

LJMU Research Online

Schulz, D, Qablan, MA, Profousova-Psenkova, I, Vallo, P, Fuh, T, Modrý, D, Piel, AK, Stewart, FA, Petrželková, KJ and Fliegerová, K

Anaerobic fungi (class Neocallimastigomycetes) in the gastrointestinal tract of gorillas: an adaptation to a high-fibrous diet

http://researchonline.ljmu.ac.uk/id/eprint/9041/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Schulz, D, Qablan, MA, Profousova-Psenkova, I, Vallo, P, Fuh, T, Modrý, D, Piel, AK, Stewart, FA, Petrželková, KJ and Fliegerová, K (2018) Anaerobic fungi (class Neocallimastigomycetes) in the gastrointestinal tract of gorillas: an adaptation to a high-fibrous diet. International Journal of

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

1 Abstract

2 Many studies have demonstrated the importance of symbiotic microbial communities for the host 3 with beneficial effects for nutrition, development, and the immune system. The majority of these 4 studies have focused on bacteria residing in the gastrointestinal tract, while the fungal community 5 has often been neglected. Gut anaerobic fungi of the class Neocallimastigomycetes are a vital part of 6 the intestinal microbiome in many herbivorous animals and their exceptional abilities to degrade 7 indigestible plant material means that they contribute significantly to fermentative processes in the 8 enteric tract. Gorillas rely on a highly fibrous diet and depend on fermentative microorganisms to 9 meet their daily energetic demands. To assess whether Neocallimastigomycetes occur in gorillas we 10 analyzed 12 fecal samples from wild Western lowland gorillas (Gorilla gorilla gorilla) from Dzanga-11 Sangha Protected Areas, Central African Republic, and subjected potential anaerobic fungi sequences 12 to phylogenetic analysis. The clone library contained ITS1 fragments that we related to 45 different 13 fungi clones. Of these, 12 gastrointestinal fungi in gorillas are related to anaerobic fungi and our 14 phylogenetic analyses support their assignment to the class Neocallimastigomycetes. As anaerobic 15 fungi play a pivotal role in plant fiber degradation in the herbivore gut, gorillas might benefit from 16 harboring these particular fungi with regard to their nutritional status. Future studies should 17 investigate whether Neocallimastigomycetes are also found in other non-human primates with high 18 fiber intake, which would also benefit from having such highly efficient fermentative microbes.

19

20 Keywords: gut microbiome, Neocallimastigales, gorillas, diet

21

22 Introduction

Symbiotic microbial communities residing in the intestinal tract, referred to as the gut microbiome, are assemblages of bacteria, fungi, protozoa, and archaea that provide crucial functions for host nutrition (e.g. Sekirov et al., 2010; Robert & Bernalier-Donandille, 2003), development (e.g. McFall-Ngai, 2002), and immune systems (e.g. Hooper et al., 2012; Round & Mazmanian, 2009). Since many

27 microbes collected from environmental samples are uncultivable (Torsvik & Ovreas, 2002), advances 28 in culture-independent methods, particularly metagenomic approaches based on high-throughput 29 sequencing, allow the detection of a far more detailed microbial diversity than traditional culture 30 based approaches (e.g. Caporaso et al., 2012). These methods have led to an increased 31 understanding of the factors shaping the composition of microbial communities. There is common 32 agreement that the two main factors influencing the microbial community structure are host 33 phylogeny and diet (e.g. Sanders et al., 2014; Muegge et al., 2011). For example, a study investigating 34 the gut microbiome of 60 different mammal species shows that conspecifics harbor bacterial 35 communities more similar to each other than to those of a different host species and that these 36 communities cluster according to host taxonomy. Principal coordinates analyses also provide 37 evidence for the significant impact of diet on gut microbiome structure, because bacterial 38 communities cluster in accordance with diet and gut type (Ley et al., 2008).

39

40 Neocallimastigomycetes are obligate anaerobic fungi that were first isolated in ruminants (Orpin, 41 1975). Their occurrence has also been confirmed in various non-ruminant herbivores like African 42 elephants (Loxodonta africana), horses (Equus ferus caballus), black rhinoceroses (Diceros bicornis), 43 red kangaroos (Macropus rufus) and in the herbivorous green iguana (Iquana iquana) (Nicholson et 44 al., 2010; Liggenstoffer et al., 2010; Mackie et al., 2004). Intestinal anaerobic fungi are remarkable in 45 their capacities to degrade plant material that is indigestible by the host. They harbor highly efficient 46 hydrolases (cellulases, xylanases, mannoses, esterases, glucosidases, and glucanases) aggregated in 47 extracellular enzyme-complexes, termed cellulosomes. These fungal enzymes are assumed to exceed 48 the fermentative capacities of bacterial enzymes (Lee et al., 2000). Additionally, anaerobic fungi are 49 among the first to colonize plant fragments (Edwards et al., 2008) and are able to mechanically 50 penetrate plant cell walls (Doi & Kosugi, 2004; Fontes & Gilbert, 2010). Due to this initial colonization 51 of plant particles and the mechanical breakdown of large plant particles as well as plant cell walls anaerobic fungi facilitate the accessibility to fermentable substrates for residential bacteria that take
part in the hydrolisation of plant fiber in the gastrointestinal tract (Bauchop, 1981).

54

55 Currently, Neocallimastigomycetes include one order, Neocallimastigales, with one family 56 (Neocallimastigaceae) that encompasses six long known genera (Neocallimastix, Caecomyces, 57 Orpinomyces, Piromyces, Anaeromyces, and Cyllamyces) and three newly described genera 58 (Buwchfawromyces: Callaghan et al., 2015; Oontomyces: Dagar et al., 2015 and Pecoramyces: Hanafy 59 et al., 2017). However, studies of various herbivorous animals propose a revised taxonomy with 60 several new groups (Tuckwell et al., 2005; Fliegerová et al., 2010; Liggenstoffer et al., 2010; Nicholson 61 et al., 2010; Herrera et al., 2011; Kittelmann et al., 2012). Studies suggest that the abundance and 62 composition of different anaerobic fungi genera are dependent on host taxonomy, type of gut 63 fermentation, and fiber content in the diet (Liggenstoffer et al., 2010; Kumar et al., 2013; Denman et 64 al., 2008).

