
Farahi, A, Evrard, AE, McCarthy, IG, Barnes, DJ and Kay, ST

 Localized massive halo properties in Bahamas and Macsis simulations: 
scalings, log-normality, and covariance

http://researchonline.ljmu.ac.uk/id/eprint/8946/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Farahi, A, Evrard, AE, McCarthy, IG, Barnes, DJ and Kay, ST (2018) 
Localized massive halo properties in Bahamas and Macsis simulations: 
scalings, log-normality, and covariance. Monthly Notices of the Royal 
Astronomical Society, 478 (2). pp. 2618-2632. ISSN 0035-8711 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


MNRAS 478, 2618–2632 (2018) doi:10.1093/mnras/sty1179
Advance Access publication 2018 May 7

Localized massive halo properties in BAHAMAS and MACSIS
simulations: scalings, lognormality, and covariance

Arya Farahi,1‹ August E. Evrard,1,2 Ian McCarthy,3 David J. Barnes,4,5 and
Scott T. Kay4

1Department of Physics and Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109, USA
2Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
3Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK
4Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
5Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Accepted 2018 April 7. Received 2018 March 19; in original form 2017 November 13

ABSTRACT
Using tens of thousands of haloes realized in the BAHAMAS and MACSIS simulations pro-
duced with a consistent astrophysics treatment that includes active galactic nucleus feedback,
we validate a multiproperty statistical model for the stellar and hot gas mass behaviour in
haloes hosting groups and clusters of galaxies. The large sample size allows us to extract
fine-scale mass–property relations (MPRs) by performing local linear regression (LLR) on
individual halo stellar mass (Mstar) and hot gas mass (Mgas) as a function of total halo mass
(Mhalo). We find that: (1) both the local slope and variance of the MPRs run with mass (pri-
marily) and redshift (secondarily); (2) the conditional likelihood, p(Mstar, Mgas| Mhalo, z) is
accurately described by a multivariate, lognormal distribution, and; (3) the covariance of Mstar

and Mgas at fixed Mhalo is generally negative, reflecting a partially closed baryon box model
for high mass haloes. We validate the analytical population model of Evrard et al., finding
sub-percent accuracy in the log-mean halo mass selected at fixed property, 〈ln Mhalo|Mgas〉 or
〈ln Mhalo|Mstar〉, when scale-dependent MPR parameters are employed. This work highlights
the potential importance of allowing for running in the slope and scatter of MPRs when mod-
elling cluster counts for cosmological studies. We tabulate LLR fit parameters as a function of
halo mass at z = 0, 0.5, and 1 for two popular mass conventions.

Key words: galaxies: clusters: general.

1 IN T RO D U C T I O N

Dark matter haloes provide the gravitational potential wells within
which baryonic plasma can cool and form stars and galaxies. Mea-
suring galaxy assembly across cosmic history is key to under-
standing the astrophysical processes happening within haloes. Over
the past two decades it has become clear that the highest mass
haloes that host groups and clusters of galaxies are, in an overall
sense, less efficient at converting baryons into stars. The majority of
baryons end up in a hot intracluster medium (ICM; Briel, Henry &
Boehringer 1992). Despite the inefficiency of star formation within
the overall halo, the central galaxies of groups and clusters are the
largest in the universe, built by merging and accretion of many
smaller systems (e.g. Richstone 1976; De Lucia & Blaizot 2007).

Considerable effort has gone into measuring the statistical re-
lationship between the mass and observable properties of haloes

� E-mail: aryaf@umich.edu

that reflect their baryon contents (see Giodini et al. 2013, for a re-
cent review). Observational studies are limited by sample of tens to
low hundreds, systematic uncertainties in total mass estimates, and
complex or ill-defined sample selection criteria. Recent efforts are
improving on these fronts (Mantz et al. 2016a,b; Zou et al. 2016;
Saro et al. 2017; Schellenberger & Reiprich 2017).

We use the term mass–property relation (MPR) to represent the
functional form of conditional halo statistics, p(S|M, z), where S
is a set of intrinsic properties of the population of haloes of mass
M at redshift z. We use the term property rather than observable
here intentionally, as our work involves three-dimensional spatial
measurements of stellar and hot gas mass properties at specific
radii in simulations. While not directly observable, estimators for
these quantities can be constructed from optical, X-ray or SZ obser-
vations. Knowledge of the MPR and survey-specific mappings to
observed quantities are critical for understanding multiphase baryon
evolution and for producing competitive cosmological constraints
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using cluster counts (Allen, Evrard & Mantz 2011; Weinberg et al.
2013).

Cosmological hydrodynamical simulations that evolve gravita-
tionally coupled baryons and dark matter offer model-dependent
predictions for the form and redshift evolution of massive halo
scaling relations (e.g. Evrard, Metzler & Navarro 1996; Bryan &
Norman 1998; Sembolini et al. 2013; Le Brun et al. 2017; Barnes
et al. 2017). While significant progress has been made, multifluid
hydrodynamic simulations remain challenged by the wide dynamic
range and complex astrophysical elements involved in modelling
the formation of stars, supernova feedback, and supermassive black
hole effects. The BAHAMAS simulations (McCarthy et al. 2017)
have taken a novel approach by tuning sub-grid control parame-
ters to match the observed galaxy stellar mass function and the hot
gas mass fractions of groups and clusters simultaneously. The BA-
HAMAS simulations are a set of 400 Mpc h−1 volumes that includes
metal-dependent radiative cooling, star formation, and prescriptions
for both supernova and active galactic nucleus (AGN) feedback.
This suite of simulations reproduces a wide range of observables
and have been used to characterize biases in a broad range of mass
estimation techniques (Henson et al. 2017).

Multiwavelength population statistics require understanding the
covariance between pairs of intrinsic properties or observable quan-
tities. This covariance is an essential element in modelling multi-
wavelength cluster samples, as pointed out by Nord et al. (2008) for
the case of inferring luminosity evolution from X-ray flux-limited
samples.

The diagonal elements of the covariance matrix linking mass to
observable properties are becoming better measured, but currently
off-diagonal elements are poorly known (Mantz et al. 2016a). Cos-
mological hydrodynamics simulations, however, are a great tool
for gaining insight into the detailed form of the MPR, including
property covariance.

The likelihood of little or no loss of baryons from the deepest
potential wells motivates an expectation of anticorrelation in the gas
and stellar mass fractions in the highest massive haloes. If all clusters
of fixed halo mass are closed baryon boxes with baryons partitioned
into stars and gas, then a particular system with slightly more (less)
gas than average must contain a lower (higher) stellar mass than
average, meaning a strong anticorrelation between gas mass and
stellar mass. Such an anticorrelation is apparent in the Rhapsody-
G simulations of Wu et al. (2015), where a correlation coefficient
r = −0.7 is found for gas and stellar mass deviations about the
mean in a sample of ten 1015 M� haloes and their progenitors.

In lower mass haloes hosting groups and poor clusters of galaxies,
feedback can effectively drive baryons outside of the virial radius
(e.g. Lau, Nagai & Kravtsov 2010; Sembolini et al. 2013; Le Brun
et al. 2017; Truong et al. 2018), reducing or eliminating the degree
of anticorrelation.

Another key assumption in modelling MPRs is the form of the
conditional distribution of properties at fixed halo mass, usually
assumed to take a lognormal form. Under a lognormal assumption
coupled with a simple parametrized approximation to the halo space
density, or mass function, Evrard et al. (2014, hereafter E14) de-
rive closed-form expressions for multiproperty population statistics.
The analytic model exposes fundamental parameter degeneracies
between the shape of the mass function, which is driven by cosmol-
ogy, and MPR parameters determined by astrophysical processes.
Practically, the model supports fast computation of expectations for
cosmological likelihood analysis.

The goals of this work are: (i) to measure the mass and
redshift dependencies of MPRs for stellar mass and hot gas mass;

(ii) evaluate the statistical form of the MPR likelihood, and; (iii)
test the accuracy of the E14 model in a simulation setting where the
intrinsic properties are measured directly. Unlike previous ‘zoom-
in’ simulations (e.g. Wu et al. 2015), the BAHAMAS simulation
models baryon behaviour in a large cosmic volume, enabling study
of a wide range of haloes hosting groups and clusters. The large
samples from BAHAMAS allow us to apply a localized regression
approach to estimate mass-dependent MPR parameters. However,
the 400 h−1 Mpc simulation size limits the number of the most
massive haloes; BAHAMAS statistical coverage drops off above
3 × 1014 M�. We therefore also include the MACSIS simulation
ensemble which, like Wu et al. (2015), uses the zoom-in technique to
extend the mass range of the BAHAMAS sample while employing
the same astrophysical model, resolution, and cosmology (Barnes
et al. 2017).

This paper is organized as follows. In Section 2, we present the
simulation samples used in this work while Section 3 describes
our non-parametric local linear regression (LLR) model. The LLR
results, including covariance of hot gas and stellar mass at fixed
halo mass, are presented in Section 4. In Section 5 we test the
performance of the E14 analytic model, followed by discussion in
Section 6 and a summary in Section 7.

Throughout this paper, we use radial and mass scales defined by
a spherical density contrast with respect to the critical density of the
universe, ρcrit(z); M� indicates the mass within which the average
total mass density is �ρcrit(z). Halo masses are expressed in units
of M�, not h−1 M�).

2 SI MULATI ONS

We use the BAHAMAS cosmological hydrodynamical simu-
lation (McCarthy et al. 2017) run using the GADGET-3 SPH
code with sub-grid prescriptions for metal-dependent radiative
cooling, star formation, and stellar and AGN feedback devel-
oped as part of the OverWhelmingly Large Simulations project
(Schaye et al. 2010). The periodic 400 h−1 Mpc cube we use
here adopts a flat �CDM cosmology with Planck 2013 cos-
mological parameters (Planck Collaboration XVI 2014), namely
�m, �b, ��, σ 8, ns, h = 0.3175, 0.049, 0.6825, 0.834, 0.9624,
0.6711 where �m, �b, and �� are the normalized densities in
matter, baryons, and vacuum energy, σ 8 sets the power spec-
trum normalization, ns is the primordial spectral index, and
h ≡ H0/(100 km s−1 Mpc−1) is the dimensionless Hubble constant.

