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Abstract 36 

Prenatal exposure of the female ovine fetus to excess testosterone (T) leads to 37 
neuroendocrine disruptions in adulthood, evidenced by defects in responsiveness 38 
to the ability of gonadal steroids to regulate GnRH secretion. In the ewe, neurones 39 
of the arcuate nucleus (ARC), which co-expresses kisspeptin, neurokinin B (NKB) 40 
and dynorphin (termed KNDy cells), play a key role in steroid feedback control of 41 
GnRH and show altered peptide expression after prenatal T-treatment. KNDy cells 42 
also colocalise NKB receptors (NK3R), and it has been proposed that NKB may act 43 
as an autoregulatory transmitter in KNDy cells where it participates in the 44 
mechanisms underlying steroid negative feedback. In addition, recent evidence 45 
suggests that NKB/NK3R signaling may be involved in the positive feedback actions 46 
of oestradiol leading to the GnRH/LH surge in the ewe.  Thus, we hypothesise that 47 
decreased expression of NK3R in KNDy cells may be present in the brains of 48 
prenatal T-treated animals, potentially contributing to reproductive defects. Using 49 
single- and dual-label immunohistochemistry we found NK3R-positive cells in 50 
diverse areas of the hypothalamus; however, after prenatal T-treatment, 51 
decreased numbers of NK3R immunoreactive (IR) cells were seen only in the ARC.  52 
Moreover, dual-label confocal analyses revealed a significant decrease in the 53 
percentage of KNDy cells (using kisspeptin as a marker) that colocalised NK3R. To 54 
investigate how NKB ultimately affects GnRH secretion in the ewe, we examined 55 
GnRH neurones in the preoptic area (POA) and mediobasal hypothalamus (MBH) 56 
for the presence of NK3R. Although, consistent with earlier findings, we found no 57 
instances of NK3R colocalization in GnRH neurones in either the POA or MBH, >70% 58 
GnRH neurones in both areas were contacted by NK3R-IR presynaptic terminals 59 
suggesting that, in addition to its role at KNDy cell bodies, NKB may regulate GnRH 60 
neurones by presynaptic actions. In summary, decreased NK3R within KNDy cells 61 
in prenatal T-treated sheep complement previous observations of decreased NKB 62 
and dynorphin in the same population, and may contribute to deficits in the 63 
feedback control of GnRH/LH secretion in this animal model.  64 

 65 

  66 
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     Introduction 67 

A candidate afferent signaling system that has received much recent attention in 68 
the central control of GnRH secretion is that comprising the tachykinin neurokinin 69 
B (NKB) and its high affinity receptor neurokinin-3 (NK3R) (4, 5). Although 70 
NKB/NK3R signaling is implicated in diverse physiological functions (6), its 71 
importance in modulating gonadotrophin release was established when human 72 
genetic studies revealed that patients bearing inactivating mutations in the gene 73 
encoding NKB (TAC3) or its receptor NK3R, (encoded by TAC3R), displayed 74 
hypogonadotrophic hypogonadism and infertility (7, 8). Since then, a growing 75 
number of animal studies have established a close association between NKB/NK3R 76 
signaling and GnRH/LH secretion in species including the sheep (9), goat (10), 77 
primate (11) and rat (12). However, the precise neuronal pathway(s), via which 78 
NKB stimulates GnRH secretion, are not yet fully determined.  While a subset of 79 
GnRH neurones in the rat have been shown to colocalise NK3R (13), similar studies 80 
in sheep (14) and mice (15) have failed to reveal NK3R in GnRH neurones, 81 
suggesting that NKB action upon GnRH secretion is likely exerted via inputs from 82 
other neurones, either directly or indirectly. 83 

The neuroanatomical location of NK3R has been previously described in the ewe 84 
and includes NK3R-immunoreactive (IR) cells in a variety of preoptic and 85 
hypothalamic nuclei, including the preoptic area (POA), retrochiasmatic area 86 
(RCh), and arcuate nucleus (ARC) (14). In the ARC, NKB is colocalised with two 87 
other neuropeptides, kisspeptin and dynorphin in a population that are termed 88 
KNDy (Kisspeptin, Neurokinin B and Dynorphin) cells (16). KNDy cells are present 89 
in the ARC of all species studied to date (17), and are thought to play a key role in 90 
the negative feedback effects of oestradiol and progesterone upon GnRH (17). In 91 
addition, KNDy cells are thought to comprise a critical component of the circuitry 92 
responsible for the generation of GnRH/LH pulses (10, 12, 19).  Accumulating 93 
evidence suggests that NKB acts as an auto-regulatory signal within the network 94 
of reciprocally interconnected KNDY cells, a signal that is responsible for the 95 
initiation of each GnRH pulse (19).   96 

In addition to its role in negative feedback, in the sheep, NKB/NK3R signaling may 97 
also be important in the generation of the preovulatory GnRH/LH surge (16, 20-98 
22). Intracerebroventricular (icv) microinjections of senktide, a NK3R specific 99 
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agonist (5), results in a surge-like elevation of LH during the follicular but not the 100 
luteal phase of the ovine oestrous cycle (9).  Bilateral senktide microinjections into 101 
the RCh (9) and POA (23) are each able to produce a similar surge-like elevation 102 
of LH suggesting that these two areas, each of which contain NK3R-positive cells 103 
may participate in the control of the LH surge.  In addition, there are several lines 104 
of  evidence suggesting that KNDy cells may participate in the GnRH/LH surge in 105 
the ewe (24-29).  For example, in the sheep (20), unlike rodents (30), oestradiol 106 
implants in the mediobasal hypothalamus, close to the vicinity of KNDy cells, are 107 
sufficient to induce a GnRH/LH surge  Thus NKB/NK3R signaling could potentially 108 
play a role in both negative and positive feedback effects of gonadal steroids in the 109 
sheep, acting at potential target sites that include the POA, RCh, and KNDy cells 110 
of the ARC. 111 