65

66 Despite the growing number of studies investigating the gut microbiome in primates, the fungal 67 community has received disproportionately little attention. Many early studies focused on specific 68 mycotic infections (reviewed in Migaki et al., 1982), and a more recent study targeted a broader 69 diversity of enteric fungi in Western lowland gorillas (Gorilla gorilla gorilla). This molecular survey of 70 pathogenic eukaryotes detected 52 fungal species, all belonging to the taxa Ascomycota and 71 Basidiomycota (Hamad et al., 2014). However, no study has yet investigated Neocallimastigomycetes 72 in primates, even though there is good reason to hypothesize that some primates harbour these 73 fungi. Most primates rely on a mainly plant based diet (Chapman & Chapman, 1990), yet, like all 74 mammals, they lack the enzymes to degrade plant structural polysaccharides themselves and thus 75 rely on endosymbiotic microorganisms for an adequate nutritional intake (Mackie, 2002).

77 Studies of gorilla feeding ecology reveal that they consume high fiber staple and filler fallback foods 78 such as terrestrial herbaceous vegetation, figs, bark, and pith year-round (Western lowland gorillas: 79 Remis, 2003; Doran-Sheehy at al., 2009). Although chimpanzees (*Pan troglodytes*) also consume high 80 fiber plant material such as pith in times of fruit scarcity (Wrangham et al, 1991), there is strong 81 support for the hypothesis that chimpanzees can maintain a higher quality diet with overall less fiber 82 intake when compared to Western lowland gorillas (Tutin et al., 1991; Wrangham et al., 1998). In line 83 with these observations, gorillas show morphological and physiological adaptations that suggest 84 heavy reliance on high fiber foods. For example, their molar morphology indicates a high capacity for 85 processing tough food (Ungar et al., 2007). Further, gorillas have an enlarged colon surface area and a 86 longer mean gut retention time when compared to less folivorous chimpanzees (Chivers & Hladik, 87 1980; Milton & Demment, 1988; captive Western lowland gorillas: Remis & Dierenfield, 2004) even 88 when accounting for body mass (Harrison & Marshall, 2011). Moreover, daily energy consumed that 89 potentially originates from microbial fermentation in the hindgut is an estimated 57.3 % for western 90 lowland gorillas and 24.7 % for chimpanzees (Popovich et al., 1997; Conklin-Brittain et al., 2006). 91 Gorillas further fulfill two major prerequisites for the potential of harboring anaerobic fungi: a 92 dedicated enlarged digestive chamber for microbial fermentation (hindgut) and a relatively long 93 retention time for plant material.

94

95 We explore fungal communities in feces of wild Western lowland gorillas using culture-independent 96 molecular methods. Specifically, we aim to amplify ITS1 rDNA fragments of Neocallimastigales from 97 DNA isolated from fecal samples. Given their year-round exploitation of high-fibrous foods, we 98 hypothesize that gorillas benefit from harboring highly efficient fermentative microorganisms such as 99 anaerobic fungi in their intestinal tract. Based on their digestive morphology, we predict that it is very 100 likely that Neocallimastigales are part of the gorilla gut microbiome.

101

102 Methods

103 Study site, subjects and sample collection

We collected fecal samples from two habituated groups of wild Western lowland gorillas at two field sites: Bai Hokou and Mongambe in Dzanga-Ndoki National Park, Dzanga-Sangha Protected Areas, Central African Republic, from September 2014 to January 2015. Both field sites comprise semideciduous forests and are characterized by seasonal variations in rainfall with a dry season lasting from December to February (for detailed description see Masi, 2007). We collected samples from known individuals as soon as possible after defecation, i.e. as soon as it was safe to collect the sample without disturbing the animal, which was usually within minutes.

111

112 We fixed fecal material in 96% ethanol in 8 ml tubes (approximate ratio 2/3 ethanol to 1/3 sample 113 material) and stored the samples at ambient temperature at the field sites until we transported them 114 to the University for Veterinary Medicine and Pharmaceutical Sciences, Brno, Czech Republic, where 115 we kept them in ethanol at -20°C until analysis. We preserved fecal material in ethanol due to the 116 lack of other storage possibilities at the field sites. DNA has been successfully isolated and amplified 117 from such fixed samples (Frantzen et al., 1998; Hale et al., 2015) and preserving samples in highly 118 concentrated ethanol at ambient temperatures appears to have little influence on the microbial 119 community (Song et al., 2016).

120

121 Our study is a preliminary investigation for which we processed 12 gorilla samples, representing 11 122 individuals. We picked gorilla samples randomly from the samples we collected during the study.

123

124 Sample Processing

DNA Isolation. After evaporating ethanol at 40°C (heat block) overnight, we isolated DNA from the fecal material with the FastDNATM Spin Kit for Soil (MP Biomedicals, USA) according to the manufacturer's protocol with the following changes: to break fungi chitin walls, we homogenized the sample by bead-beating it three times for 30 sec at 6 m/s with 30 sec on ice between homogenization

steps (Cheng et al., 2009). We eluted DNA with 70 μ l instead of 100 μ l of the elution solution provided with the kit and stored eluates at -20°C.

131

132 PCR Amplification of Fungal Barcodes. We used the fungal universal forward primer ITS1F 133 (CTTGGTCATTTAGAGGAAGTAA) in combination with a primer specific for anaerobic fungi NeoQ PCR R 134 (GTGCAATATGCGTTCGAAGATT) to amplify ITS1 fragments (Fliegerová et al., 2010). We prepared PCR 135 reactions with a final volume of 25 µl using the QIAGEN Multiplex PCR Kit (Qiagen, Germany) 136 containing 12.5 μ l Master Mix, 8.0 μ l dH₂O, 2.5 μ l dye 0.01 μ M of each primer and 1 μ l DNA. We set 137 cycling conditions of the touchdown PCR protocol as 95°C for 5 min; 20 cycles consisting of 95°C for 138 30 sec, 60.5°C for 30 sec with -0.2°C per cycle, 72°C for 30 sec; followed by another 20 cycles 139 consisting of 95°C for 30 sec, 57°C for 30 sec, 72°C for 30 sec and a final extension of 5 min at 68°C. 140 We visualized PCR products on 1% agarose gels and subjected fragments of expected size to cloning 141 procedure after purification with ExoSap (Affymetrix Inc., USA).

