values of log g, [C/M], [N/M] and [O/M] are taken

from the configuration file (sp config.py) can be seen from Figures 4.2 and 4.3. Figure

4.2 shows the results of the iteration counter, where there are a large number of stars

which end analysis on the first iteration - given the design of the code, where at the

end of an iteration the derived values are compared to values from the previous iter-

ation or initial values, it is not possible to successfully derive parameters in less than

1 iteration. Figure 4.3 confirms this, showing a large number of points outside of the

initial Teff -[Fe/H] grid, which would fail analysis at the first attempt to derive Teff

and [Fe/H] parameter values. The other prominent features of this plot is the strong

horizontal cutoff at a J-K value of 0.5. This can be explained by the selection criteria

imposed by the APOGEE survey, where only stars having J-K > 0.5 were selected for

observation, except for those in clusters which were selected for other reasons.

For the ⇠28000 stars for which STARPANDA has been able to derive results for all

6 parameters, we have compared the values obtained by our code to those obtained

by the ASPCAP pipeline. This is done by cross-matching the STARPANDA output

with the APOGEE DR12 allStar file and then subtracting the ASPCAP result from the

STARPANDA result, while discarding any stars for which ASPCAP failed to derive

parameters. Therefore, in the following figures we plot the difference between the

STARPANDA result and the ASPCAP result (STARPANDA - ASPCAP) on the y-axis

and the ASPCAP result on the x-axis for Teff (Figure 4.4), [Fe/H] (Figure 4.5), log g

(Figure 4.6), [C/M] (Figure 4.7), [N/M] (Figure 4.8) and [O/M] (Figure 4.9) respec-

tively.

What then do these plots tell us about the quality of the results produced by STARPANDA?

First, it is obvious that the results obtained for all 6 parameters are still significantly

different from those obtained by ASPCAP, and even though STARPANDA is very fast,

it counts for little if the results are not reliable. However, there is still cause for opti-
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Figure 4.1: Analysis Flags for a 6 parameter run of STARPANDA. The x-axis shows, Suc-
cessful Analysis, Failure due to Divergence, Failure at Teff -[Fe/H] analysis, Failure at log g
analysis, Failure at [C/M] analysis, Failure at [N/M] analysis or Failure at [O/M] analysis. The
y-axis is then the log of the number of occurrences.

Figure 4.2: Iteration Flag results for a 6 parameter run of STARPANDA. This histogram shows
the number of iterations completed during analysis, with the count on the y-axis being logged.
There is a large peak at 0 iterations, showing a failure of analysis due to the star being outside
of model parameter space and a second smaller, but still sizable, peak at 20 iterations, showing
the number of stars for which convergence was not possible.

mism when considering the plots in more detail.
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Figure 4.3: Initial Teff -[Fe/H] grid (constructed using the initial log g, [C/M], [N/M] & [O/M]
values specified) highlighting the number of stars which do not fall within model parameter
space under initial conditions. On the x-axis is the EQW value of the [Fe/H] indicators, while
on the y-axis are the J-K colours being used as an Effective Temperature indicator. The density
of points is represented by the colour, shown in the colour bar to the right of the plot; we show
the log of the density.

First, we look at the Teff and [Fe/H] results, shown in Figures 4.4 and 4.5 respec-

tively. The mean difference between the two pipelines is small compared with the

values obtained for individual stars, even while there is significant scatter on the indi-

vidual stars. The mean offset between the two is 13 K and 0.06 dex, while the standard

deviation is 135 K and 0.11 dex. To help in understanding why there are differences

between the pipelines, especially given the tests which appear to show the reliability

of STARPANDA, it is necessary to look at the lines which are currently being used.

Figures 4.10 and 4.11 compare the EQW values of the lines used for Teff and [Fe/H]

(respectively) in both the synthetic and observed spectra. Firstly, the nature of the syn-

thetic distribution can be explained by the method used to derive these values and the

limited number of model temperatures and [Fe/H] values (see Section 4.2). Secondly,

it is immediately clear that the range of values in the model data for both parameters is

small compared with those measured in the observed spectra. This would suggest that

using J-K as a probe of effective temperature is not a good idea in this pipeline and that
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Figure 4.4: The results of a 6 parameter STARPANDA analysis with DR12 ASPCAP re-
sults for effective temperature. On the y-axis is the difference between the results obtained
by STARPANDA and ASPCAP, while the x-axis shows the ASPCAP effective temperature.
The density of points is represented by the colour, shown in the colour bar to the right of the
plot; we show the log of the density.

Figure 4.5: The results of a 6 parameter STARPANDA analysis with ASPCAP DR12 results
for [Fe/H]. On the y-axis is the difference between the results obtained by STARPANDA and
ASPCAP, while the x-axis shows the ASPCAP [Fe/H]. The density of points is represented by
the colour, shown in the colour bar to the right of the plot; we show the log of the density.
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Figure 4.6: The results of a 6 parameter STARPANDA analysis with ASPCAP DR12 results
for log g. On the y-axis is the difference between the results obtained by STARPANDA and
ASPCAP, while the x-axis shows the ASPCAP log g. The density of points is represented by
the colour, shown in the colour bar to the right of the plot; we show the log of the density.

Figure 4.7: The results of a 6 parameter STARPANDA analysis with ASPCAP DR12 results
for [C/M]. On the y-axis is the difference between the results obtained by STARPANDA and
ASPCAP, while the x-axis shows the ASPCAP [C/M]. The density of points is represented by
the colour, shown in the colour bar to the right of the plot; we show the log of the density.
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Figure 4.8: The results of a 6 parameter STARPANDA analysis with ASPCAP DR12 results
for [N/M]. On the y-axis is the difference between the results obtained by STARPANDA and
ASPCAP, while the x-axis shows the ASPCAP [N/M]. The density of points is represented by
the colour, shown in the colour bar to the right of the plot; we show the log of the density.

Figure 4.9: The results of a 6 parameter STARPANDA analysis with ASPCAP DR12 results
for [O/M]. On the y-axis is the difference between the results obtained by STARPANDA and
ASPCAP, while the x-axis shows the ASPCAP [O/M]. The density of points is represented by
the colour, shown in the colour bar to the right of the plot; we show the log of the density.
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the lines we use for deriving [Fe/H] could be improved upon. Since Teff and [Fe/H]

are derived together, errors stemming from the use of J-K will cause further errors in

[Fe/H] (in addition to those from the errors on the measured Fe lines) and vice versa.

It would be of significant benefit to this pipeline if new lines were identified for use in

deriving Teff and [Fe/H], and until that happens it is difficult to further speculate on

the reliability of these results.

One point to note regarding the use of comparisons between the distributions of values

in observed and synthetic data is that we are not looking for indicators where both dis-

tributions are similar. We are only looking for indicators which show a greater range

of values in the synthetic data than in the observed data. This is because we expect

objects to be more commonly found in certain areas of parameter space than in others,

while the synthetic data will show indicator values from a much wider range of param-

eter space; for large swathes of parameter space we would very rarely or never expect

to see objects. Therefore, the range of observed values should generally appear as a

subset of the synthetic range.

The results for log g, shown in Figure 4.6, show the same large scatter when compared

with ASPCAP results. Here the mean difference between the two pipelines is 0.14

dex with a standard deviation of 0.38 dex. This is worse than the results for the other

two stellar parameters. Looking at Figure 4.12, which shows the comparison between

the EQW values measured in the synthetic and observed spectra, it is clear that there

is a discrepancy between the two distributions; for clarity the plot is shown with just

the central range of measured values. The range of values obtained is testament to

the complexity of the line combinations used in deriving log g (see Tables 4.2 and

4.5) and that since we are using the average of ratios of two different lines in different

combinations, any problem measuring a line is going to result in a very wide range

of final values. In this case it appears that there are problems measuring the lines in

the synthetic spectra, possibly due to the line becoming very weak towards the edges

of the model parameter space. Perhaps a new set of lines would allow the derivation
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Figure 4.10: The measured J-K values in the model and observed data used to probe Teff . The
top panel shows the J-K values for the observed data, while the bottom panel shows the values
for the model data. The mean and standard deviation for each distribution are shown above
each panel. The plots share a common x-axis and have the y-axis has been shows the log of the
counts.

