
	 i	

	
	
	
	
	
	

An	Evaluation	of	the	Physical	Demands	of	
American	Football	Training	in	the	NFL	

	
	

Patrick	Ward	
	

	
	

A	thesis	submitted	in	partial	fulfillment	of	the	
requirements	of	Liverpool	John	Moores	University	

for	the	degree	of	Doctor	of	Philosophy	
	
	
	

	
May	2018	

	
	 	



	 ii	

ABSTRACT	
	
American	football	is	one	of	the	most	popular	sports	in	the	United	States.	

However,	unlike	other	football	codes,	little	is	known	about	its	physical	

demands.	Aside	from	a	limited	amount	of	research	conducted	on	college	

players	during	training	and	matches,	no	research	exists	on	players	at	the	

elite	level,	in	the	National	Football	League	(NFL).	Therefore,	the	primary	aim	

of	this	thesis	was	to	evaluate	the	physical	demands	of	training	in	the	NFL.	

This	aim	was	achieved	by	establishing	a	systematic	approach	to	training	

evaluation	using	three	main	phases	of	study:	(1)	Evaluation	of	monitoring	

strategies	in	American	football;	(2)	Description	of	American	football	training	

demands	with	an	emphasis	on	periodization;	and,	(3)	Examination	of	the	

consequences	of	training	with	an	emphasis	on	injury	risk.	

	

The	first	study	of	this	thesis	(Chapter	3)	showed	that	three	commercially	

available	inertial	sensors	were	able	to	differentiate	between	fundamental	

American	football	actions	(e.g.,	sprinting,	change	of	direction,	and	collisions)	

during	movement	tasks	in	a	controlled	setting	and	may	be	useful	for	

quantifying	the	physical	demands	of	training.	During	training	sessions,	

Session	Rating	of	Perceived	Exertion	exhibited	a	variety	of	individual	

responses	making	sRPE	challenging	to	use	when	exclusively	evaluating	the	

physical	demands	of	training	(Chapter	4).	Therefore,	more	objective	

measures	(e.g.,	GPS	and	inertial	sensors)	were	evaluated	during	training	

(Chapter	5)	and	indicate	that	commonly	used	measures	of	distance	and	

velocity	may	not	adequately	describe	the	physical	demands	for	some	
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position	groups.	As	such,	inertial	sensors	offer	more	flexibility	to	classify	a	

broad	range	of	activities	within	the	sport.	A	number	of	inertial	sensor	

metrics	are	available	to	the	practitioner	in	commercially	used	systems.	

Chapter	6	utilized	a	principal	components	analysis	to	reduce	eleven	

variables	to	3	principal	components,	explaining	79%	of	the	variance	within	

the	data.	These	findings	suggest	that	a	small	number	of	variables	(e.g.,	

Player	Load	and	IMA)	may	be	adequate	when	describing	the	training	

demands	of	the	sport.	Given	the	reduction	in	measures	to	report,	Chapter	7	

used	Player	Load	and	IMA	to	describe	the	periodization	strategies	across	a	

season	and	within	the	training	week	employed	by	the	coaches	of	one	NFL	

team.	Training	load	was	observed	to	decreases	across	the	season	with	no	

clear	periodization	structure.	Conversely,	within	the	weekly	micro-cycle,	

coaches	appear	to	employ	some	pattern	of	periodization	whereby	training	

load	is	seen	to	systematically	decrease	as	the	game	nears.	The	final	phase	of	

this	thesis	(Chapter	8)	investigated	the	consequences	of	American	football	

training	by	exploring	the	relationship	between	training	load	measures	

(Player	Load,	IMA,	and	Impacts)	and	non-contact	soft	tissue	injury.	Several	

logistic	regression	models	were	compared	using	Bayesian	Information	

Criterion	(BIC).	The	best	model	suggested	that	sessions	with	greater	volume	

(PLTotal)	and	intensity	(ImpactsHigh)	were	associated	with	non-contact	soft	

tissue	injury	in	American	football	players	and	may	have	implications	for	

practitioners	when	designing	training	programs	within	the	sport.	

	

Collectively,	this	thesis	has	the	potential	to	not	only	offer	practitioners	

within	American	football	a	way	forward	in	terms	of	evaluating	training	



	 iv	

demands	but	also	may	be	influential	to	the	broader	scope	of	sports	science	

given	some	of	the	novel	statistical	approaches	taken	to	understanding	

training	load	monitoring.	
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THE	STRUCTURAL	APPROACH	TO	THE	
CONSTRUCTION	OF	THIS	THESIS	
	
	
This	thesis	adopts	an	alternative	framework	in	its	presentation	than	that	

frequently	used	in	PhD’s.	The	formal	scientific	evaluation	of	training	

demands	in	NFL	athletes	has	yet	to	be	conducted	within	the	scientific	

literature.			This	thesis	attempts	to	address	a	number	of	pertinent	issues	to	

sports	science	monitoring	and	data	interpretation	within	the	sport	firstly	

from	a	methodological	perspective	and	then	from	a	theoretical/practical	

standpoint.	As	such,	the	chapters	contained	in	this	thesis	are	not	

sequentially	ordered,	as	is	common	within	a	thesis,	but	are	instead	

structured	more	in	a	manner	that	is	“flat”	(i.e.	non-hierarchical).	This	is	a	

consequence	of	the	research	questions	being	located	around	issues	that	

seem	of	importance	at	similar	stages	of	the	research	process.		This	would	

seem	to	make	it	difficult	to	present	the	projects	in	a	very	linear	way	and	to	

indicate	that	they	need	to	be	read	in	a	particular	order.	Due	to	this	structure,	

each	introduction	in	each	experimental	chapter	serves	to	re-introduce	

American	football	and	its	sporting	demands.	This	is	necessary	to	ensure	that	

the	reader	is	reminded	of	the	fundamental	concepts	of	the	sport.	This	is	

important,	as	many	may	not	be	familiar	with	this	information	given	the	

paucity	of	research	currently	available	in	the	area.	To	help	focus	the	reader,	

the	chapters	have	been	grouped	into	three	phases	of	research,	which	

attempt	to	address	similar	research	components:		

	



	 2	

1) Methodological	Evaluation	of	Monitoring	Strategies	(Chapters	3-6)	

2) Description	of	Training	Demands	(Chapter	7)	

3) Consequences	of	Training	(Chapter	8)	
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CHAPTER	1	

	

GENERAL	INTRODUCTION	
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1.1	Background	
	
	

American	football	is	one	of	the	most	watched	sports	in	the	United	States	

(Hoffman,	2008).	The	highest	level	of	the	game	is	played	in	the	NFL	where	

32	teams	compete	in	16	games	over	17	weeks	during	the	regular	season	

with	the	objective	to	win	as	many	games	as	possible	and	make	the	post-

season	playoffs.	Below	this	elite	competition,	players	play	at	the	collegiate	

level	in	the	National	Collegiate	Athletics	Association	(NCAA).		The	sport	of	

American	football	irrespective	of	level	is	played	on	a	100	by	53.3	yard	field	

and	consists	of	four	15	min	quarters	separated	by	a	halftime	of	12	min	in	the	

NFL	(20	min	in	the	NCAA).	Over	the	course	of	a	game,	the	offense	aims	to	

drive	the	ball	down	the	field	and	score	either	a	touchdown	(6	points)	or	field	

goal	(3	points)	while	the	opposition	defense	attempts	to	prevent	them	from	

doing	so.		The	winning	team	is	the	one	that	accumulates	the	most	points	at	

the	end	of	the	match.		

	

From	a	physical	perspective,	these	game	requirements	consist	of	brief	high-

intensity	bouts	of	activity	followed	by	periods	of	recovery	(which	serve	to	

set	up	the	team	tactics	for	the	next	play)	(Iosia	&	Bishop,	2008).	During	

these	rest	intervals	the	offense	will	substitute	players	out	of	the	game	to	set	

up	a	play	that	offers	them	the	best	opportunity	to	gain	yards	and	move	

closer	to	the	goal	line.	Conversely,	the	defense	reacts	to	these	substitutions	

by	rotating	their	players	out	of	the	game	to	provide	them	with	the	best	

possible	match	up	against	the	offense.	While	these	descriptions	provide	

some	detail	surrounding	the	activities	completed	by	players	during	the	
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game	they	are	limited	in	their	ability	to	provide	any	insights	specific	into	the	

physical	loads	imposed	on	the	players	during	competition.		

	

The	physical	demands	of	American	football	have	been	investigated	in	the	

research	literature.	This	research	has	attempted	to	understand	the	physical	

requirements	of	the	sport	by	interpreting	data	from	tests	of	anthropometric	

and	physical	qualities	(e.g.,	speed,	agility,	power	output)	of	players	prior	to	

entering	the	NFL	at	the	NFL	Scouting	Combine.	Although	this	information	

may	useful	for	identifying	the	broad	physical	fitness	requirements	for	each	

specific	position	group,	it	is	limited	in	its	ability	to	provide	detailed	

information	on	the	actual	physical	demand	of	competition.	Such	insights	are	

only	available	through	attempts	to	objectively	measure	actual	in-game	

physical	loads.	Recently,	the	physical	demands	of	American	football	have	

been	evaluated	at	the	Collegiate	level	for	both	training	and	games	

(DeMartini	et	al.	2011;	Wellman	et	al.	2016;	Wellman	et	al.	2017).	These	

investigations	have	quantified	both	locomotor	and	collision-based	activities,	

suggesting	that	some	positions	are	required	to	perform	larger	volumes	of	

running	(e.g.	WR	and	DB)	while	others	engage	in	a	greater	amount	of	

physical	contact	and	collisions	(e.g.,	DL	and	OL)	(Wellman	et	al.	2017).	

Collectively,	this	information	has	supported	observational	accounts	of	the	

game	reported	over	two	decades	ago	(Pincevero	&	Bompa,	1997)	that	would	

suggest	that	the	game	requires	aspects	of	specific	muscle	function	(e.g.	

strength	and	flexibility)	and	aerobic	and	anaerobic	energy	provision.	While	

this	information	provides	an	understanding	of	the	physical	demands	of	
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American	football	at	the	collegiate	level	it	fails	to	provide	any	detail	

regarding	the	requirements	in	the	NFL,	the	highest	level	of	the	sport.	

	

At	the	present	time	little	is	known	about	the	specific	physical	demands	of	

participating	in	American	football	in	the	NFL.	League	rules	currently	

prohibit	teams	from	performing	any	direct	quantification	of	in-game	

activities,	making	it	impossible	to	generate	objective	data	that	may	enable	

insights	into	the	types	and	extent	of	loads	players	may	need	to	tolerate.	

Teams	are,	however,	able	to	employ	load-monitoring	strategies	in	their	own	

training	sessions.		This	may	provide	an	opportunity	to	collect	information	

that	provides	some	insight	into	the	physicality	of	the	sport	for	scientific	

purposes.	These	monitoring	strategies	have	not	however	been	subjected	to	

high	levels	of	methodological	critique	making	their	appropriateness	as	

measurement	tools	uncertain.	As	such,	a	systematic	approach	to	evaluating	

and	modeling	the	physical	demands	of	training	may	offer	scientists	a	clearer	

way	of	understanding	the	demands	of	the	sport.	Such	approaches	may	also	

provide	practitioners	with	relevant	information	that	can	be	used	for	the	

planning	and	implementation	of	training	program	design.	

	

1.2	Aims	and	Objectives	
	

The	overall	aim	of	this	thesis	is	to	examine	the	physical	demands	of	

American	football	training	in	the	NFL.	This	aim	will	be	achieved	through	the	

following	objectives:	
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1. Determine	the	utility	of	integrated	micro	technology	units	for	

quantifying	commonly	performed	actions	in	American	football.	

2. Evaluate	the	usefulness	of	subjective	rating	of	perceived	exertion	to	

quantify	American	football	training.	

3. Evaluate	between	position	group	differences	in	on	field	activities	

during	training.	

4. Use	a	parsimonious	statistical	approach	to	help	reduce	the	number	of	

integrated	micro	technology	features	when	reporting	training	

demands	in	American	football.	

5. Describe	the	periodization	strategies	of	coaches	during	the	in-season	

period	for	one	American	football	team.	

6. Identify	the	relationship	between	training	load	and	injury	in	one	

American	football	team.	
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CHAPTER	2	

	

LITERATURE	REVIEW	
	

	
This	section	attempts	to	appraise	pertinent	literature	that	underpins	the	aims	

and	objectives	of	the	thesis.		This	chapter	has	been	modeled	on	the	systematic	

review	approach	commonly	observed	in	peer-reviewed	publications	such	as	

Sports	Medicine.		This	strategy	has	been	chosen	to	support	the	demonstration	

of	the	skills	related	to	critical	analysis	and	the	concise	presentation	of	ideas	

required	by	publications	for	this	style	of	scientific	communication.			
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2.1	Introduction	
	

The	physiological	demands	in	a	variety	of	football	codes	have	been	well	

described	by	researchers	(Reilly	&	Gilbourne,	2003;	Duthie	et	al.,	2003;	

Drust	et	al.,	2007;	Johnston	et	al.,	2012;	Sanctuary	et	al.,	2012).	This	research	

has	allowed	for	a	greater	understanding	of	training	(Moreira	et	al.,	2015;	

Malone	et	al.,	2015)	and	match	demands	(Gregson	et	al.,	2010;	Kempton	et	

al.,	2013)	and	has	also	led	to	the	development	of	injury	prediction	models	to	

improve	player	health	and	well	being	(Gabbett,	2010;	Gabett	&	Jenkins,	

2011).	While	the	scientific	body	of	research	in	these	sports	is	well	

established,	less	is	known	about	the	requirements	of	American	football. At	

the	present	time,	the	scientific	literature	that	has	focused	on	the	physical	

demands	of	American	football	is	small	(Hoffman,	2008).	A	pubmed	search	

using	the	term,	“AMERICAN	FOOTBALL”,	returned	619	papers	(search	

conducted	May	12,	2018).	The	majority	of	these	619	papers	that	are	

identified	are	epidemiological	studies	whose	function	is	primarily	to	

describe	injury	rates	(Dick	et	al.	2007;	Lievers	et	al.,	2015)	or	the	occurrence	

of	brain	trauma	(Baugh	et	al.,	2016;	Clark	et	al.	2017).	Such	a	number	can	be	

compared	to	the	2797	and	9134	papers	that	are	returned	if	a	pubmed	

search	for	either	“RUGBY”	or	“SOCCER"	is	completed,	respectively.	 

 

This	review	will	attempt	to	summarize	the	current	scientific	literature	

specific	to	the	physical	demands	of	American	football.		This	critical	analysis	

of	the	literature	will	be	completed	to	provide	an	overview	of	the	sport	and	

to	identify	important	areas	that	have	the	potential	for	scientific	



	 10	

investigation.	Literature	from	other	team	sports	will	be	discussed	where	

appropriate	in	an	attempt	to	provide	context	for	some	of	the	concepts	and	

ideas	that	are	relevant	to	the	research	themes	that	are	proposed	for	

American	football	and	this	thesis	in	particular.		

 

2.2	Conceptual	and	Theoretical	Approaches	to	Evaluating	the	
Demands	of	Sport	
	
	

The	physical	demands	of	a	sport	can	be	understood	through	the	application	

of	one,	or	all,	of	three	main	methodological	approaches:	(1)	understanding	

the	physical	characteristics	(e.g.,	anthropometry,	strength,	power)	of	the	

individuals	who	participate	in	the	sport;	(2)	the	observation	of	matches	and	

training;	and	(3)	the	monitoring	of	players	during	competition	or	training.	

These	approaches	have	provided	an	opportunity	for	scientists	to	identify	

key	physical	attributes	that	are	specific	to	the	sport	(Gabbett	et	al.,	2008)	

and	to	quantify	the demands associated with both competition	(Gregson	et	al.,	

2010;	Kempton	et	al.,	2013)	and	preparation	(Impellizieri	et	al.,	2005;	

Moreira	et	al.,	2015;	Malone	et	al.,	2015)	in	a	variety	of	different	team	

sports.		These	theoretical	approaches	may	therefore	represent	a	useful	

starting	point	with	which	to	investigate	the	physical	demands	of	American	

football.	

	

A	small	amount	of	research	has	attempted	to	use	these	approaches	to	

describe	the	sport	of	American	Football.		The	majority	of	these	papers	have	

focused	on	analyzing	the	physical	characteristics	of	the	players	(Fry	et	al.,	
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1991;	Secora	et	al.,	2004;	Garstecki	et	al.,	2004;	Kraemer	et	al.,	2005;	

Kuzmits	et	al.,	2008;	et	al.,	2003;	Teramoto	et	al.,	2016;	Pryor	et	al.,	2014).		

While	this	type	of	data,	on	initial	inspection,	seems	reasonably	well	reported	

very	little	of	this	data	has	actually	been	completed	on	players	at	the	highest	

level	of	play,	i.e.	those	in	the	NFL.	This	is	an	important	consideration	as	the	

sport	at	an	elite	level	is	different	to	that	observed	at	sub-elite	levels	of	play.	