142

143 Cloning Library Construction. We constructed a clone library with the TOPO TA Cloning Kit for 144 Sequencing (Life Technologies, USA) following the manufacturer's protocol for vector preparation and 145 the transformation of competent *E. coli* cells. We picked 289 clone colonies and transferred them into 146 20 μ I PCR H₂O to screen them for the presence of the insert by PCR. We prepared PCR reaction 147 mixtures of 25 µl containing 12.5 µl Master Mix (PCRBIO Taq Mix Red, PCR Biosystems, UK), 9.5 µl 148 dH₂O, 1 µl of clone colony solution and 0.01 µM of ITS1F and NeoQ PCR R primers. We set cycling 149 conditions for ITS1 insert amplification as 95°C for 5 min, followed by 30 cycles of 95°C for 30 sec, 150 55°C for 30 sec, 72°C for 30 sec and a final elongation for 5 min at 72°C. We checked PCR products 151 using gel electrophoresis, purified products of the right length with ExoSap and subjected them to 152 Sanger sequencing (Macrogen Europe, The Netherlands).

153

154 Sequence Analysis

155 We first edited sequences with BioEdit software (version 7.2.3) and subsequently used GenBank's 156 Basic Local Alignment Search Tool (BLAST; default setting highly similar sequences (megablast)) to 157 identify their nearest relatives. We only subjected sequences that we could relate to anaerobic fungi 158 to further analysis. Given that sequence similarity among different anaerobic fungi strains can be very 159 high (Goudarzi et al., 2015) we first aligned a selection of 12 clone sequences, as representatives for 160 all related anaerobic fungi strains, to assess their resemblance (ClustalX, Bioedit; Hall, 1999; Table 1, 161 Appendix S1). We subsequently chose a subset of the nine most divergent sequences for 162 phylogenetic analysis to determine the taxonomic relationships of potential ape anaerobic fungi 163 strains with known Neocallimastigales. By applying the MAFFT algorithm with default settings (online version 7, ©Katoh, 2013) we computed alignments that included ITS1 fragments generated in this 164 165 study and reliable ITS1 sequences representing the improved taxonomic framework for 166 Neocallimastigales fungi (Kittelmann et al., 2012; Dagar et al., 2015; Appendix S2). In addition to 167 these reference sequences classified as Neocallimastigales we included the uncultured fungus clone 168 AFI-1 sequence isolated from Bactrian camel (Camelus bactrianus) rumen (Acc. No: JX944983). High 169 degrees of sequence dissimilarities and length polymorphisms between Neocallimastigales genera 170 resulted in multiple large gaps in the original 452 bp alignment. Given that the applied Maximum 171 Likelihood algorithm treats gaps like missing data we aimed to reduce ambiguity by manually deleting 172 those gaps to different degrees, resulting in two further alignments, one of 241 bp and another of 173 only 197 bp.

174

We constructed phylogenetic trees in PhyML (Guindon et al., 2010) based on the original MAFFT alignment and two further alignments. Based on the results of Modeltest 3.7 (Posada & Crandall, 1998), we used the GTR+G substitution model for tree calculation using maximum likelihood for the unedited alignment and computed phylogenies based on the two manually edited alignments under the HKY+G model. We also constructed a ML tree under the T92+G (Tamura, 1992) model in MEGA 6

180 (Tamura et al., 2013) to account for uneven GC content in our sequences. We based bootstrap181 analyses for each tree on 1000 pseudo-replicates.

182

183 Ethical Note

We collected all gorilla samples non-invasively and with no harm to the study subjects. Permission to conduct research in the Dzanga-Sangha Protected Areas was granted by the Ministere de L'enseignement Supérieur et de la Recherche Scientifique and the Ministère des Eaux, Foréts, Chasses, Pêches, chargé de l'Environnement.

188

189 Results

190 Fungal diversity

191 We analyzed 238 clones with inserts of appropriate length from the clone libraries of amplified ITS1 192 fragments. The sequences we generated were associated with 45 different fungal rDNA sequences 193 deposited in GenBank. Of the 238 clones we obtained, 78 were moderately similar to 12 different 194 uncultured Neocallimastigales clones. These potential anaerobic fungi ITS1 fragments originated from 195 8 of 12 processed samples, with sequences similar to the Uncultured Neocallimastigales clone Iguana 196 01BMIEK (Acc. No. GQ843155) being the most abundant and the only one that occurs in all 8 197 samples. Other prospective anaerobic fungi ITS1 fragments that we amplified fit with uncultured 198 Neocallimastigales clones detected in hindgut-fermenting Equidae, ruminant Bovidae, and the 199 pseudo-ruminant hippopotamus (Table 1; Appendix S1).