Figure 4.11: The measured indicator EQW values in the model and observed data for the lines
used to probe [Fe/H]. The top panel shows the EQW values for the observed data, while the
bottom panel shows the values for the model data. The mean and standard deviation for each
distribution are shown above each panel. The plots share a common x-axis and have the y-axis
has been shows the log of the counts.
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of more reliable log g values by STARPANDA. The most striking feature of this plot

are the strong diagonal lines seen to the right hand side of the plot. These occur at log

g values of 3.5 and 4.0 (as derived by STARPANDA); others may be present at 2.5

and 3.0, though this is harder to see amidst the bulk of the data. At first, one might

assume that these are some artefact of the interpolation method since they appear to

correspond to node points in the model data. However, this does not appear to be the

case, as these features are not present at all node points and and are absent from the

CNO results entirely (which uses the same code as the log g analysis). In order to try

to uncover the origin of these features we have considered stars both clustered around

node values and stars between node values, looking at the distributions of EQWs of

the lines used, and the stellar parameters derived by both STARPANDA and ASPCAP.

However, there is no discernible difference in the distribution of EQW values between

stars clustered at or between node values. Thus far, we cannot ascertain the origin of

these features.

Figure 4.12: The measured indicator values in the model and observed data for the lines used to
probe log g in the range 0 - 50. The top panel shows the indicator values for the observed data,
while the bottom panel shows the values for the model data. The mean and standard deviation
for each distribution are shown above each panel. The plots share a common x-axis and have
the y-axis has been shows the log of the counts.

Lastly, the results for the CNO abundances (Figures 4.7, 4.8 & 4.9) show a small offset
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Figure 4.13: The measured indicator EQW values in the model and observed data for the lines
used to probe [C/M]. The top panel shows the EQW values for the observed data, while the
bottom panel shows the values for the model data. The mean and standard deviation for each
distribution are shown above each panel. The plots share a common x-axis and have the y-axis
has been shows the log of the counts.

when compared to ASPCAP and large scatter - the means being 0.10, 0.09 & 0.13 dex

respectively, while the standard deviations are 0.20, 0.22 & 0.10 dex respectively. The

[O/M] values appear the most reliable here, with [C/M] & [N/M] showing much higher

scatter. The plots for C and O also show the effect of our cuts in the model parameter

ranges (see Section 4.1), with clear diagonal lines showing the model cuts at ±0.5 dex

(this is especially clear on the C plot). Again, looking at the comparison between the

EQW values measured in both synthetic and observed spectra (Figures 4.13, 4.14 &

4.15), we can see that for C and N, the distributions are fairly well matched. For O,

while the bulk of observed stars fall within the range of synthetic spectra values, there

are a number of stars with higher EQW values; this gives a partial explanation for the

increased number of analysis failures at the [O/M] stage.

One point to note is that in producing the Figures 4.10 - 4.15, it was necessary to

remove ⇠1,500 stars from the input file. This was due to those stars either having un-

known K-band extinction (given by a –9999.99 value set in the AK TARG column in
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Figure 4.14: The measured indicator EQW values in the model and observed data for the line
used to probe [N/M]. The top panel shows the EQW values for the observed data, while the
bottom panel shows the values for the model data. The mean and standard deviation for each
distribution are shown above each panel. The plots share a common x-axis and have the y-axis
has been shows the log of the counts.

Figure 4.15: The measured indicator EQW values in the model and observed data for the lines
used to probe [O/M]. The top panel shows the EQW values for the observed data, while the
bottom panel shows the values for the model data. The mean and standard deviation for each
distribution are shown above each panel. The plots share a common x-axis and have the y-axis
has been shows the log of the counts.
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the allStar files) or there being missing values for one or more lines used in calculating

the [O/M] abundances. These are stars for which STARPANDA is unable to success-

fully complete analysis.

An alternative way of looking at these results is to plot the distributions of each param-

eter as a function of [Fe/H] in two separate panels and this is shown in Figures 4.16,

4.17 & 4.18 for [C/M], [N/M] & [O/M]. C shows the much larger scatter of values

that were obtained by STARPANDA and the effects of the model parameter cuts. N

shows a similar situation, though with an offset compared to ASPCAP results. Finally

the STARPANDA results for O appear to be much more in line with those for ASPCAP.

Figure 4.16: The results of a CNO abundance STARPANDA analysis and ASPCAP DR12
results for [C/M]. On the y-axis is the difference between the results obtained by STARPANDA
and ASPCAP, while the x-axis shows the ASPCAP [Fe/H]. The density of points is represented
by the colour, shown in the colour bar to the right of the plot; we show the log of the density.
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Figure 4.17: The results of a CNO abundance STARPANDA analysis and ASPCAP DR12
results for [N/M]. On the y-axis is the difference between the results obtained by STARPANDA
and ASPCAP, while the x-axis shows the ASPCAP [Fe/H]. The density of points is represented
by the colour, shown in the colour bar to the right of the plot; we show the log of the density.

Figure 4.18: The results of a CNO abundance STARPANDA analysis and ASPCAP DR12
results for [Fe/H]. On the y-axis is the difference between the results obtained by STARPANDA
and ASPCAP, while the x-axis shows the ASPCAP [Fe/H]. The density of points is represented
by the colour, shown in the colour bar to the right of the plot; we show the log of the density.
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4.3.2 DR14 Analysis

For DR14, STARPANDA took 6468 seconds to analyse 63795 stars (therefore averag-

ing ⇠0.10 sec/star) and it achieved results for 26649 of these. As can be seen in Figure

4.19, the number of stars that failed due to lack of convergence was small (1404 stars),

with the bulk of the failures, again, being due to the star falling outside of our model

parameter space either on the first or subsequent iterations and most commonly while

either deriving the Teff & [Fe/H] or [O/M].

We then compared the STARPANDA results with those given in the DR14 ASPCAP

data release in the same manner as we did for the DR12 ASPCAP results and produced

plots similar to those shown in Figures 4.10 - 4.15. With the exception of [N/M], there

is no significant difference between the plots produced using DR12 and DR14 data

(and so we have omitted them here). For [N/M], DR14 ASPCAP results saw a ⇠0.15

dex change in abundance when compared with the DR12 values. This can be seen in

our results by comparing the Figure 4.21 (produced using the DR14 data) with Figure

4.8 (produced using the DR12 data). Table 4.7 shows the mean and standard deviation

values for the comparison between STARPANDA and ASPCAP using both DR12 and

DR14 data; again the effect of the shift in ASPCAP [N/M] values can be clearly seen.

Parameter DR12 DR14
Mean Std Mean Std

Teff [K] 12.482 134.304 20.969 129.531
[Fe/H] [Dex] –0.051 0.113 –0.058 0.103
log g [Dex] 0.193 0.373 0.278 0.339
[C/M] [Dex] 0.135 0.199 0.153 0.198
[N/M] [Dex] 0.063 0.227 –0.060 0.205
[O/M] [Dex] 0.138 0.109 0.178 0.108

Table 4.7: The mean and standard deviation for each parameter obtained from both
STARPANDA & ASPCAP for DR12 & DR14 results. The STARPANDA results come from 6
parameter analysis runs.

As will be seen in the next section, the results for CNO abundances can be dramatically
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Figure 4.19: Analysis Flags for a 6 parameter run of STARPANDA. The x-axis shows, Suc-
cessful Analysis, Failure due to Divergence, Failure at Teff & [Fe/H] analysis, Failure at log g
analysis, Failure at [C/M] analysis, Failure at [N/M] analysis or Failure at [O/M] analysis. The
y-axis is then the log of the number of occurrences.

Figure 4.20: Iteration Flag results for a 6 parameter run of STARPANDA. This histogram
shows the number of iterations completed during analysis, with the count on the y-axis being
logged. There is a large peak at 0 iterations, showing a failure of analysis due to the star being
outside of model parameter space and a second smaller, but still sizable, peak at 20 iterations,
showing the number of stars for which convergence was not possible.

improved if we can first obtain good results for the stellar parameters. So it appears

that, while the results currently are not as good as we could hope for, there is still hope



4.4. Analysis of CNO Abundances 107

Figure 4.21: The results of a 6 parameter STARPANDA analysis with ASPCAP DR14 results
for [N/M]. On the y-axis is the difference between the results obtained by STARPANDA and
ASPCAP, while the x-axis shows the ASPCAP [N/M]. The density of points is represented by
the colour, shown in the colour bar to the right of the plot; we show the log of the density.

and that if we would be able to identify better lines for use in deriving Teff , [Fe/H]

and log g, then we would expect to see a significant improvement in the results for all

6 parameters. This will be discussed further in Chapter 6.