For	example,	the	offensive	play	at	the	collegiate	level	relies	more	heavily	on	

an	up	tempo	“air	raid”	type	offensive	play	style,	which	is	not	typically	

performed	in	the	NFL.	Such	an	offensive	approach	is	a	consequence	of	teams	

employing	strategies	that	have	more	likelihood	of	being	successful	with	less	

skilled	players.	The	lack	of	research	on	the	game	within	the	NFL	therefore	

would	seem	to	limit	the	understanding	of	the	sport	and	its	requirements	at	

the	highest	level	of	competition.	Nevertheless,	the	available	data	does	

provide	a	broad	description	of	the	physical	attributes	that	appear	to	be	

important	for	American	football	and	as	such	may	serve	as	a	useful	initial	

framework	with	which	to	understand	the	physical	demands	of	the	sport.  

	

2.3.1	Physical	Characteristics	of	American	Football	Players	
	

Detailed	evaluations	of	the	characteristics	of	different	playing	positions	have	

primarily	come	from	the	completion	of	various	test	batteries	that	have	

attempted	to	measure	individual	players	anthropometric	and	athletic	

qualities	(Fry	et	al.,	1991;	Secora	et	al.,	2004;	Garstecki	et	al.,	2004;	Kraemer	

et	al.,	2005;	Pryor	et	al.,	2014;	Anzell	et	al.,	2011).	This	data	is	available	

largely	as	a	consequence	of	systematic	testing	programs	completed	by	the	
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professional	league	as	part	of	the	process	to	identify	talent.	The	NFL	

Scouting	Combine	represents	the	most	common	testing	battery	of	

anthropometric	and	physical	tests	as	it	serves	a	practical	purpose	of	

profiling	players	entering	the	NFL	draft	(Kuzmits	et	al.,	2008;	Robbins,	

2011;	Terramoto	et	al.,	2016).	Testing	at	the	NFL	Combine	consists	of	

medical	evaluations,	anthropometric	measurements	(e.g.,	height,	

bodyweight,	wing	span,	hand	size),	physical	performance	testing	(e.g.,	

Vertical	and	Broad	Jump,	36.6m	Sprint,	Bench	Press,	and	Change	of	

Direction	Tests),	position	specific	drills	(e.g.,	drills	designed	by	coaches	that	

are	specific	to	what	they	believe	players	within	a	given	position	might	

perform	during	a	game),	and	a	psychological	test	called	the	Wonderlic	Test	

(Kuzmits,	et	al	2008).	While	limited	evidence	exists	regarding	the	ability	of	

such	test	batteries	to	predict	on	field	physical	performance	(Kuzmits	et	al.,	

2008;	Wolfson	et	al.,	2011;	Mulholland	&	Jensen,	2014;	Teramoto	et	al.,	

2016;	Robbins,	2010;	Lyons	et	al.,	2011;	see	below	for	detailed	discussion)	

coaches,	scouts,	and	managers	use	this	information	to	profile	players	they	

might	be	interested	in	drafting	for	certain	position	groups	in	their	player	

rosters	(McGee	&	Burkett,	2003;	Sierer	et	al.,	2008;	Robbins,	2010;	

Mullholand	&	Jensen,	2014).	This	approach	is	in	keeping	with	the	theoretical	

position	that	understanding	the	requirements	of	certain	position	groups,	

through	measurable	physical	qualities	such	as	speed,	size,	or	power	output,	

may	give	a	useful	insight	into	the	characteristics	required	to	fulfill	the	

demands	of	the	sport.		
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Physical	testing	conducted	on	players	at	the	NFL	Combine	has	revealed	that	

anthropometric	and	athletic	characteristics	can	vary	considerably	between	

positional	groups,	regardless	of	the	level	of	play	(Garstecki	et	al.,	2004;	

Kraemer	et	al.,	2005;	Anzell	et	al.,	2011;	Robbins,	2011)	(Figure	2.1	&	

Table	2.1).	These	differences	may	therefore	highlight	physical	attributes	

that	are	specific	to	each	positional	group	and	hence	may	reflect	subtle	

differences	in	the	demands	associated	with	each	position	(Robbins,	2011).	It	

has	been	suggested	that	players	in	position	groups	that	oppose	each	other	

on	offense	and	defense	share	similar	physical	characteristics,	reflecting	a	

potential	mirroring	of	their	physical	demands	(Kraemer	et	al.,	2005;	

Robbins,	2011;	Bosch	et	al.,	2014;	Dengel	et	al.,	2014).	For	example,	

compared	to	Backs	[Offensive	and	Defensive	Backs],	Linemen	[Offensive	and	

Defensive	Linemen]	are	heavier	in	terms	of	body	mass	(Garstecki	et	al.,	

2004),	perform	worse	in	tests	of	speed,	vertical	jump,	and	change	of	

direction	abilities	(Robbins,	2011),	but	have	greater	absolute	strength	

(Mayhew	et	al,	1987;	Fry	&	Kraemer,	1991;	Black	&	Roundy,	1994;	Pryor	et	

al.,	2014).	Conversely,	wide	receivers,	running	backs,	and	defensive	backs	

tend	to	be	leaner,	and	possess	greater	speed,	vertical	jump,	and	change	of	

direction	abilities	(Robbins,	2011).	Linebackers	and	tight	ends	possess	a	

blend	of	size,	speed,	change	of	direction	ability,	and	strength	thereby	placing	

their	physical	abilities	between	those	of	linemen	and	backs	(Garstecki	et	al.,	

2004).	Broadly	speaking,	these	physical	attributes	offer	a	general	

understanding	of	the	athletic	qualities	necessary	to	play	the	game	at	the	

highest	level	but	provide	no	direct	link	to	how	these	qualities	manifest	

themselves	on	field	play	in	match-play.



	 14	

	

	

	 	

Figure	2.1.	Anthropometric	qualities	of	NFL	players	in	specific	positional	groups	according	to	Pryor	et	al	(2014).	Differences	among	
positional	groups	highlight	attributes	that	may	be	relevant	for	the	tactical	demands	of	each	group.	(BF%	=	Body	fat	percentage).	
	



	 15	

	

	

Position	 36.6	m	
(40	yard)	
Sprint	(s)	

Vertical	
Jump	(cm)	

Broad	Jump	
(cm)	

18.3	m	
(5-10-5)	
Shuttle	(s)	

3	Cone	Drill	
(s)	

102	kg		
(225	lb)	

Bench	Press	
(reps)	

Defensive	Backs	 4.53	±	0.09	 89.8	±	6.18	
	

307.0	±	14.4	 4.16	±	0.13	 6.91	±	0.19	
	

16	±	4	

Defensive	Line	 4.95	±	0.22	 78.6	±	9.2	
	

279.0	±	20.3	
	

4.53	±	0.20	
	

7.42	±	0.32	 27	±	6	
	

Linebackers	 4.71	±	0.14	
	

86.2		±	7.81	
	

297.0	±	16.0	
	

4.30	±	0.14	
	

7.13	±	0.22	
	

23	±	5	
	

Offensive	Line	 5.25	±	0.17	 70.6	±	7.12	 258.5	±	16.8	 4.73	±	0.18	 7.80	±	0.28	 26	±	5	
	

Quarterbacks	 4.79	±	0.19	 81.4	±	8.31	 286.6	±	18.8	 4.29	±	0.17	 7.04	±	0.21	 NA	

Running	Backs	 4.56	±	0.12	 89.0	±	7.31	 301.1	±	13.6	 4.25	±	0.14	 7.02	±	0.19	 21	±	4	

Tight	Ends	 4.76	±	0.17	 84.6	±	7.81	 291.9	±	14.6	 4.40	±	0.14	 7.15	±	0.20	 21	±	4	

Wide	Receivers	 4.50	±	0.09	 90.3	±	7.95	 306.0	±	13.9	 4.20	±	0.15	 6.91	±	0.20	 15	±	5	

Table	2.1.	Athletic	qualities	tested	on	players	at	the	NFL	Combine	(2011	–	2015).	(Data	from:	
http://nflcombineresults.com/nflcombinedata.php)	
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Despite	NFL	Combine	data	being	collected	since	1982,	debate	still	remains	

regarding	the	ability	of	these	tests	to	predict	future	NFL	success	(Kuzmits	et	

al.,	2008;	Wolfson	et	al.,	2011;	Mulholland	&	Jensen,	2014;	Teramoto	et	al.,	

2016;	Robbins,	2010;	Lyons	et	al.,	2011).	For	example,	Teramoto	and	

colleagues	(2016)	found	faster	9.1	m	sprint	times	to	be	predictive	of	greater	

rushing	yards	per	attempt	and	vertical	jump	performance	to	be	associated	

with	greater	receiving	yards	per	reception	in	NFL	running	backs	and	wide	

receivers,	respectively.	However,	these	results	have	not	been	consistent	

across	studies.	Kuzmitis	and	colleagues	(2008)	found	the	36.6	m	sprint	to	be	

the	only	test	of	predictive	of	future	success	in	one	positional	group	(average	

yards	per	carry	in	running	backs)	while	Sawyer	and	colleagues	(2002)	found	

vertical	jump	to	be	predictive	of	coaches’	subjective	rankings	of	the	player’s	

performance	(football	playing	ability).	These	inconsistent	findings	suggest	

that	the	relationship	between	physical	qualities,	as	evaluated	using	generic	

tests	of	function,	and	performance	is	complex.	This	may	be	a	consequence	of	

a	number	of	factors	related	to	the	tests	such	as	non-sport-specific	testing	

batteries	and	a	lack	of	understanding	regarding	the	specific	type	of	

assessment	that	may	evaluate	the	specific	physical	qualities	that	make	up	

successful	position	players.	It	may	also	be	related	to	the	incorrect	

assumption	that	such	measured	physical	traits	would	have	a	large	

correlation	with	team	sport	success	given	the	multitude	of	interactions	

between	the	athlete,	their	teammates,	and	their	opponent	(Lames,	2007).	

This	represents	an	inherent	limitation	in	this	conceptual	approach	towards	

understanding	the	demands	of	the	game.	
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2.3.2	Observational	Analysis	of	American	Football 
	

Research	that	is	predominantly	observational	in	nature	has	provided	useful	

descriptions	of	the	movement	activities	that	take	place	during	American	

football.	It	has	also	provided	detail	on	other	aspects	of	the	activity	profile	

relevant	to	the	demands	of	the	sport	such	as	the	exercise-to-rest	ratio	

during	competition	(Pincevero	&	Bompa,	1997;	Rhea	et	al.,	2006;	Iosia	&	

Bishop,	2008).	If	this	data	is	examined	closely	it	can	be	seen	that	American	

football	is	a	collision-based	sport	that	at	a	fundamental	activity	level	

consists	of	brief	bouts	of	high-intensity	actions	separated	by	periods	of	rest	

(used	predominantly	to	set	up	the	next	play)	(Iosia	&	Bishop,	2008;	Hoffman	

et	al.,	2008).	These	within-play	actions	include	a	variety	of	locomotor	and	

collision-based	tasks	(e.g.,	accelerations,	decelerations,	maximal	sprinting,	

backpedaling,	cutting,	jumping,	explosive	muscle	actions	to	evade,	and	

blocking	and	tackling	of	opposing	players)	(Pincevero	&	Bompa,	1997).	

From	an	ergonomics	standpoint,	there	seems	to	be	some	position	specificity	

to	the	movement	patterns	performed	as	observations	of	the	game	have	

indicated	that	linemen	collide	with	each	other	in	movements	to	block	and	

tackle	during	each	play	while	Running	Backs,	Wide	Receivers,	and	Defensive	

Backs	perform	greater	amounts	of	sprinting,	change	of	direction,	and	agility	

type	movements	(Pincevero	&	Bompa,	1997).	Linebackers	and	Tight	Ends	

are	versatile	players	and	perform	a	variety	of	game	demands	reflected	in	

both	collision	and	locomotor	activities	(Pincevero	&	Bompa,	1997).	This	

type	of	information	would	seem	to	provide	a	useful	initial	starting	point	for	

the	understanding	of	the	positional	demands	within	the	game.	
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Unfortunately,	such	subjective	descriptions	provide	little	information	to	

improve	our	understanding	of	the	physiological	aspects	of	training	and	

competition.	These	findings	may	also	be	limited	by	the	fact	that	they	are	

relatively	old	(were	made	20	years	ago)	and	thus	may	not	adequately	reflect	

the	contemporary	requirements	of	the	game	(Elferink-Gemser	et	al.,	2012).		

	

Evaluating	the	exercise-to-rest	ratio	of	game	activities	provides	a	way	of	

understanding	the	energetic	demands	of	sport.	Observations	of	exercise-to-

rest	ratio	in	American	football	have	been	made	by	scientists	watching	game	

film	and	using	a	stopwatch	to	quantify	play	duration	and	time	between	plays	

(Iosia	&	Bishop,	2008).	The	average	play	duration	in	NCAA	games	was	found	

to	be	5.2	±	1.7	s	with	run	plays	[a	play	where	the	quarterback	hands	the	ball	

off	to	the	running	back	or	runs	the	ball	himself]	observed	to	be	shorter	than	

pass	plays	[a	play	consisting	of	a	pass	from	the	quarterback	to	a	wide	

receiver,	tight	end,	or	running	back]	(4.86	±	1.4	s	compared	to	5.6	±	1.7	s	

respectively).		The	average	rest	between	plays	is	approximately	6	times	

longer	(i.e.,	36.1	±	6.7	s)	(Iosia	and	Bishop	2008).	This	exercise-to-rest	ratio	

seems	to	be	relatively	consistent	across	levels	of	the	sport	as	Rhea	et	al.	

(2006)	noted	play	and	rest	durations	of	5.7	s	and	35.2	s	in	NFL	games.	While	

these	data	provide	context	around	the	exercise-to-rest	requirements	of	the	

sport,	which	may	provide	some	information	on	the	dominant	energy	

systems	used	to	support	the	activity,	they	lack	clear	descriptions	of	the	

physical	actions	of	players	within	their	respective	positional	groups.	For	

example,	these	exercise	and	rest	ratios	will	be	composed	of	different	actions	

for	different	players	with	some	players	performing	a	greater	amount	of	
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running	(DeMartini,	et	al.,	2011;	Wellman	et	al.,	2016)	compared	to	others	

who	engage	in	more	collisions	and	impacts	(Wellman	et	al.,	2017).	They	also	

lack	direct	physiological	measurements	that	may	measure	the	body’s	

responses	to	these	exercise	bouts.	As	such	the	evaluation	of	exercise-to-rest	

ratio	alone	may	lack	any	real	ability	to	clearly	reflect	the	energetic	demands	

and	different	metabolic	requirements	during	training.		

	

2.3.3	Physiological	Measurements	Associated	with	the	
Demands	of	American	Football	
	

Research	has	described	the	physiological	responses	during	both	training	

and	competition	in	a	variety	of	team	sports	(Gregson	et	al.,	2010;	Johnston	et	

al.,	2012;	Austin	et	al.,	2013;	Kempton	et	al.,	2014).	Because	this	type	of	

research	takes	place	during	the	actual	sporting	activity,	it	allows	for	a	highly	

ecological	evaluation	of	the	physical	demands	of	the	activities.		This	permits	

a	more	detailed	understanding	of	the	physiological	requirements	that	

underpin	performance	in	the	sport.	This	may	enable	the	broader	application	

of	these	demands	to	considerations	such	as	the	design	of	training	sessions	

(Torres-Ronda	et	al.,	2016).	Much	of	the	available	data	relating	to	

physiological	measures	in	American	football	have	been	aimed	at	evaluating	

markers	of	muscle	damage	as	a	means	of	understanding	the	consequences	

of	game	(Hoffman	et	al.,	2002;	Hoffman	et	al.,	2005;	Kraemer	et	al.,	2009;	

Sterczala	et	al.,	2014).		While	these	data	suggests	that	a	combination	of	

locomotor	and	collision	activities	can	lead	to	a	substantial	amount	of	muscle	

damage	following	competition	in	collision-based	sports	(Smart	et	al.,	2008;	
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McLellan	et	al.,	2010)	it	does	not	in	itself	provide	any	detail	on	more	

relevant	physiological	markers	of	the	demands	of	the	sport	such	as	the	

contributions	of	different	energy	systems.	Measurements	of	blood	and	

salivary	markers,	amongst	other	physiological	indicators	may	provide	

additional	information	regarding	the	physical	consequences	of	the	game	but	

such	markers	have	not	been	evaluated	in	any	detail	with	respect	to	either	

positional	and/or	individual	differences	within	American	football.	This	is	

probably	a	consequence	of	the	practical	difficulties	in	obtaining	such	

measurements	in	the	sport.	Detailed	investigations	of	the	relationship	

between	on-field	actions	and	a	range	of	physiological	measurements	have	

therefore	yet	to	be	explored	within	American	football.	Such	research	may	

prove	useful	in	helping	to	quantify	the	requirements	of	the	sport	both	in	

general	terms	and	in	relation	to	specific	playing	positions.		

	

2.4.1	Training	and	Physical	Preparation	for	Sport	
	

The	previous	section	of	the	literature	review	has	outlined	the	major	physical	

characteristics	required	by	individual	players	to	fulfill	the	demands	of	the	

sport.	While	it	is	acknowledged	that	an	individual’s	genetic	predisposition	

may	play	a	role	in	determining	the	physical	characteristics	of	an	individual	

athlete	(Heffernan	et	al.,	2016)	systematic	training	is	a	fundamental	process	

that	allows	the	athlete	to	tolerate	competition	demands	(Morgans	et	al.,	

2014).	Despite	the	availability	of	specialists	in	the	area	of	physical	

preparation	in	team	sport	organizations	this	type	of	preparation	is	still	often	

dictated	by	the	head	coach	as	part	of	the	overall	training	strategy	required	
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for	them	to	prepare	the	team	for	upcoming	competition	(Malone	et	al.,	2015;	

Weston,	2018)	as	such	training	programs	in	team	sport	can	often	be	based	

on	a	holistic	performance	model.		Irrespective	of	this	generalized	view	such	

programs	do	still	require	a	balance	between	the	training	that	is	completed	

to	improve	the	physical	fitness	for	the	sport,	periods	of	regeneration	for	

adaptation,	and	that	which	prepares	the	athlete	for	the	technical	and	tactical	

requirements	of	the	game.	A	carefully	considered	training	plan	should	

attempt	to	balance	these	requirements	across	important	time	periods	

related	to	competition	(e.g.	the	time	between	games)	(Anderson,	2016).	