The wind velocity associated with stellar feedback and the heating
temperature associated with the AGN feedback in BAHAMAS are
adjusted so as to reproduce the observed local galaxy stellar mass
function and the amplitude of the relation between hot gas mass and
halo mass of local X-ray-selected galaxy groups and clusters. Non-
tuned features match an unprecedentedly wide range of observed
properties, including galaxy and hot gas radial profiles as well as
the behaviour of stacked SZ and X-ray luminosity as a function of
galaxy stellar mass (McCarthy et al. 2017).

Cosmological simulations featuring volume-complete hydrody-
namics with full sub-grid physics at high spatial and mass reso-
lution are very computationally expensive. The 400 h−1 Mpc BA-
HAMAS simulation has spatial resolution of 4 h−1 kpc and resolves
a 1014 M� halo with ∼30 000 particles. Because of the limited num-
ber of very high mass haloes in the realized volume, the MACSIS
project (Barnes et al. 2017) was developed to extend the sample to
higher mass haloes. The MACSIS ensemble consists of 390 ‘zoom-
in’ simulations (Tormen, Bouchet & White 1997) of individual
halo regions drawn from a parent 3.2 Gpc N-body simulation. The
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Table 1. Halo sample sizes with M500 > 1013 M�.

Redshift BAHAMAS MACSIS

1 11 387 377
0.5/0.46a 17 668 377
0 21 987 385

a0.5 = BAHAMAS; 0.46 = MACSIS.

hydrodynamic resimulations employ the same resolution and sub-
grid prescriptions as BAHAMAS in a Planck cosmology with nearly
identical parameters as BAHAMAS (parameter values typically dif-
fer in the third significant digit, see Barnes et al. 2017).

As described in McCarthy et al. (2017), haloes are identified
using a ‘friends-of-friends’ percolation method. The spherically
integrated quantities used here are measured using the minimum
of the local gravitational potential as the halo centre, and any sub-
haloes that lie outside the characteristic radii, R� are ignored.

The samples we use, listed in Table 1, include all haloes with
M500 > 1013 M� at redshifts z = 0, 0.5, and 1.0. Note that there
the redshift slice for MACSIS sample is 0.46. The combined BA-
HAMAS and MACSIS simulations offer tens of thousands of halo
realizations covering a wide dynamic range in total mass.

The halo properties we study are the aggregate stellar mass, Mstar,
and the hot phase gas mass, Mgas, measured within spheres enclosing
densities of � = 500 and 200 times the critical density, ρcrit(z). Note
that the hot gas mass includes particles with temperatures greater
than 105 K while the stellar mass uses all star particles within R�.

For this study, we combine BAHAMAS and MACSIS samples
into a super-sample. Since the BAHAMAS and MACSIS are not
using exactly the same cosmology, we re-normalize the baryonic
contents of the MACSIS sample to align the global baryon fraction,
ωb/�m, to that assumed in the BAHAMAS cosmology; however,
the magnitude of this correction is negligible, <2 per cent. We also
note that there is small difference in the redshift of BAHAMAS and
MACSIS samples, 0.5 versus 0.46. Since we show below that the
redshift evolution of the properties we examine is relatively weak,
we do not apply any correction for this redshift.

The complex interactions of mergers, turbulence, cooling, chem-
ical enrichment, and feedback from supernovae and AGN play out
within the evolving cosmic web network of large-scale structure
to determine the overall statistical nature of the baryon compo-
nent masses within the halo population. While matching observed
mean stellar and gas fraction behaviour, within the limits of cur-
rent observational uncertainties, has been done in the BAHAMAS
and MACSIS simulations by tuning a small number of sub-grid
parameters, higher order features of the property statistics should
be considered model-dependent predictions of the underlying astro-
physical theory. Within the context of these simulations’ numerical
and astrophysical treatments, we focus this paper on the model’s
expectations for running of the slope and scatter of the MPR with
mass and redshift. Future work can examine the robustness of these
features using multiple simulations by independent groups.

3 MASS-LOCALIZED REGRESSION

In this section, we describe a localized linear regression
model to characterize the conditional joint property likelihood,
p(Mstar, Mgas| Mhalo, z), of the simulated halo ensemble. In practice,
the power-law nature exhibited by most properties with respect to
mass motivates the use of logarithmic variables that we introduce
below.

The method produces mass localized estimates of the intercepts,
slopes, and covariance of this pair of properties as a function of halo
mass at fixed redshift. The assumption of a lognormal form for the
conditional likelihood underlies this model, and we demonstrate the
validity of this assumption in Section 4.2.

Following E14, our underlying population model considers a
vector of properties, S, associated with haloes of total mass, M�,
at redshift, z. Using natural logarithms of the properties, s = ln S,
and mass, μ = ln M�, the log-mean scaling of property a at a fixed
redshift is locally linear

〈sa | μ, z〉 = πa(μ, z) + αa(μ, z)μ, (1)

with redshift- and scale-dependent parameters that we measure by
differentially weighting haloes in the simulation ensemble around a
chosen mass scale. In this model, the normalization of the property
element, Sa, is eπa (μ,z).

At a fixed redshift, we determine local fit parameters – the slope
αa(μ), intercept, πa(μ), and intrinsic sample variance, σ 2

a (μ) – for
property sa by minimizing the weighted square error:

ε2
a (μ) =

n∑
i=1

w2
i (sa,i − αa(μ)μi − πa(μ))2, (2)

where the sum i is over haloes, μi ≡ ln (Mhalo,i/M), and wi is the
local weight centred on the mass scale, M ≡ eμ. We sweep through
values of M covering the mass scale of poor groups to rich clusters,
M500 ∈ {1013, 1015}M�, in the joint BAHAMAS and MACSIS
halo samples.

We use a Gaussian weight in log-mass

wi = 1√
2πσLLR

exp

{
− μ2

i

2σ 2
LLR

}
, (3)

with σ LLR = 0.46, equivalent to 0.2 dex in halo mass. As the central
halo filter scale, μ, is varied, we record the local slope and intercept
fit parameters. Ideally, we want the weighting scheme to have the
smallest possible width; however, practically this is not achievable
with a finite sample as the fit parameters become noisy. If the width is
chosen to be too large, then it smooths out the effect of running. We
test whether decreasing the width of the weighting scheme changes
our results, and find mainly that the estimates become noisier while
the trends and parameter estimates are roughly the same.

With a local slope and intercept for each property, j, we can
compute the local property covariance using the same weighting
scheme. We use an unbiased weighted estimator of the property
covariance matrix, C (Gough 2009),

Ca,b = A

n∑
i=1

wi δsa,i δsb,i , (4)

where δsa,i ≡ sa,i − αaμi − πa is the residual deviation from the
local best-fit, (a, b) are labels representing either stellar mass or hot
gas mass, and the pre-factor is

A =

n∑
i=1

wi

(
n∑

i=1
wi

)2

−
n∑

i=1
w2

i

. (5)

The covariance matrix for our pair of halo properties has one
correlation coefficient

rgas,star = Cgas,star√
Cgas,gas Cstar,star

. (6)
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We note that fitting a global power law to MPRs that run with
scale could induce covariance as an artefact of the poor, i.e. underfit,
regression model. The locally estimated covariance is unbiased,
easily computable, and asymptotically approaches the population
true value in the limit of σ LLR → 0 and Nhalo → ∞.

4 R ESULTS

In this section, we begin by presenting the LLR scaling behaviour
of log-mean stellar mass and hot gas mass as a function of halo
mass and redshift. We then examine the form of the conditional
likelihood PDF, finding excellent agreement with a lognormal form,
the assumption behind the weighted Pearson covariance, equation
(4). Finally, we investigate the redshift and mass dependence of the
star-gas covariance.

Unless otherwise stated, error bars and shaded regions in the fig-
ures below are one standard deviation based on bootstrap estimates
of 1000 re-sampled halo data sets.

4.1 LLR fits to scaling relations

Fig. 1 shows how the hot gas mass (top) and stellar mass (bottom) of
the BAHAMAS and MACSIS halo population scale with total mass
at three redshifts and for two critical overdensity scales, �= 500 and
200. LLR fit lines are also shown. Overall, the conditional statistics
display similar forms at different overdensities and redshifts, but
the fit parameter values depend on scale, redshift and halo mass.

Fig. 2 shows the mass and redshift dependence of the gas/star
LLR slope and rms scatter at � = 500. There is a strong scale
dependence in the slopes of the MPR scalings in both Mgas and
Mstar, with milder redshift dependence. For Mgas both the slope and
scatter at fixed halo mass increase at lower redshifts, and the running
behaviour of the slope is non-monotonic with halo mass, exhibiting
a peak value near a group-scale mass, M500 ∼ 3 × 1013 M�. For Mstar

the redshift sensitivity of the MPR parameters at fixed halo mass
is more modest, and the slope at tends to slightly decrease towards
lower redshifts. The running of the Mstar slope is approximately
linear in the log of halo mass.

In the BAHAMAS simulation study of Le Brun et al. (2017), a
broken (piece-wise constant) power law is used to fit the scaling of
hot gas mass with halo mass. The broken power-law approach intro-
duces a particular mass scale – the transition, or break, mass – that
is not anticipated by the relatively smooth astrophysical processes
operating within haloes. The LLR approach enables the detection
of continuously varying, scale-dependent features without intro-
ducing an arbitrary halo mass scale. Indeed, the smooth behaviours
of the local slopes in Fig. 2 do not support a broken power-law
approximation for either hot gas mass or stellar mass.