Responsiveness of the adult GnRH system to hormonal feedback controls is 112 
programmed during development by events that include fetal exposure to 113 
androgens (31, 32). While normal sexual differentiation depends on appropriate 114 
timing of exposure of fetuses to androgens, exposure to excess androgens in 115 
animal models can result in long-term deficits in reproductive functions at multiple 116 
levels including the GnRH system (33).  For example, exposure of female ovine 117 
fetuses to excess testosterone (T) during days 30-90 of the 147 day gestation, 118 
leads to neuroendocrine defects in the responsiveness of the GnRH system to both 119 
negative and positive steroid feedback (34-37). KNDy neurones have been 120 
implicated as critical mediators of the detrimental effects of prenatal T (38), and 121 
prenatal T treatment results in dramatic alterations in KNDy peptides in the adult 122 
ARC, with NKB and dynorphin being markedly reduced but kisspeptin remaining 123 
unaltered.  This peptide imbalance within a single neuronal population has been 124 
hypothesised to underlie some of the defects in responsiveness of the GnRH system 125 
to oestradiol and progesterone seen in adult female sheep exposed prenatally to 126 
excess T (38).   127 

Whether postsynaptic receptors for any of the KNDy peptides are similarly altered 128 
in prenatal T-treated animals has not yet been examined, and given the evidence 129 
for participation of NKB/NK3R signaling in both pulsatile and surge modes of 130 
GnRH/LH secretion, we hypothesised that changes in NK3R expression in either 131 
the ARC or in other regions where it has been shown to alter LH secretion (e.g., 132 
RCh, POA), may be present in the brains of prenatal T-treated female sheep.  To 133 
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test this hypothesis, we first compared the overall number of NK3R-IR cells in the 134 
ARC, RCh, POA and other hypothalamic nuclei between prenatal T-treated and 135 
control animals. Second, we used dual-label immunofluorescence and confocal 136 
microscopy to determine whether NK3R might be specifically altered within the 137 
KNDy cell subpopulation of the ARC. Finally, since NK3R-IR is seen in fiber and 138 
terminals as well as cell bodies, we explored the possibility that NKB might act 139 
presynaptically to influence GnRH secretion by determining whether NK3R-IR 140 
terminals in the preoptic area (POA) and medial basal hypothalamus (MBH) are in 141 
direct synaptic contact with GnRH cell bodies in those regions.  To control for the 142 
possible influence of differences in circulating steroids between the experimental 143 
and control groups, animals were ovariectomised prior to sacrifice and implanted 144 
with hormonal regimens designed to produce late follicular phase concentrations 145 
of oestradiol.  146 

 147 
Materials and Methods: 148 

Animal Care and Treatment  149 
All procedures involving animals were approved by the University of Michigan Animal 150 
Care and Use Committee and are consistent with National Research Council’s Guide 151 
for the Care and Use of Laboratory Animals. Experiments were conducted in 2-year 152 
old control and prenatal T-treated Suffolk ewes during the breeding season. Housing, 153 
breeding, lambing and maintenance took place at the Sheep Research Facility at the 154 
University of Michigan (Ann Arbor, MI, 42o18’ north latitude) as has been previously 155 
described (39, 40).  156 

Pregnant ewes were administered intramuscular (im) injections of T propionate 157 
(100mg/injection catalog item T1875; Sigma-Aldrich, St. Louis, MO; n=8) twice 158 
weekly, suspended in cottonseed oil (catalog item C7767; Sigma-Aldrich, St.Louis, 159 
MO, USA) in the hind leg from days 30–90 of pregnancy (term=147 days). The dose 160 
of T propionate administered results in levels of T in the female fetus comparable to 161 
those in fetal males (41). Control ewes received an equal volume of vehicle (2 ml 162 
cottonseed oil; n=9) in the same regimen as T. Lambs were born in March/April. After 163 
weaning, they were maintained outdoors under natural photoperiods with a daily 164 
maintenance feeding and free access to water. During the first breeding season, 165 
progesterone profiles and ultrasonographic assessment of ovarian status was carried 166 
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out (42). In addition, at approximately 19 months of age, all ewes were ovariectomised 167 
(OVX) and evaluated for LH surge and sexual behavior profiles (43).For the present 168 
study, and in order to normalise the hormonal milieu between all animals, a 1-cm-long 169 
SILASTIC capsule (inner diameter, 3.35 mm and outer diameter, 4.65 mm; Dow 170 
Corning Corp., Midland, MI) filled with 17β oestradiol (oestradiol; Sigma-Aldrich, St. 171 
Louis, MO, USA) in addition to two controlled internal drug release (CIDR) 172 
progesterone implants (InterAG, Hamilton, Waikato, New Zealand) were inserted 173 
subcutaneously in to each animal. CIDRS were removed 14 days later and sequentially 174 
all animals received additional four 3-cm-long oestradiol implants (see before) to 175 
simulate ovarian steroid levels equivalent to a normal follicular phase as well as 176 
generate a GnRH/LH surge (47). Animals were euthanised ~20 hours after insertion 177 
of the oestradiol implants and specifically during the late follicular phase (i.e., prior to 178 
the LH surge in both control or T-treated animals) (43).The oestradiol implant insertion 179 
and euthanasia where staggered at hourly intervals to allow for the time needed to 180 
perfuse and extract the brain. 181 