	

2.4.2	Conceptual	Models	for	the	Organization	of	Structured	
Training	Plans:	Periodization	
	
	
The	theoretical	basis	for	planning	training	is	fundamentally	centered	on	the	

athlete’s	exposure	and	tolerance	(adaptation)	to	a	given	training	stress.	This	

theoretical	model	of	training	was	originally	adapted	from	Han’s	Selye’s	

General	Adaptation	Syndrome,	which	describes	the	body’s	general	response	

to	any	type	of	stressor	(Selye,	1956).	Newer	research,	however,	has	

indicated	that	the	way	in	which	such	training	stressors	lead	to	fitness	

improvements	is	complex,	highly	individualized,	and	not	as	“general”	as	

Selye	once	believed	(Kiley,	2017).	This	newer	approach	to	conceptualizing	

the	training	process	accounts	for	the	role	that	factors	such	as	genetics,	

training	history,	nutritional	status,	and	psycho-emotional	outputs	play	in	the	

inter-individual	responses	to	adaptation	(Kiley,	2017).	The	relationship	

between	an	athlete’s	cycle	of	stress	and	adaptation	in	theory	enables	a	

specific	time	course	of	stress	and	recovery	to	be	planned.		The	
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implementation	of	this	plan	in	a	systematic	approach	within	sport	has	been	

termed	“periodization”	(Wathen	et	al.,	2008).	

	

Periodization	represents	the	formal	process	of	altering	training	variables	

(e.g.,	intensity,	duration,	volume)	to	create	long-term	adaptations	in	

strength	and	fitness	(Wathen	et	al.,	2008).	Structured	periodization	

establishes	discrete	phases	of	training	across	the	competitive	year	with	

specific	physiological	goals	to	be	planned	(Gamble,	2006).	These	phases	are	

built	in	sequence	to	establish	periods	of	increased	training	demand	(via	the	

manipulation	of	factors	such	as	intensity	or	volume)	and	periods	of	

unloading	(to	remove	stress	and	dissipate	fatigue).	Periodisation	around	

long-term	cycles	(e.g.	a	calendar	year)	is	referred	to	as	macro-cycle	

periodization.	Smaller	planning	units,	known	as	meso-cycles,	represent	

shorter	discrete	blocks	of	time	(e.g.,	4-6	weeks).	These	meso-cycles	when	

combined	will	collectively	make	up	the	macro-cycle.	Within	the	team	sport	

environment,	common	meso-cycles	are	the	off-season,	pre-season,	and	in-

season	phases	(Gamble,	2006;	Wathen	et	al.,	2008).	These	meso-cycles	can	

be	further	subdivided	into	smaller	sections,	each	with	a	specific	focus	

(Malone	et	al.,	2015).	A	meso-cycle	is	typically	comprised	of	micro-cycles,	

which	represent	the	shortest	period	of	time	within	the	training	plan	(e.g.,	

one-week).	The	micro-cycle	is	of	critical	importance	in	team	sports	as	it	

reflects	a	team’s	preparation	leading	into	the	next	match	(Malone,	et	al.,	

2015).		While	this	information	reflects	the	broadly	held	beliefs	about	

planning	training	in	sports	such	as	American	football	there	is	currently	little	
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research	data	that	has	evaluated	the	application	of	this	model	to	real	world	

settings.	

	

The	existence	of	real	world	season	long	periodization	models	have	been	

evaluated	within	several	team	sports	(Manzi	et	al.,	2010;	Moreira	et	al.,	

2015;	Malone	et	al.,	2015;	Ritchie	et	al.,	2016).	Generally,	the	pre-season	

period	is	comprised	of	greater	training	load	and	volume	than	the	in-season	

period	(Jeong	et	al.,	2011;	Moreira	et	al.;	2015,	Ritchie	et	al.,	2016).	Such	

differences	observed	in	training	load	between	the	pre-	and	in-season	

periods	are	thought	to	be	due	to	the	increased	emphasis	coaches’	place	on	

the	physiological	conditioning	that	can	support	the	athletes’	performance	

through	the	in-season	phase	(Jeong	et	al.,	2011).	Within	the	competitive	

season	much	of	the	intensity	component	of	the	physical	load	seems	to	be	

contained	within	each	weeks	competitive	performance	(Manzi	et	al.,	2010;	

Moreira	et	al.,	2015;	Anderson	et	al.,	2015).	These	weekly	matches	therefore	

seem	crucial	in	shaping	the	structure	of	weekly	micro-cycle	periodization	

during	the	in-season	phase	(Impellizzeri	et	al.,	2004;	Manzi	et	al.,	2010;	

Malone	et	al.,	2014;	Anderson	et	al.,	2015).	This	importance	of	match-play	is	

also	supported	by	the	modification	of	training	loads	on	the	days	that	

immediately	precede	and	follow	the	competition.	For	example,	days	leading	

up	to	the	match	were	observed	to	have	significantly	lower	training	load	than	

the	days	furthest	from	the	match	for	one	elite	Premier	League	Football	Club	

(Malone	et	al.,	2014;	Anderson	et	al.,	2016).	This	data	would	therefore	

appear	to	suggest	that	there	is	some	systematic	adjustment	of	training	load	

across	time	periods	though	the	use	of	comprehensively	structured	
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periodization	models	in	the	truest	sense	in	team	sport	have	been	questioned	

(Morgans	et	al.,	2014).		This	may	particularly	be	the	case	within	the	sport	of	

American	football	where	no	data	currently	exists	at	the	highest	level	of	play	

that	describes	approaches	to	training	preparation	strategies.		

	

The	only	research	available	that	currently	describes	periodization	within	

American	football	relates	to	the	strength	and	conditioning	practices	used	

within	the	sport	(Ebben	&	Blackard,	2001;	Hoffman	et	al.,	2003;	Kraemer	et	

al.,	2015).	Results	from	a	2001	survey	of	strength	coaches	in	the	NFL	

revealed	that	69%	of	the	26	strength	coaches	who	responded	to	the	survey	

indicated	that	they	followed	some	form	of	periodization	model	(Ebben	&	

Blackard,	2001).	The	typical	periodization	structure	reported	for	both	

resistance	training	and	running	programs	was	one	whereby	the	off-season	

phase	consisted	of	a	high	volume	of	training	at	a	lower	intensity		(e.g.,	2-3	

sets	x	15-20	reps)	(Ebben	&	Blackard,	2001).	As	the	training	progressed	

closer	to	the	competitive	season,	the	intensity	of	exercises	and	running	

increased	while	the	total	volume	decreased	(Ebben	&	Blackard,	2001).	

These	findings	indicate	that	like	other	team	sports	some	form	of	meso-cycle	

periodization	structure	seems	to	be	used	within	the	sport.	This	data	is	

however,	limited	by	its	description	and	its	limited	focus	(i.e.	only	described	

for	resistance	training	and	conditioning	based	sessions).		The	importance	of	

this	data	is	also	further	restricted	by	the	lack	of	objective	quantification.		

This	absence	of	such	of	information	regarding	the	periodization	strategies	of	

on-field	training	makes	it	challenging	to	fully	understand	the	physical	
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demands	of	the	training	week	and	the	implications	it	may	have	on	match	

performance.	

2.4.3	Analytical	Approaches	to	Evaluating	Periodization	
	

The	understanding	of	periodization	in	team	sports	from	the	available	

research	studies	is	partly	determined	by	the	analytical	approaches	used	to	

describe	and	interpret	the	data.		Analytical	procedures	are	typically	focused	

on	making	discrete	comparisons	between	specific	time	periods	of	the	

training	cycle.	For	example	a	comparison	of	pre-	and	in-season	phases	of	

training	or	between	different	meso-	(e.g.,	4-week	blocks	of	training)	or	

micro-cycle	(e.g.,	1	week	blocks	of	training)	phases	(Jeong	et	al.,	2011;	

Moreira	et	a.,	2015;	Ritchie	et	al.,	2015;	Malone	et	al.,	2015).	While	such	

analysis	reflects	the	differences	that	are	observed	in	training	demands	

between	these	phases	it	neglects	to	take	into	account	the	reality	that	such	

data	is	generated	in	time	series	(e.g.,	repeated	measures	taken	on	athletes	

over	time).	Given	the	fact	that	periodization	and	planning	are	fundamentally	

centered	on	the	inter-play	between	stress	and	adaptation,	it	may	be	more	

appropriate	to	analyze	such	data	using	approaches	that	are	more	relevant	

for	serial	measurements	and	that	may	better	reflect	the	athletes’	physical	

changes	overtime	(Matthews	et	al.,	1990;	Weston	et	al.,	2011).	Such	an	

approach	may	not	just	have	more	relevance	from	a	scientific	perspective	but	

be	useful	for	practitioners	by	providing	a	basis	to	better	understand	the	rate	

at	which	adaptations	are	taking	place	in	the	athlete,	potentially	aiding	to	

influence	training	program	development.	This	analytical	approach	may	

provide	a	more	flexible	approach	to	the	application	of	the	basic	components	
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of	periodization.	This	would	provide	the	athlete	with	the	training	dose	that	

is	most	appropriate	based	on	how	they	have	responded	to	previous	training	

loads	(Kiely,	2012).	

2.5	Physical	Consequences	of	Competing	in	Elite	Sport	
	

Better	understanding	the	individual	adaptive	response	to	any	training	

stimulus	would	in	theory	increase	the	likelihood	of	a	positive	training	

outcome	(i.e.	an	increase	in	capability)	and	negate	the	potential	for	process	

to	be	maladaptive.		The	interaction	between	training	stimulus	and	outcome	

has	previously	been	investigated	by	quantifying	the	dose-response	

relationship	in	training	repetitions	using	models	of	fitness	and	fatigue.	

Originally,	such	fitness-fatigue	models	were	designed	for	endurance	athletes	

(Calvert	et	al.,	1976).	These	models	were	then	applied	to	other	sports,	

specifically	training	and	competition	in	team	sports	(Reilly,	1997;	Deutsch	et	

al.,	1998).	More	recently,	such	approaches	have	been	linked	more	

specifically	with	injury	risk	(Hulin	et	al.,	2014;	Malone	et	al.,	2017).	An	

understanding	of	the	consequences	of	training	is	fundamental	to	the	

training	process	as	they	reflect	the	outcome	of	the	process	of	planning.	This	

is	especially	useful	in	a	sport	such	as	American	football	where	the	injury	risk	

has	been	found	to	be	higher	than	other	team	sports	(Hootman	et	al.,	2007).	

Positive	training	outcomes	may	therefore	be	an	important	component	of	

injury	avoidance	and	successful	performance.		Currently,	no	information	

exists	regarding	the	relationship	between	training	demands	and	injury	risk	

in	the	NFL.		Wilkerson	et	al	(2016)	recently	evaluated	training	related	

injuries	suggesting	that	training	load,	more	specifically	a	consistent	training	
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load	with	little	variation	over	time	may	increase	the	likelihood	of	injury	in	

collegiate	American	football	athletes	(Wilkerson	et	al.,	2016).		

	

2.6.1	Approaches	to	Training	Load	Monitoring	in	Applied	
Sports	Science	
	

In	an	attempt	to	better	understand	the	health	and	performance	of	athletes,	

the	scientific	community	has	looked	to	a	variety	of	monitoring	strategies	to	

quantify	the	training	process	(Halson,	2014).	Briefly,	player	monitoring	may	

include	methods	to	quantify	activity	(Aughey,	2011;	Gregson	et	al.,	2010;	

Dellaserra	et	al.,	2014;	Kempton	et	al.,	2014),	the	physiological	responses	to	

that	activity	(Foster	et	al.,	2001;	Impellizzeri	et	al.,	2004;	Jeong	et	al.,	2011;	

Clarke	et	al.,	2013),	and	the	adaptation	to	match	and	training	demands	

(McLean	et	al.,	2010;	Thorpe	et	al.,	2015;	Thorpe	et	al.,	2016).	Collectively,	

these	monitoring	approaches	have	been	developed	to	aid	team	sport	

practitioners	in	evaluating	the	dose-response	relationship	between	the	

performed	training	loads	and	the	athlete’s	ability	to	adapt	to	the	training	

demands.	

	

The	dose-response	relationship	to	training	was	originally	proposed	by	

Banister	and	colleagues	(1975)	to	model	the	athlete’s	fitness	and	fatigue	

adaptations	over	the	course	of	a	training	program.	This	model	was	initially	

conceptualized	for	an	elite	swimmer	(Baniseter	et	al.,	1975;	Calvert	&	

Bannister;	1976)	and	later	extended	to	sedentary	subjects	performing	cycle	

ergometer	training	(Busso	et	al.,	1991).	Training	outcomes	may	be	easier	to	

model	in	these	types	of	individual	exercises	where	simple	physiological	
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measurements	can	serve	as	a	basis	for	evaluating	the	dose-response	

relationship.	As	such,	the	applicability	of	this	model	to	team	sport	is	less	

clear	given	the	range	of	training	demands,	tactical	requirements,	and	the	

fact	that	the	opposition	can	influence	an	athlete’s	performance	in	

competition	regardless	of	their	physical	preparation	leading	into	the	match.		

	

Despite	the	above	limitations	in	team	sport	athletes,	Impellizzeri	and	

colleagues	(2005)	have	proposed	a	model	of	the	training	process,	which	

identifies	the	interaction	between	the	dose	of	training	performed	(external	

load)	and	the	athlete’s	individual	response	(internal	load).	This	training	load	

model	has	been	widely	adopted	in	team	sport	as	a	means	of	providing	data	

to	describe	performance	outcomes,	positional	differences,	or	changes	to	the	

training	program	that	take	place	overtime	(e.g.,	periodization)	(Moreira	et	

al.,	2015;	Gregson	et	al,	2010).	However,	such	an	approach	is	not	without	

limitation,	as	discussed	in	the	subsequent	section.	

	

2.6.2	A	Critical	Commentary	on	the	Internal	and	External	
Training	Load	Relationship	in	Team	Sports		
	

The	current	scientific	literature	differentiates	between	two	types	of	training	

load	–	internal	training	load	and	external	training	load	(Impellizzeri	et	al.,	

2005).	Internal	training	load	has	been	described	as	the	athlete’s	

physiological	response	to	a	given	training	stimulus	(Foster	et	al.,	2001;	

Impellizzeri	et	al.,	2005;	Halson,	2014)	and	can	be	quantified	through	

methods	such	as	session	rating	of	perceived	exertion	(sRPE)	and	Heart	Rate	
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(HR)	(Foster	et	al.,	2001;	Impellizzeri	et	al.,	2005;	Halson,	2014).	Conversely,	

external	training	load	describes	the	athlete’s	physical	output	during	training	

and	competition	(Aughey	2011;	Dellaserra	et	al.,	2014;	Halson,	2014).	In	

team	sport	athletes,	external	training	load	is	frequently	quantified	through	

the	use	of	integrated	micro	technology	(Global	Position	System	(GPS),	

accelerometer,	and	gyroscope)	(Aughey,	2011;	Boyd	et	al.,	2013,	Cummins	

et	al.,	2013;	Halson	et	al.,	2014).		

	

This	dichotomous	breakdown	of	training	load	monitoring	was	born	out	of	

endurance	sport	athletes	(Foster	et	al.,	1996)	and	has	been	adopted	in	the	

team	sport	setting	as	a	means	of	understanding	and	describing	training	

loads	(Impellizierri	et	al.,	2004).	However,	upon	further	inspection,	this	

approach	may	not	be	fully	representative	of	the	complexity	of	the	training	

process	within	team	sports.	For	example,	in	endurance	sports,	the	external	

load	is	fixed	(e.g.,	ride	or	run	a	specific	distance	at	a	specific	pace)	while	the	

internal	response	is	then	evaluated	(e.g.,	HR,	Lactate,	sRPE).	This	type	of	

approach,	while	commonly	accepted	in	team	sport,	is	complicated	by	the	

fact	that	the	external	load	is	not	fixed	across	all	players.	For	example,	the	

activity	completed	can	depend	on	the	context	of	the	drills	performed	within	

the	training	session	and/or	the	specific	positional	requirements.	

Additionally,	different	types	of	external	training	load	(e.g.,	sprinting,	change	

of	direction,	collisions)	may	elicit	different	physical	responses,	which	

potentially	influence	internal	training	load	in	different	ways.	As	such,	this	

type	of	variety	in	external	load	creates	specific	individual	outputs	for	the	
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athletes	for	each	training	activity	as	well	as	individual	responses	in	internal	

load	based	on	the	stress	imposed.	

	

		

Figure	2.2.	A	comprehensive	model	for	training	load	monitoring	in	team	
sport.	This	model	considers	the	coaches	prescription	of	training,	the	
external	training	load	based	on	how	the	individual	performs	the	prescribed	
training,	and	the	individual’s	physiological	and	psychobiological	response	to	
the	external	training	load	(internal	training	load).	
	