For cluster-scale systems above ∼5 × 1013 M�, the slopes in
both gas mass and stellar mass run nearly linearly with log-mass,
approaching the naive self-similar expectation of one in the highest
mass systems from above and below, respectively. This is in agree-
ment with Barnes et al. (2017) who find a slope ∼1 when only the
most massive systems are considered, but find a steeper slope using
the superset of BAHAMAS and MACSIS haloes more massive than
1014 M�.

As hierarchical clustering progresses and haloes grow larger
and develop deeper potential wells, feedback driven by the central
galaxy becomes more confined to the core region, allowing gravity
to become dominant and self-similar scalings to recover. The sim-
ulations show this type of progression, with slopes at z = 0 in Mgas

and Mstar lying within 1.00 ± 0.05 at masses, M500 > 1015 M�. Fur-
thermore, for the highest mass systems, the MPR parameters do not
vary significantly with redshift, but there are statistically significant
changes in the slope and normalization for group-scale systems.

The above trends persist at both overdensity scales presented in
this work. We confirm, but do not present here, similar behaviour
at � = 2500. The LLR fit parameters for � = 500 and 200 are
provided in the appendix.

Fig. 3 shows the scale and redshift behaviour of the � = 500 LLR
normalizations for stellar and hot gas masses. The normalizations
are presented as halo mass fractions normalized by mean cosmic
baryonic fraction. Recall that we have aligned the MACSIS cosmic
baryon fraction to that of the BAHAMAS simulation.

Above a halo mass of ∼3 × 1014 M�, the total gas mass and
stellar mass fractions become nearly constant; however, there is
strong mass and redshift evolution for lower mass systems. The
nearly fixed high mass behaviour provides strong evidence that
baryon venting is negligible, while considerable venting occurs at
the mass scale of groups. The weak redshift dependence at high mass
is in good agreement with trends observed from a joint analysis of
South Pole Telescope (SPT) and Dark Energy Survey (DES) data
in a sample of 93 massive SPT clusters (Chiu et al. 2018).

The interplay between cooling and feedback controls the relative
mean proportions of the integrated gaseous and stellar masses in a
way that introduces considerable variance at the group mass scale,
but the variance decreases for richer clusters with deeper potential
wells. Associated with this, the covariance of gas and stars deter-
mines the scatter in overall baryon content. We find evidence for a
‘closing box’ scenario at the high-mass end, with increasing anti-
correlation of stellar mass and gas mass at later times. We present
this result in Section 4.3.

4.2 Lognormality of conditional statistics

The lognormal shape of conditional statistics, an implicit assump-
tion in previous analyses, is a core ingredient of the E14 population
model. In the context of modelling star formation, a lognormal
shape for final stellar masses is expected when random multiplica-
tive factors govern the evolution of the system (e.g. Larson 1973;
Adams & Fatuzzo 1996). Observational studies of galaxy clusters
broadly support this form, although with currently modest sample
sizes (e.g. Pratt et al. 2009; Mantz et al. 2010; Czakon et al. 2015;
Mantz et al. 2016a).

Non-Gaussian terms in MPR statistics can introduce bias in cos-
mological analysis based on cluster counts (Erickson, Cunha &
Evrard 2011; Weinberg et al. 2013). Such terms cannot be char-
acterized through measurement of the scatter alone. We use the
large BAHAMAS halo samples to study the PDF shape in detail,
and assess the degree to which conditional property statistics of the
simulated halo sample follow a lognormal frequency distribution.

Previous simulation studies have addressed this issue with gen-
erally smaller samples. Using an ensemble of N-body and non-
radiative hydrodynamics simulations, Evrard et al. (2008) show
that the PDF of dark matter velocity dispersion at fixed halo mass
is very close to lognormal, with some samples showing a mod-
est skew caused by a minority population of post-merger, tran-
sient systems. The construction of the BAHAMAS and MACSIS
halo samples effectively filters out the small fraction of such sec-
ondary objects. Stanek et al. (2010) demonstrate lognormal PDFs
for multiple properties within a sample of ∼4000 haloes drawn
from the Millennium Gas Simulations, as do other hydrodynamic
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Figure 1. Halo baryon contents (points) measured within over-densities, � = 500 (left) and 200 (right), for Mgas (top) and Mstar (bottom) as a function of
total halo mass at three redshifts indicated in the legend. Lines show the LLR fits. Parameters for the � = 500 case are shown in Figs 2 and 3.

simulations with smaller samples (Fabjan et al. 2011; Biffi et al.
2014; Le Brun et al. 2017; Truong et al. 2018).

Given the LLR fit for property sa (with a a label indicating either
ln Mstar or ln Mgas), we calculate the normalized deviation of halo i
from the mean relation

δ̃a,i ≡ δsa,i/σa(μi) = sa,i − αa(μi)μi − πa

σa(μi)
, (7)

where αa(μi) and σ a(μi) are the local slope and scatter of the MPR
evaluated at the total mass of the ith halo (see, Fig. 2).

Fig. 4 presents the PDF of the normalized residuals of gas mass
(top panels) and stellar mass (bottom panels) for � = 500 at z = 0,
0.5 and 1. These results are consistent for all overdensities. The
inset of each panel provides a Q–Q plot1 to illustrate deviations
from the normal form. The residuals in the log of stellar mass are
extremely Gaussian, while the gas mass displays slight negative
skewness and non-zero kurtosis. We note that only a small fraction
haloes, <1 per cent, are outliers with low gas mass. Understanding
the physical causes of this minor deviation from normality lies
beyond the scope of this work. The Gaussian form persists for both

1The quantile–quantile (Q–Q) plot is a visualization technique for deter-
mining if a population sample comes from an assumed distribution. Axes
compare rank quantiles of the model to quantiles of the sample.

Mgas and Mstar and over all overdensity scales considered in this
work.

These results provide strong evidence that the lognormal form is
adequate to model the intrinsic quantities of haloes. In Section 5,
we demonstrate that employing a local form of the E14 model
achieves sub-percent accuracy in estimating the population mean
mass selected on baryon mass.

Within the scope of cluster cosmology, non-Gaussian MPR
shapes were formulated by Shaw, Holder & Dudley (2010) in terms
of an Edgeworth series expansion

P (Mproxy|Mtrue) ≈ G(x) − γ

6

d3G

dx3
+ κ

24

d4G

dx4
+ γ 2

72

d6G

dx6
, (8)

where the skewness, γ , is defined as

γ = 〈(Mproxy − Mtrue)3〉
σ 2

, (9)

and the kurtosis, κ , is defined as

κ = 〈(Mproxy − Mtrue)4〉
σ 4

− 3, (10)

and G(x) is a Gaussian distribution. We note that achieving sub-
percent level systematic uncertainty in cluster number counts under
a lognormal approximation with a mass proxy having 20 per cent
scatter requires roughly γ < 7 and κ < 90 (see equation 156 of
Weinberg et al. 2013). The skewness and kurtosis values for our
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Figure 2. Dependence of the slope and scatter of hot gas mass (top) and
stellar mass (bottom) MPRs on total halo mass for � = 500. Lines show
the LLR estimates and shaded regions give 1σ confidence bootstrap errors
in the parameters. The scatter is the root-mean square of the natural log.

Figure 3. LLR normalizations of hot gas mass (solid) and stellar mass
(dashed), expressed as mass fractions, fa = eπa (μ,z)/M , where πa(μ, z) is
the scale- and redshift-dependent log-mean, equation (1), normalized by the
cosmic mean baryon fraction of the BAHAMAS universe. Shaded regions
show the intrinsic scatter within the population rather than uncertainty in
the mean behaviour.

Figure 4. Conditional likelihood distribution derived from scaling relation
residuals, equation (7) in hot gas mass (top) and stellar mass (bottom).
Colours indicate redshift as in Fig. 1. The mean bias is typically less than
1 per cent, skewness is less than 1, and kurtosis is less than 5 which are
strong indicators of lognormality. Rank (Q–Q) comparison, shown in the
inset of each panel, indicate only mild deviations in lognormality in the
wings of each distribution.

halo samples are at least an order of magnitude smaller than what is
needed to achieve sub-percent uncertainty in number count statis-
tics, but more work is needed to confirm this result for realistic
cluster samples.

In principle, if the form of an observable conditional statistics
at fixed halo mass is known, it can be easily incorporated into
a cosmological analysis without introducing additional source of
systematic error due to the uncertainty in the form of distribution.
When modelling observational data, the form of the conditional
statistics of measured quantities may differ from a lognormal form,
for example due to projection effects (e.g. Cohn et al. 2007; Erickson
et al. 2011). Analysis of such data using a lognormal assumption
in the likelihood leads to systematic biases in halo mass that in
turn can bias cosmological parameter constraints. These additional
uncertainties are strongly dependent on survey characteristics and
data reduction pipeline and so must be modelled explicitly (e.g. Juin
et al. 2007; de Haan et al. 2016; Farahi et al. 2016; Pacaud et al.
2016).
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Figure 5. The LLR correlation coefficient between stellar mass and gas
mass at fixed halo mass, equation (4) at the redshifts indicated in the legend.
Anticorrelation is favoured at low redshifts and masses above 1014 M�.

4.3 Stellar–hot gas covariance

A complete multiwavelength MPR likelihood model will in-
clude property covariance. For cosmology, knowledge of prop-
erty covariance improves dark energy constraints when performing
analysis of joint, multiwavelength cluster samples (Cunha 2009).
For astrophysical studies, Nord et al. (2008) demonstrate how co-
variance between temperature and luminosity can confuse studies of
luminosity-temperature redshift evolution. Covariance of observed
hot gas properties has recently been measured in X-ray selected
samples (Mantz et al. 2010, 2016a; Andreon et al. 2017).