200

The remaining fungal ITS1 fragments from gorillas that we cannot associate with anaerobic fungi clones are linked to sequences of the fungal classes Ascomycota and Basidiomycota (Appendix S1). These clones comprise 33 sequences that are related to 15 different strains of Ascomycota with moderate to high similarities (91 – 100%), covering five known orders and three strains of unclassified Ascomycota. Another four sequences that we obtained show high similarities (96 – 100%) with three

206	different Basidiomycota strains, belonging to three orders. According to BLAST analysis the majority
207	of our ITS1 fragments are identified as unclassified fungal clones. In total, our sequences are related
208	to 13 different such unclassified fungal clones that have been isolated from plant tissues, soil, reactor
209	bio-filter, and woodpecker excavation with similarities ranging 96 - 100% (Appendix S1). An
210	additional unclassified fungal clone (Uncultured fungus clone AFI-1; Acc. No. JX944983, unpublished
211	sequence) to which 11 of our sequences are highly similar has been isolated from Bactrian camel
212	(Camelus bactrianus) rumen. Finally, one sequence does not match with any of the rDNA sequences
213	deposited in online data bases.
214	
215	Phylogenetic analysis of anaerobic fungi
216	Our initial alignments revealed high degrees of resemblance among the potential anaerobic fungi
217	sequences we obtained from gorilla feces, although they were associated with different uncultured
218	Neocallimastigales clones (Table 1).
219	
220	Table 1: Nearest relatives of ITS1 sequences retrieved from Western lowland gorilla feces collected at
221	the sites Bai Hokou and Mongambe from September 2014 to January 2015.
222	UNC – Uncultured Neocallimastigales clone

- 223 * Not classified as Neocallimastigales fungus in NCBI (National Center for Biotechnology Information)
- 224 sequence database.

Sequence ID (date sample	Field site	Size [bp]	GenBank	Nearest relative [Accession Number]	Sequenc
collection)			Accession Number		similarity
Mak_2 (23.10.2014)	Bai Hokou	213	KY697108	UNC NileLechwe03FKYBS [GQ592255]	90
Mal_1 (29.11.2014)	Bai Hokou	283	KY697116	UNC HorseTopper01A6QWL [GQ688452]	89
Mob_11 (12.09.2014)	Bai Hokou	264	KY697114	UNC HorseBug01B20BM [GQ829356]	88
Mob_22 (12.09.2014)	Bai Hokou	279	KY697115	UNC Iguana01BLGEC [GQ843065]	88

Won_5 (01.12.2014)	Mongambe	260	KY697113	UNC Iguana01BMIEK [GQ843155]	90
May_19 (20.09.2014)	Mongambe	253	KY697112	UNC GrantsGazelle02CZ47B [GQ784902]	88
Mob2_2 (27.09.2014)	Bai Hokou	242	KY697109	UNC PigmyHippopotamus03GM37B [GQ607513]	89
Mop_14 (17.10.2014)	Mongambe	243	KY697110	UNC Iguana01A3GEE [GQ842869]	89
Map_14 (24.11.2014)	Mongambe	244	KY697111	Uncultured fungus clone AFI-1 [JX944983]*	100

225

In the Maximum Likelihood tree based on the original 452 bp alignment, our ITS1 fragments form a separate clade which clusters with the clade of the newly described uncultured anaerobic fungi group AL3 (group NG3 in Liggenstoffer et al., 2010) with significant support (Figure 1). This phylogenetic relationship is also supported in two other phylogenies that we constructed from 241 bp and 197 bp alignments. All other reference ITS1 sequences cluster in an unsupported monophyletic clade in which most of the phylogenetic relationships between the different groups and genera are rather weakly supported.

233

The Maximum Likelihood tree constructed under T92 + G substitution model, which accounts for uneven CG content in sequences, revealed very similar results for the sequence clustering. Again, fungal clones obtained from gorilla feces grouped with AL3 references with adequate support (bootstrap value 82; data not shown). However, as in the other three phylogenies, relationships between the reference sequences of known Neocallimastigales lack significant support.

239

Fig 1: Phylogenetic relationships of potential gorilla anaerobic fungi sequences in the order of Neocallimastigales fungi based on Maximum Likelihood. Bootstrap support above 50% is indicated at nodes for the 452, 241 and 197 bp alignments. Clones obtained in our study and reference sequences are listed in Table 1 and S2. Dates of sample collection and field site for sequences from gorilla samples are given in brackets.

0.6

245

246 Discussion

247 Our results suggest that anaerobic gut fungi are part of the gorilla gut microbiome. The assignment of 248 the ITS1 sequences we analyzed as a sister clade to the novel Neocallimastigales lineage AL3 is 249 significantly supported. Despite the highly significant support for the hypothesis that some of our 250 gorilla gut fungi belong to the class Neocallimastigomycetes, two factors warrant some caution. First, 251 fungal ITS1 sequences that we obtained from gorilla feces were only moderately similar to known 252 Neocallimastigales sequences deposited in the GenBank database. However, new lineages and 253 species of Neocallimastigales are constantly discovered (Ariyawansa et al., 2015; Hanafy et al., 2017). 254 Thus, our sequences might represent a new anaerobic fungi lineage. Second, our amplified ITS1 11

fragments were very short. This in combination with the known high variation in the Neocallimastigales ITS1 region (Edwards et al., 2017) limits the reliability of constructed alignments and phylogenies.

258

259 Like in other rapidly evolving non-coding regions insertions – deletions (indels) accumulate over time 260 in the ITS1 sequence. These indels are thought to be more conserved than base substitutions and 261 thus can provide a reliable source of information for phylogenetic reconstructions (Matheny et al., 262 2006; Abarenkov et al., 2010). Alignment gap deletion decreases tree resolution, particularly when 263 sophisticated alignment algorithms such as MAFFT are applied (Nagy et al., 2012). Our phylogenetic 264 analysis based on alignment without gap removal significantly supports the close relationship of 265 gorilla gut fungi with the anaerobic fungi group AL3. Following the logic that alignment gaps can 266 provide phylogenetic information, this result supports our assignment of gorilla gut fungi to the class 267 of Neocallimastigales. The low bootstrap values in our phylogeny might be the result of difficulties 268 aligning anaerobic fungi sequences given the significant sequence dissimilarities and length 269 polymorphisms between genera (Nicholson et al., 2010). However, our goal was to determine 270 whether anaerobic fungi occur in wild gorillas rather than resolving the Neocallimastigales phylogeny. 271 Our sequences are very closely related to the anaerobic fungi group AL3. This group of 272 Neocallimastigales was first detected in hindgut fermenting equids which have similar digestive 273 physiology to gorillas. Since digestive physiology is a key factor determining anaerobic fungi 274 community structure (Liggenstoffer et al., 2010) it is likely that even distantly related herbivorous 275 animals harbor similar Neocallimastigales strains. This finding, therefore, provides additional support 276 for our hypothesis that Neocallimastigales are part of the gorilla gut microbiome.