4.4 Analysis of CNO Abundances

In this section, the results of just a CNO abundance analysis are shown, with compar-

isons to ASPCAP results. The stellar parameters are imported from ASPCAP and then

the CNO abundances are derived iteratively (the derivation order is O, then C, then N)

using the lines shown in Table 4.5. Firstly, we use the DR12 data release to both im-

port the stellar parameters and to then compare our CNO abundances against, then we

repeat the procedure using DR14 stellar parameters and CNO abundances. Given the

results shown in the previous section when STARPANDA is run with a full 6 parameter

analysis option selection, we address the question of what effect importing ASPCAPs
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stellar parameters and running STARPANDA with a CNO abundance analysis option

will have on the CNO results obtained.

4.4.1 DR12 Analysis

First, STARPANDA took just 3891 seconds to analyse the 79519 stars present in the

input files and obtained CNO abundances for 62586 - this gives a ⇠79% success rate

with an average of 0.05 sec/star analysis time. This is a significant improvement over

the ⇠35% return achieved when deriving all 6 parameters. Examining the results of

the Analysis Flags, shown in Figure 4.22, we conclude that the biggest point of fail-

ure is due to targets being outside of model parameter space when deriving [N/M]

values, though there are still significant numbers of failures during the derivation of

both [C/M] and [O/M]. Looking at the results of the Iteration Flag, shown in Figure

4.23, it is clear that the bulk of the analysis failures occurred during the first iteration.

One way this could be explained is by invoking the cuts that have been made to the

model parameter space, thereby excluding any star occupying the more unusual areas

of parameter space. Another explanation is that we assume initial values for the CNO

abundances and since O is here the first to be analysed, it could fail due to the assumed

C & N values being far from their actual values. This would also be true for C (which

is next to be analysed) as it is still taking the initial assumed N value.

One solution to this would be to run the code multiple times with a range of initial

values for the CNO abundances and then merging the resulting output files to achieve

the maximum number of successful results. Given the speed of the code, this could be

a reasonable solution. However, it can be hoped that by expanding the range of fully

occupied model parameter ranges, this would reduce the number of analysis failures

and also allow the pipeline to derive parameters for the more unusual (and to some

interesting) stars; see Chapter 6 for more on this.
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Figure 4.22: Analysis Flags for a 3 parameter run of STARPANDA. The x-axis shows, Success-
ful Analysis, Failure due to Divergence, Failure at [C/M] analysis, Failure at [N/M] analysis or
Failure at [O/M] analysis. The y-axis is then the log of the number of occurrences.

Figure 4.23: Iteration Flag results for a 3 parameter run of STARPANDA. This histogram
shows the number of iterations completed during analysis, with the count on the y-axis being
logged. There is a large peak at 0 iterations, showing a failure of analysis due to the star
being outside of model parameter space; there are no stars showing as reaching 20 iterations
(i.e. no stars failed to convergence or move out of model parameter space within the specified
convergence limit).

So, considering then the results for each abundance individually, we have once again

plotted comparisons between the results obtained by STARPANDA and those obtained
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by ASPCAP. Firstly, we have the difference in the STARPANDA and ASPCAP results

plotted (on the y-axis) against the ASPCAP result (x-axis) and then we have also plot-

ted the distributions of each pipelines [x/M] value as a function of the ASPCAP [Fe/H].

Starting with O, the first abundance calculated in the results presented in this section,

Figure 4.24 (top panel) shows the difference between the [O/M] values calculated by

STARPANDA and ASPCAP as a function of the ASPCAP [O/M] - this can be com-

pared with the same plot (Figure 4.9) for the 6 parameter analysis run. The mean

difference between the pipelines has decreased to 0.080 dex, with the standard devi-

ation also falling to 0.075 dex and while there is still significant scatter, it has been

reduced dramatically compared with the 6 parameter analysis results. One obvious

feature to note in the top plot is the bi-modal distribution, which increases as the value

of ASPCAP [O/M] increases. This bi-modality is readily explained as reflecting the

well-known bi-modal distribution of ↵ elements at constant [Fe/H] in disc stars (e.g.

Mackereth et al., 2017, and references therein). Figure 4.24 (bottom panels) shows the

distributions of [O/M] as a function of ASPCAP [Fe/H] for both STARPANDA and

ASPCAP (top and bottom respectively) - compare these to the plots in Figure 4.18.

The 2 distributions are now much closer and the bimodal distribution of [O/M] at fixed

[Fe/H] now visible in the STARPANDA results. The main difference appears at high

[Fe/H] values where STARPANDA shows either a more pronounced flattening or even

a slight upturn in [O/M] for stars with super-solar metallicities.

Looking now at C, the second abundance to be derived in this run, Figure 4.25 (top

panel) shows the difference between STARPANDA and ASPCAP [C/M], as a function

of ASPCAP [C/M] (compare with Figure 4.7). Again, there has been a significant im-

provement in the results and now we show that, while there is still high scatter, there

is no substantial difference between the [C/M] values output by the two pipelines; the

mean difference has fallen to just 0.007 dex, with a standard deviation of only 0.087

dex. The effects of the model parameter cuts are clearly visible in the hard diagonal

edges to the results. Figure 4.25 (bottom panels) shows the distributions of [C/M] for
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Figure 4.24: The results of a CNO abundance STARPANDA analysis with ASPCAP
DR12 results for [O/M]. The top plot shows difference between the abundances derived by
STARPANDA and ASPCAP as a function of the ASPCAP abundance. The subtitle shows the
lines used in the analysis as well as the mean and standard deviation of the difference between
the abundances derived by both pipelines. The middle and bottom plots show the distribution
of [O/M] as a function of [Fe/H] (taken from ASPCAP). The bottom two plots share a x-axis
and for all three plots the density is represented by the colour, which is shown in the colour bar
to the right of the plots (additionally we have shown this on a log scale).

both STARPANDA and ASPCAP as a function of the ASPCAP [Fe/H]. The similarity

between the two distributions is clear, with no substantial difference between them.
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Figure 4.25: The results of a CNO abundance STARPANDA analysis with ASPCAP
DR12 results for [C/M]. The top plot shows difference between the abundances derived by
STARPANDA and ASPCAP as a function of the ASPCAP abundance. The subtitle shows the
lines used in the analysis as well as the mean and standard deviation of the difference between
the abundances derived by both pipelines. The middle and bottom plots show the distribution
of [C/M] as a function of [Fe/H] (taken from ASPCAP). The bottom two plots share a x-axis
and for all three plots the density is represented by the colour, which is shown in the colour bar
to the right of the plots (additionally we have shown this on a log scale).

Finally looking at N, which was the last abundance to be derived, Figure 4.26 (top

panel) shows the difference between STARPANDA and ASPCAP [N/M], as a func-

tion of ASPCAP [N/M] (compare this with Figure 4.8). Now the mean difference has
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increased to 0.115 dex with standard deviation reducing to 0.170 dex; however, there

is now a clear slope, with the two pipelines agreeing more closely at higher values

of ASCAP [N/M]. Figure 4.26 (bottom panels) shows [N/M] for both STARPANDA

and ASPCAP as a function of ASPCAP [Fe/H] and the difference between the two

pipelines at lower values of ASPCAP [Fe/H] is clear. It will be necessary to compare

the results of both pipelines using reference stars in order to understand these differ-

ences more fully.

4.4.2 DR14 Analysis

For DR14, STARPANDA took 3300 seconds to analyse 63795 stars (therefore averag-

ing ⇠0.05 sec/star) and it achieved results for 52549 of these (a ⇠82% success rate).

Looking at Figure 4.27 shows that N was the biggest cause of the analysis failing,

while Figure 4.28 shows that the number of stars that failed due to lack of convergence

was small (5 stars).

Repeating our previous comparisons again using the DR14 ASPCAP results with those

obtained by STARPANDA, we can again re-plot some of our figures and see how the

new ASPCAP results compare with ours. So, this time we re-plot Figures 4.24, 4.25

and 4.26 with the new results and produce Figure 4.29, 4.30 and 4.31; in each case

the top plot shows the difference between the pipelines as a function of the ASPCAP

result, while the bottom two plots shows the results of each pipeline as a function of

the ASPCAP [Fe/H] value. Figure 4.29 (top panel) shows the same bi-modal distri-

bution as previously seen in Figure 4.24. This can be explained, once again, by the

bi-modality observed in the ↵ vs Fe plots shown in the lower panels of both figures.

This time, using the DR14 stellar parameters, but calculating CNO abundances using

STARPANDA we see an improvement in the match between the values produced by

both pipelines.
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Figure 4.26: The results of a CNO abundance STARPANDA analysis with ASPCAP
DR12 results for [N/M]. The top plot shows difference between the abundances derived by
STARPANDA and ASPCAP as a function of the ASPCAP abundance. The subtitle shows the
lines used in the analysis as well as the mean and standard deviation of the difference between
the abundances derived by both pipelines. The middle and bottom plots show the distribution
of [N/M] as a function of [Fe/H] (taken from ASPCAP). The bottom two plots share a x-axis
and for all three plots the density is represented by the colour, which is shown in the colour bar
to the right of the plots (additionally we have shown this on a log scale).