	

This	relationship	is	made	further	complex	in	collision	sports	as	a	

consequence	of	the	performance	of	sport-specific	actions	such	as	collisions	

and	tackles,	which	will	also	be	highly	individual.	These	ideas	are	in	line	with	

contemporary	models	training	load	monitoring	(Vanrenterghem,	2017).	For	

these	reasons,	a	more	comprehensive	model	of	training	load	monitoring	

seems	relevant.	This	model	would	suggest	that	the	coach	plans	and	

prescribes	training	for	the	team	while	the	external	load	represents	how	the	

individual	athlete	performs	this	prescribed	training,	based	on	the	context	of	

their	position	specific	activity	profile	(e.g.,	distance	run,	sprints,	collisions).	
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Finally,	internal	load	represents	the	individual	athlete’s	physiological	(e.g.,	

HR)	and	psychobiological	response	to	the	prescribed	training	session	

(Figure	2.2).	

	

2.6.3	Subjective	Measures	of	Training	Load	Monitoring	in	
Collision	Sport	
	

Evaluating	the	athlete’s	response	to	the	training	session	and	the	activities	

that	the	individual	performs	is	an	important	component	of	any	training	

model.	In	team	sport	approaches	to	athlete	monitoring	have	included	

subjective	assessments	of	training	load	such	as	sRPE,	the	measurement	of	

the	physiological	responses	to	exercise	such	as	heart	rate	monitoring	and	

the	use	of	wearable	integrated	micro-technology	units	(Impellizzieri	et	al.	

2004;	Cardinale	and	Varely,	2017).	Session	rating	of	perceived	exertion	is	

one	of	the	most	well	documented	methods	of	quantifying	internal	load	from	

a	given	training	session	and	has	a	strong	relationship	with	other	indicators	

of	the	internal	training	response	such	as	Banister’s	TRIMP	(r	=	.5	–	.77),	

Edwards’	TL	(r	=	.54	–	.78),	and	Lucia’s	TRIMP	(r	=	.62	–	.85)	(Impellizzeri	et	

al.,	2004).	The	lack	of	equipment	needed	to	collect	and	analyze	the	data	

makes	it	a	simple	and	cost-effective	solution	to	monitor	athletes	

(Impellizzeri	et	al.,	2004).	Athletes	are	asked	to	rate	their	perceived	

intensity	of	the	training	session	using	the	Borg	CR10	scale	(Borg	et	al.,	1987;	

Foster,	1998;	Foster	et	al.,	2001).	This	subjective	rating	is	then	multiplied	by	

session	duration,	in	minutes,	to	produce	the	daily	training	load	in	arbitrary	

units.	Session	RPE	training	load	has	been	found	to	be	an	effective	measure	of	
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internal	training	load	in	soccer	(Impellizzeri	et	al.,	2004;	Scott	et	al.,	2013;	

McLaren	et	al.,	2018)	and	Canadian	football	(Clarke	et	al.,	2013),	a	collision	

sport	similar	to	American	football,	when	compared	to	heart	rate	response.	

The	use	of	sRPE	in	American	football	has	not	however	been	formally	

evaluated	from	a	research	perspective.	While	its	application	to	the	sport	

may	be	intuitive	its	use	may	be	questionable	given	a	number	of	important	

considerations	that	are	specific	to	the	sport.	For	example,	the	low	volume	of	

running	and	metabolic	activity	performed	by	several	of	the	positional	

groups	(Wellman	et	al.,	2016)	may	mean	that	the	usual	relationships	

between	the	exercise	that	is	completed,	and	the	internal	response	do	not	

hold.	Additionally	the	large	numbers	of	individuals	involved	in	the	squads	

may	impact	the	utility	of	this	approach	through	excessive	variability	in	the	

data.		Another	issue	in	American	football	for	sRPE	is	the	collision	situations	

that	exist	within	training	and	games.	Recent	research	has	suggested	that	

sRPE	may	in	fact	be	a	useful	marker	of	internal	training	load	in	sports	that	

include	collisions	(Clarke	et	al.,	2013;	Johnston	et	al.	2015).	For	example,	in	

Canadian	football	players	sRPE	was	determined	to	be	an	accurate	measure	

of	internal	training	load	when	compared	with	two	HR	derived	measures,	

Polar	TRIMP	(r	=	0.65	–	0.91)	and	Edwards’	TL	(r	=	0.69	–	0.91)	(Clarke	et	

al.,	2013).	This	evidence	while	superficially	useful	may	not	however	provide	

a	strong	rationale	for	the	utility	of	sRPE	as	these	relationships	are	not	

specifically	generated	for	the	collision	component	of	the	activity	per	se	but	

rather	the	overall	training	load	(i.e.	collisions	and	movement	demands).	The	

relative	disproportionate	nature	of	collisions	to	movements	in	these	
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circumstances	may	suggest	that	such	models	cannot	accurately	reflect	the	

influence	of	collisions	on	the	internal	training	load.			

	

2.6.4	GPS	Tracking	for	Monitoring	External	Load	in	American	
Football	
	

The	athlete’s	individual	external	training	load	relative	to	the	coach’s	

prescription	of	training	can	be	quantified	through	the	use	of	integrated	

micro	technology	(Global	Position	System	(GPS),	accelerometer,	and	

gyroscope)	(Aughey,	2011;	Boyd	et	al.,	2013,	Cummins	et	al.,	2013;	Halson	et	

al.,	2014).	These	technologies	provide	a	direct	measure	of	the	athlete’s	

physical	output	allowing	for	quantification	of	both	movement	profiles	and	

impacts	during	collision	sports	(Wisbey	et	al.,	2010;	Boyd	et	al.,	2013;	

Cummins	et	al.,	2013;	Gabbett,	2015).	GPS	technology	has	been	used	for	

over	a	decade	in	professional	team	sports	as	a	means	of	describing	

locomotor	activity	(Cardinale	&	Varley,	2017).		

	

The	reliability	of	commercially	available	GPS	systems	has	been	evaluated	

during	various	running	tasks	(Edgecomb	et	al.,	2006;	Coutts	&	Duffield,	

2010;	Castellano	et	al.,	2011;	Johnston	et	al.,	2014;	Rampinini	et	al.,	2014).	

Castellano	and	colleagues	(2011)	found	good	accuracy	of	sprint	distance	and	

intra-device	reliability	for	both	15	m	(CV	=	1.3%)	and	30	m	(CV	=	0.7%)	

maximum	effort	sprints	performed	by	9	male	athletes	when	using	10	Hz	GPS	

devices.	These	findings	suggested	less	variation	in	measured	running	

distance	when	compared	to	earlier	work	from	Coutts	and	Duffield	(2010),	
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who	observed	a	CV	of	3.6%	to	7.1%	for	total	distance	when	performing	a	

standardized	field	circuit	while	using	a	1	Hz	GPS	device.	Additionally,	10	Hz	

GPS	devices	had	better	accuracy	when	measuring	total	distance	(%TEM	=	

1.3)	and	peak	speed	(%TEM	=	1.6)	compared	to	units	sampling	at	15	Hz	

(%TEM	for	total	distance	=	1.9;	%TEM	for	peak	speed	=	8.1)	(Johnston	et	al.,	

2014).	In	collision	sports,	GPS	tracking	has	recently	been	used	as	a	means	of	

categorizing	locomotor	activity	(Hiscock	et	al.,	2012;	Chambers	et	al.,	2015),	

classifying	training	drills	(Loader	et	al.,	2012;	Boyd	et	al.,	2013),	and	

quantifying	match	demands	(Wisbey	et	al.,	2010;	Wellman	et	al.,	2016).	

Given	the	broad	range	of	movement	demands	observed	in	American	football	

(Picevero	&	Bompa,	1997),	GPS	may	be	useful	for	identifying	the	overall	

movement	demands	and	quantifying	between	position	group	differences	in	

activities	within	American	football.	

	

The	locomotor	demands	in	both	games	and	training	sessions	have	been	

evaluated	within	collegiate	American	Football	athletes	(DeMartini	et	al.,	

2011;	Wellman	et	al.,	2016).	The	first	report	of	GPS	in	American	football	was	

focused	on	determining	positional	demands	during	NCAA	football	practice	

(DeMartini	et	al.,	2011).	DeMartini	and	colleagues	(2011)	classified	8	

football	position	groups	into	two	broad	categories	-	linemen	(defensive	line,	

offensive	line,	and	tight	end)	and	non-linemen	(defensive	backs,	linebackers,	

quarterback,	fullback,	and	running	back).	Non-linemen	performed	more	

total	distance	and	high-speed	distance	than	linemen	(DeMartini	et	al.,	2011).	

These	differences	in	running	volume	and	intensity	are	in	agreement	with	

what	has	been	recorded	during	collegiate	football	games.	Wellman	and	
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colleagues	(2016)	found	defensive	backs	and	wide	receivers	performed	

greater	total	distance	(5531	±	997	m	and	4696	±	1,115	m,	respectively),	

sprints	(12.7	±	5.7	m	and	10.6	±	4.3	m,	respectively),	maximal	accelerations	

(21.9	±	8.1	and	20.9	±	8.6,	respectively),	and	maximal	decelerations	(15.8	±	

5.4	and	14.0	±	6.1,	respectively)	compared	to	other	position	groups.	While	

these	data	suggest	positional	differences	with	regard	to	the	running	

demands	of	the	sport	the	output	from	GPS	alone	may	not	be	suitable	for	the	

quantification	of	all	aspects	of	the	demands	required	of	players.		This	may	be	

specifically	the	case	for	actions	such	as	collisions	and	other	non-running	

actions	(e.g.,	accelerations,	decelerations,	and	jumping)	(Dalen	et	al.,	2016;	

Akenhead	et	al.,	2016,	Wellman	et	al.,	2017)	and	tracking	movements	in	

small	spaces	(Jennings	et	al.,	2010;	Duffield	et	al.,	2010)	or	movements	over	

short	distances	(Castellano	et	al.,	2011)	and	high	velocities	(Rampinini	et	al.,	

2014;	Vickery	et	al.,	2014;	Akenhead	et	al,	2014).	This	may	suggest	that	

alternative	methods	of	quantifying	athlete	collisions	and	other	non-running	

activities	may	be	required	when	attempting	to	describe	the	demands	placed	

on	some	position	groups,	within	American	football,	especially	those	that	

perform	less	running	volumes	than	others	(e.g.,	offense	and	defensive	

linemen).		

	

2.6.5	The	Use	of	Inertial	Sensors	to	Evaluate	Non-Locomotor	
Activities	in	American	Football	
	

To	assist	with	the	capture	of	on	field	movements	and	to	offset	some	of	the	

limitations	of	GPS	described	above,	the	data	provided	by	integrated	
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microtechnology	systems	are	often	combined	within	data	from	the	

indwelling	inertial	sensors	(e.g.,	accelerometers,	gyroscopes,	and	

magnetometers).	Inertial	sensors	sample	at	a	higher	rate	that	GPS	sensors	

(100	Hz)	and	provide	the	ability	to	quantify	accelerations	taking	place	on	3	

axes	of	movement	(x,	y,	and	z),	angular	velocities,	and	direction	of	

movement.	These	inertial	sensors	can	therefore	quantify	forces	coming	from	

all	actions,	not	just	locomotor	tasks,	and	as	a	consequence	are	able	to	

provide	information	regarding	non-running	activities	(Dalen	et	al.,	2016;	

Akenhead	et	al.,	2016)	and	collisions	(Gabbett	et	al.,	2010;	Gastin	et	al.	2013;	

Gabbett,	2015).		

	

One	commercially	available	metric,	Player	Load,	is	reported	in	arbitrary	

units	and	is	derived	by	taking	the	square	root	of	the	sum	of	the	squared	

instantaneous	rate	of	change	in	acceleration	on	the	3	axes	and	dividing	by	

100	(Figure	2.3).	This	metric	was	found	to	have	acceptable	within-	and	

between-device	reliability	during	controlled	oscillation	of	the	

accelerometers	over	0.5	g	and	3.0	g	(Within	CV	=	0.91	to	1.05%;	Between	CV	

=	1.02	to	1.04%)	(Boyd	et	al.,	2011).	Convergent	validity	has	also	been	

established	during	treadmill	running	where	Player	Load	was	found	to	have	

near	perfect	(r	=	0.92	–	0.98)	within-subject	correlation	to	VO2	max	and	

average	heart	rate	(Barrett	et	al.,	2014).	Aside	from	these	lab-based	tests,	

accelerometer	units	have	also	been	evaluated	during	sports	tasks.	In	the	

field,	Player	Load	been	shown	to	have	acceptable	between-device	reliability	

during	Australian	football	matches	(Between	CV	=	1.9%)	(Boyd	et	al.,	2011)	

and	moderate	to	large	test-retest	reliability	during	various	ice	hockey	tasks	
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(Van	Iterson	et	al.,	2017).	The	placement	of	the	accelerometer	unit	should	be	

noted,	as	it	has	been	shown	that	trunk-worn	accelerometers	(commonly	

used	in	practice)	may	not	reflect	ground	reaction	forces	taking	place	at	the	

limbs	(Nedergaard	et	al.,	2017).	Therefore,	practitioners	should	be	aware	

that	accelerometer	data	might	not	be	reflecting	whole-body	mechanical	

loading	but	may	still	provide	useful	estimates	of	acceleration	forces	in	in	the	

applied	setting	(Nedergaard	et	al.,	2017).	

	

	
Figure	2.3.	Player	Load	equation	(Boyd	et	al.,	2011).	ay	=	forward	
acceleration,	ax	=	sideways	acceleration,	az	=	vertical	accelerations.	
	

	

Unlike	GPS,	Player	Load	does	not	provide	a	direct	measure	of	distance	run	

or	running	velocity;	however,	it	does	have	a	strong	correlation	with	distance	

covered	in	team	sport	athletes	(Boyd	et	al.,	2010;	Polglaze	et	al.,	2015),	

which	may	suggest	its	utility	in	capturing	locomotor-based	activities.	Player	

Load	has	also	been	evaluated	for	its	ability	to	differentiate	between	

positional	demands	in	Australian	football,	quantify	collisions	in	Rugby	and	

quantify	tackles	in	Australian	football	(Gabbett	et	al.,	2010;	Boyd,	et	al.,	

2013;	Gastin	et	al.,	2013).	The	ability	of	inertial	sensor	data,	such	as	Player	

Load,	to	capture	a	variety	of	movements	in	collision-based	sports	(e.g.,	

running	and	impacts),	indicates	it	may	be	a	valuable	tool	for	determining	the	

demands,	above	running	activities,	between	position	groups	in	American	
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football	as	well	as	understanding	training	outcomes,	such	as	injury	risk.	For	

example,	Wilkerson	(2016)	and	colleagues	used	Player	Load	for	injury	

detection	in	collegiate	athletes	and	concluded	that	low	movement	variability	

during	practice	(Player	Load	≤	15%	CV)	and	high	exposure	to	game	

conditions	(≥	289	plays	over	the	season)	was	associated	with	a	higher	risk	

of	injury	(OR	=	8.04;	90%	CI:	2.39	-	27.03).	While	these	findings	provide	a	

good	initial	first	look	at	inertial	sensor	technology	in	American	football,	a	

more	thorough	evaluation	of	the	specific	ways	in	which	Player	Load	

describes	positional	movement	actions	is	required	to	determine	its	utility	

within	the	sport	and	its	ability	to	evaluate	individual	outputs	relative	to	the	

prescribed	external	training	load.		

	

In	an	attempt	to	more	specifically	capture	non-running	movement	such	as	

physical	impacts,	collisions,	and	changes	of	direction	derivations	of	the	

Player	Load	metric	have	also	been	created	(Boyd	et	al.,	2013;	Gabbett	2015).	

For	example,	2D	Player	Load	removes	the	vertical	vector	from	the	Player	

Load	equation,	allowing	for	quantification	of	activities	not	biased	towards	

upright	running	(Johnston	et	al.,	2014;	Gabbett	2015)	while	Player	Load	

Slow	records	lower	velocity	movements,	less	than	2	m/s,	reflecting	the	static	

exertion	and	contact	type	movements	that	collision	sport	athletes	perform	

(Boyd	et	al.,	2013).	While	these	metrics	have	been	investigated	in	collision-

based	sports	their	use	in	American	football	may	be	questioned.	For	example,	

2D	Player	Load	has	been	found	to	have	a	large	correlation	with	Total	Player	

load	(Gabbett,	2015),	suggesting	that	it	may	be	describing	a	similar	type	of	

global	training	activity	rather	than	anything	that	is	specific	to	this	unique	
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category	of	movements.	Player	Load	Slow	also	uses	a	component	of	the	GPS	

output	in	its	algorithm	and	was	developed	for	more	static	collisions,	such	as	

rucking	activity	in	Rugby	union	(McLaren	et	al.,	2016;	Roe	et	al.,	2016).	

These	factors	may	suggest	that	this	metric	may	be	either	inaccurate	for	

these	purposes	or	reflect	a	movement	unique	to	a	different	sport.	Both	of	

these	factors	may	limit	its	usefulness	in	the	description	of	movements	

performed	by	linemen	(OL	and	DL)	in	American	football.		