277

While our analysis suggests that Neocallimastigales reside in the gastrointestinal tract of gorillas, we have no indication so far that other African great apes harbor anaerobic fungi (unpublished data: chimpanzee fecal samples, analyzed by D. Schulz). We predicted that anaerobic fungi are a part of the

281 gorilla gut microbiome based on gorilla diet and digestive physiology. Western lowland gorillas, 282 although more frugivorous than mountain gorillas (Gorilla gorilla beringei), consume high fiber foods 283 throughout the year (Rothman et al., 2008; Remis et al., 2001). The occurrence of anaerobic fungi in 284 gorillas could therefore be interpreted as an adaptation to a high fiber diet. Along with other adaptive 285 morphological and physiological digestive features (Harrison and Marshall, 2011) this might enable 286 gorillas to survive on a low quality diet (Tutin et al., 1991). Other non-human primates that similarly 287 rely on a highly or even strictly leafy diet could likewise benefit from harboring anaerobic fungi in 288 their intestines. This remains to be investigated.

289

290 Gorillas fall back on more low-quality foods in periods of low preferred fruit abundance and in 291 general consume much more fiber than chimpanzees (Wrangham et al, 1998, Tutin et al., 1991). 292 Further, chimpanzees have smaller fiber digestions coefficients and their fecal microbial communities 293 have diminished fiber degradation capacities compared to gorillas (Popovich et al., 1997; Conklin-294 Brittain et al., 2006; Kišidayová et al., 2009). Neocallimastigales play a pivotal role in digesting 295 structural polysaccharides, particularly with regard to their ability to enhance access to fermentable 296 substrate for hydrolyzing bacteria. Thus, the higher fiber degradation capacities of the gorilla gut 297 microbiome might be the consequence of higher rates of bacterial fermentation facilitated by 298 anaerobic fungi. However, given the limitations of sampling and methodology in our study, we draw 299 this conclusion only cautiously.

300

301 Similar to the findings of a previous study (Hamad et al., 2014), we detected several Ascomycota and 302 Basidiomycota strains in our gorilla samples. There is no concordance on the species level between 303 Ascomycota strains we obtained and clones isolated by Hamad et al. (2014). However, four 304 (Eurotiales, Hypocreales, Saccharomycetales, and Capnodiales) of six genera found by Hamad and 305 colleagues are also present in our samples. Our results for Basidiomycota differ greatly from 306 previously isolated strains in gorillas. While we isolated only four strains, it seems that the diversity of

307 Basidiomycota in the colonic fungal community of gorillas is actually far greater (Hamad et al., 2014). 308 While some of the Basidiomycota strains detected in gorillas are human pathogens, a few of the 309 identified Ascomycota, namely members of the order Saccharomycetales that are usually associated 310 with plants, possess fermentative capacities (Hamad et al., 2014). It is, however, unclear whether 311 these aerobic fungi constitute transients passing through the enteric tract with food particles or if 312 they are residents and part of the gut microbiome with benefits for the host. We find the latter 313 explanation unlikely due to the low redox potential of the anaerobic conditions in the intestinal tract 314 (Espey, 2013).

315

316 In conclusion, our analyses provide evidence that Neocallimastigales is part of the gorilla gut 317 microbiome. Our results emphasize the need to include enteric fungi when investigating the 318 composition of the primate gut microbiome and we suggest that more research is needed to improve 319 our understanding of the role of enteric fungi in the digestive tract. More extensive studies of fungal 320 communities of several wild primate populations employing next generation sequencing techniques 321 is warranted to enhance our knowledge of how differences in the fungal gut microbiome reflect 322 differences in host diet and distribution. The results of such studies will contribute significantly to our 323 understanding of the complexity of primate microbiomes and their adaptive values.

324

325 Acknowledgements

We are grateful to the government of the Central African Republic as well as the Ministre de I'Education Nationale, de l'Alphabetisation, de l'Enseignement Superieur, et de la Recherche for granting permission to conduct our research within the Dzanga-Sangha Protected Areas, Central African Republic. We further thank the World Wildlife Fund and the Primate Habituation Project for administrative and logistical support on side. Last, we are very grateful to the associate editor and the two anonymous reviewers for their valuable comments.

The project was supported by the Leakey Foundation (DS, KJP, KF), by the project 'CEITEC' – Central European Institute of Technology (CZ.1·05/1·1·00/02·0068) from the European Regional Development Fund (DM), by project CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE (KF), by institutional support of Institute of Vertebrate Biology, Czech Academy of Sciences (RVO: 68081766) (KJP) and co-financed from the European Social Fund and the state budget of the Czech Republic (CZ.1·07/2·3·00/20·0300) (DS, IPP, MQ, DM, KJP). The authors declare no conflict of interest.

339

340 Supplementary Material

341 Intestinal fungi strains identified and similarity with amplified ITS1 fragments (Appendix S1) and an-342 aerobic fungi reference sequences (Appendix S2) and all sequences included in phylogenetic analysis 343 (Appendix S3) are available online. If reasonable we will grant all further data requests from interest-344 ed researchers.