Overall, the results are encouraging. Further work on identifying the best lines to use

for CNO could see these results improve, and if better lines for Teff , [Fe/H] and log g



4.4. Analysis of CNO Abundances 115

Figure 4.27: Analysis Flags for a 3 parameter run of STARPANDA. The x-axis shows, Success-
ful Analysis, Failure due to Divergence, Failure at [C/M] analysis, Failure at [N/M] analysis or
Failure at [O/M] analysis. The y-axis is then the log of the number of occurrences.

Figure 4.28: Iteration Flag results for a 3 parameter run of STARPANDA. This histogram
shows the number of iterations completed during analysis, with the count on the y-axis being
logged. There is a large peak at 0 iterations, showing a failure of analysis due to the star being
outside of model parameter space and a second, smaller peak at 20 iterations, showing the
number of stars for which convergence was not possible.

are found, then it could prove advantageous to go back to a full 6 parameter analysis.
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Figure 4.29: The results of a CNO abundance STARPANDA analysis with ASPCAP
DR14 results for [O/M]. The top plot shows difference between the abundances derived by
STARPANDA and ASPCAP as a function of the ASPCAP abundance. The subtitle shows the
lines used in the analysis as well as the mean and standard deviation of the difference between
the abundances derived by both pipelines. The middle and bottom plots show the distribution
of [O/M] as a function of [Fe/H] (taken from ASPCAP). The bottom two plots share a x-axis
and for all three plots the density is represented by the colour, which is shown in the colour bar
to the right of the plots (additionally we have shown this on a log scale).
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Figure 4.30: The results of a CNO abundance STARPANDA analysis with ASPCAP
DR14 results for [C/M]. The top plot shows difference between the abundances derived by
STARPANDA and ASPCAP as a function of the ASPCAP abundance. The subtitle shows the
lines used in the analysis as well as the mean and standard deviation of the difference between
the abundances derived by both pipelines. The middle and bottom plots show the distribution
of [C/M] as a function of [Fe/H] (taken from ASPCAP). The bottom two plots share a x-axis
and for all three plots the density is represented by the colour, which is shown in the colour bar
to the right of the plots (additionally we have shown this on a log scale).

4.4.3 Comments on CNO Abundances

While the stellar parameter results obtained by STARPANDA still require some further

work, we are able to obtain good CNO abundances when using the ASPCAP stellar
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Figure 4.31: The results of a CNO abundance STARPANDA analysis with ASPCAP
DR14 results for [N/M]. The top plot shows difference between the abundances derived by
STARPANDA and ASPCAP as a function of the ASPCAP abundance. The subtitle shows the
lines used in the analysis as well as the mean and standard deviation of the difference between
the abundances derived by both pipelines. The middle and bottom plots show the distribution
of [N/M] as a function of [Fe/H] (taken from ASPCAP). The bottom two plots share a x-axis
and for all three plots the density is represented by the colour, which is shown in the colour bar
to the right of the plots (additionally we have shown this on a log scale).

parameters and our own measurements of a carefully chosen selection of CNO lines.

While the figures presented earlier in this chapter provide a sense of how well the two

pipelines agree, it would be better to have a more quantitative idea. To that end, Table
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Analysis CNO STARPANDA ASPCAP No. of
Run Parameter Mean [Dex] Std [Dex] Mean [Dex] Std [Dex] Stars

DR12 6P
C 0.06574 0.21416 –0.06820 0.08434
N 0.24081 0.21532 0.16224 0.09342 2078
O 0.18837 0.04891 0.04806 0.04604

DR14 6P
C 0.06155 0.21180 –0.08818 0.0814
N 0.25402 0.20606 0.28864 0.08872 1890
O 0.19089 0.09265 0.00324 0.05170

DR12 CNO
C –0.05296 0.12117 –0.06134 0.09236
N 0.22605 0.16914 0.14341 0.11448 3527
O 0.11463 0.08562 0.05377 0.05311

DR14 CNO
C –0.07546 0.09883 –0.08731 0.09124
N 0.24133 0.15752 0.28710 0.10513 2969
O 0.11274 0.06830 0.00974 0.06158

Table 4.8: The mean and standard deviation for CNO abundances between STARPANDA &
ASPCAP for DR12 & DR14, using both STARPANDA 6 parameter analysis runs, as well as
STARPANDA CNO abundance analysis runs. These figures are for a subset stars (the number
of stars in each group is given in the final column) in the range –0.02  [Fe/H]ASPCAP
+0.02.

4.8 presents the mean and standard deviations from a thin slice of stars around a [Fe/H]

= 0.0 (� = 0.02).

The values presented in this table re-iterate the comments made in the sections on the

individual sets of results. Namely, that when STARPANDA derives all six parame-

ters, the CNO abundances derived have a higher scatter than the equivalent ASPCAP

results and show an offset compared to ASPCAP (though the offset is within 1-�).

When STARPANDA uses the ASPCAP stellar parameters to derive CNO abundances,

the result we obtain are of comparable precision to those produced by ASPCAP.

We also used the CNO abundance analysis as an opportunity to see how varying the

initial CNO abundances affects the number of stars for which STARPANDA is able to

derive CNO abundances. Therefore, in Table 4.9 we show the results of this analysis,

taking 79519 input stars (from the DR12 Analysis earlier) and running STARPANDA

with 7 different initial values of CNO; we take initial values of –0.3 to +0.3 in 0.1
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Initial Parameters Analysis Results
CNO [Dex] Successes Failures Divergences

–0.3 62456 17063 0
–0.2 62534 16985 1
–0.1 62576 16943 1
0.0 62586 16933 1
0.1 62594 16925 1
0.2 62463 17056 1
0.3 62044 17475 0

Combined 61797 16801 0

Table 4.9: The Analysis Results obtained by STARPANDA from 7 runs of the code using
different initial values for CNO abundances. The first column shows the initial values used for
[C/M], [N/M] & [O/M] (all 3 values are varied together), while the remaining 3 columns show
the number of successful analysis cases, the number of failed cases and the number that failed
to converge (divergences) out of the total number of stars that were analysed, 79519. The final
row shows the number of stars for which STARPANDA was able to successfully able to derive
results regardless of initial parameter values, the number for which it always failed and the
number for which it always diverged.

steps and vary CNO together. The first column shows the initial values for CNO, while

the remaining columns then show the number of stars for which CNO abundances are

successfully derived, the number for which analysis fails and the number for which no

convergence is achieved within 20 iterations.

So, we can see from these results, that the number of successful analyses is relatively

insensitive to the initial parameters chosen for the CNO abundances. It is only when

starting with CNO abundances at +0.3, that we see a slight drop in the number of stars

for which parameters can be successfully derived. For initial values from –0.3 to +0.2,

the number of successes varies only by ⇠130, while changing from +0.2 to +0.3 this

number decreases by ⇠420. So, as long as the initial parameters are chosen sensibly,

there need be no concern at how small changes in these values might affect the number

of stars for which STARPANDA is able to derive results. Taking this slightly further,

if we combine the results from all 7 runs of STARPANDA, we find that 61797 stars

successfully complete analysis in all runs and 16801 stars that fail analysis in all runs

(i.e. these are the stars for which STARPANDA either always derives results or always

fails to derive results regardless of initial parameter values). We see, therefore, that
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Abundance Mean Difference [Dex] Standard Deviation [Dex]
C 0.00638 0.00574
N –0.00782 0.00795
O 0.00050 0.00093

Table 4.10: Comparing the CNO abundance results obtained by STARPANDA for the same
input data, but with 2 different sets of initial CNO parameters. The runs used CNO values
of –0.3 and +0.3. The difference is found by taking the CNO abundance obtained in the –
0.3 run and subtracting those obtained from the +0.3 run. The Mean Difference and Standard
Deviation are then found from the whole 61797 set of stars which were successfully analysed
by all 7 runs of STARPANDA.

the number of stars for which the choice of starting parameter values matter is small

compared with the number of stars being analysed. Finally, we can compare the results

obtained from various runs to see how the choice of initial starting parameters affects

the CNO abundances obtained. Table 4.10 shows the mean difference between the

CNO abundances obtained from the first and last run (taken as the abundance value of

the first run minus the value obtained in the last run), with initial CNO parameters of

–0.3 and 0.3 respectively, together with the standard deviation. We see that for all three

parameters, the mean difference and standard deviations are small, further confirming

that the choice of initial parameter value has little effect on the final results obtained

by STARPANDA.