In simulations, a covariance matrix of dark matter and hot gas
properties was first presented by Stanek et al. (2010) for halo sam-
ples in the Millennium Gas simulation. Based on a small sample
of high mass haloes and their progenitors run with RAMSES hydro-
dynamics including AGN feedback, Wu et al. (2015) published the
first non-zero correlation of hot gas and stellar mass fractions. We
perform a similar measurement here on a much larger sample of
haloes evolved with an independent numerical method.

The correlation coefficient of gas and stellar mass at fixed to-
tal mass, equation (4), is plotted as a function of halo mass in
Fig. 5. The colour scheme is consistent with that used in Fig. 1. The
correlation coefficient begins near zero at 1013 M� and becomes in-
creasingly negative at higher halo mass. The values plateau around
3 × 1014 M� and decline in amplitude for the highest mass haloes.
While we show the results at � = 500, the pattern at � = 200 is
similar.

The lack of correlation for group size haloes can be explained
through an ‘open box’ scenario in which the total baryonic content of
a halo is not conserved. Feedback effects at low masses are efficient
at venting material out of the relatively shallow potential well. As
shown by McCarthy et al. (2011), the gas ejection takes place at
high-redshifts, 2 � z � 4, in the progenitors of present-day groups.
The ejection is sufficiently energetic that the gas is not re-accreted
later on. For higher mass haloes, however, the gas is re-accreted.
The anticorrelation above 1014 M� is indicative of a more ‘closed
box’ nature in which the overall baryon fraction of haloes more
closely resembles the global value, �b/�m. The redshift behaviour
in Fig. 5 indicates that the box is closing more tightly over time,
with the extremal value of r decreasing from −0.25 at z = 1 to −0.5
at z = 0. Wu et al. (2015) find a correlation coefficient of −0.68 at

Figure 6. The effect of correlation coefficient on estimating
〈log Mstar|log Mgas〉 for haloes in the BAHAMAS simulation at redshift
zero. The black line (underneath the blue solid) gives the LLR fit to
〈log Mstar|log Mgas〉. The red (dashed) line is the predicted mean stellar mass
assuming a correlation coefficient between stellar and gas mass at fixed halo
mass of zero, while the blue, solid line uses the measured correlation co-
efficient as a function of mass shown in Fig. 5. The lower panel shows the
deviation of the estimated 〈log Mstar|log Mgas〉 values from LLR fit truth.
The bias is measured using the natural log of mass (not dex).

� = 500, stronger than what is found here. The different behaviours
appears are likely due to the smaller variance in stellar mass in the
BAHAMAS and MACSIS samples for the most massive systems,
�1015 M�. We return to this issue in more detail in Section 6.

Another role that covariance plays is in determining the expecta-
tions for secondary properties of a sample defined by some primary
selection, for example 〈log Mstar|log Mgas〉 in a sample selected by
gas mass. According to the E14 analytic model, discussed in Sec-
tion 5 below, the log-mean stellar mass at fixed gas mass depends
on the correlation coefficient between these two properties at fixed
halo mass. Calling a the selection property, the magnitude of the
shift in the natural log of property b scales as rβ1(σ a/αa)σ b, where
β1 is the magnitude of the local slope of the mass function. Assum-
ing β1 = 3, we can anticipate the correction at z = 0 for a 1014 M�
by reading off the parameters from the LLR fits above (r = −0.5,
σ a/αa = 0.1 and σ b = 0.2), leading to an estimate of approximately
−0.03.

In Fig. 6, we confirm the anticipated effect of this non-zero covari-
ance. In the upper panel, we perform LLR to find the mean stellar
mass as a function of gas mass, shown as the (mostly hidden) black
solid line. In addition, we plot estimates for 〈log Mstar|log Mgas〉 both
excluding (dashed, red) and including (solid, blue line) the known
correlation coefficient as a function of halo mass. The lower panel
of Fig. 6 gives the difference in natural log of the expected model
mean and the LLR fit. Excluding the covariance term leads to a
few percent bias, as expected from the rough estimate given in the
previous paragraph.

5 VALI DATI NG THE ANALYTI C POPULATIO N
M O D E L

Cluster population statistics are linked to the constituents of the
universe through the growth of cosmic structure, and many ongoing
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Figure 7. The halo mass function derived from the BAHAMAS simulation.
The line is a third-order polynomial fit to the data points, equation (12), for
redshift z = 0.

and future cluster surveys are focused on using cluster population
statistics to constrain models of dark energy and cosmic acceleration
(e.g. Mantz et al. 2015; Dark Energy Survey Collaboration 2016;
de Haan et al. 2016; Mantz et al. 2016a; Pierre et al. 2016). The
multiproperty space density and conditional statistics of the pop-
ulation of massive haloes are essential ingredients of such efforts.
The evidence presented above indicates that the BAHAMAS and
MACSIS halo populations obey the lognormal statistics assumed
by the E14 analytic model. In this section, we explicitly test the ac-
curacy of that model by examining the expected log-mass of haloes,
〈ln M|sa〉, selected by an intrinsic property, sa.

The mean, comoving number density of haloes expected within
some specific property bin, i, at redshift, z, is given by the convolu-
tion〈

dni(z)

dV

〉
=

∫ si+1

si

ds

∫ ∞

−∞
dμ

dn(μ, z)

dμ
p(s|μ, z), (11)

with p(s|μ, z) the conditional likelihood of the property used to
select the halo sample, and dn(μ,z)

dμ
is the mass function.

The smoothness of the mass function allows a logarithmic poly-
nomial expansion

dn(μ, z)

dμ
= exp

⎡
⎣β0(z) −

3∑
j=1

βj (z)

j !
μj

⎤
⎦ , (12)

consisting of an amplitude, eβ0(z), and linear through cubic coeffi-
cients, β j(z), that control the shape. These coefficients vary smoothly
with redshift.

We analyse the z = 0 sample and fit the number counts of haloes
to the above third-order polynomial. Fig. 7 shows the differential
number counts as a function of halo mass for redshift z = 0 slices
as points, and the corresponding mass function fits as lines. To esti-
mate the β coefficients, we fit a third-order polynomial to ln dn(M,z)

d ln M

versus ln M, finding values β0 = 8.42, β1 = 2.93, β2 = 0.86, and
β3 = 0.42.2

The convolution, equation (11), brings the halo mass function
coefficients into the expression for the log-mean total halo mass

2Note that the β1 and β2 terms in E14 are the local first and second deriva-
tives of equation (12) evaluated at a pivot mass, while the β1 and β2 in this
work are derived from fitting the halo mass function over the mass range
shown in Fig. 7.

selected by a given observable, sa,

〈μ | sa, z〉 = xs

[(
sa − πa

αa

)
− β1σ

2
μ|s

]
, (13)

where σ 2
μ|s = σ 2

a /α2
a is the first-order estimate of the mass variance

selected by property sa, and

xs ≡ (1 + β2 σ 2
μ|s)

−1  (1 − β2 σ 2
μ|s), (14)

is a compression factor less than unity that is sensitive to the cur-
vature of the mass function. The β1 term represents Eddington bias
from convolution of a pure power-law mass function. Generally, the
slope of the mass function lies in the range β1 ∈ [2, 4], the curvature
term β2  1, and the variance ranges from (0.05)2 to (0.3)2 (see
Fig. 2).

The model estimate can be compared to the true log-mean halo
mass in the simulations. To determine the underlying ‘true’ values
of 〈μ|sa, z〉, we perform the inverse LLR fit to that used above,
meaning we fit for the mean total halo mass, M500, as a function of
either stellar mass or gas mass. We perform this regression above
Mstar = 1012 M� and Mgas = 4 × 1011 M�. The results are shown
as black lines in the upper panels of Fig. 8.

The lower panels of Fig. 8 show the accuracy of various estimates
compared to the direct LLR fits. Green lines show the naive estima-
tor, 〈μ|sa, z〉 = (sa − πa)/αa, using best fit with constant slopes over
haloes with total masses >1013 M�. This naive estimator, which
ignores both the mass dependence of the slope and the Eddington
bias, struggles to achieve mass accuracy at the level of 10 per cent.

The red-dashed lines improve on this naive estimate by using the
local slope from the LLR model, Fig. 2, while still ignoring the
Eddington correction. This model is an improvement but it does not
reach percent-level mass accuracy, given by the horizontal dotted
lines in the lower panels of Fig. 8.

Applying the full expression of equation (13), with the bias term
and local estimates of the slope and scatter, leads to the blue line in
Fig. 8. This estimate recovers the true mean mass within 1 per cent
for selection by Mgas over the entire mass range shown.

Equation (13) is similarly accurate for selection by Mstar above a
stellar mass of 1012.3 M�. Below this the error grows, approaching
a 5 per cent bias at the lowest stellar masses. In haloes near 1013 M�
that host poor groups of galaxies, the scatter in cumulative stellar
mass within haloes is large, σ  0.3. The equivalent mass scatter at
fixed Mstar, given by σμ = σ /α is larger, σμ  0.4, since the LLR
slope is sub-linear, α ∼ 0.8. The magnitude of the bias correction,
proportional to the MPR variance, is largest for the low-mass haloes
selected by Mstar. In addition, there may be some non-Guassianity
beginning to appear in p(Mstar Mhalo) at these low masses, as close
inspection of Fig. 8 indicates.

What we have shown is that simple properties of simulated
haloes, namely Mgas and Mstar, follow the E14 model form at a
level sufficient to achieve sub-percent accuracy in estimated log-
mean total halo mass. The test here, involving intrinsic halo prop-
erties, Sint, measured directly within the simulations, is a pre-
lude to more realistic tests using mock observables. Projection
and telescope/instrument effects introduce an extra convolution,
p(Sobs|Sint, z), that may introduce non-Gaussianity into the form
of the measured observables, Sobs. We defer such survey and
instrument-specific studies to future work.