345

346 **References**

- 347 Abarenkov, K., Tedersoo, L., Nilsson, R. H., Vellak, K., Saar, I., Veldre, V., et al. (2010). PlutoF-a web
- 348 based workbench for ecological and taxonomic research, with an online implementation for
- 349 fungal ITS sequences. *Evolutionary Bioinformatics Online*, *6*, 189. doi:10.4137/EBO.S6271
- Ariyawansa, H. A., Hyde, K. D., Jayasiri, S. C., Buyck, B., Chethana, K. W. T., Dai, D. Q., et al. (2015).
- 351 Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa.
- 352 *Fungal Diversity*, 75(1), 27–274. doi:10.1007/s13225-015-0346-5
- 353 Bauchop, T. (1981). The anaerobic fungi in rumen fibre digestion. Agriculture and Environment, 6(2),
- 354 339–348. doi:10.1016/0304-1131(81)90021-7
- 355 Callaghan, T. M., Podmirseg, S. M., Hohlweck, D., Edwards, J. E., Puniya, A. K., Dagar, S. S., & Griffith,
- G. W. (2015). Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus
- 357 (Neocallimastigomycota) isolated from buffalo faeces. *MycoKeys*, *9*, 11–28.
- 358 doi:10.3897/mycokeys.9.9032

- 359 Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. (2012). Ultra-
- 360 high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *The*

361 *ISME journal*, *6*(8), 1621–1624. doi:10.1038/ismej.2012.8

- 362 Cheng, Y. F., Edwards, J. E., Allison, G. G., Zhu, W.-Y., & Theodorou, M. K. (2009). Diversity and activity
- 363 of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellu-
- 364 lose in consecutive batch culture. *Bioresource Technology*, *100*(20), 4821–4828.
- 365 doi:10.1016/j.biortech.2009.04.031
- 366 Chapman, C. A., & Chapman, L. J. (1990). Dietary variability in primate populations. *Primates*, 31(1),
- 367 121–128. doi:10.1007/BF02381035
- 368 Chivers, D. J., & Hladik, C. M. (1980). Morphology of the gastrointestinal tract in primates: Compari-
- 369 sons with other mammals in relation to diet. *Journal of Morphology*, *166*(3), 337–386.
- doi:10.1002/jmor.1051660306
- 371 Conklin-Brittain N.L., Knott C.D., & Wrangham R.W. (2006). Energy intake by wild chimpanzees and
- 372 orangutans: methodological considerations and a preliminary comparison. In: G. Hohmann,
- 373 M.M. Robbins, & C. Boesch (Ed.), *Feeding ecology in apes and other primates* (pp. 445–471).
- 374 Cambridge: Cambridge University Press.
- 375 Dagar, S. S., Kumar, S., Griffith, G. W., Edwards, J. E., Callaghan, T. M., Singh, R., et al. (2015). A new
- 376 anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian
- 377 camel (Camelus dromedarius). *Fungal Biology*, *119*(8), 731–737.
- 378 doi:10.1016/j.funbio.2015.04.005
- 379 Denman, S. e., Nicholson, M. j., Brookman, J. l., Theodorou, M. k., & McSweeney, C. s. (2008). Detec-
- 380 tion and monitoring of anaerobic rumen fungi using an ARISA method. *Letters in Applied Micro-*
- 381 *biology*, 47(6), 492–499. doi:10.1111/j.1472-765X.2008.02449.x
- 382 Doi, R. H., & Kosugi, A. (2004). Cellulosomes: plant-cell-wall-degrading enzyme complexes. *Nature*
- 383 *Reviews Microbiology*, *2*(7), 541–551. doi:10.1038/nrmicro925

384	Doran-Sheehy, D., Mongo, P., Lodwick, J., & Conklin-Brittain, N. I. (2009). Male and female western
385	gorilla diet: Preferred foods, use of fallback resources, and implications for ape versus old world
386	monkey foraging strategies. American Journal of Physical Anthropology, 140(4), 727–738.
387	doi:10.1002/ajpa.21118
388	Edwards, J. E., Forster, R. J., Callaghan, T. M., Dollhofer, V., Dagar, S. S., Cheng, Y., et al.
389	(2017). PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology
390	of Anaerobic Fungi: Insights, Challenges and Opportunities. Frontiers in Microbiology,
391	8. doi:10.3389/fmicb.2017.01657
392	Edwards, J. E., Kingston-Smith, A. H., Jimenez, H. R., Huws, S. A., SkÃ,t, K. P., Griffith, G. W., et al.
393	(2008). Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in
394	the bovine rumen: Initial colonization of forage by ruminal anaerobic fungi. FEMS Microbiology
395	<i>Ecology, 66</i> (3), 537–545. doi:10.1111/j.1574-6941.2008.00563.x
396	Espey, M. G. (2013). Role of oxygen gradients in shaping redox relationships between the human
397	intestine and its microbiota. Free Radical Biology and Medicine, 55, 130–140.
398	doi:10.1016/j.freeradbiomed.2012.10.554
399	Fliegerová, K., Mrázek, J., Hoffmann, K., Zábranská, J., & Voigt, K. (2010). Diversity of anaerobic fungi
400	within cow manure determined by ITS1 analysis. Folia microbiologica, 55(4), 319–325. doi:
401	10.1007/s12223-010-0049-y
402	Fontes, C. M., & Gilbert, H. J. (2010). Cellulosomes: highly efficient nanomachines designed to decon-
403	struct plant cell wall complex carbohydrates. Annual review of biochemistry, 79, 655–681. doi:
404	10.1146/annurev-biochem-091208-085603
405	Frantzen, M. a. J., Silk, J. B., Ferguson, J. W. H., Wayne, R. K., & Kohn, M. H. (1998). Empirical evalua-
406	tion of preservation methods for faecal DNA. <i>Molecular Ecology</i> , 7(10), 1423–1428.
407	doi:10.1046/j.1365-294x.1998.00449.x