4.5 Analysis of Elemental Abundances

In this section, the results of an abundance analysis using imported stellar parameters

and CNO abundances are shown. At this stage, we are just showing the results for Al,

but no further changes to the pipeline will be required before other elements can be

analysed. The only work that will be required is to identify the lines that can be used

in analysis, generate the model mini-grids that we use and then measure the lines in

both observed and synthetic spectra. Once again, Table 4.5 shows the lines used to

produce these results.
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Firstly, we used the stellar parameters and CNO abundances given in the DR12 data

release and then compared our Al abundances against the DR12 ASPCAP Al abun-

dances. Then we repeated the procedure using DR14 stellar parameters, CNO abun-

dances and Al abundances instead.

4.5.1 DR12 Analysis

STARPANDA took 584 seconds to analyse 79519 stars and successfully derived Al

abundances for 78595 stars - achieving a ⇠99% success rate in ⇠0.007 sec/star. As

before, the stellar parameters and CNO abundances have been taken from the AS-

PCAP DR12 output. Figure 4.32 shows a comparison between the results of the

STARPANDA and ASPCAP pipelines, plotting the difference between the two as a

function of the ASPCAP [Al/M]. The mean difference between the 2 pipelines is 0.132

dex (with STARPANDA returning slightly smaller abundances than ASPCAP on aver-

age), while the standard deviation is 0.156 dex. While the bulk of the results do seem

consistent with the ASPCAP results (allowing for the offset), there is a very large

amount of scatter.

So, in order to try to understand these results further we have looked at how the

STARPANDA [Al/M] values change as a function of various ASPCAP parameters,

which were used to derive both Al abundances. Figure 4.33 shows comparisons of the

Al abundances produced by both pipelines plotted as functions of the ASPCAP Teff ,

[Fe/H], log g, [C/Fe], [N/Fe] & [O/Fe] - in each case the STARPANDA [Al/Fe] dis-

tribution is plotted above that of the ASPCAP [Al/Fe]. In all six cases the precision

of both sets of results are comparable, with a slight offset; the [Al/Fe]-[Fe/H] relations

show a slight anti-correlation in the STARPANDA results, which is not seen in the

ASPCAP results. This may explain the anti-correlation apparent in Figure 4.32.
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Figure 4.32: The results of an elemental abundance analysis of Al from STARPANDA with the
DR12 results from ASPCAP. Plotted on the y-axis is the difference between the STARPANDA
and ASPCAP values, while the x-axis shows the ASPCAP results. The density of points is
represented by the colour, shown in the colour bar to the right of the plot; we show the log of
the density.

4.5.2 DR14 Analysis

STARPANDA took 531 seconds to analyse 63795 stars and successfully derived Al

abundances for 63198 stars - achieving a ⇠99% success rate in ⇠0.008 sec/star. Once

again repeating the analysis with DR14 stellar parameters and CNO abundances pro-

duces Figures 4.34 and 4.35. Now the mean difference between the results of the

pipelines is 0.122 dex, while the standard deviation is 0.173 dex. These figures are

comparable to those achieved using DR12 stellar parameters and CNO abundances,

looking at the plots and comparing with the ones above (Figures 4.32 and 4.33 respec-

tively). The main difference between the two sets of plots is that that both pipelines

show a decrease in [Al/Fe] in all six plots using DR14 stellar parameters and CNO

abundances.
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Figure 4.33: The results of an elemental abundance analysis of Al from STARPANDA with
the DR12 results from ASPCAP as a function of the 6 parameters. Each of the 6 pairs of plots
have the STARPANDA plot above the ASPCAP plot, showing the Al abundance distribution as
a function of the ASPCAP Teff , [Fe/H], log g, [C/Fe], [N/Fe] & [O/Fe]. The x-axis is shared
between each pair of subplots. The density of points is represented by the colour, shown in the
colour bar to the right of the plot; we show the log of the density.



4.5. Analysis of Elemental Abundances 125

Figure 4.34: The results of an elemental abundance analysis of Al from STARPANDA with the
DR14 results from ASPCAP. Plotted on the y-axis is the difference between the STARPANDA
and ASPCAP values, while the x-axis shows the ASPCAP results. The density of points is
represented by the colour, shown in the colour bar to the right of the plot; we show the log of
the density.
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Figure 4.35: The results of an elemental abundance analysis of Al from STARPANDA with
the DR14 results from ASPCAP as a function of the 6 parameters. Each of the 6 pairs of plots
have the STARPANDA plot above the ASPCAP plot, showing the Al abundance distribution as
a function of the ASPCAP Teff , [Fe/H], log g, [C/Fe], [N/Fe] & [O/Fe]. The x-axis is shared
between each pair of subplots. The density of points is represented by the colour, shown in the
colour bar to the right of the plot; we show the log of the density.



Chapter 5

Conclusions

Our initial goals were to develop a pipeline which would be able to quickly and accu-

rately derive stellar parameters and chemical abundances from the APOGEE spectra.

We were aiming to beat the ASPCAP pipeline in terms of speed, while at least match-

ing it in terms of accuracy and precision. On the first requirement we have exceeded

our expectations - we had talked about developing a code which would be able to de-

rive stellar parameters and CNO abundances, with errors, in approximately one second

per star. After a considerable initial investment of time, we have developed a pipeline

which is over ten times faster (see Section 3.4.3 and Chapter 4 for runtime examples).

With some further development (see Chapter 6.1), it should be possible to achieve even

faster results. All of this has been done on a rather low-powered laptop computer.

On the second requirement we have made clear progress. The best results obtained

so far are when STARPANDA imports the stellar parameters obtained by ASPCAP in

DR14 and then derives CNO abundances using the lines listed in Table 4.5 - the re-

sults can be seen in Figures 4.29 - 4.31 (in Section 4.4). In this case, we obtain results

strikingly similar to those obtained by ASPCAP, in a tiny fraction of the time. With

more work, we expect to be able to match the accuracy of ASPCAP CNO abundances

and may even be able to improve upon them. If we use STARPANDA to obtain all 6

parameters, then the results are not as good as those obtained by ASPCAP (see Section
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4.3), This is understandable as our tracers for effective temperature, [Fe/H] and surface

gravity may need to be improved; given, then, the nature of our pipeline and the de-

generacies between parameters, this leads to less reliable CNO abundances. Once we

have been able to identify a good spectroscopic tracer for effective temperature and a

better tracers of [Fe/H] and surface gravity we expect that the results will be, at least,

comparable to those produced by ASPCAP (see Chapter 6.2 for more detail). Regard-

ing the results obtained for Al abundances, this was not something that we planned for

this stage of the pipeline; we had aimed initially for only deriving stellar parameters

and CNO abundances, with elemental abundances being added later. However, during

the development of the code we devised a method that would allow us to do both CNO

and elemental abundances if we wished. Al was chosen as being a relatively simple

element to start on and with our decision to calculate synthetic spectra with varying Al

abundances (a procedure not adopted by APOGEE), we thought that we would be able

to exceed the accuracy of the ASPCAP results. Looking to the future, we are all set

to add additional elements and we are actively discussing which are the best prospects

and which will be the most beneficial for APOGEE to have a second opinion on.

Finally, thanks to the way the pipeline has been developed, we now have a tool which

is completely project, wavelength and model independent. That is to say, there is noth-

ing hard-coded in the software which requires the spectra to be from APOGEE, to be

in the infrared or to use the models currently employed. All that is currently required

is that you have a set of observed EQWs and a set of model EQWs at given stellar

parameters and elemental abundances that you wish to compare. As long as there is a

line or combination of lines in the spectra which can be shown to correlate to a specific

stellar parameter or elemental abundance, then STARPANDA can derive a value and

calculate the errors. There is no need to train the software and there is no ambiguity in

where the final parameter values may have come from - there is a clear path from the

physics of the stellar atmosphere, to EQW of a line, to the final derived parameter and

parameter error values.
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This has been an ambitious project and great progress has been made in achieving

our initial goals. In some cases we have exceeded what we set out to achieve and we

expect that once it is released, that we will have a tool which will be of benefit to both

the APOGEE collaboration and the wider astronomical community.



Chapter 6

Future Work

Construction of a general spectroscopic analysis pipeline which can be easily utilised

and can be run on even low-powered computing hardware is a long-term project which

will continue to be developed for some time to come. While the initial goals have

largely been met, there have been numerous ideas which have arisen during this work,

that were put to one side and marked as future goals.