Future work will extend this analysis to include additional observ-
able properties such as X-ray temperature or luminosity. Support for
cosmological analysis also requires mapping intrinsic to observed
properties in a survey-specific manner, a process that could induce
non-Gaussian features into the conditional statistics.
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Figure 8. Tests of the E14 model for haloes selected by hot gas mass (upper)
and stellar mass (lower). In each panel the upper sub-panels show the total
halo mass of individual haloes as a function of the selection mass, with
black curves showing the LLR estimates of the underlying true 〈ln M500|sa〉
relation, where sa = ln Mgas or ln Mstar. The red-dashed (green solid) lines
are predictions from inverting the global (local) MPRs, ignoring Eddington
bias, while the blue lines show E14 model expectations, equation (13), that
include the mass function convolution at second order. The lower sub-panels
show the bias in the estimated halo mass (using the natural logarithm), with
dashed black lines showing ±1 per cent accuracy with respect to the LLR
true estimate.

6 D ISCUSSION

Here, we discuss our findings in the context of previous simulation
work. We offer some initial thoughts on observations, but leave
detailed study of modelling observed MPRs to future work.

6.1 Mean MPR behaviour

The cosmo-OWLS simulations, precursor to those used here, dis-
play hot gas scaling trends similar to those of BAHAMAS and
MACSIS simulations. Le Brun et al. (2017) fit the median be-
haviour in mass bins for haloes above 1013 M� and 0 < z < 1.5 to
both single and broken power-law forms. For � = 500 they find a
single power-law slope in Mgas of 1.32 ± 0.02, intermediate to the
values shown in Fig. 2. Using a break point of M500 = 1014 M�,
they find a high-mass slope of 1.18 ± 0.02, similar to our LLR val-

ues at 3 × 1014 M�. For low masses between the break and sample
limit, they find redshift-dependent behaviour with a slope of 1.74
at z = 0 declining to 1.32 at z = 1. The BAHAMAS and MACSIS
samples behave similarly; the local LLR slope of the Mgas MPR is
most sensitive to redshift below 1014 M�.

Using an independent smoothed particle hydrodynamics code,
Truong et al. (2018) simulate 24 massive haloes with astrophysical
treatment that includes AGN feedback. While their methods are not
directly calibrated to match the observed gas content of clusters,
their estimate of the Mgas MPR slope is ∼1.07, near the value found
for halo masses 3 × 1014 M� in the BAHAMAS and MACSIS
simulations.

The IllustrisTNG project (Springel et al. 2018) produces full-
physics simulations of 100 and 300 Mpc volumes with a moving-
mesh code and an updated feedback model. Pillepich et al. (2018)
study the stellar contents of a subset of haloes at redshift z < 1
derived from the TNG100 and TNG300 simulations. Fitting a single
power law to the total stellar mass MPR around a mass scale of
M500 = 1014 M�, they find a slope of 0.84, in very good agreement
with our findings.

The trend towards a self-similar slope of one in the Mgas MPR
is supported by the observational sample of relaxed, high mass
clusters by Mantz et al. (2016a). Using weak lensing masses, they
find a slope of 1.04 ± 0.05 in the Mgas−MWL relation for 40 clusters
with kT > 5 keV. Studies of lower mass clusters typically find
super-linear scaling of gas mass with halo mass, such as the slope
of 1.22 ± 0.04 found by Lovisari, Reiprich & Schellenberger (2015)
for a sample of 82 clusters. Nevertheless, a fair comparison between
simulation results and observational study should include various
systematic and observational effects ignored in this analysis, such
as projection effects and cluster sample selection.

6.2 Diagonal elements of the property covariance

The intrinsic scatter in the MPR for a certain property sets its
quality as a proxy for total haloes mass. Among observable X-ray
properties, it has previously been noted that Mgas has low scatter in
both observations (Andreon 2010; Okabe et al. 2010; Mantz et al.
2016a; Andreon et al. 2017) and hydrodynamic simulations (Stanek
et al. 2010; Le Brun et al. 2017; Barnes et al. 2017; Truong et al.
2018).

For cosmo-OWLs, Le Brun et al. (2017) find a scatter of 0.11 in
Mgas at fixed halo mass of 1014 M� at z = 0, which agrees well with
our results. They find redshift and mass trends similar to those found
here. Wu et al. (2015) find Mgas scatter of 0.08 in the Rhapsody-
G simulations of 10 massive haloes, including their progenitors.
Truong et al. (2018) find a somewhat smaller scatter of 0.06 in their
sample of 24 haloes.

We note that the scatter derived in this work is an intrinsic halo
property whereas the observational data are measured in a pro-
jected space. Given the incoherent nature of projections, the scatter
derived from observational data should be larger than the intrin-
sic values derived in this work. For instance, Mantz et al. (2016a)
find 0.09 ± 0.02 for Mgas for haloes above 3 × 1014 M� which is
marginally larger than what is found in this work.

On the scatter in overall stellar mass at fixed halo mass, relatively
little work has been published from either simulations or observa-
tions. In simulations Pillepich et al. (2018) find scatter of 0.16 in
Mstar the TNG100 and TNG300 simulations for haloes ∼1014 M�,
in good agreement with the BAHAMAS and MACSIS results. A
more detailed comparison is needed to compare trends with mass
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and redshift more precisely. In the Rhapsody-G sample, Wu et al.
(2015) find Mstar a larger scatter of 0.34 in a combined sample com-
prised of 10 massive haloes at z = 0 and their progenitors at z = 0.5
and 1.

By analysis of 12 galaxy clusters, Andreon (2012) reported 0.14
scatter, in natural log, as a 90 per cent upper limit on the intrinsic
stellar mass scatter at fixed halo mass. In a different work, Zu &
Mandelbaum (2015) combine the galaxy stellar mass function with
galaxy–galaxy lensing and galaxy clustering from a sample of Sloan
Digital Sky Survey (SDSS) clusters and find a scatter in the natural
log of central galaxy stellar mass of 0.4 for clusters with masses
near 1014 M�. They also find statistically significant evidence in
favour of the scatter in Mstar decreasing with increasing halo mass,
but this refers only to the central galaxy, not the total stellar content
which is considered in this work.

6.3 The off-diagonal element of the property covariance

In contrast to the diagonal elements which determine the mass
proxy quality of individual properties, the off-diagonal covariance
elements of the joint property matrix have received far less attention.

The results presented in Section 4.3 are from hydrodynamics
simulations that have been carefully calibrated to reproduce the
observed mean relations between gas mass and halo mass and stel-
lar mass and halo mass. While model-dependent, these theoretical
predictions are testable empirically with current and future multi-
wavelength survey data.

The Rhapsody-G simulation by Wu et al. (2015) established the
first estimate of anticorrelation between stellar and gaseous content
of haloes. In this work, we extend their analysis by using a much
larger halo sample that extends to galaxy group scales.

In agreement with Wu et al. (2015), we find that the most mas-
sive systems are approximately ‘closed boxes’, but our correlation
coefficient peaks at a smaller magnitude than the value of −0.68
found in that work. For the group size haloes, the link between
the stellar mass and hot gas mass is strongly reduced (see Fig. 5).
This trend is due to more efficient feedback in low mass haloes that
ejects a significant fraction of the gas from the progenitors of the
groups to radii outside R500, which is evident from the change in the
normalization of the total baryonic content.

Furthermore, we see redshift evolution in the correlation coef-
ficient towards larger anticorrelation at later times. This evolution
might suggest that haloes of fixed mass vent their baryonic content
more efficiently at high redshift. This interpretation would imply
that baryon fractions increase with increasing redshift at fixed halo
mass. However, this scenario is not supported by the LLR normal-
izations (Fig. 3). Instead, we observe increasing scatter at lower
redshift for both gas mass and stellar mass at fixed halo mass,
which allows more a longer lever arm to support correlation. This
increase in the scatter could be the primary factor which explains the
observed redshift evolution. Accretion events might be the key in
understanding this trend. Massive haloes gain mass through merg-
ing and accretion, and the rate of accretion declines with redshift
(Fakhouri, Ma & Boylan-Kolchin 2010). Due to the stochastic na-
ture of these events, these events add additional ‘irreducible scatter’
which could weaken the strength of anticorrelation.

A key difference between the Rhapsody-G simulation re-
sults of Wu et al. (2015) and ours is the scatter in Mstar at
fixed halo mass, which for high mass haloes is much larger in
Rhapsody-G (>30 per cent) than BAHAMAS and MACSIS simula-
tion (<10 per cent). We note that the Rhapsody-G sample combines

all haloes progenitors into a single sample. The different sample def-
initions, along with different numerical and modelling treatments
for star formation and feedback, are likely both conspiring to create
the difference in property correlation behaviour.

The return towards zero of the correlation coefficient for high
mass systems most likely has a simple origin: the very small effect
of scatter in Mstar. Comparing Figs 2 and 3, we see that a typical
1015 M� halo at z = 0 will have converted 10 per cent of its baryons
into stars, with 75 per cent remaining in hot gas within R500. The
fractional deviations in these components are 0.1 and 0.05, respec-
tively, meaning the contributions to the baryon fraction scatter are
roughly 0.01 for stars and 0.04 for hot gas. These small values leave
little room for coupling deviations in gas mass with those in stellar
mass. By comparison, the contributions to the baryon fraction scat-
ter at 1014 M� are larger by roughly a factor of two, 0.02 for stars
and 0.07 for hot gas.

Put another way, we expect irreducible scatter in the baryon con-
tent of haloes when masses are defined using a simple spherical
threshold. Deviations are sourced by the basic nature of the dynam-
ics – collisionless for dark matter and stars but collisional for gas –
as well as edge effects introduced by the spherical filter, including
choice of centre. A measure of this irreducible scatter can be found
from the gravity-only models of Stanek et al. (2010), which show
a fractional scatter in gas/baryon mass (there are no stars) at fixed
halo mass of 0.036 ± 0.001. This value is very close to the level
seen in the hot gas phase of BAHAMAS and MACSIS haloes above
1015 M�.