Tissue collection and preparation 182 
Ewes were injected intravenously (iv) twice at 10-minute intervals with 25,000 U of 183 
heparin (catalog item 402588B; Abraxiz pharmaceutical Products, Schaumburg IL, 184 
USA) and then deeply anaesthetised with iv sodium pentobarbital (2-3g; catalog item 185 
P3761; Sigma-Aldrich, St. Louis, MO, USA). Animals were rapidly decapitated, and the 186 
heads perfused via both internal carotids with 6 litres of 4% paraformaldehyde in 0.1 187 
M phosphate buffer (PB; pH 7.3) mixed with 0.1 % sodium nitrite and administered 188 
with 10 U/ml heparin. After perfusion, the brain was removed and a tissue block 189 
containing the septal region, POA, and hypothalamus dissected out. Blocks were 190 
incubated in 4% paraformaldehyde at 4 °C overnight for post-fixation and then 191 
transferred into 30% sucrose in 0.1 M PB for cryoprotection until infiltration took place. 192 
A sliding freezing microtome (Leica Biosystems, SM 200R, Walldorf, Germany) was 193 
used to section frozen blocks of tissue containing POA and hypothalamus into 6 series 194 
of coronal 45 µm slices. Free-floating sections were stored in cryoprotectant solution 195 
(30% ethylene glycol, 1% polyvinylpyrrolidone, 30% sucrose in sodium phosphate 196 
buffer; (48) at -20°C until processed for immunohistochemistry. Within each 197 
experiment, tissue sections from all experimental groups were processed 198 
simultaneously as described below. All immunohistochemical procedures were carried 199 
out at room temperature under gentle agitation. Unless otherwise stated, tissue 200 
sections were washed with 0.1 M phosphate buffer saline (PBS; pH 7.2) between steps. 201 
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Antibodies were diluted with blocking solution, comprised of 0.4% Triton X-100 202 
(catalog item BP151-500, Sigma-Aldrich, St.Louis, MO, USA) and 4% normal goat 203 
serum (NGS; catalog item H005-000-121, Jackson ImmunoResearch Laboratories, 204 
West Grove, PA, USA) in 0.1M PBS. 205 

 206 
Experiment 1:  Effects of prenatal T-treatment on NK3R-IR in the POA and 207 
hypothalamus.  208 
 209 
Single-label immunohistochemistry for NK3R  210 
The distribution and quantification of NK3R-IR cells was determined in a series of every 211 
6th section (270 μm apart). Free-floating sections were washed thoroughly in 0.1 M 212 
PBS for several hours to remove excess cryoprotectant followed by a 10 minute 213 
incubation with PBS containing 1% hydrogen peroxide (H2O2; catalog item H325, 214 
Fishers Scientific, Pittsburgh, PA, USA) to eliminate endogenous peroxidase activity. 215 
Next, sections were incubated in blocking solution for 1 hour followed by an overnight 216 
(17 hour) incubation with polyclonal rabbit anti-NK3R (1:10,000; catalog item NB300-217 
102, Novus Biological, Littleton, CO, USA). After incubation with the primary 218 
antiserum, sections were incubated with biotinylated goat anti-rabbit IgG (1:500; 219 
catalog item BA-1000; Vector laboratories, Burlingame, CA, USA) for 1 hour followed 220 
by incubation with ABC reagent (1:500 diluted in 0.1 M PBS; avidin and biotinylated 221 
horseradish peroxidase macromolecular complex, catalog item PK-6100; Vector 222 
Laboratories) for 1 hour. NK3R labelling was visualised using 3,3’-diaminobenzidine 223 
tetrahydrochloride (0.2 mg/ml) (DAB; Catalogue # D5905, Sigma-Aldrich, St.Louis, 224 
MO, USA) with 0.00004% hydrogen peroxide in PB as substrate. Finally, they were 225 
mounted onto Superfrost/Plus Microscope Slides (Fisher), air dried, and coverslipped 226 
with DPX Mountant. Omission of NK3R antibody from the immunohistochemical 227 
protocol resulted in complete absence of staining. Furthermore, preabsorption controls 228 
with purified antigen have been previously performed and published (see below) (14).  229 
 230 
Experiment 2: Effects of prenatal T-treatment on NK3R-IR within the POA 231 
kisspeptin and ARC KNDy cell population. 232 
 233 
Dual-label immunofluorescent detection of NK3R and kisspeptin 234 
In order to determine if changes in NK3R-IR occurred specifically within the POA 235 
kisspeptin or ARC KNDy cell population an alternate series of every 6th section (270 236 
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μm apart) containing the POA or ARC was processed for dual-label 237 
immunofluorescence and confocal microscopic analysis. A modification of the protocol 238 
used by Hunyady et al (1996) was carried out to eliminate possible cross-linking 239 
between kisspeptin and NK3R antibodies (both raised in rabbits) and false 240 
colocalization between antigens (49). Initially, free-floating tissue sections were 241 
washed several hours in PBS for cryoprotectant removal. Thereafter, they were 242 
incubated in PBS containing 1% H2O2 for 10 min followed by a 1 hour incubation in 243 
blocking solution (with 20% NGS). Next, rabbit polyclonal anti-NK3R (1:10,000, for 244 
17 hours) was applied. Sections were then incubated sequentially in biotinylated goat 245 
anti-rabbit (1:500 for 1 hour) and ABC-elite solution (1:500 diluted in 0.1 M PBS, for 246 
1 hour). Following amplification with TSATM Biotin system Biotinyl Tyramide agent 247 
(1:250 diluted in 0.1 M PBS with 3% H2O2; catalogue item NEL700A001KT, 248 
PerkinElmer Life Sciences, Waltham, MA, USA), NK3R was visualised with Alexa 488 249 
conjugated streptavidin (1:100 diluted in 0.1 M PBS, for 30 min; catalogue item S-250 
32354 Invitrogen/Molecular Probe, Eugene, OR).  Sections were then processed for 251 
detection of kisspeptin.  First, they were incubated for 17 hours with primary antibody 252 
rabbit anti-Kisspeptin (gift from A. Caraty, Universite Tours, Nouzilly, France, lot 253 
number 564) at a dilution of 1:2,000 (for POA sections) or 1:10,000 (for ARC sections) 254 
and visualised with goat anti-rabbit Alexa 555 (1:100 in 0.1 M PBS, for 30 min; 255 
catalogue item A-21428, Invitrogen/Molecular Probe, Eugene, OR). Finally, sections 256 
were mounted on glass slides, dried and coverslipped with mount medium gelvatol. 257 
Control sections for the dual immunofluorescent procedure included omission of each 258 
of the primary antibodies from the immunostaining protocol, which resulted in a 259 
complete absence of staining for the corresponding antigen. In addition, pre-260 
absorption controls have been performed for each of the antibodies in previous studies 261 
(14) in each case pre-incubation of the diluted antiserum with nanomolar 262 
concentrations of purified antigen was shown to be sufficient to eliminate all specific 263 
staining in ewe hypothalamic sections. Finally, the kisspeptin antibody used has been 264 
shown to be specific for kisspeptin cells of the ovine brain and not to cross-react with 265 
other RFamide peptides (50).  266 