In this chapter we briefly discuss some of the work that has been started, but has not

yet reached a stage where results have been obtained and also some ideas which we

would like to see developed in future. So, in Section 6.1, we outline several ways in

which we feel the code could be developed further, while in Section 6.2 we present

some of the work which can be done with the results obtained by STARPANDA.

6.1 Future Pipeline Development

There are two obvious and fairly straightforward ways in which the STARPANDA

code could be developed and improved. First off, a graphical user interface (GUI)

would make the code much easier to run and would also allow several additional tools
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to be built into the overall package. Work has already started on developing a GUI, but

this is at a very early stage. The idea would be to have an interface which is able to

merge the STARPANDA code together with the code developed by Mackereth (which

measures the EQW of lines in the observed and synthetic spectra), and also, adds basic

plotting functionality (to allow a quick first check of the derived parameter values for

example).

Secondly, parallelisation of the code would offer a dramatic increase in runtime per-

formance. As the code is written, once the observed and model data are read in, a loop

is started which goes over all of the input objects and derives the desired values. It is

conceptually simple to split the input files into multiple batches and process each on a

separate CPU. The difficulty is in dealing with the logfile which is written to continu-

ally while STARPANDA is running and in merging the output arrays which store the

results of each analysis sequentially. These would need to be split into multiple files

and then held separately, before being merged prior to the output files being written to

storage; a complicating factor would be in putting a system in place to deal with these

files which could handle the unexpected early termination of the code. This requires

some thought on how best to structure the code while dealing with parallelisation.

In addition to the development of a GUI and parallelisation of the code, there are sev-

eral other ideas which should be explored further:

• Code Optimisation - The code, while quick, could be made quicker still by util-

ising the design of the Python language. A simple example is in the use of

function references, which are evaluated at each call, and could be replaced by

explicit definitions. This would lead to a small time savings in each case, but in

the whole code run, could lead to significant runtime improvement.

• Scripting - The code currently utilises a config file which holds all the user-

defined variables and settings. If the user wished to run the code multiple times
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with minor changes between each run, they would need to edit this file between

each run. It would be nice to implement a facility to allow the config file to

be specified at runtime, so that multiple config files could be used to hold the

settings for each unique run, e.g. testing the results from different lines, with

different code output filenames for each run.

In addition to these it would be useful to investigate the interpolation methods further

both to run additional tests and also to explore other methods to see if there were faster

or more accurate options available. One such further test that we have discussed run-

ning is using the results plotted in Section 3.4.1 on Testing the RGI method. We could

take the FWHM from each of the plots and calculate the variation in parameter value

in different regions of model parameter space. This would give us a better idea of the

errors stemming from the use of RGI.

6.2 Future Science

In order to further verify and improve on the results already obtained by STARPANDA,

it will be necessary to compare the parameter and abundance values we derive to those

of more than just ASPCAP. This has already started, but it is still at a very early stage.

Starting with work done by Mészáros et al. (2015), we are comparing the Al values

derived by STARPANDA (utilising both DR12 and DR14 input parameters) against

those derived by Meszaros using theoretical isochrones and also against the literature

values they assembled (see Tables 2 and 5 of Mészáros et al., 2015). We then nar-

row in on individual clusters and compare the 4 sets of results directly (cutting the

STARPANDA and ASPCAP results to just those stars in the Meszaros isochrone de-

rived set and those in the literature set). The results of this work should then help us in

understanding the differences observed between the bulk results of STARPANDA and

ASPCAP as shown in Chapter 4.5.
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As mentioned previously, STARPANDA utilises mini-grids of synthetic spectra vary-

ing individual elemental abundances. This is not something that ASPCAP currently

includes, and so we should be in a position to improve on the results obtained by

ASPCAP for all 15 elements. This will allow us to not only work on improving the

results reported in the APOGEE data releases, but will also give us a better idea of the

chemical compositions of all the stars targeted by APOGEE. This, in turn, opens up

the possibility of using these improved results for work on galactic archaeology and

chemical tagging.



Appendix A

How to use STARPANDA

A.1 Download & Installation

STARPANDA is not currently publicly available, but will be available once work on it

has been completed and the code fully tested to ensure that it is reliable. If you wish

you use the code prior to its release, please either email the author or contact Dr Ri-

cardo Schiavon (R.P.Schiavon@ljmu.ac.uk).

The STARPANDA code consists of the following files:

• starpac.py - Main code - handles data input & output

• sp params.py - Derives Stellar Parameters & CNO Abundances

• sp abunds.py - Derives Elemental Abundances

• sp plot.py - Plotting routines

• sp config.py - User editable configuration file

• sp readme.txt - Readme text file
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These should be kept in the same directory, while the Input and Output directories

specified in the sp config.py file can be located anywhere. The code is then invoked by

running “python starpac.py” from the directory containing the code files. More infor-

mation on the items contained in the sp config.py file, can be found in the sp readme.txt

file.

A.2 STARPANDA Readme File

This is the readme file for the STARPANDA code

Created By: Rob Williams, ARI, Liverpool John Moores University
r.a.williams@2013.ljmu.ac.uk

Creation Date: 28 August 2014
Last Modified: 23 January 2017

################################################################################
### Code Files ###
################################################################################
starpac.py (Main Code)

Main code. Called by user and responsible for loading and saving data. Reads
user preferences from sp_config and sp_indices. Calls sp_params (if user
requires), sp_abunds (if user requires), sp_modparams (if user requires).

sp_config.py
Contains user specified data locations for input and output, together with
initial parameter values, index names and tolerance values used while
analysing the stellar parameters.

sp_params.py
Code responsible for the derivation of stellar parameters. Called by starpac
(if the user specifies it) for each object in the input files.

sp_abunds.py
Code responsible for the derivation of stellar elemental abundances. Called
by starpac (if the user specifies it) for each object in the input files.

sp_plot.py
Code called, if specified, either during each iteration or at the end of the
analysis of each object which plots the grids and curves used in
interpolation of the parameters & abundances

### Required Directories
Input, Output

### Required Input Files in Input Directory
FITS file containing EQWs of lines from synthetic spectra
FITS file containing EQWs of line from observed spectra

### Python Version



A.2. STARPANDA Readme File 136

2.7.10 (Tested)

### Modules Required by STARPAC
numpy, scipy, scipy.interpolate (RegularGridInterpolator, griddata & interp1d),
astropy (io.fits & table), matplotlib, csv, datetime, time

################################################################################
### References ###
################################################################################
n/a

################################################################################
### User Input ###
################################################################################
# sp_config.py
Edit the sp_config.py file to change the input & output file locations to suit. Also changes to the naming of output files can be made here, together with the names of the indicies being used in the model grids.

# Control options for what analysis code runs
param_analysis = Does the code analyse stellar parameters & CNO abundances

for all input objects? (True/False)
cno_analysis = Does the code analyse CNO abundances (without the stellar

parameters) for all input objects? (True/False)
abund_analysis = Does the code analyse elemental abundances for all input

objects? (True/False)

# Control options for what plots the code produces
full_grid_plot = Plot an initial effective temperature & metallicity grid

(assuming starting values of log g & CNO)?
Only works when using param_analysis (True/False)

histo_plot = Plot histograms of the results of parameter analysis using
flag values and iteration count from each object analysis?
Only works when using param_analysis (True/False)

comp_plot = Plot comparisons between (True/False)
debug_plots = Plot grid and curve interpolations for each parameter/CNO

abundance at each iteration? (True/False) n.b. this will
produce a large number of output files for each target and
significantly slow the code

final_plots = Plot grid and curve interpolations for each parameter/CNO
abundance, but only at the final iteration? (True/False)

# Input file location & names
input_dataloc = Full path of the location of the input datafiles (’String’)
obs_datafile = Name of the FITS file containing the observed data

(’String’)
model_datafile = Name of the FITS file containing the synthetic data

(’String’)
paramcno_datafile = Name of the FITS file containing stellar parameters & CNO

abundances for use in abund_analysis, if not previously
deriving these (’String’)

param_datafile = Name of the FITS file containing stellar paramaters for use
in CNO_analysis (’String’)

abunds_datafile = Name of the FITS file containing the synthetic abundance
data for use in abund_analysis (’String’)
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# Output file location & names
output_dataloc = Full path location of the output data (’String’)
output_name = Base name to use in creating output files - this is added to

to create the filenames of each output file (’String’)
output_plotformat = File type to use for output plots (not all plots use this),

either ’pdf’, ’eps’ or ’jpg’ (’String’)