We remind the reader that these are results from a model-
dependent simulation. These predictions await testing by future
empirical studies, which will ultimately be capable of constraining
the baryon content covariance of clusters with high accuracy.

6.4 Observational prospects for stellar–hot gas mass
covariance

The historical absence of well-defined, uniform, multiwavelength
cluster samples explains the sparsity of observational attempts to
constrain the off-diagonal elements of the property covariance ma-
trix. The few extant studies focus on covariance between X-ray
observables (e.g. Mantz et al. 2010; Maughan 2014; Mantz et al.
2016a; Andreon et al. 2017). To the best of our knowledge, no
constraint on the correlation between an optical and X-ray property
pair has been reported. Finally, modelling the mapping between
cluster observables and intrinsic halo properties is an important
task.

A minimum requirement is to obtain both stellar mass and gas
mass estimates for a large cluster sample with a well-defined selec-
tion function. Uniformity of the sample is a key factor; combining
several heterogeneous data sets is not an option due to complexity
in modelling the full selection function.

The Local Cluster Substructure Survey (LoCuSS, PI: G.P. Smith)
survey3 is taking the lead to make such a measurement possible by
combining multiwavelength observables for a well-defined cluster
sample of moderate size. LoCuSS will help to have a preliminary
result on the value of the correlation coefficient; however, further
studies with larger sample size and broader mass and redshift ranges
are needed to study these quantities in more depth.

3http://www.sr.bham.ac.uk/locuss/
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6.5 Sensitivity to cosmological parameters

To test whether our findings are sensitive to the underlying cosmol-
ogy, we analysed the WMAP9 cosmology suite of the BAHAMAS
simulation at z = 0, 0.5, and 1.0. We obtain results in good agree-
ment with results from the Planck cosmology. Specifically, we find
evidence for a lognormal PDF and see trends in LLR scaling param-
eters, including off diagonal elements, similar to those we report
here. This reaffirms that the lognormal assumption is a sufficient
statistical model independent of cosmological parameters. We also
note that the values of the slope and scatter parameters are not
appreciably different from those reported in this paper.

7 C O N C L U S I O N

We present population statistics for volume-limited samples of mas-
sive haloes selected from the BAHAMAS simulation and its high-
mass extension, MACSIS. The combination of these two sets of
simulations provides large sample sizes across a wide dynamic
range in halo mass realized with consistent, sub-grid physics treat-
ments for star formation and feedback from supernovae and active
galactic nuclei. We introduce LLR to measure conditional statistical
properties of stellar mass and hot gas mass given total halo mass,
including their covariance. We assess the validity of the lognormal
assumption in MPR models, and investigate the accuracy of the
multiproperty analytical model of E14.

Our main findings are as follows:

(i) The scalings of 〈ln Mgas|Mhalo, z〉 and 〈ln Mstar|Mhalo, z〉 with
halo mass are well approximated by power laws with running expo-
nents. For clusters with masses above 1014 M�, the local slope and
scatter behave monotonically with mass. The local slope and scatter
in stellar mass are nearly redshift independent, while the hot gas
slope and scatter tend to increase with increasing redshift. Above
5 × 1014 M�, the behaviour approaches simple self-similarity, with
slopes approaching one and very small fractional scatter in baryon
component masses: 0.04 in hot gas and 0.08 in stellar mass. The
component fractional scatter in galaxy groups near ∼3 × 1013 M�
is significantly larger: 0.2 in hot gas and 0.3 in stellar mass.

(ii) The PDF of residuals in gas and stellar mass about the lo-
cal regression fit is very close to lognormal. The deviations from
normality in the intrinsic halo population are too small to bias cos-
mological constraints from cluster counts, but further modelling of
sample selection effects and of how intrinsic properties map to those
observed remains to be done.

(iii) Studying the hot gas and stellar property covariance, we find
that massive haloes display anticorrelation indicative of a ‘Closed
Box’ nature, with the box closing increasingly tighter at later times.
The correlation coefficient is suppressed in lower mass haloes,
which are capable of venting a significant fraction of their baryons
outside their virial regions, as well as in the highest mass haloes,
where small deviations about a small mean contribution in stellar
mass has little effect on the overall baryon content of these systems.

(iv) We verify that the model proposed by E14 can predict the
expected log total mass of property-selected halo samples with sub-
percent accuracy when local MPR scaling parameters are used.

These theoretical predictions need to be confirmed or falsified
through empirical evidence from analysis of observational data.
Future campaigns of multiwavelength observational studies, such
as XXL (Pierre et al. 2016) and DES (Dark Energy Survey Col-
laboration 2016), have the opportunity to test these predictions and
enrich our knowledge of baryon component physics.

AC K N OW L E D G E M E N T S

We acknowledge support from NASA Chandra grant CXC-
17800360. DJB and STK acknowledge support from STFC through
grant ST/L000768/1. We thank Joop Schaye for his contributions
to the BAHAMAS and MACSIS simulations, and Elena Rasia for
useful discussions. This work used the DiRAC Data Centric sys-
tem at Durham University, operated by the Institute for Compu-
tational Cosmology on behalf of the STFC DiRAC HPC Facility
(www.dirac.ac.uk). This equipment was funded by BIS National
E-infrastructure capital grant ST/K00042X/1, STFC capital grants
ST/H008519/1 and ST/K00087X/1, STFC DiRAC Operations grant
ST/K003267/1 and Durham University. DiRAC is part of the Na-
tional E-Infrastructure.

REFERENCES

Adams F. C., Fatuzzo M., 1996, ApJ, 464, 256
Allen S. W., Evrard A. E., Mantz A. B., 2011, ARAA, 49, 409
Andreon S., 2010, MNRAS, 407, 263
Andreon S., 2012, A&A, 548, A83
Andreon S., Wang J., Trinchieri G., Moretti A., Serra A. L., 2017, A&A,

606, A24
Barnes D. J., Kay S. T., Henson M. A., McCarthy I. G., Schaye J., Jenkins

A., 2017, MNRAS, 465, 213
Biffi V., Sembolini F., De Petris M., Valdarnini R., Yepes G., Gottlöber S.,
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APPENDI X: DATA

Figs 2 and 3 illustrate the mass and redshift dependence of the
LLR slope, scatter and normalization at � = 500. In Tables A1–A4,
we provide the resultant fit parameters of gas mass and stellar mass
for � = 500 and 200.4

4The LLR fit parameters with three significant digits will be available in the
electronic version.

Table A1. The LLR fit parameters for Mgas−Mhalo relation at redshift z = 0, 0.5, 1 for overdensity � = 500. For convenience, we use decimal logarithms for
both the independent halo mass variable μ10 = log10(M�/ M�), as well as the normalization, π10 = log10(Mgas/ M�). Also given are the local slope, α, and
scatter in the natural logarithm, σ , the diagonal component of equation (4). The error on the normalization is <0.01 in log10 basis. The quoted errors have two
significant digits, and 0.00 value means that the uncertainty is <0.01. The LLR fit parameters with three significant digits will be available in the electronic
version.