- 408 Goudarzi, A. M., Chamani, M., Maheri-Sis, N., Afshar, M. A., & Salamatdoost-Nobar, R. (2014). Genetic
- 409 Diversity of Gastrointestinal tract Fungi in Buffalo by Molecular methods on the basis of Poly-
- 410 merase Chain Reaction. In *Biological Forum An International Journal*, 7(1), 20–25.
- 411 Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algo-
- 412 rithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance
- 413 of PhyML 3.0. *Systematic Biology*, *59*(3), 307–321. doi:10.1093/sysbio/syq010
- 414 Hale, V. L., Tan, C. L., Knight, R., & Amato, K. R. (2015). Effect of preservation method on spider mon-
- 415 key (Ateles geoffroyi) fecal microbiota over 8 weeks. *Journal of Microbiological Methods*, 113,
- 416 16–26. doi:10.1016/j.mimet.2015.03.021
- 417 Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program
- 418 for Windows 95/98/NT. *Nucleic Acids Symposium Series*, 41, 95-98.
- 419 [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]
- 420 Hamad, I., Keita, M. B., Peeters, M., Delaporte, E., Raoult, D., & Bittar, F. (2014). Pathogenic Eukary-
- 421 otes in Gut Microbiota of Western Lowland Gorillas as Revealed by Molecular Survey. *Scientific*
- 422 *Reports, 4,* 6417. doi:10.1038/srep06417
- 423 Hanafy, R. A., Elshahed, M. S., Liggenstoffer, A. S., Griffith, G. W., & Youssef, N. H. (2017).
- 424 Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle
- 425 and sheep. *Mycologia*, 109(2), 231–243. doi:10.1080/00275514.2017.1317190
- 426 Harrison, M. E., & Marshall, A. J. (2011). Strategies for the Use of Fallback Foods in Apes. *International*
- 427 *Journal of Primatology*, 32(3), 531–565. doi:10.1007/s10764-010-9487-2
- 428 Herrera, J., Poudel, R., & Khidir, H. H. (2011). Molecular characterization of coprophilous fungal com-
- 429 munities reveals sequences related to root-associated fungal endophytes. *Microbial ecology*,
- 430 *61*(2), 239–244. doi:10.1007/s00248-010-9744-0
- 431 Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions Between the Microbiota and the
- 432 Immune System. *Science*, *336*(6086), 1268–1273. doi:10.1126/science.1223490

- 433 Kišidayová, S., Váradyová, Z., Pristaš, P., Piknová, M., Nigutová, K., Petrželková, K. J., et al. (2009).
- 434 Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of cap-
- 435 tive chimpanzees. American Journal of Primatology, 71(7), 548–557. doi:10.1002/ajp.20687
- 436 Kittelmann, S., Naylor, G. E., Koolaard, J. P., & Janssen, P. H. (2012). A Proposed Taxonomy of Anaero-
- 437 bic Fungi (Class Neocallimastigomycetes) Suitable for Large-Scale Sequence-Based Community
- 438 Structure Analysis. *PLoS ONE*, *7*(5), e36866. doi:10.1371/journal.pone.0036866
- 439 Kumar, S., Dagar, S. S., Sirohi, S. K., Upadhyay, R. C., & Puniya, A. K. (2013). Microbial profiles, in vitro
- 440 gas production and dry matter digestibility based on various ratios of roughage to concentrate.
- 441 Annals of Microbiology, 63(2), 541–545. doi:10.1007/s13213-012-0501-0
- 442 Lee, S. S., Ha, J. K., & Cheng, K.-J. (2000). Relative contributions of bacteria, protozoa, and fungi to in
- 443 vitro degradation of orchard grass cell walls and their interactions. *Applied and Environmental*
- 444 *Microbiology*, *66*(9), 3807–3813. doi:10.1128/AEM.66.9.3807-3813.2000
- 445 Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., et al. (2008). Evolu-
- tion of Mammals and Their Gut Microbes. *Science*, *320*(5883), 1647–1651.
- 447 doi:10.1126/science.1155725
- 448 Liggenstoffer, A. S., Youssef, N. H., Couger, M. B., & Elshahed, M. S. (2010). Phylogenetic diversity and
- 449 community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and
- 450 non-ruminant herbivores. *The ISME journal, 4*(10), 1225–1235. doi:10.1038/ismej.2010.49
- 451 Mackie, R. I. (2002). Mutualistic Fermentative Digestion in the Gastrointestinal Tract: Diversity and
- 452 Evolution. Integrative and Comparative Biology, 42(2), 319–326. doi:10.1093/icb/42.2.319
- 453 Mackie, R. I., Rycyk, M., Ruemmler, R. L., Aminov, R. I., & Wikelski, M. (2004). Biochemical and micro-
- 454 biological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus)
- 455 and marine iguanas (Amblyrhynchus cristatus) on the Galapagos archipelago. *Physiological and*
- 456 *Biochemical Zoology*, 77(1), 127–138. doi:10.1086/383498
- 457 Masi, S. (2007). Seasonal Influence on Foraging Strategies, Activity and Energy Budgets of Western
- 458 Lowland Gorillas (*Gorilla gorilla gorilla*) in Bai Hokou, Central African Republic (PhD thesis).

- 459 Matheny, P. B., Curtis, J. M., Hofstetter, V., Aime, M. C., Moncalvo, J.-M., Ge, Z.-W., et al. (2006).
- 460 Major clades of Agaricales: a multilocus phylogenetic overview. *Mycologia*, *98*(6), 982–995.

461 doi:10.1080/15572536.2006.11832627

- 462 McFall-Ngai, M. J. (2002). Unseen Forces: The Influence of Bacteria on Animal Development. Devel-
- 463 *opmental Biology*, 242(1), 1–14. doi:10.1006/dbio.2001.0522
- 464 Migaki, G., Schmidt, R. E., Toft, J. D., & Kaufmann, A. F. (1982). Mycotic Infections of the Alimentary
- 465 Tract of Nonhuman Primates: A Review. *Veterinary Pathology*, *19*(7_suppl), 93–103.
- 466 doi:10.1177/030098588201907s07
- 467 Milton, K., & Demment, M. W. (1988). Digestion and Passage Kinetics of Chimpanzees Fed High and
- 468 Low Fiber Diets and Comparison with Human Data. *The Journal of Nutrition*, *118*(9), 1082–1088.
- 469 doi:10.1093/jn/118.9.1082
- 470 Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., Fontana, L., et al. (2011). Diet
- 471 Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within
- 472 Humans. *Science*, *332*(6032), 970–974. doi:10.1126/science.1198719
- 473 Nagy, L. G., Kocsubé, S., Csanádi, Z., Kovács, G. M., Petkovits, T., Vágvölgyi, C., & Papp, T. (2012). Re-
- 474 Mind the Gap! Insertion Deletion Data Reveal Neglected Phylogenetic Potential of the Nuclear
- 475 Ribosomal Internal Transcribed Spacer (ITS) of Fungi. *PLoS ONE*, 7(11), e49794.
- 476 doi:10.1371/journal.pone.0049794
- 477 Nicholson, M. J., McSweeney, C. S., Mackie, R. I., Brookman, J. L., & Theodorou, M. K. (2010). Diversity
- 478 of anaerobic gut fungal populations analysed using ribosomal ITS1 sequences in faeces of wild
- 479 and domesticated herbivores. *Anaerobe*, 16(2), 66–73. doi:10.1016/j.anaerobe.2009.05.003
- 480 Orpin, C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. *Microbiology*, 91(2), 249–
- 481 262. doi:10.1099/00221287-91-2-249
- 482 Popovich, D. G., Jenkins, D. J., Kendall, C. W., Dierenfeld, E. S., Carroll, R. W., Tariq, N., & Vidgen, E.
- 483 (1997). The western lowland gorilla diet has implications for the health of humans and other
- 484 hominoids. *The Journal of nutrition*, *127*(10), 2000–2005.