 267 
Experiment 3: Identification of pre-synaptic NK3R terminals onto GnRH 268 
neurones in the POA and MBH 269 
 270 
Triple-label immunofluorescent detection of GnRH, NK3R and Synaptophysin 271 
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A series of every 12th section (540 µm apart) through the POA and MBH were used for 272 
GnRH/NK3R/Synaptophysin triple labelling.  Similar to the protocols described above, 273 
free-floating sections were washed in 0.1 M PBS for several hours in order to remove 274 
cryoprotectant.  Next, they were incubated in 1% H2O2 diluted in PBS for 10 minutes, 275 
followed by a 1 hour incubation in blocking solution (with 20% NGS). Thereafter, 276 
sections were incubated sequentially in rabbit polyclonal anti-NK3R, biotinylated goat 277 
anti-rabbit, ABC-elite solution and TSATM Biotin system Biotinyl Tyramide agent, as 278 
described above. NK3R was visualised with Alexa 488 conjugated streptavidin (1:100 279 
in 0.1 M PBS, for 30 min). The second primary antibody, rabbit anti-GnRH (1:1,000; 280 
LR-5, gift from R. Benoit, Montréal General Hospital, Montréal, Canada), was visualised 281 
using indirect detection with goat anti-rabbit Alexa 555 (1:100 in 0.1 M PBS; catalogue 282 
item S-32354, Invitrogen/Molecular Probe, Eugene, OR). During the GnRH antibody 283 
incubation period, mouse anti-synaptophysin (1:200; catalogue item S5768; Sigma-284 
Aldrich, St. Louis, MO, USA) was also co-incubated and visualised with Donkey anti-285 
Mouse Cy5 (1:100 in 0.1 M PBS, for 30 min; Catalogue item 715175151, Jackson 286 
Immunoresearch West Grove, PA). Controls omitting one, two or all three primary 287 
antisera from the protocol completely eliminated all specific staining for the 288 
corresponding antigen(s).  289 
 290 
Data analysis 291 
For single-label NK3R, the distribution of IR cells and fibers was examined in sections 292 
through the POA and hypothalamus of each ewe. Three representative sections of the 293 
rostral, middle, and caudal divisions of the ARC, retrochiasmatic area (Rch), ventral 294 
portion premammillary nucleus (PMv), preoptic area (POA), lateral hypothalamic area 295 
(LHA), paraventricular nucleus (PVN) were quantitatively analyzed per animal in each 296 
group. Each nucleus was determined by its cytoarchitectonic boundaries and all cells 297 
within those boundaries were quantified. Areas chosen for analysis were based on the 298 
regional distribution of NK3R-IR cells previously described in the ewe (14).  The ARC, 299 
which contains prominent NK3R-IR, was divided in to 3 rostral-caudal divisions for 300 
more detailed analysis in this study as previously (14, 51).  Our preliminary 301 
observations revealed that the rostral ARC contained very few NK3R-IR cells and fibers 302 
compared to the middle and the caudal ARC. Moreover, given that a large majority of 303 
KNDy cells are found in the middle and caudal divisions (51, 52), we selected these 304 
sub-regions for detailed comparison between control and prenatal T-treated animals.  305 
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For single-label analyses (Experiment 1), NK3R-IR cells were examined and quantified 306 
with a Leica DMRD microscope (Leica Microsystems GmbH, Wetzlar, Germany) and 307 
identified by the presence of dense reaction product that labelled their somas and 308 
dendrites. Images were captured using a digital camera (Magnafire; Optronics, Goleta, 309 
CA, USA) attached to the microscope and imported in to Adobe Photoshop 7.0 (Adobe 310 
Systems, San Jose, CA, USA). Photomicrographs were not altered in any way except 311 
for minor adjustments of brightness and contrast.  312 