	

Other	attempts	have	been	made	to	quantify	collisions	through	the	

development	of	varying	algorithms	related	to	impacts.	Wellman	and	

colleagues	(2017)	quantified	impacts	during	12	NCAA	Division	I	football	

games	using	one	commercially	available	system	(GPSport).	Running	Backs	

were	found	to	sustain	the	most	severe	impacts	(>	10	g	force)	while	

Defensive	Tackles	sustained	the	heaviest	and	very	heavy	impacts	(7.1	–	10	g	

force)	compared	to	any	other	offensive	or	defensive	position	group	

(Wellman	et	al.,	2017).	However,	while	the	impact	algorithms	within	the	

commercial	systems	may	seem	promising	it	has	been	suggested	that	impact	

algorithms	created	for	one	sport	may	be	limited	in	their	ability	to	detect	

similar	activities	in	a	different	football	code	(Gastin	et	al.,	2014).	For	

example,	Gastin	and	colleagues	(2014)	evaluated	the	tackle	algorithm	of	one	

commercially	available	microtechnology	system	(Minimax	S5,	Catapult	

Innovations,	Scoresby,	Australia)	and	found	it	had	incorrectly	classified	82%	

of	the	events	detected	as	a	“tackle”	during	Australian	football	matches.	

These	impact	bands	may	also	have	a	high	correlation	with	other	

accelerometer	variables	(e.g.,	Player	Load)	and	not	therefore	may	not	be	
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adding	additional	understanding	beyond	that	already	attributed	to	other	

accelerometer	related	metrics.	Future	research	should	seek	to	develop	a	

clearer	understanding	of	how	these	types	of	accelerometer	variables	may	

reflect	the	requirements	of	these	actions	in	American	football	specifically	

any	positional	differences	with	regard	to	locomotor	and	collisions-based	

activities.	This	type	of	preliminary	research	would	benefit	the	scientific	

community	in	not	only	understanding	the	physical	demands	of	American	

football	but	also	the	relationships	between	various	accelerometer	variables	

within	collision-based	sports.	

	

2.7	Summary	
	

At	the	present	time	limited	evidence	exists	with	respect	to	the	physical	

demands	of	competition	and	training	in	American	football	at	the	NFL	level.	

To	date,	much	of	the	scientific	work	that	has	been	conducted	within	the	

sport	has	been	directed	at	describing	the	physical	characteristics	of	players	

on	a	standardized	test	battery	(NFL	Scouting	Combine).	Beyond	providing	a	

relatively	simplistic	understanding	of	the	general	physical	make	up	

associated	with	different	playing	positions	such	an	approach	offers	little	in	

the	way	of	a	detailed	understanding	of	the	physical	demands	imposed	on	

athletes	on	a	day	to	day	basis.		This	would	seem	to	suggest	that	there	is	a	

need	to	complete	research	that	investigates	the	demands	of	the	sport.	

Understanding	the	training	demands	within	the	sport	seems	particularly	

important	as	practice	represents	both	a	model	of	the	game	and	the	stimulus	

to	which	players	are	most	frequently	exposed.	Understanding	the	training	
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strategies	employed	by	coaches	when	preparing	a	team	for	competition	and	

the	potential	consequences	of	these	strategies	would	also	represent	a	useful	

basis	to	identify	potential	areas	to	improve	athlete	health	and	performance.	

	

The	systematic	approaches	to	periodization	and	planning	of	training	have	

been	previously	investigated	in	various	team	sports	(Moreira	et	al.,	2015;	

Malone	et	al.,	2015;	Ritchie	et	al.,	2016).	In	American	football,	such	

investigations	have	largely	been	focused	on	subjectively	describing	the	

resistance	training	periodization	approaches	of	strength	and	conditioning	

coaches	(Ebben	&	Blackard,	2001).	These	studies	suggest	that	coaches	

within	the	sport	seem	to	follow	a	form	of	systematic	periodization	

throughout	the	competitive	season.	No	specific	attempts	have,	however,	

been	made	to	describe	the	on-field	planning	strategies	of	coaches	in	the	

annual	cycle.	The	use	of	wearable	sensors	makes	it	possible	for	scientists	to	

study	training	demands	in	sport	and	objectively	quantify	the	periodization	

structure	that	coaches	may	follow.	Integrated	micro-technology	has	been	

previously	used	to	explore	training	demands	within	sport	(Cardinale	&	

Varely,	2017).	While	such	systems	have	been	used	in	collegiate	American	

football	to	explore	both	training	(DeMartini	et	al,	2011)	and	competition	

(Wellman	et	al.,	2016;	Wellman	et	al.,	2017)	there	is	little	methodological	

underpinning	associated	with	the	utility	of	such	measurements	and	what	

they	may	be	able	to	provide	regarding	training	demands	in	the	sport.	It	

would	therefore	seem	useful	to	establish	the	basis	for	the	use	of	such	

equipment	for	training	load	monitoring	in	American	football	by	first	

understanding	the	utility	of	wearable	technologies	to	capture	relevant	
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components	of	training.		This	data	may	be	useful	from	a	methodological	

perspective	for	both	scientists	and	practitioners	as	it	may	enable	more	

sport-specific	monitoring	strategies	to	be	developed	in	the	future.			
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CHAPTER	3	

	

AN	INVESTIGATION	INTO	THE	UTILITY	OF	

WEARABLE	INERTIAL	SENSORS	TO	

DIFFERENTIATE	FUNDAMENTAL	

MOVEMENTS	AND	ACTIVITIES	RELEVANT	

TO	AMERICAN	FOOTBALL	TRAINING	
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3.1	Introduction	
	

Activity	demand	requirements	of	team	sport	athletes	vary	greatly	

depending	on	both	sport	and	positional	demands	(Wisbey	et	al.,	2010;	

Cummins	et	al.,	2013;	Boyd	et	al.,	2013).	Aside	from	simple	locomotor	

activity	(e.g.,	walking,	jogging,	running),	team	sport	athletes	also	perform	

movements	such	as	accelerations,	decelerations,	change-of-direction,	

jumping,	and	collisions	with	other	players.	As	such,	objective	quantification	

of	these	movements	and	their	corresponding	intensities	is	required	for	a	

detailed	understanding	of	the	demands	associated	with	sports.	This	has	led	

to	the	development	of	player	monitoring	approaches	during	training	

sessions	(Halson,	2014).	

	

One	commonly	used	approach	for	quantifying	on	field	movement	demands	

is	Global	Positioning	tracking	(GPS)	(Halson,	2014;	Cardinale	&	Varley,	

2017).	While	GPS	monitoring	appears	to	be	most	useful	for	locomotor	

activities,	its	reliability	decreases	with	high	intensity	movements	taking	

place	in	small	spaces	(10-20m)	(Jennings	et	al.,	2010;	Cummins	et	al.,	2013).	

To	circumvent	such	a	limitation,	inertial	sensors	(accelerometer,	gyroscope,	

and	magnetometer)	have	been	included	in	player	tracking	devices	(i.e.	

integrated	micro	technology	sensors)	to	quantify	activities	taking	place	in	

smaller	spaces,	non-locomotor	actions	(e.g.,	jumping,	change-of-direction),	

and	physical	contact	with	other	players,	particularly	in	collision-based	

sports.	Such	inertial	sensor	measures	are	reliable	in	both	the	laboratory	

(Boyd	et	al.,	2011,	Nicolella	et	al.,	2018)	and	field	(Boyd	et	al.,	2011;	Meylan	
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et	al.,	2016)	settings.	These	data	are	useful	to	practitioners	when	attempting	

to	quantify	movements	besides	locomotor	activity,	particularly	in	collision-

based	sport	where	the	addition	of	physical	contact	influences	the	overall	

training	load	(Roe	et	al.,	2017).	

	

American	football	is	a	collision-based	sport	consisting	of	brief	bouts	of	high	

intensity	activity	followed	by	short	rest	intervals	used	to	set	up	the	next	play	

(Iosia	&	Bishop,	2008).	Research	during	collegiate	games	suggests	that	the	

physical	actions	of	players	are	specific	to	their	positional	demands	

(Wellman	et	al.,	2016	&	2017)	with	smaller,	“skill”	players	(e.g.,	Wide	

Receivers	and	Defensive	Backs)	performing	more	running	and	the	larger	

sized	linemen	(e.g.,	Offensive	and	Defensive	Linemen)	engaging	in	more	

frequent	impacts	as	they	collide	with	one	another.	While	this	research	

directly	quantifies	match	demands,	which	had	only	been	previously	

observed	up	until	that	point	in	the	scientific	literature	(Pincevero	&	Bompa,	

1997),	no	research	to	date	has	attempted	to	identify	the	ability	of	such	

technology	to	differentiate	between	different	American	football	activities.	

Therefore,	the	aim	of	this	study	was	to	understand	whether	or	not	inertial	

sensors	are	able	to	differentiate	between	a	series	of	fundamental	American	

football	activities.	Such	information	may	be	useful	to	practitioners	to	enable	

them	to	better	understand	how	specific	metrics	may	be	useful	in	the	

quantification	of	different	types	of	on-field	movements.	
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3.2	Methods	
	

3.2.1	Research	Approach	
	

The	objective	of	this	study	was	directed	at	understanding	the	utility	of	

inertial	sensors	for	identifying	different	American	football	training	activities.	

Six	commonly	performed	American	football	activities	were	selected	for	

evaluation	as	these	movements	represent	the	types	of	activities	performed	

by	players	during	training	(e.g.,	straight	line	sprinting,	backpedalling,	

decelerating,	change-of-direction,	and	collision).	Each	participant	was	

assigned	an	inertial	sensor	unit	containing	a	100	Hz	accelerometer,	

gyroscope,	and	magnetometer	(Minimax	S5,	Catapult	Innovations,	Scoresby,	

Australia).	These	units	were	worn	between	their	shoulder	blades	in	a	

custom	made	shirt,	provided	by	the	manufacturer,	during	all	activities.		

	

3.2.2	Participants	
	

Three	male	participants	(age:	37.1	±	1.5	y;	1.83	±	0.06	m;	body	mass:	95.9	±	

20.7	kg)	were	included	in	this	study.	Each	participant	was	healthy	and	free	

from	injury	at	the	time	of	the	study	and	currently	engaged	in	a	weekly	

training	program	(minimum	5x/week)	consisting	of	resistance	training,	

sprinting,	and	change-of-direction	activities.	Each	participant	works	as	a	

strength	and	conditioning	professional	in	high	level	American	football	and	is	

therefore	familiar	with	the	activities	selected	for	this	study.	All	participants	

were	informed	of	the	potential	risks	of	taking	part	in	this	study	and	were	

provided	a	written	informed	consent	form	prior	to	their	participation.	
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Ethical	approval	for	this	investigation	was	granted	by	a	local	university	

ethics	committee.		

	

3.2.3	Experimental	Design	
	

The	eight	positional	groups	within	American	football	perform	a	variety	of	

different	locomotor	and	non-locomotor	movements	based	on	their	tactical	

demand	(Wellman	et	al.,	2015	&	2016).	As	such,	six	different	exercises	were	

selected	to	represent	some	of	the	fundamental	activities	performed	by	each	

positional	group:	36.6	m	(40	yard)	sprint	(Forward	Sprint),	9.1	m	(10	yard)	

backpedal	(Backpedal),	9.1	m	sprint	with	a	90	degree	turn	(Sprint	with	

Turn),	9.1	m	backpedal	–	decelerate	–	9.1	sprint	(BDS),	18.3	m	(5-10-5)	pro	

agility	shuttle	(Pro	Agility),	Sled	Drive	(Collision).	These	actions	have	been	

previously	observed	in	game	play	(Pincevero	and	Bompa,	1997)	and	also	

make	up	movements	that	are	tested	during	the	NFL	Scouting	Combine,	as	a	

means	of	identifying	future	talent	(Robbins,	2010).		

	

Exercises	were	classified	as	being	either	‘simple’	or	‘complex’	and	grouped	

into	one	of	three	movement	categories	(Linear,	Change-of	-Direction,	

Collision)	(Table	3.1).	The	rationale	for	such	a	grouping	is	based	on	the	

complexity	of	the	task	from	a	movement	perspective,	whereby	a	task	

including	a	change-of-direction	is	more	complex	and	has	the	potential	to	

require	a	different	demand	than	a	task	consisting	of	only	linear	based	

movement.	These	six	activities	were	performed	in	the	following	order:	(1)	

Forward	Sprint;	(2)	Backpedal;	(3)	Sprint	with	Turn;	(4)	BDS;	(5)	Pro	
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Agility;	(6)	Collision.	Participants	were	asked	to	perform	each	repetition	for	

a	maximal	effort	and	were	provided	a	5	min	recovery	period	between	each	

activity.	

	

Table	3.1.	Details	of	the	American	football	activity	classification	used	in	the	
current	investigation.	
	

Activity	 Classification	 Movement	Category	

Forward	Sprint	 Simple	 Linear	

Back	Pedal	 Simple	 Linear	

BDS	 Complex	 Linear	

Sprint	with	Turn	 Simple	 Change-of-Direction	

Pro	Agility	 Complex	 Change-of-Direction	

Sled	Drive	 Simple	 Collision	

	

	

Forward	Sprint	

The	36.5	m	sprint	represents	a	simple	measure	of	linear	speed	and	is	one	of	

the	six	performance	tests	completed	at	the	NFL	Scouting	Combine.	Five	36.5	

m	sprints	were	performed	starting	from	a	two-point	staggered	stance	with	a	

self-selected	leg	as	the	forward	leg.	Participants	were	provided	3	min	of	

recovery	between	each	repetition.	
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Backpedal	

Similar	to	the	36.6	m,	the	9.1	m	backpedal	was	used	as	a	measure	of	a	simple	

linear	movement,	however	performed	in	the	reverse	direction.	This	

movement	was	chosen,	as	it	is	specific	to	the	type	of	activity	a	defensive	

player	(e.g.,	Linebacker)	would	make	during	a	play.	Participants	began	in	an	

athletic	base	stance	and	performed	a	maximal	backpedal	for	9.1	m.	Five	

backpedal	repetitions	were	performed	with	3	minutes	recovery	between	

each.	

	

Sprint	with	Turn	

The	sprint	with	a	right	turn	was	classified	as	simple	change-of-direction	

activity	as	it	only	consisted	of	one	change-of-direction.	This	exercise	was	

chosen	as	it	mimics	similar	route	running	movements	that	a	Wide	Receiver	

or	Tight	End	might	perform	in	a	game.	During	the	sprint	with	right	turn,	

participants	began	in	a	two-point	staggered	stance	with	a	self-selected	leg	as	

the	forward	leg.	Participants	were	asked	to	sprint	forward	for	9.1	m	and	

then	perform	a	90-degree	turn	either	left	or	right.	Participants	performed	3	

repetitions	in	both	the	left	and	right	directions	and	were	provide	3	minutes	

of	recovery	between	each.	

	

BDS	

The	backpedal-decelerate-sprint	exercise	represents	the	stop-and-start	

activity	of	several	positional	groups	in	American	football	and	was	classified	

in	this	study	as	a	complex	linear	movement.	Participants	began	in	an	athletic	

base	stance,	backpedaled	9.1	m,	decelerated	themselves,	and	then	sprinted	
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forward	9.1	m.	Each	of	the	3	repetitions	was	followed	by	3	minutes	of	

recovery.	

	

Pro	Agility	

The	18.3	m	pro	agility	shuttle	is	a	commonly	performed	change-of-direction	

test	in	American	football	and	represents	one	of	the	6	physical	output	

measures	tested	at	the	NFL	Scouting	Combine.	Given	the	high	number	of	

change-of-directions	per	repetition	and	the	intensity	of	decelerating	and	

accelerating	this	task	was	classified	as	a	complex	change-of-direction	

movement.	Participants	began	with	their	hand	on	the	line	in	a	3-point	stance	

and	started	by	sprinting	4.6	m	either	right	or	left,	decelerating	themselves	

and	touching	the	line,	sprinting	back	9.1	m,	decelerate	and	touching	the	line,	

and	then	sprinting	back	4.6	m	to	the	original	start	line.	Participants	

performed	3	repetitions	starting	to	the	right	side	and	3	repetitions	starting	

to	the	left	side	with	3	minutes	of	rest	between	each	repetition.	

	

Sled	Drive	(Collision)	

The	tackle	sled	drive	was	used	to	represent	the	collision	type	of	activity	

performed	during	games.	Participants	began	in	a	3-point	stance	and	

exploded	out	of	their	stance	to	drive	their	shoulder	into	the	tackle	sled	

(Rogers	Athletic	Co.)	and	then	proceeded	to	drive	the	sled	forward	for	5	

seconds,	to	mimic	play	duration	(Rhea	et	al.,	2006;	Iosia	&	Bishop,	2008),	

before	ending	their	rep	at	the	cue	of	the	primary	researcher.	Each	of	the	3	

repetitions	was	followed	by	a	3-minute	recovery.	To	capture	the	intensity	of	

the	collision,	an	additional	inertial	sensor	unit	was	placed	onto	the	tackle	
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sled,	using	a	custom-made	shirt	from	the	manufacturer,	in	the	same	position	

it	would	be	in	for	a	human.	A	complex	collision	activity	was	not	performed	

in	this	study	due	possible	risk	of	injury	to	the	participants	when	doing	a	live	

tackling	drill.	