μ10 z = 0 z = 0.5 z = 1
π10 α σ π10 α σ π10 α σ

13.0 11.276 1.54 ± 0.01 0.29 ± 0.00 11.500 1.39 ± 0.01 0.22 ± 0.00 11.641 1.30 ± 0.01 0.20 ± 0.00
13.1 11.429 1.56 ± 0.01 0.28 ± 0.00 11.639 1.41 ± 0.01 0.22 ± 0.00 11.771 1.32 ± 0.01 0.20 ± 0.00
13.2 11.585 1.58 ± 0.01 0.27 ± 0.00 11.780 1.43 ± 0.00 0.21 ± 0.00 11.903 1.33 ± 0.01 0.19 ± 0.00
13.3 11.745 1.60 ± 0.00 0.26 ± 0.00 11.924 1.44 ± 0.00 0.20 ± 0.00 12.036 1.34 ± 0.01 0.19 ± 0.01
13.4 11.907 1.62 ± 0.00 0.24 ± 0.00 12.069 1.45 ± 0.00 0.19 ± 0.00 12.171 1.34 ± 0.01 0.20 ± 0.01
13.5 12.070 1.63 ± 0.00 0.23 ± 0.00 12.216 1.46 ± 0.00 0.18 ± 0.00 12.305 1.34 ± 0.01 0.21 ± 0.02
13.6 12.233 1.63 ± 0.00 0.22 ± 0.00 12.362 1.46 ± 0.00 0.17 ± 0.00 12.440 1.34 ± 0.01 0.22 ± 0.03
13.7 12.395 1.62 ± 0.00 0.20 ± 0.00 12.506 1.45 ± 0.00 0.16 ± 0.00 12.573 1.34 ± 0.01 0.24 ± 0.04
13.8 12.553 1.59 ± 0.00 0.19 ± 0.00 12.647 1.43 ± 0.00 0.16 ± 0.01 12.704 1.32 ± 0.01 0.25 ± 0.04
13.9 12.706 1.55 ± 0.00 0.18 ± 0.00 12.785 1.40 ± 0.01 0.17 ± 0.01 12.831 1.30 ± 0.01 0.26 ± 0.03
14.0 12.854 1.51 ± 0.00 0.17 ± 0.00 12.917 1.36 ± 0.01 0.20 ± 0.02 12.956 1.27 ± 0.01 0.27 ± 0.04
14.1 12.996 1.45 ± 0.01 0.17 ± 0.01 13.045 1.31 ± 0.01 0.23 ± 0.03 13.079 1.25 ± 0.01 0.27 ± 0.04
14.2 13.131 1.39 ± 0.01 0.18 ± 0.01 13.168 1.27 ± 0.01 0.26 ± 0.03 13.202 1.24 ± 0.01 0.27 ± 0.04
14.3 13.258 1.32 ± 0.01 0.20 ± 0.02 13.290 1.24 ± 0.01 0.28 ± 0.04 13.324 1.23 ± 0.01 0.24 ± 0.04
14.4 13.378 1.25 ± 0.01 0.23 ± 0.03 13.411 1.23 ± 0.01 0.28 ± 0.04 13.443 1.20 ± 0.01 0.19 ± 0.03
14.5 13.496 1.21 ± 0.01 0.26 ± 0.03 13.532 1.22 ± 0.01 0.25 ± 0.04 13.559 1.17 ± 0.01 0.14 ± 0.02
14.6 13.614 1.19 ± 0.01 0.27 ± 0.04 13.652 1.19 ± 0.01 0.20 ± 0.03 13.672 1.14 ± 0.01 0.10 ± 0.02
14.7 13.732 1.18 ± 0.01 0.26 ± 0.04 13.767 1.16 ± 0.01 0.14 ± 0.02 13.781 1.11 ± 0.01 0.07 ± 0.01
14.8 13.849 1.16 ± 0.02 0.23 ± 0.04 13.878 1.12 ± 0.01 0.10 ± 0.01 13.888 1.09 ± 0.01 0.06 ± 0.01
14.9 13.962 1.13 ± 0.02 0.19 ± 0.03 13.986 1.08 ± 0.01 0.07 ± 0.01 13.993 1.07 ± 0.01 0.05 ± 0.00
15.0 14.072 1.09 ± 0.02 0.16 ± 0.04 14.091 1.06 ± 0.01 0.05 ± 0.00 14.094 1.05 ± 0.01 0.04 ± 0.00
15.1 14.179 1.06 ± 0.02 0.14 ± 0.06 14.195 1.05 ± 0.01 0.04 ± 0.00 14.193 1.03 ± 0.02 0.04 ± 0.00
15.2 14.283 1.05 ± 0.01 0.14 ± 0.07 14.297 1.04 ± 0.01 0.04 ± 0.00 14.290 1.01 ± 0.02 0.04 ± 0.00
15.3 14.388 1.05 ± 0.01 0.14 ± 0.08 14.400 1.03 ± 0.01 0.04 ± 0.00 14.387 1.00 ± 0.02 0.03 ± 0.01
15.4 14.494 1.05 ± 0.02 0.12 ± 0.07 14.503 1.03 ± 0.01 0.04 ± 0.00 14.483 0.99 ± 0.02 0.02 ± 0.01
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Table A2. The LLR fit parameters for Mgas−Mhalo relation at redshift z = 0, 0.5, 1 for overdensity � = 200. For convenience, we use decimal logarithms for
both the independent halo mass variable μ10 = log10(M�/ M�), as well as the normalization, π10 = log10(Mgas/ M�). Also given are the local slope, α, and
scatter in the natural logarithm, σ , the diagonal component of equation (4). The error on the normalization is <0.01 in log10 basis. The quoted errors have two
significant digits, and 0.00 value means that the uncertainty is <0.01. The LLR fit parameters with three significant digits will be available in the electronic
version.

μ10 z = 0 z = 0.5 z = 1
π10 α σ π10 α σ π10 α σ

13.0 11.365 1.56 ± 0.01 0.25 ± 0.00 11.574 1.42 ± 0.01 0.19 ± 0.00 11.701 1.32 ± 0.01 0.17 ± 0.00
13.1 11.520 1.56 ± 0.01 0.25 ± 0.00 11.716 1.42 ± 0.01 0.19 ± 0.00 11.833 1.32 ± 0.01 0.17 ± 0.00
13.2 11.676 1.57 ± 0.01 0.24 ± 0.00 11.857 1.42 ± 0.01 0.18 ± 0.00 11.965 1.32 ± 0.01 0.16 ± 0.00
13.3 11.833 1.57 ± 0.01 0.23 ± 0.00 11.999 1.42 ± 0.00 0.18 ± 0.00 12.097 1.32 ± 0.00 0.16 ± 0.00
13.4 11.990 1.58 ± 0.00 0.22 ± 0.00 12.140 1.42 ± 0.00 0.17 ± 0.00 12.229 1.32 ± 0.00 0.15 ± 0.00
13.5 12.147 1.57 ± 0.00 0.21 ± 0.00 12.282 1.41 ± 0.00 0.16 ± 0.00 12.360 1.31 ± 0.00 0.16 ± 0.01
13.6 12.304 1.56 ± 0.00 0.20 ± 0.00 12.422 1.40 ± 0.00 0.15 ± 0.00 12.490 1.30 ± 0.00 0.16 ± 0.01
13.7 12.458 1.55 ± 0.00 0.19 ± 0.00 12.560 1.39 ± 0.00 0.14 ± 0.00 12.619 1.29 ± 0.01 0.17 ± 0.02
13.8 12.608 1.52 ± 0.00 0.18 ± 0.00 12.696 1.37 ± 0.00 0.13 ± 0.00 12.746 1.28 ± 0.01 0.19 ± 0.03
13.9 12.755 1.48 ± 0.00 0.17 ± 0.00 12.828 1.34 ± 0.00 0.13 ± 0.00 12.870 1.26 ± 0.01 0.20 ± 0.03
14.0 12.897 1.44 ± 0.00 0.15 ± 0.00 12.958 1.31 ± 0.00 0.13 ± 0.01 12.991 1.23 ± 0.01 0.21 ± 0.03
14.1 13.033 1.39 ± 0.00 0.14 ± 0.00 13.083 1.28 ± 0.01 0.14 ± 0.01 13.108 1.20 ± 0.01 0.22 ± 0.03
14.2 13.164 1.34 ± 0.00 0.13 ± 0.00 13.203 1.24 ± 0.01 0.16 ± 0.02 13.224 1.18 ± 0.01 0.23 ± 0.03
14.3 13.290 1.29 ± 0.00 0.13 ± 0.01 13.319 1.19 ± 0.01 0.19 ± 0.02 13.340 1.16 ± 0.01 0.24 ± 0.04
14.4 13.410 1.24 ± 0.01 0.14 ± 0.01 13.432 1.16 ± 0.01 0.22 ± 0.03 13.456 1.16 ± 0.01 0.23 ± 0.04
14.5 13.525 1.18 ± 0.01 0.16 ± 0.02 13.544 1.14 ± 0.01 0.24 ± 0.03 13.570 1.15 ± 0.01 0.20 ± 0.04
14.6 13.635 1.14 ± 0.01 0.20 ± 0.03 13.658 1.14 ± 0.01 0.24 ± 0.03 13.682 1.13 ± 0.01 0.16 ± 0.03
14.7 13.745 1.11 ± 0.01 0.22 ± 0.03 13.772 1.14 ± 0.01 0.21 ± 0.03 13.792 1.10 ± 0.01 0.12 ± 0.02
14.8 13.855 1.11 ± 0.01 0.23 ± 0.03 13.884 1.12 ± 0.01 0.17 ± 0.03 13.898 1.08 ± 0.01 0.09 ± 0.02
14.9 13.967 1.11 ± 0.01 0.22 ± 0.03 13.993 1.09 ± 0.01 0.12 ± 0.02 14.003 1.06 ± 0.01 0.06 ± 0.01
15.0 14.077 1.10 ± 0.01 0.19 ± 0.03 14.098 1.06 ± 0.01 0.08 ± 0.01 14.107 1.05 ± 0.01 0.05 ± 0.01
15.1 14.186 1.08 ± 0.01 0.15 ± 0.03 14.202 1.04 ± 0.01 0.06 ± 0.01 14.210 1.04 ± 0.01 0.04 ± 0.01
15.2 14.292 1.06 ± 0.01 0.12 ± 0.03 14.303 1.02 ± 0.01 0.04 ± 0.00 14.313 1.04 ± 0.01 0.03 ± 0.00
15.3 14.396 1.04 ± 0.01 0.11 ± 0.04 14.404 1.02 ± 0.01 0.03 ± 0.00 14.415 1.03 ± 0.01 0.03 ± 0.00
15.4 14.499 1.03 ± 0.01 0.09 ± 0.04 14.505 1.01 ± 0.01 0.03 ± 0.00 14.517 1.03 ± 0.01 0.02 ± 0.00
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Table A3. The LLR fit parameters for Mstar−Mhalo relation at redshift z = 0, 0.5, 1 for overdensity � = 500. For convenience, we use decimal logarithms for
both the independent halo mass variable μ10 = log10(M�/ M�), as well as the normalization, π10 = log10(Mgas/ M�). Also given are the local slope, α, and
scatter in the natural logarithm, σ , the diagonal component of equation (4). The error on the normalization is <0.01 in log10 basis. The quoted errors have two
significant digits, and 0.00 value means that the uncertainty is <0.01. The LLR fit parameters with three significant digits will be available in the electronic
version.