Sections processed for dual and triple immunofluorescence were analyzed using a 313 
Zeiss LSM-510 laser-scanning confocal microscope system (Zeiss, Thronwood, NY). 314 
Alexa 488 fluorescence was visualised and imaged with a 505-530 nm emission filter 315 
and Argon laser whereas Alexa 555 and CY5 fluorescence with a 560-nm and 680-nm 316 
emission filter and a HeNe laser.  Confocal Z-stacks of optical sections (1 µm at 63X 317 
magnification) were captured through NK3R, Kisspeptin and GnRH-IR neurones. Three 318 
Z stacks from the middle and caudal ARC of each animal were used for analysis of 319 
NK3R/Kisspeptin colocalization. A total of 700 kisspeptin-IR cells from the mARC and 320 
692 cells from cARC (between 38-42 kisspeptin-IR cells per treatment group and ARC 321 
subdivision) were analyzed. For examination of possible colocalization in the POA, a 322 
total of 42 kisspeptin-IR cells from 3 control animals (between 12-16 kisspeptin-IR 323 
cells per animal) were analyzed.  324 

For analysis of GnRH/NK3R/Synaptophysin material, 6-10 Z-stacks were captured 325 
from the POA and ARC to gather sufficient number of GnRH-IR neurones for analysis. 326 
Putative contacts between NK3R/synaptophysin-positive terminals and GnRH-IR 327 
somas were defined as a direct apposition without any intervening (black) pixels. A 328 
total 49 POA GnRH neurones and 34 MBH GnRH neurones were analyzed from 5 329 
random control animals (between 7-12 POA and 6-7 MBH GnRH neurones per animal). 330 
First, the somal perimetre was calculated by tracing the neurone. Thereafter, in each 331 
z-stack of 1 µm optical section, the number of NK3R-positive terminals in direct contact 332 
with the GnRH neurone was determined. The percentage of GnRH neurones in the POA 333 
and MBH having one or more NK3R-positive contacts was calculated, as was the mean 334 
number of NK3R-positive contacts onto GnRH somas per animal, and the mean number 335 
of contacts per 10 μm of GnRH somal perimeter. 336 
 337 
Statistical Analysis 338 
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All data are expressed as the mean ± standard error of mean (SEM). Statistical 339 
comparison between control and prenatal T-treated ewes (Experiments 1 and 2), and 340 
between brain regions (Experiment 3) were assessed with a Student t-test.  All 341 
statistics were done using Sigma Stat for windows (SPSS Inc., Chicago, Illinois, USA) 342 
and a P value of less than 0.05 was considered significant in all analyses.   343 
 344 
Results 345 

Experiment 1:  Effects of prenatal T-treatment on NK3R-IR cell number in the 346 
POA and hypothalamus.  347 
NK3R-IR cells were present in a number of areas of the hypothalamus in addition to 348 
the ARC, as depicted in Fig. 1.  The most prominent and dense populations of NK3R-349 
IR neurones, other than the ARC, were observed in the following regions (in 350 
descending order of overall cell number): the hypothalamic paraventricular nucleus 351 
(PVN), lateral hypothalamic area (LHA), ventral premammillary nucleus (PMv), Rch, 352 
and POA. In the ARC, where KNDY cells reside, we confirmed a large number of NK3R-353 
IR cells, specifically in the middle and caudal divisions of this nucleus (Fig. 1).  354 

Quantitative cell counts revealed that the mean number of NK3R-IR cells observed in 355 
the ARC of control ewes was significantly greater than that of prenatal T-treated 356 
animals in both the middle (control: 53.8 ± 2.9 vs. prenatal T: 41.6 ± 2.8; P=0.009) 357 
and caudal portions (control: 42.7 ± 4.0 vs. prenatal T: 30.0 ± 2.5; P= 0.019; Fig. 2) 358 
of this nucleus. No significant differences in NK3R-IR cell number between control and 359 
prenatal T-treated animals were observed in any of the other nuclei or areas analyzed 360 
(Fig. 2).    361 
 362 
Experiment 2: Effect of prenatal T-treatment on NK3R-IR colocalization 363 
within the ARC KNDy cell population. 364 
To determine whether changes in NK3R-IR cell number observed in the ARC, reflect a 365 
change in NK3R specifically in the KNDy cell population, we analyzed sections 366 
processed for dual-immunofluorescent localization of NK3R and kisspeptin (Kiss).  367 
Prenatal T-treated animals showed a decrease in the number of dual-labelled 368 
NK3R/Kiss cells (control: 19.4 ± 1.7 vs. prenatal T: 14.4 ± 1.2; P=0.049; Fig. 3G) as 369 
well as the total number (single-labelled + dual-labelled) of ARC NK3R-IR cells 370 
(control: 25.9 ± 2.1 vs. prenatal T: 20.7 ± 1.7; P=0.021 Fig. 3G).  As in previous 371 
studies (38), we saw no difference between control and prenatal T animals in the total 372 
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number of Kiss cells (Fig. 3G), and consistent with the decrease in number of dual 373 
NK3R/Kiss cells, the number of single-labelled Kiss cells was significantly higher in 374 
prenatal T ewes (control: 21.5 ± 1.6 vs. prenatal T: 26.7 ± 1.4; P=0.038; Fig. 3G).  375 

We used the numbers of dual-labelled and total cells in individual animals to calculate 376 
the percentage of ARC Kiss-IR cells co-localizing NK3R, and, conversely, the 377 
percentage of NK3R-IR neurones co-localizing Kiss. The mean percentage of Kiss-IR 378 
neurones co-localizing NK3R was significantly decreased in prenatal T animals 379 
compared to controls (control: 47.1 ± 3.0% vs. prenatal T: 34.7 ± 2.4%; P=0.005; 380 
Fig. 3H).  By contrast, there was no significant difference between control and prenatal 381 
T-treated animals in the percentage of NK3R-IR neurones co-localizing Kiss (Fig. 3H).  382 