	

Inertial	Sensor	Variables	

Three	inertial	sensor	variables	were	used	to	quantify	exercise	activity	

(Minimax	S5,	Catapult	Innovations,	Scoresby,	Australia).	Total	Player	Load	

(PL)	was	used	to	quantify	the	volume	of	activity	performed	in	each	of	the	

movements.	PL	has	been	used	to	track	movements	during	a	variety	of	team	

sport	activities	(Boyd	et	al.,	2011;	Van	Iterson	et	al.,	2017)	and	has	been	

found	to	have	a	very	large	correlation	(r	=	.868)	with	total	running	distance	

(Polglaze	et	al.,	2015).		Inertial	movement	analysis	(IMA)	was	used	to	

quantify	the	frequency	of	accelerations	occurring	in	four	directions	

(forward,	backward,	left,	and	right)	above	3m�s-2.	IMA	been	used	to	

represent	intense	movements	taking	place	in	small	spaces	during	team	

sport	competition	(Meylan	et	al.,	2016;	Peterson	et	al.,	2017)	and	may	be	a	

useful	metric	for	identifying	non-locomotor	tasks	inherent	to	American	

football	(e.g.,	changes	of	direction).	Finally,	a	count	of	the	number	of	Impacts	

was	quantified	as	any	discrete	acceleration	actions	taking	place	over	5g.	

Given	the	collision-based	nature	of	the	sport,	a	count	of	impacts	is	useful	for	

quantifying	the	demands	placed	on	the	larger	players	who	frequently	collide	

with	one	another.	
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3.2.4	Statistical	Analysis	
	

Data	are	presented	as	mean	±	SD.	Comparisons	between	movement	

activities	were	made	by	calculating	a	t-statistic	(Difference/SE)	for	the	three	

inertial	sensor	variables.	This	t-statistic	was	converted	to	a	probability	via	

the	corresponding	t-distribution	(Barrett	et	al.,	2018).	The	magnitude	of	

difference	between	movement	activities	was	interpreted	in	reference	to	

threshold	values	specific	to	each	inertial	sensor	variable,	represented	as	1	*	

between-subject	standard	deviation.	Differences	were	reported	along	with	

95%	CI	and	interpreted	using	a	magnitude-based	inference	approach	

whereby	differences	were	“positive”,	“negative”,	or	“trivial”.	The	probability	

of	the	observed	effects	was	assessed	as	being	“possibly”	(25-75%),	“likely”	

(75-95%),	“very	likely”	(95-99.5%),	and	“most	likely”	(>	99.5%)	(Batterham	

&	Hopkins,	2006).	In	the	event	that	the	probability	exceeded	5%	in	both	the	

positive	and	negative	directions,	effects	were	reported	as	“unclear”,	

indicating	that	no	discernable	difference	could	be	detected	(Batterham	&	

Hopkins,	2006).	All	statistical	analysis	was	performed	in	R	statistical	

software	(Version	3.3.4).	

	

3.3	Results	
	
	
The	mean	±	SD	for	each	drill	are	displayed	in	Table	3.2.	During	the	Forward	

Sprint,	PL	was	most	likely	greater	than	Collision,	BDS,	Back	Pedal,	Sprint	

with	Turn,	and	Pro	Agility	activities.	Additionally,	BDS	(complex	linear	task)	
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had	a	likely	larger	PL	than	the	Collision	activity	and	a	possibly	larger	PL	than	

Back	Pedal	(Figure	3.1).			

	

	

Activity	 Classification	 Movement	
Category	

Player	Load	
(au)	

IMA	 Impacts	

Forward	
Sprint	

Simple	 Linear	 9.46	±	1.79	 0.07	±	0.26	 0	±	0	

	 	 	 	 	 	
Back	Pedal	 Simple	 Linear	 2.48	±	0.69	 0.07	±	0.26	 0	±	0	

	 	 	 	 	 	
BDS	 Complex	 Linear	 5.23	±	0.53	 0.33	±	0.5	 0	±	0	
	 	 	 	 	 	

Sprint	with	
Turn	

Simple	 Change	of	
Direction	

4.68	±	0.59	 0.83	±	0.38	 0.06	±	0.24	
	

	 	 	 	   
Pro	Agility	 Complex	 Change	of	

Direction	
4.42	±	0.51	 1.44 ± 0.7	 0.06 ± 0.24	

	 	 	 	   
Collision	 Simple	 Collision	 2.15	±	0.86	 0.28 ± 0.46	 1.33 ± 1.57	

	

Table	3.2.	Mean	±	SD	of	Player	Load	(au),	IMA,	and	Impacts	occurring	
during	fundamental	American	football	movements.	
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The	Pro	Agility	(complex	change-of-direction)	exercise	was	observed	to	

have	the	highest	IMA	compared	to	all	movements.	IMA	during	Pro	Agility	

was	observed	to	be	most	likely	larger	than	both	Back	Pedal	and	Forward	

Sprint	activities	and	very	likely	larger	than	the	Collision	activity.	Sprint	with	

Turn	(simple	change-of-direction)	had	a	possibly	larger	IMA	than	BDS	

(Figure	3.2).	

	

	

Figure	3.1.	Mean	difference	±	95%	CI	for	Player	Load	(au)	occurring	
different	fundamental	American	football	activities.	Grey	region	
represents	a	trivial	difference.	Colors	of	the	differences	represent	the	
likelihood	of	the	observed	effect:	Green	(Possibly:	25-75%);	Black	
(Likely:	75-95%);	Red	(Very	Likely:	95-99.5%);	Blue	(Most	Likely:	>	
99.5%).		
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The	Collision	activity	had	the	largest	impacts	of	all	movement	activities	

(very	likely).	While	the	two	change-of-direction	activities	(Pro	Agility	and	

Sprint	with	Turn)	registered	a	small	amount	of	impacts,	their	differences	

were	observed	to	be	trivial	relative	to	all	other	movement	activities	besides	

Collision	(Figure	3.3).	Comparisons	between	Back	Pedal	and	BDS,	Back	

Pedal	and	Forward	Sprint,	and	BDS	and	Forward	Sprint,	could	not	be	made	

Figure	3.2.	Mean	difference	±	95%	CI	for	IMA	occurring	different	
fundamental	American	football	activities.	Grey	region	represents	a	trivial	
difference.	Colors	of	the	differences	represent	the	likelihood	of	the	
observed	effect:	Green	(Possibly:	25-75%);	Black	(Likely:	75-95%);	Red	
(Very	Likely:	95-99.5%);	Blue	(Most	Likely:	>	99.5%).		
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as	neither	of	these	movement	types	produced	impact	loads	and	are	

therefore	not	presented.	

	
	

	
	

	

	
	

3.4	Discussion	
	

The	aim	of	the	present	study	was	to	evaluate	whether	inertial	sensors	were	

able	to	differentiate	between	various	football	specific	training	activities.	

Figure	3.3.	Mean	difference	±	95%	CI	for	Impacts	occurring	different	
fundamental	American	football	activities.	Grey	region	represents	a	trivial	
difference.	Colors	of	the	differences	represent	the	likelihood	of	the	
observed	effect:	Green	(Possibly:	25-75%);	Black	(Likely:	75-95%);	Red	
(Very	Likely:	95-99.5%);	Blue	(Most	Likely:	>	99.5%).		
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Three	inertial	sensor	variables	were	used	to	quantify	activity	during	six	

American	football	exercises.	These	findings	indicate	that	PL	was	larger	

during	the	simple	linear	activity	(Forward	Sprint)	compared	to	all	other	

movement	activities	with	differences	ranging	from	possibly	to	very	likely.	

Conversely,	the	change-of-direction	activities	(Pro	Agility	and	Sprint	with	

Turn)	were	observed	to	have	larger	effects	compared	with	other	

movements.	Specially,	IMA	during	the	Pro	Agility	ranged	from	likely	to	very	

likely	larger	than	Forward	Sprint,	BDS,	and	Tackle	Sled	Drive.	The	difference	

in	IMA	between	the	two	change-of-direction	exercises,	Pro	Agility	and	Sprint	

with	Turn,	was	possibly	trivial.	Finally,	the	impacts	metric	was	found	to	be	

very	likely	large	in	the	Collision	activity	relative	to	all	other	activities.	The	

findings	suggest	that	the	inertial	sensor	variables	used	in	this	study	are	able	

to	detect	differences	in	American	football	exercises.	Specially,	the	PL	

variable	appears	to	be	influenced	by	linear	running	actions,	to	a	greater	

extent.	As	expected,	change-of-direction	activities	appear	to	register	greater	

amounts	of	IMA	and	the	impacts	metric	is	influenced	most	by	collision-

based	actions.	As	such,	these	sensors	have	potential	to	be	used	for	

quantifying	the	on-field	demands	of	athletes	in	the	sport	of	American	

football,	during	real	training	activities.	

	

The	ability	of	Player	Load	to	quantify	on	field	activities	has	been	previously	

evaluated	in	Australian	football	(Boyd	et	al.,	2011).	However,	no	study	has	

evaluated	utility	of	this	metric	to	detect	differences	in	American	football	

activities.	We	found	PL	to	be	most	likely	larger	in	the	Forward	Sprint	activity	

compared	to	all	other	activities.	Additionally,	BDS	was	possibly	larger	than	
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the	Back	Pedal	and	likely	larger	than	the	Collision	exercise.	These	findings	

share	similarities	with	previous	research	conducted	by	Polglaze	and	

colleagues	(2015)	who	observed	a	large	correlation	between	PL	and	running	

(Total	Distance)	in	field	hockey	athletes.	As	such,	the	PL	metric	may	be	

useful	for	quantifying	American	football	locomotor	movements,	particularly	

in	position	groups	such	as	WR	and	DB,	who	perform	larger	amounts	of	

running	(Wellman	et	al.,	2016).	Additionally,	even	though	PL	was	most	

sensitive	to	running-based	movements,	other	football	related	activities	such	

as	COD	and	activities	involving	collisions	also	affected	this	metric	(Table	

3.1).	This	may	be	due	to	the	position	of	these	units	on	the	torso,	making	

them	sensitive	to	a	broad	range	of	activities	(i.e.	any	movement	that	may	

result	in	a	change	in	position	of	the	torso)	(Nedergaard	et	al.,	2017).	

Although	this	may	seem	problematic	from	a	scientific	perspective	of	

identifying	specific	discrete	movements,	it	remains	useful	from	a	practical	

standpoint	for	those	practitioners	interested	in	quantifying	a	global	measure	

of	training	load	and	evaluating	how	this	load	impacts	the	players	within	the	

sport.	

	

Change-of-direction	movements	are	frequently	observed	during	American	

football	(Pincevero	&	Bompa,	1997)	and	are	a	key	component	of	the	game	as	

offensive	players	attempt	to	evade	defensive	players	and	defensive	players	

give	chase.	Although	IMA	has	been	a	suggested	metric	for	quantifying	such	

directional	type	movements,	limited	research	exists	regarding	its	utility	

within	the	sport.	The	metric	has	been	used,	both	in	basketball	(Petersen	et	

al,	2017)	and	field	hockey	(Holme,	2015)	to	provide	a	count	of	high	intensity	
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activities.	In	women’s	soccer,	IMA	has	been	found	to	be	a	reliable	measure	of	

game-to-game	“explosive	actions”	(Meylan	et	al.,	2016).	This	study	is	the	

first	to	evaluate	this	metric	in	the	sport	of	American	football.	The	findings	

indicate	that	IMA	was	most	sensitive	to	change-of-direction	movements	(Pro	

Agility	and	Sprint	with	Turn)	compared	to	other	movement	types.	In	

particular,	IMA	differences	between	Pro	Agility	and	other	movement	types	

ranged	from	likely	to	very	likely	with	the	exception	of	Sprint	with	Turn,	

where	the	difference	was	seen	to	be	possibly	trivial.	These	findings	are	

relevant	to	the	sport	of	American	football	as	a	means	of	quantifying	high	

intensity	movements	taking	place	in	small	spaces,	where	GPS	reliability	has	

been	shown	to	be	poor	(Cummins	et	al,	2013).	For	example,	players	that	

play	on	the	offensive	and	defensive	line,	perform	a	less	running	than	other	

position	groups	due	to	their	tactical	requirements	of	blocking	and	tackling	

(Pincevero	&	Bompa,	1997;	DeMartini	et	al.,	2011;	Wellman	et	al.,	2017).	It	

is	possible	that	a	metric	such	as	IMA	may	be	useful	to	practitioners	looking	

to	quantify	the	movement	demands	of	players	within	these	position	groups.	

	

Collisions	comprise	a	large	part	of	the	sport	of	American	football.	Therefore,	

quantification	of	such	activity	is	critical	for	practitioners	in	attempting	to	

understand	the	physical	load	placed	on	athletes	during	training.	The	use	of	

inertial	sensors	for	quantifying	impacts	has	been	previously	evaluated	in	

professional	Rugby	League	and	semi-professional	Rugby	Union	athletes	

(Gabbet	et	al.,	2010;	Gabbett,	2015;	Wundersitz	et	al.,	2015).	Research	

evaluating	the	amount	and	magnitude	of	impacts	taking	place	in	collegiate	

football	matches	has	indicated	that,	compared	to	other	offensive	position	
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groups,	running	backs	are	exposed	to	more	severe	impacts	(>	10	g)	while	

the	defensive	linemen	engage	in	the	greatest	amount	of	heavy	and	very	high	

impacts	(7.1	–	10	g),	compared	to	other	defensive	position	groups	(Wellman	

et	al.,	2017).	However,	this	type	of	impact	metric	has	yet	to	be	explored	in	

American	football	to	determine	if	it	is	able	to	pick	up	these	types	of	actions.	

The	findings	of	this	current	study	indicate	that	the	collision	activity	had	very	

likely	larger	impacts	than	all	other	movement	activities.	Likely	trivial	

differences	in	impacts	were	found	between	the	two	change-of-direction	

movements	(Sprint	with	Turn	and	Pro	Agility)	and	the	three	linear	running	

movements	(Forward	Sprint,	Back	Pedal,	and	Backpedal,	Decelerate,	and	

Sprint).	These	findings	are	interesting	given	that	the	change-of-direction	

movements	did	not	include	physical	contact.	This	may	be	due	to	the	

threshold	for	impacts	(>5g)	being	too	low	and	thus	miss-classifying	non-

collision	actives	performed	at	a	high	intensity.	Alternatively,	this	may	be	an	

issue	related	to	the	way	impacts	are	calculated	within	the	manufacturers	

software.	This	measure	was	originally	devised	for	the	sport	of	Rugby	

(Gabbet	et	al.,	2010).	Therefore,	the	impacts	metric	has	been	shown	to	

misclassify	tackling	events	in	other	collision	sports,	such	as	Australian	

football	due	to	differences	in	tackling	technique,	(Gastin	et	al.,	2014).	As	

such,	it	is	possible	that	the	impacts	measure	is	not	specifically	calibrated	to	

American	football	tackling	technique	and	may	capture	non-impact	activities	

that	are	high	intensity	in	nature	(e.g.,	change	of	direction).	Practitioners	in	

American	football	should	be	aware	that,	while	the	impacts	variable	was	

most	sensitive	to	collision	type	activities,	during	the	course	of	a	training	

session	it	might	also	quantify	other	high	intensity	actions.	As	such,	impacts	
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may	provide	a	false	count	of	the	amount	of	physical	collisions	taking	place	in	

a	given	session.	These	findings	indicate	that	the	impacts	variable	can	be	

useful	for	providing	a	measure	of	high	intensity	during	a	training	session	but	

is	not	always	specific	to	physical	collisions,	per	se,	as	it	appears	to	register	

units	during	high	intensity	non-contact	actives.	

	

3.5	Conclusions	
	

This	study	was	the	first	to	evaluate	the	use	inertial	sensors	for	

differentiating	between	various	American	football	activities.	Findings	

indicated	that	the	three	inertial	sensor	variables	evaluated	were	sensitive	to	

different	types	of	movements	and	may	therefore	provide	practitioners	with	

a	useful	way	of	differentiating	training	activities	in	the	applied	setting.	This	

study,	however,	was	conducted	on	a	non-elite	population.	It	is	possible	that	

elite	level	athletes	would	perform	such	movements	with	greater	amounts	of	

acceleration	forces	and	perhaps	more	refined	movement	strategies.	

Additionally,	the	movements	tested	within	this	study	are	a	small	subset	of	

the	types	of	actions	that	athletes	in	American	football	may	perform	during	

training	or	competition.	It	is	possible	that	the	data	generated	from	these	

movements	become	noisier	in	a	training	environment	where	the	context	of	

how	these	actions	are	performed	is	influenced	by	a	number	of	factors	(e.g.,	

tactical	demand,	opposition).	