# Model Data Parameter, CNO & Elemental Abundance Column Names
model_temp_index = Name of the column in the model_datafile containing the

effective temperature EQWs (’String’)
model_feh_index = Name of the column in the model_datafile containing the

metallicity EQWs (’String’)
model_logg_index = Name of the column in the model_datafile containing the

log(g) EQWs (’String’)
model_cm_index = Name of the column in the model_datafile containing the

[C/M] abundance EQWs (’String’)
model_nm_index = Name of the column in the model_datafile containing the

[N/M] abundance EQWs (’String’)
model_om_index = Name of the column in the model_datafile containing the

[Alpha/M] abundance EQWs (’String’)
model_abund_labels = Name of the columns in the abunds_datafile containing the

elemental abundance EQWs for each element to be analysed
during abund_analysis ([’String Array’])

# Measured Lines for Stellar Parameters, CNO & Elemental Abundances
temp_label = Name(s) of the column(s) in the obs_datafile containing the

EQW measurement(s) of the line(s) to be used for effective
temperature ([’String Array’])

feh_label = Name(s) of the column(s) in the obs_datafile containing the
EQW measurement(s) of the line(s) to be used for metallicity
([’String Array’])

logg_label = Name(s) of the column(s) in the obs_datafile containing the
EQW measurement(s) of the line(s) to be used for log(g)
([’String Array’])

cm_label = Name(s) of the column(s) in the obs_datafile containing the
EQW measurement(s) of the line(s) to be used for [C/M]
([’String Array’])

nm_label = Name(s) of the column(s) in the obs_datafile containing the
EQW measurement(s) of the line(s) to be used for [N/M]
([’String Array’])

om_label = Name(s) of the column(s) in the obs_datafile containing the
EQW measurement(s) of the line(s) to be used for [Alpha/M]
([’String Array’])

abund_labels = Name(s) of the column(s) in the obs_datafile containing the
EQW measurement(s) of the line(s) to be used for elemental
abundances ([’String Array’]) n.b. each entry can itself be
an array of strings

# Analysis Order
sp_order = Order for conducting parameter & CNO abundance analysis

effective temperature and metallicity will always be first,
so this applies to just log(g) & CNO ([’String Array’])
e.g. [’logg’, ’C’, ’O’, ’N’]

cno_order = Order for conducting CNO abundance analysis ([’String
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Array’]) e.g. [’C’, ’O’, ’N’]

# Input Stellar Parameter & CNO Labels
io_temp_label = ’TEFF’
io_feh_label = ’Fe_H’
io_logg_label = ’LOGG’
io_cm_label = ’C_Fe’
io_nm_label = ’N_Fe’
io_om_label = ’O_Fe’

# Starting parameter & CNO values
model_init_logg = Initial value of log(g), used in first iteration of

param_analysis (Float)
model_init_cm = Initial value of [C/M], used in first iteration of

param_analysis (Float)
model_init_nm = Initial value of [N/M], used in first iteration of

param_analysis (Float)
model_init_om = Initial value of [Alpha/M], used in first iteration of

param_analysis (Float)

# Iteration count & tolerances
iter_max = Maximum number of times the code is allowed to iterate to

find parameters (Int)
tol_temp = Convergence limit for Temperature in iterations (Float)
tol_feh = Convergence limit for [Fe/H] in iterations (Float)
tol_logg = Convergence limit for log(g) in iterations (Float)
tol_cm = Convergence limit for [C/M] in iterations (Float)
tol_nm = Convergence limit for [N/M] in iterations (Float)
tol_om = Convergence limit for [Alpha/M] in iterations (Float)

################################################################################
### Flag Values ###
################################################################################
# Parameter Flag Values
0 - Value is Good
1 - Value is Bad

# Error Flag Values
0 - Negative & Positive Error Values are Good
1 - Negative Error Value is Bad; Positive Error Value is Good
2 - Negative Error Value is Good; Positive Error Value is Bad
3 - Negative & Positive Error Values are Bad

# Iteration Flag Values
0 - Analysis converged
1 - Analysis reached iteration limit before convergence
2 - Analysis failed without converging

# Failure Flag Values
0 - Success
1 - Failed due to reaching convergence limit
2 - Failed as unable to find initial Temperature and [Fe/H]
3 - Failed due to divergence whilst trying to find log(g)
4 - Failed due to divergence whilst trying to find [Alpha/M]
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5 - Failed due to divergence whilst trying to find [C/M]
6 - Failed due to divergence whilst trying to find [N/M]

################################################################################
### Code Breakdown ###
################################################################################

(1) Code Starts (run "python starpac.py" from the command line)

(2) starpac:
(a) Start time is saved and the logfile is created
(b) Check if parameter & CNO abundance analysis is required

(1) If True, write analysis run details to logfile; if False, make a
note to logfile

(2) Read in observed data, model data and create output data
structure

(3) Create interpolated function from the model data for later use
(using scipy.interpolate.RegularGridInterpolator)

(4) Check if full initial grid or comparison plots are required
(5) Loop over all objects in the observed datafile and call

sp_params.Find_Params to derive stellar parameters and CNO
abundances

(6) Update logfile with runtime and details of successes/failures
(7) Write out FITS file with results of stellar parameters & CNO

abundances analysis
(8) Check if results histograms are required

(c) Check if CNO abundance analysis is required and if parameter
analysis has not already been run

(1) If both are True, then write analysis run details to logfile; if
the former is False, make a note to logfile; if the latter is
False, make a note to logfile

(2) Read in observed data, model data and create output data
structure

(3) Read in stellar parameter values
(4) Create interpolated function from the model data for later use

(using scipy.interpolate.RegularGridInterpolator)
(5) Loop over all objects in the observed datafile and call

sp_params.Find_Params to derive CNO abundances
(6) Update logfile with runtime and details of successes/failures
(7) Write out FITS file with stellar parameters (taken from input

file) & results of CNO abundances analysis
(8) Check if results histograms are required

(d) Check if elemental abundance analysis is required
(1) If True, write analysis run details to logfile; if False, make a

note to logfile
(2) Read in observed data
(3) Check if parameter analysis has been previously run; if True,

use these stellar parameters & CNO abundances, otherwise read in
data from file

(4) Loop over all elements given in abund_labels
(a) Read in model data for the selected element
(b) Create interpolated function from the model data for later

use (using scipy.interpolate.RegularGridInterpolator)
(c) Loop over all objects in the observed datafile and call
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sp_abunds.Abund_Analysis to derive elemental abundance
(5) Update logfile with runtime and details of successes/failures
(6) Write out FITS file with stellar parameters & CNO abundances

(taken from input file) plus the results of elemental abundance
analysis

(3a) sp_params.Find_Params:
(a) Save Star ID to output structure
(b) Save initial values of log(g) (null values for Temperature and

[Fe/H]) & CNO abundances for checking convergence
(c) Derive the temperature & [Fe/H]

(1) Assuming initial values for log(g) & CNO (or taking those
derived in previous iterations), interpolate a grid from the
function created by starpac

(2) Interpolate (using scipy.interpolate.griddata) the Temperature &
[Fe/H] of the target using the new grid

(3) Check if debug_plots are required; if so, plot the grid with the
target point and interpolated Temperature & [Fe/H] values, plus
current log(g) & CNO values

(4) Check if the interpolated Temperature & [Fe/H] values are within
model paramater space; if not, end analysis

(d) Derive log(g), [C/M], [N/M] & [O/M] in the order specified by
sp_order

(1) Taking previously derived values for Temperature & [Fe/H], with
either initial or previously derived values for remaining
parameters/abundances, interpolate the variation in model
parameter/abundance with variation in EQW of line(s) being used
to trace parameter/abundance using the function created by
starpac

(2) Interpolate this curve (using scipy.interpolate.interp1d) to
derive the parameter/abundance value

(3) Check if debug_plots are required; if so, plot the curve with
the interpolated curve, nearest node curve and measured target
line

(4) Check if the derived value is within model parameter space; if
not, end analysis

(e) Check that iteration is required (not set to zero), that the maximum
number of iterations hasn’t been reached and that convergence has
not been reached; if all are true return to (c) and re-derive new
values using values from this iteration as starting values

(f) Check if final_plots are required; if so, plot grid and curves for
final iteration values

(g) If analysis was successful, derive errors on all
parameters/abundances for both positive and negative errors on the
measured target line EQWs

(h) Save stellar parameter and CNO abundance values, flags, error
values & counters to output data structure (using null values if no
value could be derived)

(i) Update logfile with details of this analysis, including values of
parameters/abundances derived at each iteration, counters, flags,
error values and comments