Since NK3R-IR cells are present in the POA (Figs. 1 and 2), we also examined 383 
kisspeptin cells in the ovine POA for colocalization of NK3R.  However, the 384 
kisspeptin/NK3R colocalization in the POA was infrequent and variable (5.3 ± 5.3%, 385 
mean ± S.E.M.) so that further comparison with prenatal T-treated animals was not 386 
pursued.    387 
 388 
Experiment 3: Colocalization of NK3R-IR in presynaptic terminals contacting 389 
GnRH neurones  390 
In addition to detecting NK3R-IR in cell bodies (Experiment 1), we also noted NK3R 391 
localization in fibers and terminals throughout a number of hypothalamic regions 392 
including the POA and mediobasal hypothalamus (MBH).  Consequently we processed 393 
sections for triple-label detection of NK3R, GnRH, and synaptophysin to determine 394 
whether any of these NK3R-positive terminals were directly presynaptic to GnRH cell 395 
bodies in either the POA or MBH.  Examination of triple-labelled sections showed that 396 
from a total of 83 GnRH cells analyzed (49 in the POA, and 34 in the MBH), none 397 
contained NK3R, confirming our earlier results showing the lack of colocalization of 398 
NK3R in ovine GnRH cells (14). However, NK3R-positive fibers were observed adjacent 399 
to, and intermixed with, GnRH cells and dendrites in both the POA and MBH.  We found 400 
that >70 % of GnRH neurones examined were contacted by one or more NK3R-IR 401 
presynaptic bouton (defined by the colocalization of synaptophysin; Fig. 4, Table 1).   402 
Neither the percentage of GnRH cells receiving inputs, nor the mean number of inputs, 403 
varied regionally between the POA and MBH (Table 1). Similarly, the mean number of 404 
contacts per 10µm GnRH somal perimeter did not differ between the POA and MBH 405 
(Table 1). 406 
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 407 
Discussion 408 

Our results indicate that prenatal T-treated ewes show significantly diminished 409 
numbers of NK3R-IR neurones in the ARC compared to control animals. Furthermore, 410 
the decrease in NK3R was primarily due to changes within the KNDy cell population 411 
and not in other ARC cells as the number of single-labelled NK3R-IR cells (i.e., NK3R 412 
cells outside the KNDy cell population) in this region showed no difference between 413 
control and prenatal T animals. The reduced number of NK3R-IR cells observed in 414 
prenatal T female sheep parallels the decrease in numbers of NKB cells previously 415 
observed in this animal model (38) and suggests that the combined decrease in both 416 
ligand and receptor may contribute to defects in the control of GnRH/LH secretion.    417 

Two possible functional consequences may be envisaged. One rests upon the proposed 418 
role of NKB/NK3R signaling in the generation of GnRH pulses (16). In the current 419 
model of GnRH pulse generation in ruminants (53), NKB serves as a “start signal” that 420 
is responsible for initiation of each GnRH pulse, and by way of reciprocal connections, 421 
activates other NK3R-containing KNDy cells and ultimately GnRH neurones.   422 
Conceivably, decreased NKB and NK3R would lead to a diminished ability to initiate 423 
GnRH pulses and hence a decrease in GnRH/LH pulse frequency.  However, prenatal T 424 
animals show the opposite, an increase in LH pulse frequency in gonadal-intact ewes 425 
during anoestrus and the luteal phase of the oestrous cycle due to decreased 426 
responsiveness to the negative feedback influence of oestradiol and progesterone, 427 
respectively (36, 38, 46).  However, in addition to NKB, dynorphin peptide expression 428 
is also reduced in KNDy cells of prenatal T sheep (38). Evidence in ruminants supports 429 
the role of dynorphin in KNDy cells as a “stop” signal, terminating each GnRH/LH pulse 430 
(19). Hence it is possible that reductions in dynorphin signaling compensate for that 431 
of NKB and NK3R, rendering the KNDy network less responsive to the negative 432 
feedback influence of oestradiol and progesterone in prenatal T animals. Nonetheless, 433 
although KNDy cells are known to be potential targets for direct actions of oestradiol 434 
and progesterone (16), we do not know whether these gonadal hormones inhibit 435 
GnRH/LH pulse frequency by acting directly on KNDy cells or indirectly via afferents 436 
from other cells.  Evidence from KNDy cell-ablated rats suggests that while KNDy cells 437 
participate in the negative feedback influence of oestradiol on LH, other non-KNDy 438 
cells and pathways may also play a role (54). Similarly, despite the importance of NKB 439 
signaling on kisspeptin and hence GnRH stimulation, recent reports indicate that 440 
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prenatal dihydrotestosterone treatment of peripubertal rats leads to elevated LH 441 
responses to i.c.v kisspeptin administration (55). This, once again is in accordance 442 
with decreased dynorphin expression rather than a reduction in NKB/NK3R signaling.   443 