μ10 z = 0 z = 0.5 z = 1
π10 α σ π10 α σ π10 α σ

13.0 11.432 0.78 ± 0.01 0.37 ± 0.00 11.376 0.77 ± 0.01 0.34 ± 0.00 11.328 0.79 ± 0.01 0.32 ± 0.00
13.1 11.510 0.78 ± 0.01 0.36 ± 0.00 11.453 0.78 ± 0.01 0.34 ± 0.00 11.407 0.80 ± 0.01 0.31 ± 0.00
13.2 11.588 0.79 ± 0.01 0.35 ± 0.00 11.531 0.78 ± 0.01 0.33 ± 0.00 11.487 0.81 ± 0.01 0.30 ± 0.00
13.3 11.667 0.79 ± 0.01 0.33 ± 0.00 11.609 0.79 ± 0.01 0.31 ± 0.00 11.569 0.82 ± 0.01 0.29 ± 0.00
13.4 11.747 0.79 ± 0.00 0.32 ± 0.00 11.690 0.80 ± 0.00 0.30 ± 0.00 11.653 0.83 ± 0.01 0.28 ± 0.00
13.5 11.827 0.80 ± 0.00 0.30 ± 0.00 11.772 0.81 ± 0.00 0.28 ± 0.00 11.737 0.84 ± 0.01 0.26 ± 0.00
13.6 11.907 0.80 ± 0.00 0.28 ± 0.00 11.855 0.83 ± 0.00 0.26 ± 0.00 11.823 0.85 ± 0.01 0.25 ± 0.00
13.7 11.988 0.81 ± 0.00 0.25 ± 0.00 11.939 0.84 ± 0.00 0.24 ± 0.00 11.909 0.86 ± 0.01 0.23 ± 0.00
13.8 12.071 0.82 ± 0.00 0.23 ± 0.00 12.025 0.85 ± 0.00 0.22 ± 0.00 11.996 0.86 ± 0.01 0.22 ± 0.01
13.9 12.154 0.83 ± 0.00 0.22 ± 0.00 12.110 0.85 ± 0.01 0.21 ± 0.00 12.081 0.86 ± 0.01 0.21 ± 0.01
14.0 12.238 0.84 ± 0.01 0.20 ± 0.00 12.196 0.86 ± 0.01 0.20 ± 0.01 12.166 0.85 ± 0.01 0.21 ± 0.01
14.1 12.323 0.84 ± 0.01 0.19 ± 0.00 12.282 0.86 ± 0.01 0.20 ± 0.01 12.252 0.86 ± 0.01 0.21 ± 0.02
14.2 12.408 0.85 ± 0.01 0.18 ± 0.01 12.369 0.87 ± 0.01 0.21 ± 0.01 12.342 0.88 ± 0.01 0.20 ± 0.02
14.3 12.494 0.85 ± 0.01 0.18 ± 0.01 12.459 0.88 ± 0.01 0.21 ± 0.02 12.434 0.91 ± 0.01 0.19 ± 0.02
14.4 12.581 0.86 ± 0.01 0.19 ± 0.01 12.551 0.91 ± 0.01 0.20 ± 0.02 12.528 0.93 ± 0.01 0.16 ± 0.02
14.5 12.671 0.89 ± 0.01 0.20 ± 0.02 12.646 0.93 ± 0.01 0.18 ± 0.02 12.623 0.95 ± 0.01 0.14 ± 0.01
14.6 12.763 0.91 ± 0.01 0.21 ± 0.02 12.741 0.94 ± 0.01 0.15 ± 0.02 12.719 0.95 ± 0.01 0.12 ± 0.01
14.7 12.858 0.94 ± 0.01 0.19 ± 0.02 12.836 0.95 ± 0.01 0.12 ± 0.01 12.815 0.95 ± 0.01 0.11 ± 0.01
14.8 12.954 0.95 ± 0.01 0.17 ± 0.02 12.930 0.95 ± 0.01 0.10 ± 0.01 12.909 0.95 ± 0.02 0.10 ± 0.01
14.9 13.050 0.96 ± 0.01 0.14 ± 0.01 13.025 0.95 ± 0.01 0.09 ± 0.00 13.003 0.95 ± 0.02 0.09 ± 0.01
15.0 13.145 0.96 ± 0.01 0.11 ± 0.01 13.121 0.95 ± 0.01 0.09 ± 0.00 13.098 0.95 ± 0.02 0.08 ± 0.01
15.1 13.241 0.96 ± 0.01 0.09 ± 0.00 13.217 0.96 ± 0.01 0.08 ± 0.00 13.195 0.95 ± 0.02 0.08 ± 0.01
15.2 13.337 0.96 ± 0.01 0.08 ± 0.00 13.312 0.96 ± 0.02 0.08 ± 0.00 13.292 0.96 ± 0.02 0.07 ± 0.01
15.3 13.433 0.96 ± 0.01 0.08 ± 0.00 13.409 0.96 ± 0.02 0.08 ± 0.01 13.389 0.96 ± 0.02 0.06 ± 0.01
15.4 13.529 0.96 ± 0.01 0.08 ± 0.00 13.510 0.98 ± 0.03 0.08 ± 0.01 13.487 0.97 ± 0.03 0.04 ± 0.01
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Table A4. The LLR fit parameters for Mstar−Mhalo relation at redshift z = 0, 0.5, 1 for overdensity � = 200. For convenience, we use decimal logarithms for
both the independent halo mass variable μ10 = log10(M�/ M�), as well as the normalization, π10 = log10(Mgas/ M�). Also given are the local slope, α, and
scatter in the natural logarithm, σ , the diagonal component of equation (4). The error on the normalization is <0.01 in log10 basis. The quoted errors have two
significant digits, and 0.00 value means that the uncertainty is <0.01. The LLR fit parameters with three significant digits will be available in the electronic
version.

μ10 z = 0 z = 0.5 z = 1
π10 α σ π10 α σ π10 α σ

13.0 11.347 0.87 ± 0.01 0.36 ± 0.00 11.298 0.83 ± 0.02 0.34 ± 0.00 11.262 0.77 ± 0.02 0.31 ± 0.00
13.1 11.436 0.86 ± 0.01 0.36 ± 0.00 11.380 0.83 ± 0.01 0.33 ± 0.00 11.335 0.80 ± 0.01 0.31 ± 0.00
13.2 11.522 0.85 ± 0.01 0.35 ± 0.00 11.463 0.84 ± 0.01 0.32 ± 0.00 11.413 0.82 ± 0.01 0.30 ± 0.00
13.3 11.607 0.84 ± 0.01 0.34 ± 0.00 11.546 0.84 ± 0.01 0.31 ± 0.00 11.495 0.83 ± 0.01 0.29 ± 0.00
13.4 11.691 0.83 ± 0.01 0.32 ± 0.00 11.630 0.84 ± 0.01 0.30 ± 0.00 11.579 0.85 ± 0.01 0.28 ± 0.00
13.5 11.774 0.83 ± 0.00 0.31 ± 0.00 11.714 0.84 ± 0.00 0.29 ± 0.00 11.665 0.86 ± 0.01 0.27 ± 0.00
13.6 11.857 0.83 ± 0.00 0.29 ± 0.00 11.799 0.84 ± 0.00 0.27 ± 0.00 11.752 0.87 ± 0.01 0.25 ± 0.00
13.7 11.941 0.83 ± 0.00 0.27 ± 0.00 11.884 0.85 ± 0.00 0.25 ± 0.00 11.840 0.88 ± 0.01 0.24 ± 0.00
13.8 12.024 0.84 ± 0.00 0.25 ± 0.00 11.970 0.86 ± 0.00 0.23 ± 0.00 11.929 0.88 ± 0.01 0.22 ± 0.00
13.9 12.109 0.84 ± 0.00 0.23 ± 0.00 12.057 0.87 ± 0.00 0.21 ± 0.00 12.018 0.89 ± 0.01 0.21 ± 0.00
14.0 12.195 0.85 ± 0.00 0.21 ± 0.00 12.145 0.87 ± 0.00 0.20 ± 0.00 12.107 0.89 ± 0.01 0.20 ± 0.00
14.1 12.281 0.86 ± 0.00 0.19 ± 0.00 12.233 0.88 ± 0.01 0.19 ± 0.00 12.194 0.88 ± 0.01 0.19 ± 0.01
14.2 12.368 0.87 ± 0.00 0.18 ± 0.00 12.321 0.88 ± 0.01 0.18 ± 0.01 12.281 0.87 ± 0.01 0.19 ± 0.01
14.3 12.456 0.87 ± 0.01 0.17 ± 0.00 12.409 0.88 ± 0.01 0.19 ± 0.01 12.370 0.88 ± 0.01 0.19 ± 0.02
14.4 12.543 0.88 ± 0.01 0.16 ± 0.00 12.498 0.89 ± 0.01 0.19 ± 0.01 12.462 0.91 ± 0.01 0.18 ± 0.02
14.5 12.631 0.88 ± 0.01 0.17 ± 0.01 12.590 0.90 ± 0.01 0.20 ± 0.02 12.557 0.93 ± 0.01 0.17 ± 0.02
14.6 12.720 0.89 ± 0.01 0.18 ± 0.01 12.684 0.93 ± 0.01 0.19 ± 0.02 12.653 0.96 ± 0.01 0.15 ± 0.01
14.7 12.811 0.90 ± 0.01 0.19 ± 0.02 12.780 0.95 ± 0.01 0.17 ± 0.02 12.752 0.98 ± 0.01 0.13 ± 0.01
14.8 12.905 0.93 ± 0.01 0.19 ± 0.02 12.877 0.96 ± 0.01 0.15 ± 0.02 12.851 0.99 ± 0.01 0.11 ± 0.01
14.9 13.000 0.95 ± 0.01 0.18 ± 0.02 12.974 0.97 ± 0.01 0.12 ± 0.01 12.950 0.99 ± 0.01 0.09 ± 0.01
15.0 13.097 0.96 ± 0.01 0.15 ± 0.02 13.071 0.97 ± 0.01 0.10 ± 0.01 13.048 0.98 ± 0.01 0.08 ± 0.01
15.1 13.194 0.97 ± 0.01 0.12 ± 0.01 13.169 0.98 ± 0.01 0.08 ± 0.00 13.147 0.99 ± 0.02 0.08 ± 0.01
15.2 13.291 0.97 ± 0.01 0.10 ± 0.01 13.268 0.98 ± 0.01 0.08 ± 0.00 13.248 0.99 ± 0.02 0.07 ± 0.01
15.3 13.388 0.97 ± 0.01 0.08 ± 0.00 13.366 0.98 ± 0.01 0.07 ± 0.00 13.350 1.00 ± 0.03 0.07 ± 0.01
15.4 13.486 0.98 ± 0.01 0.07 ± 0.00 13.465 0.99 ± 0.02 0.07 ± 0.00 13.452 1.01 ± 0.04 0.06 ± 0.01
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