(j) Return to starpac

(3b) sp_params.Find_CNO:
(a) Save Star ID to output structure
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(b) Save initial values of CNO abundances for checking convergence
(c) Derive [C/M], [N/M] & [O/M] in the order specified by cno_order

(1) Taking the stellar parameter values supplied, with either
initial or previously derived values for abundances,
interpolate the variation in model parameter/abundance with
variation in EQW of line(s) being used to trace
parameter/abundance using the function created by starpac

(2) Interpolate this curve (using scipy.interpolate.interp1d) to
derive the parameter/abundance value

(3) Check if debug_plots are required; if so, plot the curve with
the interpolated curve, nearest node curve and measured target
line

(4) Check if the derived value is within model parameter space; if
not, end analysis

(d) Check that iteration is required (not set to zero), that the maximum
number of iterations hasn’t been reached and that convergence has
not been reached; if all are true return to (c) and re-derive new
values using values from this iteration as starting values

(e) Check if final_plots are required; if so, plot curves for final
iteration values

(f) If analysis was successful, derive errors on all abundances for both
positive and negative errors on the measured target line EQWs

(g) Save stellar parameter and CNO abundance values, flags, error
values & counters to output data structure (using null values if no
value could be derived)

(h) Update logfile with details of this analysis, including values of
parameters, abundances derived at each iteration, counters, flags,
error values and comments

(i) Return to starpac

(3c) sp_abunds.Abund_Analysis:
(a) Taking the stellar parameter & CNO abundance values supplied,

interpolate the variation in model elemental abundance with
variation in EQW of line(s) being used to trace abundance using the
function created by starpac

(b) Interpolate this curve (using scipy.interpolate.interp1d) to derive
the elemental abundance value

(c) Check if the derived value is within model parameter space & save
values to output data structure

(d) Derive errors on the abundance for both positive and negative errors
on the measured target line EQWs

(e) Check if debug_plots are required; if so, plot the curve with the
interpolated curve, nearest node curve and measured target line

(4) starpac:
(a) Calculate the run time of the code
(b) Prints a code completion notice containing the runtime of the code

and thenumber of objects analysed to the logfile
(c) Print code completion notice to screen

(5) Code Ends

################################################################################



Appendix B

Stellar Atmospheres & Line

Formation

STARPANDA works by analysing stellar spectra through comparison with a grid of

synthetic spectra which have been calculated using state-of-the-art model stellar atmo-

spheres and a comprehensive line list. Indices are measured in both sets of spectra,

and these relate to transition lines from different chemical species in the stellar atmo-

sphere. It is therefore useful to understand some details on the nature of model stellar

atmospheres, how lines are formed in spectra and why lines can be used to probe stellar

parameters and elemental abundances. This section offers a brief, qualitative descrip-

tion of these topics, starting with Model Stellar Atmospheres in Section B.1, then Line

Formation in Section B.2 and finally, Lines as Parameter Traces in Section B.3. There

are many papers and books where these subjects are covered in more depth, for exam-

ple see Allende Prieto (2016), Gray (2005) and references therein.
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B.1 Model Stellar Atmospheres

The development of full, detailed models of the atmospheres of stars is an incredibly

complex and computational expensive challenge. Thankfully, we have available sim-

pler models which allow us to derive the details we need for our study of the formation

and evolution of the Milky Way. The models we make use of through this work are

1-dimensional and plane parallel, in hydrostatic and local thermodynamic equilibrium

and ignoring the effects of magnetic fields. Much progress is being made on devel-

oping models which incorporate higher dimensions, magnetic fields or do not assume

local thermodynamic equilibrium, however those developments are beyond the scope

of this appendix.

For our work, we only need to consider the Photosphere, as it is here where the absorp-

tion lines that we observed in our spectra are produced. The photosphere sits below the

atmospheric layers (the Chromosphere and Corona) and above the layers dominated

by convection and radiation. A model photosphere is a tabulation of all the parameters

necessary for energy transportation, with each line entry giving these values for a dis-

crete layer. They are calculated by simultaneously solving the equations of radiative

transfer, hydrostatic equilibrium and statistical equilibrium (for which continuum and

line opacities must be calculated), and assuming a plane-parallel geometry, local ther-

modynamic equilibrium and consistency for both radiative and convective flux (for the

latter this is done using the mixing length approximation). Starting at the bottom of the

photosphere, this is done for each layer and finally yields the model photosphere file.

As a minimum, the final model photosphere should contain the values for pressure and

temperature at each layer, but additional parameters can be included, such as density,

electron pressure, etc.
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The resulting model is then a table of parameter values describing the state of the pho-

tosphere at each layer. The model tells us nothing, however, about the absorption lines

that we expect to see in a spectrum for a star with this structure. So, to generate a

synthetic spectrum, more information is required.

B.2 Line Formation

In real stars, lines caused by the absorption of photons coming from hotter, deeper

regions of the stellar atmosphere are intrinsically found at very specific wavelengths

given by the energy of the transition in question. However, when observing stellar

spectra, we do not see such narrow and well-defined absorption lines. Instead what

we see is a function of 4 different effects which broaden the line. The first three are

caused by processes within the stellar atmosphere, while the latter is due to the instru-

ment used to measure the flux from the target star(s).

The first broadening effect is intrinsic broadening caused by the uncertainty principle.

The second broadening effect is caused by the movement of the absorber, which leads

to small doppler shifts in the wavelength observed at the detectors. This broadening

is temperature related and called Doppler Broadening. The third is caused by colli-

sions and interactions between moving atoms and ions; such interactions can alter the

precise distance between energy levels leading to a range of wavelengths given from

a single electronic transition. This form of broadening is pressure related and usually

called Pressure Broadening. Finally there is the resolution of measuring instrument,

which then further broadens the line. Where there are many lines close together, these

broadening effects can lead to blending of several different lines from different atomic

and molecular species, especially if the resolution of the instrument is low.
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The EQW of a line is then defined from a normalised spectrum, as the width of a rect-

angle, of height equal to the continuum level, which has the same area as that occupied

by the absorption line. The measured values is given in the units used by the wave-

length scale, e.g. Å or nm. This is what we have then used in this work.

When starting from model atmospheres, the generation of synthetic spectra requires

not only the details of the model photosphere, but also information on the lines that

may be present in the atmosphere. This line list (both ASPCAP and STARPANDA use

the line list described in Shetrone et al., 2015) comprising (in our case) 35 columns,

which contains data on the wavelength, the probability of a transition occurring, the

chemical species involved, the energy levels of both the start and end point, etc. Com-

bining the model atmosphere and line list data, it is then possible to compute synthetic

spectra by solving the equations of radiation transfer and calculating the continuum

opacity (which in the H-band is mainly due to H� ions). Finally, since the model

atmosphere’s that have been used here are 1D in nature, the broadening that is seen

in observed spectra is parameterised by two values, the micro and macro turbulence,

which can be varied to match the shape of the observed lines.

B.3 Lines as Parameter Tracers

While it is easy to see that the strength of a line in a spectrum is related to the abun-

dance of the species that gives rise to that line, with increasing abundance giving rise

to increasing EQW values (at least up to the saturation point). However, the strength

of most lines are also dependant on the stellar parameters. How, then, can stellar pa-

rameters be derived from measurements of spectral features?
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Analysis usually starts by attempting to determine the Effective Temperature. Pho-

tometric colour can be used to give the Teff , but it can also be found spectroscopi-

cally using pairs of lines. There are many metals which show different sensitivities to

changes in temperature for different lines. Thus, taking two lines from the same metal

species, preferably lines that are close together in wavelength to minimise any issues

with the normalisation of the spectrum, and computing the ratio, should eliminate the

dependance on the metal abundance, but leave the dependance on temperature. This is

what we attempted to do using two Fe lines (FeI 16230 & FeI 16522). Surface Gravity

can be found in a similar manner, but using pairs of lines from the same metal, but with

different ionisation states, which have different sensitivities to pressure and therefore

log g (though this is harder as the sensitivity of lines to changes in log g values is

much smaller). An alternative to using pairs of lines for both Teff and log g is to use

the wings of lines and attempt to match observations to model predictions; for Teff ,

Balmer lines can be used, while for log g, strong metal or molecular lines can be used.

Finally, the overall metallicity can be taken from measurements of the Fe abundance.

Given, then, that there is some dependance on all lines to the stellar parameters and

CNO abundances, and that we are using molecular lines for the CNO abundances (CO,

CN and OH), it is necessary to derive the stellar parameters and CNO abundances iter-

atively before calculating the elemental abundances using either individual metal lines

or a number of lines in combination. This forms the basis for the methodology utilised

by STARPANDA.
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