Another possibility is that decreased NKB/NK3R in prenatal T sheep is related to deficits 444 
in the amplitude of the LH surge as seen in these animals (33, 45).  KNDy cells in the 445 
sheep express Fos, a marker of neuronal activation, during the preovulatory LH surge 446 
(22, 27, 28); i.c.v. injections of senktide, which elicit a surge-like elevation in LH, also 447 
induce Fos in ARC KNDy cells (23). While kisspeptin mRNA and peptide expression in 448 
KNDy cells is increased during the late follicular phase in the ewe (24, 25), an 449 
oestradiol stimulus that induced an LH surge was unable to increase in mRNA levels 450 
for NKB in the ARC (52).  In addition, although NKB agonist injections locally into the 451 
POA and RCh, like i.c.v. injections result in a prolonged surge-like elevation of LH (see 452 
below), senktide injections in the ARC cause only a modest increase in LH (23) 453 
consistent with the role of NK3R in pulse generation in this region.  Nonetheless, the 454 
possibility that NK3R signaling in KNDy cells plays a role in the generation of the LH 455 
surge in the ewe needs to be tested directly by NK3R antagonist injections directly into 456 
the ARC in follicular phase ewes. In contrast to the reduction in NK3R-IR cells we 457 
observed in the ARC, no changes were seen in the POA or in any other hypothalamic 458 
nuclei analyzed in this study. We were particularly surprised by the absence of any 459 
changes in the POA and RCh since senktide microinjections into either region is able 460 
to elicit a surge-like pattern of LH release (23) similar to that seen after i.c.v. injections 461 
of this agonist (9). Microimplants containing NKB antagonist (SB222200) into the RCh 462 
but not the POA reduce the amplitude of the LH surge by 40%, suggesting that NKB 463 
release in the RCh during the follicular phase is physiologically important to the 464 
generation of the LH surge (23). Since i.c.v. injections of kisspeptin antagonists in 465 
follicular phase ewes only reduce surge amplitude by 50% (25), it is tempting to 466 
speculate that NKB and kisspeptin act synergistically to elevate LH release during the 467 
surge.  Interestingly, tract tracing data demonstrate that KNDy neurones receive direct 468 
input from neurones in the Rch (56) and administration of senktide into the RCh 469 
induces c-Fos expression in the ARC population (23).  Taken together, these findings 470 
suggest that NKB signaling in the RCh plays a role in the preovulatory LH surge, and 471 
that the effect of NKB in the RCh is likely mediated, at least in part, by projections to 472 
ARC KNDy neurones. We are currently investigating the existence of reciprocal 473 
connection from the ARC to the Rch, which could constitute a potential pathway via 474 
which NKB/NK3R and kisspeptin/Kiss1r signaling are involved in the GnRH surge 475 
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mechanism. If NKB/NK3R in KNDy cells contribute to this mechanism, then 476 
administration of the NKB agonist, senktide, should, at least partially, reverse the 477 
defects in GnRH surge amplitude seen in prenatal T-treated ewes.  478 

In the present study, as a marker for KNDy cells we used kisspeptin immunoreactivity. 479 
Although the presence of KNDy cells has been confirmed in various species (12, 17), 480 
it must be noted that single-labeled populations of NKB and/or kisspeptin cells have 481 
been documented in male humans (18) and mice (15, 57). Therefore, we cannot 482 
exclude the possibility that we are overseeing potential changes in co-localization of 483 
NK3R and NKB-only cells. However, since previous work has shown that prenatal T 484 
decreases NKB and dynorphin, but not kisspeptin expression (38), we chose kisspeptin 485 
as a marker for KNDy cells, as this peptide would not be affected by the treatment 486 
itself. 487 

Although the above evidence supports a central role for NKB in regulating GnRH 488 
secretion, this influence in the ewe has been thought to be largely indirect, based on 489 
the complete absence of NK3R-IR colocalization in ovine GnRH cells (14).  Instead, the 490 
stimulatory influence of NKB in KNDy cells on GnRH secretion is thought to be 491 
conveyed by kisspeptin as an output signal, acting upon either GnRH cell bodies or 492 
terminals (16). Evidence for this upstream site of action has come from studies in 493 
which kisspeptin antagonists have been shown to block the stimulatory effects of NKB 494 
or senktide (58), as well as studies in which desensitization of the kisspeptin receptor 495 
blocks the stimulatory effect of senktide in monkeys (59), and the absence of the 496 
stimulatory effect of senktide in Kiss1r KO mice (60).  The current working hypothesis 497 
of the mechanisms by which NKB acts as a stimulatory “start” signal in the generation 498 
of GnRH pulses in the ewe, posits this action occurring via reciprocal KNDy-KNDy 499 
inputs at the level of KNDy cell bodies.  Our observation in the present study of NK3R-500 
IR localization in terminals that are presynaptic to GnRH cell bodies suggest another 501 
possibility – that NKB release by KNDy terminals acts in an autoregulatory manner 502 
upon the same terminals contributing to enhanced release of kisspeptin.  However, 503 
since we did not co-localise NK3R with KNDy peptides in inputs contacting GnRH 504 
neurones, we cannot conclude that the presynaptic NK3R inputs we observed arose 505 
from KNDy cells and indeed may have originated from any of the number of other 506 
NK3R-IR cell populations. For example, the effects of senktide injections in the POA on 507 
LH secretion (23) may be mediated either by actions on NK3R-containing cell bodies 508 
in that region, or by presynaptic NK3R in contact with POA GnRH neurones. Since we 509 
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found very little colocalization (approximately 5%) of NK3R within kisspeptin cells of 510 
the POA, it is possible that senktide effects on LH secretion from injections into this 511 
area are independent of kisspeptin, and mediated instead by other 512 
transmitters/peptides. It is noteworthy that the effects of senktide on GnRH release in 513 
tissue slices of the mouse median eminence are also independent of kisspeptin (61), 514 
and since GnRH neurones in the mouse (15) like the sheep (14) lack NK3R, it is 515 
possible that the effect of senktide in the median eminence is also mediated by 516 
presynaptic actions of NKB, in this case via axo-axonic contacts. The possibility of 517 
presynaptic actions of NKB is supported by evidence in other systems and species, for 518 
example, in the rat striatum, in which tachykinins presynaptically stimulate the release 519 
of dopamine (62). Finally, we would note that the observations reported here are 520 
based on control animals; the possibility that changes in presynaptic localization of 521 
NK3R are present in prenatal T female sheep and contribute to reproductive 522 
neuroendocrine defects remains to be examined. 523 