	

	While	the	finding	of	PL	being	most	influenced	by	linear	running	movements	

is	supported	by	previous	literature	in	other	sports	(Polglaze	et	al.,	2015),	
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this	study	is	the	first	to	show	the	utility	of	IMA	for	measuring	change-of-

direction	actions.	As	such,	IMA	may	have	high	relevance	to	positional	groups	

that	perform	less	locomotor	activity	(e.g.,	offensive	and	defensive	linemen)	

as	more	commonly	used	measures	in	team	sport,	such	as	GPS,	may	not	be	

able	to	adequately	capture	these	demands	(Cummins	et	al.,	2013).	Finally,	

while	the	impacts	variable	was	sensitive	to	the	collision-based	movement	in	

this	study,	a	low	amount	of	impacts	were	detected	during	change-of-

direction	activities.	As	such,	practitioners	should	be	aware	that,	in	practice,	

this	measure	might	misclassify	some	high-intensity	activities	(e.g.,	change	of	

direction)	as	impacts,	providing	a	false	count	of	collision	in	a	training	

session.	Collectively,	the	three	inertial	sensor	measures	used	in	this	study	

should	help	practitioners	working	in	American	football	quantify	training	

demands	and	aid	in	informing	daily	training	habits.	
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CHAPTER	4	

	

IS	SESSION	RATING	OF	PERCEIVED	

EXERTION	A	VIABLE	MEASURE	OF	

TRAINING	DEMANDS	IN	AMERICAN	

FOOTBALL?	
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4.1	Introduction	
	

Monitoring	strategies	have	been	employed	in	team	sport	to	evaluate	the	

athletes’	response	to	training	in	an	effort	to	improve	performance	and	

reduce	injury	risk	(Halson,	2014).	Within	the	scope	of	athlete	monitoring,	

scientists	have	suggested	that	training	load	be	differentiated	in	two	ways:	

internal	training	load	and	external	training	load	(Lambert		&	Borresen,	

2010;	Halson,	2014).	External	training	load	refers	to	the	physical	output	of	

the	athletes	(e.g.,	distance,	speed)	(Halson,	2014)	and	is	frequently	

quantified	in	team	sport	athletes	through	the	use	of	integrated	micro	

technology	sensors	(GPS,	accelerometer,	gyroscope,	magnetometer)	

(Cardinale	&	Varley,	2017).	Conversely,	internal	training	load	represents	the	

physiological	and	psychological	stress	imposed	on	the	athlete	from	a	given	

training	session	(Lambert	&	Borresen,	2010;	Halson	2014).	The	two	most	

commonly	used	measures	of	internal	training	load	are	Heart	Rate	and	sRPE.		

When	measured	together,	external	and	internal	training	loads	have	been	

proposed	as	a	load-monitoring	model	for	team	sport	as	they	provide	

practitioners	with	an	overview	of	the	training	process	and	outcomes	

(Impellizzeri	et	al.,	2005).	

	

Although	sports	science	practitioners	have	adopted	this	training	load	model,	

its	applicability	to	team	sport	athletes	is	not	without	limitation.	Originally,	

this	conceptual	approach	was	pioneered	in	endurance	sport	where	the	

external	load	is	generally	“fixed”	across	athletes	(e.g.,	individuals	will	run	or	

ride	a	specific	distance	at	a	specific	pace),	thereby	allowing	the	internal	load	
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to	be	easily	quantified	for	each	athlete	using	methods	such	as	HR	and	

Lactate	(Borg	et	al.,	1987;	Foster,	1998).		Further,	exercise	in	endurance	

sport	is	unimodal	(e.g.,	bike,	run,	etc.)	making	quantification	of	training	

loads	less	complex.	Conversely,	team	sport	athletes	perform	a	diverse	range	

of	movement	demands	at	varying	intensities	and	are	also	required	to	cope	

with	high	technical/tactical	demands,	which	may	influence	the	stress	they	

are	placed	under	(Farrow	et	al.,	2008).	Additionally,	the	training	load	in	

team	sport	is	prescribed	by	the	coach	and	is	directed	at	the	team	as	a	whole,	

which	may	lead	to	individualized	physical	responses	from	the	athletes	

across	the	club	(Morgans	et	al.,	2014).		This	relationship	has	the	potential	to	

be	further	compounded	in	collision-based	sports	where	physical	contact	

with	other	players,	in	addition	to	the	locomotor	requirements,	may	alter	the	

stress	placed	on	an	individual	(Weston	et	al.,	2014)	(e.g.,	a	running	back	

sprinting	forward	and	contacting	a	linebacker	to	block	them	from	making	a	

tackle).	For	these	reasons,	collision	sport	athletes	training	on	the	same	team,	

in	the	same	session,	may	experience	a	large	variation	in	the	internal	training	

load	response	based	on	their	unique	physical	demands.		

	

Due	to	its	limited	technological	requirements	and	ease	of	data	collection,	

sRPE	has	been	favored	as	an	internal	training	load	measure	for	those	

working	in	team	sport	(Impellizierri	et	al.,	2004).	Initially,	it	was	believed	

that	this	method	would	not	provide	an	accurate	evaluation	of	training	load	

for	collision-based	team	sport	athletes’	due	to	the	intermittent	nature	of	

activity	and	the	various	non-running	activities	(e.g.,	collisions	and	change	of	

direction)	performed	(Lambert	&	Borresen,	2010).	However,	recent	
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research	has	indicated	that	sRPE	may	provide	a	useful	measure	of	the	

training	load	in	AFL	matches	(Scott	et	al.,	2013;	Weston	et	al.,	2014),	AFL	

training	(Scott	et	al.,	2013;	Johnston	et	al.,	2015),	and	Rugby	League	(Lovell	

et	al.,	2013)	training.	The	individual’s	sRPE	is	frequently	multiplied	by	

session	duration	(minutes)	to	achieve	the	sRPE	Training	Load	(Foster	et	al.,	

1999).	Large	to	very	large	correlations	(r	=	.65	-	.84)	have	been	found	

between	sRPE	Training	Load	and	absolute	measures	of	external	training	

load	quantified	by	integrated	microtechnology	sensors	(e.g.,	Total	Distance,	

Total	High-Speed	Distance,	and	Player	Load)	(Scott	et	al.,	2013).	However,	

this	correlation	has	been	shown	to	only	be	small	when	sRPE	Training	Load	

is	compared	to	measures	of	intensity	during	Rugby	skills	training	(e.g.,	high-

speed	running/min	(r	=	.23	±	.22),	body	load/min	(r	=	.23	±	.23))	(Lovell	et	

al.,	2013).	This	may	indicate	that	sRPE	is	more	influenced	by	total	training	

duration	rather	than	the	actual	intensity	or	density	of	the	session	or,	

perhaps,	the	relationship	between	the	two	variables	is	due	to	mathematical	

coupling	(McLaren	et	al.,	2018).	Alternatively,	these	findings	may	indicate	

that	a	gestalt	measure,	such	as	sRPE	may	not	adequately	represent	the	

complexity	of	training	demands	(Hutchinson	et	al.,	2006).		The	highly	

individual	nature	of	the	perceptual	sensations	that	may	be	experienced	by	

different	athletes,	either	as	a	consequence	of	their	specific	movement	and	

technical/tactical	demands	or	their	own	internal	processing	of	any	exercise	

stimulus,	may	limit	the	appropriateness	of	anything	but	bespoke	

interpretation	of	the	response.		
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American	football	is	a	team	sport	characterized	by	brief	bouts	of	intense	

activity	and	collisions	followed	by	a	short	rest	interval	(Iosia	&	Bishop,	

2008).	Previous	research	has	indicated	that	the	both	the	physical	and	

psychological	demands	of	the	sport	are	influenced	by	the	positional	

requirements	of	the	players	(Cox	&	Sang,	1995;	Wellman	et	al.,	2016;	

Wellman	et	al.,	2017;	Chapter	5).	At	the	present	time,	no	scientific	evidence	

exists	on	the	internal	load	of	National	Football	League	(NFL)	athletes	during	

training	or	how	these	two	training	load	constructs	may	be	linked	within	the	

sport.	The	relationship	between	these	two	training	load	constructs	would	

help	provide	an	understanding	how	the	athlete’s	internal	responses	are	

impacted	by	the	physical	demands	of	training.	Therefore,	the	aim	of	this	

study	is	to	evaluate	the	relationship	between	sRPE	and	constructs	of	

external	training	load	during	American	football	training.	Given	the	variety	of	

inter-individual	demands	in	the	sport,	a	secondary	aim	was	to	explore	

individual	differences	in	the	internal	training	load	of	athletes	during	the	

same	training	sessions.	

	

4.2	Methods	

	

4.2.1	Research	Approach	
	

This	study	sought	to	understand	the	relationship	between	markers	of	

external	training	load	and	sRPE	in	American	football	players.	The	club	

performed	a	total	of	47	training	sessions	during	the	17-week	in-season	

period.	In	order	to	ensure	that	players	were	sufficiently	educated	on	using	
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the	sRPE	scale,	only	those	players	who	were	with	the	club	during	the	5.5-

week	pre-season	period	were	eligible	for	inclusion	in	the	in-season	data.	

During	the	pre-season	players	were	briefed	on	what	sRPE	was	and	how	to	

use	the	sRPE	scale.		Players	were	taught	to	rate	the	session	using	the	verbal	

anchor	question,	“How	difficult	did	I	feel	today’s	session	was	compared	to	the	

hardest	session	I’ve	ever	performed?”		Only	players	who	completed	at	least	

70%	(33	session)	of	all	in-season	training	sessions	were	retained	for	the	

final	analysis.	All	sessions	were	directed	by	the	coaching	staff	and	were	

designed	to	prepare	the	team	for	the	upcoming	weekly	competition.		

	

4.2.2	Participants	
	

Thirty	participants	belonging	to	one	NFL	team	participated	in	the	study	

(mean	±	SD;	age:	24	±	2	y;	height:	1.88	±	0.06	m;	body	mass:	109.4	±	19.9	

kg).	Participants	were	classified	by	the	coaching	staff	into	one	of	seven	

positional	groups:	Defensive	Back	(DB;	n	=	4),	Defensive	Line	(DL;	n	=	3),	

Linebackers	(LB;	n	=	5),	Offensive	Line	(OL;	n	=	8),	Quarterback	(QB;	n	=	1),	

Running	Back	(RB;	n	=	1),	Tight	End	(TE;	n	=	2),	and	Wide	Receiver	(WR;	n	=	

6).	These	positional	groups	were	further	categorized	into	their	respective	

squad,	Offense	(OFF:	OL,	QB,	RB,	TE,	WR)	and	Defense	(DEF:	DB,	DL,	LB).	

This	study	was	approved	by	a	local	ethics	committee	and	permission	to	

publish	was	granted	by	the	NFL	club.	
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4.2.3	Experimental	Design	
 

Internal	training	load	was	quantified	using	the	sRPE	method	(Foster,	1998;	

Foster	et	al.,	2001).	Participants	were	asked	to	rate	how	hard	they	felt	the	

training	session	was	on	a	1-10	scale	approximately	15-30	minutes	following	

the	completion	of	training	(Foster,	1998;	Impellizzeri	et	al.,	2004).	This	1-10	

scale	differed	from	the	commonly	used	CR10	scale	proposed	by	Foster	

(1998)	in	that	the	scale	is	anchored	at	“5”	with	the	verbiage	“moderate”.	As	

such,	the	1-10	scale	represents	a	linear	scale	of	perceptual	responses	while	

the	CR10	scale	is	exponential	(“5”	being	anchored	to	the	verbiage	of	“hard”),	

reflecting	its	relationship	to	lactate	response	during	cardiovascular	exercise	

(Foster,	1998).	Given	the	intermittent	nature	of	the	American	football	(Rhea	

et	al.,	2006)	the	player’s	have	a	lack	of	understanding	of	maximum	

cardiovascular	training	and,	therefore,	were	more	comfortable	working	off	

of	a	1-10	scale	that	presented	the	anchors	in	a	fashion	that	made	logical	

sense.	A	proprietary	web	application	was	designed	to	collect	each	player’s	

individual	sRPE	response	following	each	training	session.	This	data	was	

then	exported	from	the	application	for	further	analysis.	The	use	of	sRPE	for	

monitoring	internal	training	load	has	been	validated	against	heart	rate	and	

lactate	responses	in	endurance	training	and	Canadian	football	training	as	a	

means	of	internal	training	load	monitoring	(Foster	et	al.,	2001;	Coutts	et	al.,	

2009;	Clarke	et	al.,	2013).	While	sRPE	is	often	multiplied	by	the	duration	of	

training	minutes	to	obtain	a	sRPE	Training	Load	value	(Foster	et	al.,	2001),	

we	chose	to	only	analyze	the	single	sRPE	value.	The	rationale	for	using	the	
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single	sRPE	value	was	based	on	the	fact	that	the	training	duration	is	a	

“constant”	that	influences	all	other	measured	training	load	variables.	

Therefore,	any	correlation	between	sRPE	Training	Load	and	other	external	

training	load	measures	may	simply	determine	the	mathematical	coupling	of	

variables	influenced	by	time	as	opposed	to	identifying	meaningful	

relationships	(McLaren	et	al.,	2018).	

	

On-field	training	activities	were	quantified	through	the	use	of	integrated	

micro	technology	units	(Minimax	S5,	Catapult	Innovations,	Scoresby,	

Australia).	Athletes	wore	the	units	between	their	shoulders	blades	in	a	

custom-made	pouch	provided	by	the	manufacturer.	Players	were	provided	

their	own	unit	for	the	duration	of	the	season	to	ensure	inter-unit	reliability	

(Rampinini	et	al.,	2015).	Following	each	training	session,	data	was	

downloaded	using	manufacturer	software	(Catapult	Sports,	Openfield	

Software)	and	imported	into	Microsoft	Excel	(Microsoft,	Redmond,	WA)	for	

further	analysis.	

	

Aside	from	locomotor	activity,	the	sport	of	American	football	also	consists	of	

high	intensity	actions	and	physical	collisions	(Wellman	et	al.,	2016;	Wellman	

et	al.,	2017).	Therefore,	we	chose	to	use	four	inertial	sensor	derived	metrics,	

Player	Load,	Total	Inertial	Movement	Analysis	(IMATotal),	Player	Load/min,	

and	IMA/min.	These	metrics	have	been	used	to	quantify	external	training	

load	during	American	football	training	sessions	(Chapter	5).	Player	Load	

represents	the	total	amount	of	accelerations	taking	place	on	three	axes	(x,	y,	

and	z)	and	is	reported	in	arbitrary	units.	The	reliability	of	Player	Load	for	
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tracking	various	movement	actions,	such	as	locomotor	and	collision-based	

activities,	in	team	sport	athletes	has	been	previously	established	(Boyd,	et	

al.,	2011;	Van	Iterson	2017).	Player	Load	has	a	strong	correlation	with	

running	volume	(Polglaze	et	al.,	2015;	Cardinale	&	Varley,	2017)	and	has	

been	used	as	a	metric	to	differentiate	positional	group	training	demands	in	

American	football	athletes	(Chapter	5).	Because	of	the	variety	of	movement	

actions	that	can	influence	the	Player	Load	value,	we	used	Player	Load	to	

provide	an	overall	measure	of	training	load.	Player	Load	was	also	

normalized	(Player	Load/min)	for	the	duration	of	each	session	to	provide	an	

additional	indication	of	the	intensity	of	the	training	sessions.	

	

IMATotal	was	used	to	quantify	non-running	activities	(e.g.,	changes	of	

direction,	shuffling,	cutting).	Utilizing	data	from	the	tri-axial	accelerometer,	

tri-axial	gyroscope,	and	magnetometer,	IMATotal	generates	a	count	of	

accelerations	greater	than	3.5	m�s-2	occurring	in	all	movement	vectors	

(forward,	backward,	right,	and	left)	(Peterson	et	al.,	2017).	When	evaluating	

match-to-match	movement	activity,	IMATotal	also	has	reasonable	reliability	

(CV	=	14%)	(Meylan	et	al.,	2016)	and	has	been	used	to	quantify	training	

activities	in	other	sports,	such	as	professional	basketball	(Peterson	et	al.,	

2017).	In	American	football	athletes	IMATotal	was	observed	to	be	higher	for	

linemen,	who	engage	in	a	large	amount	of	physical	contacts,	compared	with	

position	groups	who	require	more	locomotor	demands	(e.g.,	WR	and	DB)	

(Chapter	5).	Exploring	the	correlation	between	IMATotal	and	sRPE	may	

provide	greater	understanding	around	the	relationship	between	non-

running	activity	and	internal	training	load	within	American	football	while	
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also	providing	validation	of	IMA	as	a	construct	of	load.	IMATotal	was	also	

normalized	(IMA/min)	for	the	duration	of	the	session	to	provide	a	measure	

of	the	density	of	discrete	accelerations	per	session.	

	

4.2.4	Statistical	Analysis	
	

Data	are	represented	as	mean	±	SD.	These	data	were	generated	for	thirty	

players	as	they	participated	in	football	training	across	the	entire	in-season	

phase.	As	such,	the	data	represents	repeated	measures	for	each	athlete,	

which	needs	to	be	appropriately	taken	into	account	when	evaluating	the	

correlation	between	two	variables	(Bland	&	Altman,	1995).		Indeed,	pooling	

all	of	the	data	when	individuals	have	provided	multiple	observations	to	the	

data	set	violates	the	assumption	of	independence	and	leads	to	misleading	

interpretations	for	correlation	due	to	an	incorrect	representation	of	degrees	

of	freedom	(Bakdash,	2017;	Kelly,	2016).	Previously,	Bland	&	Altman	(1995)	

have	suggested	a	statistical	approach	to	calculating	correlation	in	the	

presence	of	repeated	measures.	This	approach	is	similar	to	a	mixed	model	

approach	with	a	fixed	slope	and	random	intercepts	allowed	to	vary	for	each	

individual	(Bakdash,	2017).	Therefore,	to	account	for	the	repeated	

observations	in	the	data	we	employed	a	mixed	effects	model	to	create	a	

repeated	measures	correlation	(rrep)	between	sRPE	and	measures	of	

external	training	load	by	dividing	the	sum	of	squares	of	the	slope	by	the	sum	

of	squares	of	the	slope	plus	the	sum	of	squared	residuals	from	the	model	

(Bland	&	Altman,	1995).	One	of	the	advantages	of	a	mixed	model	approach	is	

that	the	random	effects	of	the	model	can	be	used	to	describe	how	
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individuals	vary	from	the	average	of	the	group	(fixed	effects).	In	this	way,	a	

mixed	model	can	be	described	as	balance	between	a	completely	pooled	

model	(single	regression	line	representing	the	average	response	of	all	

individuals)	and	non-pooled	model	(individualized	regression	lines	for	each	

individual)	(Gelman	&	Hill,	2010).			