485 Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. *Bioinformat*-

486 *ics*, 14(9), 817–818. doi:10.1093/bioinformatics/14.9.817

- 487 Remis M. J. (2003). Are gorillas vacuum cleaners of the forest floor? The roles of gorilla body size,
- 488 habitat and food preferences on dietary flexibility and nutrition. In: A.B. Taylor & M. L. Gold-
- 489 smith (Ed), Gorilla Biology: A Multidisciplinary Perspective (pp 385–404). Cambridge: Cambridge

490 University Press.

491 Remis, M. J., & Dierenfeld, E. S. (2004). Digesta passage, digestibility and behavior in captive gorillas

492 under two dietary regimens. *International Journal of Primatology*, 25(4), 825–845.

493 doi:10.1023/B:IJOP.0000029124.04610.c7

- 494 Remis, M. J., Dierenfeld, E. S., Mowry, C. B., & Carroll, R. W. (2001). Nutritional aspects of western
- 495 lowland gorilla (Gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou, Central

496 African Republic. *International Journal of Primatology*, 22(5), 807–836.

- 497 Robert, C., & Bernalier-Donadille, A. (2003). The cellulolytic microflora of the human colon: evidence
- 498 of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. *FEMS Microbiol*-

499 *ogy Ecology*, *46*(1), 81–89. doi:10.1016/S0168-6496(03)00207-1

- 500 Rothman, J. M., Dierenfeld, E. S., Hintz, H. F., & Pell, A. N. (2008). Nutritional quality of gorilla diets:
- 501 consequences of age, sex, and season. *Oecologia*, 155(1), 111–122. doi:10.1007/s00442-007-
- 502 0901-1
- 503 Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses dur-
- 504 ing health and disease. *Nature Reviews Immunology*, *9*(5), 313–323. doi:10.1038/nri2515
- 505 Sanders, J. G., Powell, S., Kronauer, D. J. C., Vasconcelos, H. L., Frederickson, M. E., & Pierce, N. E.
- 506 (2014). Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. *Mo*-
- 507 *lecular Ecology*, *23*(6), 1268–1283. doi:10.1111/mec.12611
- 508 Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut Microbiota in Health and Dis-
- 509 ease. *Physiological Reviews*, *90*(3), 859–904. doi:10.1152/physrev.00045.2009

- 510 Song, S. J., Amir, A., Metcalf, J. L., Amato, K. R., Xu, Z. Z., Humphrey, G., & Knight, R. (2016). Preserva-
- 511 tion Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies.
- 512 *mSystems*, 1(3), e00021-16. doi:10.1128/mSystems.00021-16
- 513 Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transi-
- 514 tion-transversion and G+C-content biases. *Molecular Biology and Evolution*, *9*(4), 678–687.
- 515 doi:10.1093/oxfordjournals.molbev.a040752
- 516 Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary
- 517 Genetics Analysis Version 6.0. *Molecular Biology and Evolution*, *30*(12), 2725–2729.
- 518 doi:10.1093/molbev/mst197
- 519 Torsvik, V., & Ovreas, L. (2002). Microbial diversity and function in soil: from genes to ecosystems.
- 520 *Current opinion in microbiology*, 5(3), 240–245. doi:10.1016/S1369-5274(02)00324-7
- 521 Tuckwell, D. S. (2005). The rapid assignment of ruminal fungi to presumptive genera using ITS1 and
- 522 ITS2 RNA secondary structures to produce group-specific fingerprints. *Microbiology*, 151(5),
- 523 1557–1567. doi:10.1099/mic.0.27689-0
- 524 Tutin, C. E. G., Fernandez, M., Rogers, M. E., Williamson, E. A., & McGrew, W. C. (1991). Foraging
- 525 profiles of sympatric lowland gorillas and chimpanzees in the Lopé Reserve, Gabon. *Phil. Trans.*
- 526 *R. Soc. Lond. B*, 334(1270), 179–186. doi:10.1098/rstb.1991.0107
- 527 Ungar, P. S. (2007) Dental Functional Morphology: The Known, the Unknown and the Unknowable. In
- 528 P. S. Ungar (Ed.), Evolution of the Human Diet: The Known, the Unknown, and the Unknowable
- 529 (pp. 39–55). Oxford: Oxford University Press
- 530 Wrangham, R. W., Conklin, N. L., Chapman, C. A., & Hunt, K. D. (1991). The significance of fibrous
- 531 foods for Kibale Forest chimpanzees. *Phil. Trans. R. Soc. Lond. B*, 334(1270), 171–178.
- 532 doi:10.1098/rstb.1991.0106
- 533 Wrangham, Richard W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary Response of Chimpanzees
- and Cercopithecines to Seasonal Variation in Fruit Abundance. I. Antifeedants. *International*
- 535 *Journal of Primatology*, *19*(6), 949–970. doi:10.1023/A:1020318102257