In summary, the decreases in NK3R we observed in the ARC of prenatal T-treated 524 
ewes complement previous observations of decreases in NKB and dynorphin peptides 525 
in KNDy cells (38), and suggest that the combined reduction in ligand and receptor 526 
components of NKB/NK3R signaling may contribute to alterations in the control of 527 
pulsatile or surge modes of GnRH/LH secretion.   The constellation of adult 528 
reproductive dysfunction, as well as metabolic defects, in prenatal T-treated ewes is 529 
very similar to that observed in women with polycystic ovarian syndrome (PCOS) (34) 530 
suggesting that the prenatal T ewe may serve as a model for this disease (33). KNDy 531 
cells are present in the human female infundibular nucleus (equivalent to the ARC in 532 
ewes) and show morphological changes with loss of steroid feedback regulation of 533 
GnRH/LH (63, 64). For example, in the infundibular nucleus of postmenopausal 534 
women, NKB gene expression is elevated due to reduced oestrogen negative feedback 535 
(65). Thus, we would speculate that alterations in NKB/NK3R signaling may be, at 536 
least in part, responsible for the ovulatory defects observed in patients with PCOS.   537 
The prenatal T-treated ewe could serve as an important translational model to test 538 
this hypothesis, with regard to the feedback control of GnRH/LH pulses as well as the 539 
generation of the preovulatory LH surge.  540 
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Figure Legends 797 
 798 
Figure 1. Schematic drawings of coronal sections through the ovine POA and 799 
hypothalamus, depicting the distribution of NK3R-IR cells. Each solid circle represents 800 
approximately 10 NK3R-IR cells. Abbreviations; (A) BNST: Bed nucleus of stria 801 
terminalis; GP: globus pallidus; ac: Anterior commissure; POA: preoptic area; SON: 802 
superior optic nucleus; OVLT: organum vasculosum of lamina terminalis; SI: 803 
substantia innominata; OC: optic chiasm;  (B) fx: fornix; PVN: paraventricular 804 
nucleus; 3V: 3rd ventricle; IC: internal capsule; AHA: anterior hypothalamic area; OT: 805 
optic tract; LHA: lateral hypothalamic area; (C) RCh: retrochiasmatic area; (D) ZI: 806 
zona incerta ; mt: mammillary tract; mARC: middle arcuate; (E) CP: cerebral 807 
peduncle; PMv: premammillary ventricle; cARC: caudal arcuate; mr: mammillary 808 
recess.  809 
 810 
Figure 2. (A) Mean (± SEM) number of NK3R immunoreactive cells/hemisection in 811 
POA, PVN, Rch, LHA and PMv of control (n=9) and prenatal T-treated (n=8) groups. 812 
There were no statistically significant differences between control and prenatal T-813 
treated ewes in these areas. (B) Mean (± SEM) number of NK3R immunoreactive 814 
cells/hemisection in the middle and caudal ARC from control (n=9) and prenatal T-815 
treated (n=8) groups. * indicates statistically significant differences within each 816 
subdivision compared to controls (P<0.05). (C-F) Representative images showing 817 
examples of NK3R-IR cells (arrows) in the ARC of control (C, mARC; D, cARC) and 818 
prenatal T-treated ewes (E; mARC; F, cARC). Scale bar = 50 μm.  819 
 820 
Figure 3. (A-F): Confocal images (1 µm optical sections) showing dual-label 821 
immunofluorescent detection of NK3R-IR and kisspeptin-IR in the middle ARC of 822 
control (A-C) and prenatal T-treated ewes (D-F). Arrows indicate examples of dual-823 
labelled neurones. Scale bar = 20 µm (63 x). (G) Mean (± SEM) number of single-824 
labelled NK3R, single-labelled kisspeptin (Kiss), dual-labelled NK3R and kisspeptin 825 
(NK3R/Kiss), and total kisspeptin and NK3R-IR neurones in the ARC of control (n=9) 826 
and prenatal T-treated (n=8) ewes. (H) Mean (± SEM) percentage of kisspeptin cells 827 
co-localizing NK3R (%Kiss/NK3R; left) and percentage of NK3R cells co-localizing 828 
kisspeptin (%NK3R/Kiss; right) in the ARC of control (n=9) and prenatal T-treated 829 
(n=8) groups. * indicates statistically significant difference compared to controls 830 
(P<0.05).  831 
 832 
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Figure 4. Triple-label detection of NK3R, GnRH and synaptophysin (Syn) in a 1µm 833 
confocal optical section, demonstrating the presence of presynaptic NK3R-IR terminals 834 
in contact with GnRH neurones in the MBH. Scale bar = 10 µm. 835 
 836 
 837 
Table 1. Presynaptic NK3R terminals in contact with GnRH somas. Mean (± 838 
SEM) percentage of GnRH neurones receiving one or more NK3R-IR contact, mean 839 
number of NK3R-IR contacts per GnRH soma, and mean number of NK3R-IR contacts 840 
per 10 µm cell surface, for GnRH cells in the POA and MBH of control ewes (n=5).  841 
 842 
 843 
 844 
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