	

Models	were	built	to	evaluate	the	relationship	between	sRPE	and	duration	

and	sRPE	and	the	four	external	load	variables.	Due	to	a	low	sample	size	

within	several	of	the	position	groups	“Position”	was	not	included	into	the	

models;	however,	players	were	evaluated	relative	to	their	squad	general	

category	(OFF,	DEF).	Individual	models	were	built	for	the	OFF	and	DEF.	In	

all	models,	sRPE	served	as	the	dependent	variable	while	fixed	effects	were	

represented	by	the	respective	external	training	load	variable.	Random	

effects	were	established	to	allow	for	varying	intercepts	for	each	athlete.	The	

magnitude	of	correlation	between	sRPE	and	each	external	training	load	was	

interpreted	as:	trivial	(r	<	0.1),	small	(0.1	to	0.3),	moderate	(0.3	to	0.5),	large	

(0.5	to	0.7),	very	large	(0.7	to	0.9),	almost	perfect	(0.9	to	0.99),	and	perfect	(r	

=	1)	(Kelly	et	al.,	2016).	Differences	(±	95%	CI)	in	correlation	coefficients	

between	OFF	and	DEF	were	made	using	the	statistical	approach	suggested	

by	Zou	(2007).	To	further	examine	individual	differences,	individualized	

correlation	coefficients	were	built	for	each	athlete	and	presented	to	provide	

an	understanding	of	the	variation	in	responses	between	players.	All	

statistical	analysis	was	carried	out	using	R	Statistical	Software	(R	version	

3.3.2)	with	the	lme4	package	for	linear	mixed	effects	model	analysis	and	the	

cocor	package	for	comparison	between	correlation	coefficients.	
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4.3	Results	
	

In	total,	1225	complete	training	load	files	(OFF	=	745	/	DEF	=	480)	were	

obtained	from	the	thirty	athletes	during	the	in-season	training	period.	Out	of	

the	47	available	training	sessions	athletes	had	complete	data	sets	for	an	

average	of	41	±	4	sessions.	The	pooled	mean	±	SD	for	all	training	variables	

are	displayed	in	Table	4.1.	

	

Table	4.1.	Mean	±	SD	of	training	load	variables.	
	

Variable	 Mean	±	SD	

Session	Duration	(min)	 106	±	16.6	
	 	

sRPE	 5.3	±	1.7	
	 	

sRPE	TL		 576	±	237	
	 	

Player	Load	(au)	 337	±	89	
	 	

Player	Load/min	(au)	 3.2	±	0.6	
	 	

IMATotal	 40	±	20	
	 	

IMA/min	 0.37	±	0.16	
	

	

The	repeated	measures	correlation	between	external	training	load	variables,	

duration	and	sRPE	for	both	OFF	and	DFF	in	shown	in	Table	4.2.	Both	groups	

observed	large	rrep	between	sRPE	and	duration	(OFF:	0.58;	DEF:	0.54)	and	

sRPE	and	PL	(OFF:	0.63;	DEF:	0.52).	Additionally,	both	groups	observed	

moderate	rrpe	between	sRPE	and	Player	Load/min	(OFF:	0.44;	DEF:	0.48)	

and	sRPE	and	IMA/min	(OFF:	0.48;	0.35).	The	OFF	had	a	large	rrep	between	
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sRPE	and	IMATotal	(0.59)	while	the	DEF	had	a	moderate	rrep	between	sRPE	

and	IMATotal	(0.48).		

	

Table	4.2.	Repeated	measures	correlation	(±	95%	CI)	between	sRPE	and	
duration	and	sRPE	and	other	measures	of	external	training	load	in	Offensive	
and	Defensive	groups.	
	

Variable	

Offense	
Correlation	
with	sRPE	 Magnitude	

Defense	
Correlation	with	

sRPE	 Magnitude	
Session	Duration	

(min)	
0.58	

[0.53,	0.63]	
Large	 0.54	

[0.47,	0.60]	
Large	

	 	 	 	 	
Player	Load	(au)	 0.63	

[0.58,	0.67]	
Large	 0.52	

[0.45,	0.58]	
Large	

	 	 	 	 	
Player	Load/min	

(au)	
0.44	

[0.38,	0.50]	
Moderate	 0.39	

[0.31,	0.46]	
Moderate	

	 	 	 	 	
IMATotal	 0.59	

[0.54,	0.64]	
Large	 0.48	

[0.41,	0.55]	
Moderate	

	 	 	 	 	
IMA/min	 0.48	

[0.42,	0.53]	
Moderate	 0.35	

[0.27,	0.43]	
Moderate	

	

	

The	OFF	observed	a	“larger”	rrep	than	the	DEF	in	all	cases.	The	differences	in	

rrep	between	these	two	groups	are	displayed	in	Table	4.3.	With	the	

exception	of	duration	and	Player	Load/min,	differences	ranged	from	trivial	

to	small	for	all	other	variables.	These	findings	show	that	the	OFF	observes	a	

stronger	relationship	between	sRPE	and	PL,	IMATotal,	and	IMA/min	than	the	

DEF	while	differences	in	sRPE	and	duration	and	sRPE	and	Player	Load/min	

have	greater	amount	of	uncertainty	and	no	evidence	of	a	population	

difference.	
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Table	4.3.	Differences	in	repeated	measures	correlation	(±	95%	CI)	
between	Offensive	and	Defensive	groups.	
	

Variable	
Offense	-	Defense	

Difference	in	Correlation	±	95%	CI	
Session	Duration	(min)	 0.04	[-0.04,	0.12]	

	 	
Player	Load	(au)	 0.11	[0.03,	0.19]	

	 	
Player	Load/min	(au)	 0.05	[-0.05,	0.15]	

	 	
IMATotal	 0.11	[0.03,	0.20]	

	 	
IMA/min	 0.13	[0.03,	0.23]	

	

	

Individual	correlation	coefficients	represent	a	no-pooling	model,	where	data	

is	not	shared	across	participants.	The	individualized	correlation	coefficients	

between	sRPE	and	each	of	the	external	load	measures	can	be	observes	in	

Table	4.4.		The	range	of	individual	correlation	coefficients	is	large,	as	noted	

by	the	minimum	and	maximum	correlations	by	variable	at	the	bottom	of	the	

table.	For	the	measure	of	intensity	(Player	Load/min	and	IMA/min)	the	

minimum	correlation	is	negative,	indicating	that	there	were	players	who	

had	an	inverse	relationship	between	internal	and	external	load.	
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	Table	4.4.	Individualized	correlation	coefficients	betw
een	sR

PE
	and	

external	training	load	m
easures	for	all	athletes.	
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Figures	4.1-4.4	present	the	linear	relationship	between	sRPE	and	the	

external	training	load	variables	for	each	individual.	Individual	variability	in	

the	relationship	between	sRPE	and	PL	is	visually	represented	by	how	much	

the	individual	athlete’s	random	effects	regression	line	(thick	black	line)	

deviates	from	the	fixed	effect	regression	line	(dashed	line)	(e.g.,	how	much	

their	intercept	varies).	In	addition	to	the	fixed	and	random	regression	lines,	

the	red	line	in	each	plot	represents	the	individual’s	(non-pooled)	regression	

line,	taken	from	the	individualized	correlation	analysis	described	above.	

These	plots	allow	for	a	visual	understanding	of	individual	responses	

between	training	load	and	sRPE.	They	also	reflect	how	specific	athletes	

perceive	the	demands	of	training	relative	to	their	peers.	In	several	instances,	

the	individual	regression	line	(red	line)	aligns	with	the	random	effects	line	

(black	line),	indicating	the	model	is	appropriately	capturing	that	player’s	

relationship	between	sRPE	and	external	load	variables.	However,	in	other	

instances,	there	is	a	large	disparity	between	the	individual	regression	line	

and	the	random	effects	line,	indicating	that	the	model	may	not	be	useful	for	

the	given	athlete.	This	type	of	analysis	allows	for	a	clear	evaluation	of	the	

responses	that	individual	athletes	have	to	the	prescribed	training	dose	and	

how	these	responses	may	deviate	from	the	expected	responses	based	on	

empirical	data	contained	within	the	model.	
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Figure	4.1.	Relationship	between	sRPE	and	Player	Load	(au)	for	each	athlete	separated	by	Offense	(A)	and	Defense	(B).	Solid	black	line	
represents	mixed	model	fixed	effects	regression	line.	Dashed	line	represents	mixed	model	random	intercepts	line.	Red	line	represents	
individualized	regression	line.	
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Figure	4.2.	Relationship	between	sRPE	and	Player	Load/min	(au)	for	each	athlete	separated	by	Offense	(A)	and	Defense	(B).	Solid	black	
line	represents	mixed	model	fixed	effects	regression	line.	Dashed	line	represents	mixed	model	random	intercepts	line.	Red	line	
represents	individualized	regression	line.	
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Figure	4.3.	Relationship	between	sRPE	and	IMA	for	each	athlete	separated	by	Offense	(A)	and	Defense	(B).	Solid	black	line	represents	
mixed	model	fixed	effects	regression	line.	Dashed	line	represents	mixed	model	random	intercepts	line.	Red	line	represents	
individualized	regression	line.	
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Figure	4.4.	Relationship	between	sRPE	and	IMA/min	for	each	athlete	separated	by	Offense	(A)	and	Defense	(B).	Solid	black	line	
represents	mixed	model	fixed	effects	regression	line.	Dashed	line	represents	mixed	model	random	intercepts	line.	Red	line	represents	
individualized	regression	line.	
	



	 83	

4.4	Discussion	
	

While	external	training	load	has	previously	been	quantified	in	American	

football	practices	(Chapter	5	&	6)	and	collegiate	games	(Wellman	et	al.,	

2016;	Wellman	et	al.,	2017)	it	is	currently	not	understood	how	these	

measures	are	reflected	in	an	individual’s	perception	of	training	volume	or	

intensity.	Therefore,	this	paper	aimed	to	investigate	the	relationship	

between	sRPE,	a	measure	of	internal	training	load,	and	four	external	

training	load	variables	in	American	football.	Additionally,	we	sought	to	

describe	individual	perceptions	of	sRPE,	which	is	important	to	consider	

given	the	range	of	factors	that	can	influence	the	perceptual	sensations	of	

training	(Hutchinson	et	al.,	2006).	The	main	findings	were	that	sRPE	had	

large	rrep	with	PL	and	Duration	and	a	moderate	rrep	between	Player	

Load/min	and	IMA/min	for	both	OFF	and	DEF.	The	rrep	between	sRPE	and	

IMATotal	was	observed	to	be	large	for	the	OFF	and	moderate	for	the	DEF.	In	

all	instances,	the	OFF	observed	a	“larger”	rrep	than	the	DEF	with	the	

difference	ranging	from	trivial	to	small	in	all	relationships	except	sRPE	and	

Player	Load/min	and	sRPE	and	duration,	where	the	relationship	was	

uncertain.	These	findings	have	relevance	for	practitioners	working	within	

the	sport	as	sRPE	offers	a	low	cost	method	of	monitoring	overall	training	

load	and	affords	practitioners	the	opportunity	to	evaluate	inter-individual	

differences	of	internal	training	loads.	However,	practitioners	should	be	

aware	of	the	decrease	in	rrep	between	sRPE	and	training	intensity	(Player	

Load/min)	and	sRPE	and	training	density	(IMA/min).	This	latter	finding	is	

important	given	the	sport	is	comprised	of	brief,	high	intensity	efforts	(Iosia	
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&	Bishop,	2008)	and	collisions	between	athletes	(Wellman	et	al.,	2017),	

which	means	direct	quantification	of	training	intensity	is	still	required	as	the	

relationship	between	sRPE	and	external	training	load	is	not	the	same	

between	various	external	training	load	constructs	or	between	players.	

Finally,	the	statistical	approach	used	in	this	study	allows	practitioners	to	

identify	inter-individual	differences	in	specific	athletes’	sRPE	responses.	

These	findings	indicated	a	large	variation	in	the	individual	relationships	

between	sRPE	and	indicators	of	external	load.	Such	individual	differences	

are	a	consequence	of	the	fact	that	all	of	the	possible	variables	that	may	

influence	an	individual’s	perceptual	response	to	training	are	never	

measured.		

	

While	this	study	is	the	first	to	investigate	these	relationships	in	American	

football	it	is	not	the	first	study	to	evaluate	the	relationship	between	sRPE	

and	measures	of	external	training	load	in	collision	sports.	Scott	and	

colleagues	(2013)	validated	the	use	sRPE	Training	Load	(sRPE-TL;	sRPE	*	

Duration)	in	Australian	football	and	found	large	correlations	between	sRPE-

TL	and	running	distance	(r	=	0.81),	high-speed	running	(0.71),	and	Player	

Load	(0.83).	The	correlation	between	sRPE-TL	and	Player	Load	found	by	

Scott	and	colleagues	(2013)	is	“larger”	than	what	was	observed	in	this	study	

of	American	football	athletes.	This	may	be	due	to	the	current	study	using	the	

standalone	sRPE	score	instead	of	sRPE-TL.	These	differences	may	also	be	

due	to	the	use	of	a	linear	1-10	scale,	which	may	lead	to	differences	in	athlete	

responses	compared	to	the	more	commonly	used	CR10	Scale	(exponential	

scale)	by	Scott	(2013),	making	comparisons	between	the	two	studies	
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challenging.	Alternatively,	this	relationship	may	reflect	different	ergonomic	

demands	between	the	sports,	given	the	more	intermittent	activity	profile	

observed	in	NFL	athletes	(Rhea	et	al.,	2006).	The	large	correlation	between	

sRPE	and	PL	in	this	study,	as	well	as	Scott’s	(2013),	may	lead	practitioners	

to	conclude	that	sRPE	is	able	to	provide	a	crude	measure	of	overall	training	

load.	However,	practitioners	should	be	aware	of	the	individual	differences	

(Figure	4.1-4.4)	exhibited	by	players	in	the	observed	relationship	between	

sRPE	and	PL.	Such	individual	differences	indicate	that	players	differ	

substantially	in	their	perceptions	of	total	training	activities,	which	may	

impact	the	consistency	of	any	given	response	following	training.			

	

When	Player	Load	was	normalized	per	minute,	the	relationship	between	

sRPE	and	Player	Load/min	was	found	to	be	moderate	for	OFF	(rrep	=	0.44)	

and	DEF	(rrep	=	0.39).	Lovell	and	colleagues	(2013)	found	a	similar	

relationship	between	Body	Load/min	and	sRPE	in	professional	Rugby	

training.	This	smaller	relationship,	relative	to	an	absolute	measure	such	as	

PL,	has	been	raised	as	a	potential	issue	more	recently	in	a	meta-analysis	of	

the	relationship	between	internal	and	external	measures	of	training	load	by	

McLaren	and	colleagues	(2018).	Pooling	results	from	15	data	sets	McLaren	

(2018)	found	smaller	correlations	between	sRPE	and	measures	of	intensity	

(e.g.,	Total	Distance/min	(r	=	.29),	Total	Accelerometer	load/min	(r	=	.25))	

than	those	of	sRPE	training	load	and	measures	of	total	volume	(e.g.,	Total	

Distance	(r	=	.79),	Total	Accelerometer	load	(r	=	.63)).	The	reason	for	such	a	

low	correlation	between	sRPE	and	constructs	of	training	intensity	is	not	

understood	but	indicate	that	sRPE	is	possibly	influenced	by	a	variety	of	
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training	related	factors.	Alternatively,	it	is	important	to	consider	that	sRPE	

was	theoretically	developed	as	a	measure	of	internal	training	load	(Foster	et	

al.,	1999).	As	such,	sRPE	may	be	influenced	by	a	myriad	of	factors	besides	

just	physical	output	and	using	a	single	measure	to	represent	a	full	range	of	

perceptual	responses	during	training	may	be	misleading	(Hutchinson	et	al.,	

2006;	McLaren	et	al.,	2018).	This	limitation	has	led	to	the	investigation	of	

differential	RPE	scales	for	evaluating	various	perceptual	aspects	of	training	

(Weston	et	al.,	2014).	Such	an	approach	may	be	useful	in	American	football	

where	a	broad	range	of	movement	and	psychological	demands	are	imposed	

on	the	players	based	on	their	positional	and	tactical	requirements	(Cox	&	

Sand,	1995;	Chapter	5).		

	

This	study	is	the	first	to	quantify	the	relationship	between	sRPE	and	IMATotal	

and	sRPE	and	IMA/min.	IMATotal	has	been	previously	used	as	a	measure	of	

external	training	load	in	American	football	given	that	it	can	be	used	to	

quantify	non-running	activities	and	directional	movements	(Chapter	3	&	5).	

Similar	to	the	Player	Load/min	findings,	a	moderate	rrep	was	found	between	

sRPE	and	IMA/min	for	both	OFF	(0.48)	and	DEF	(0.35).	When	evaluating	the	

rrep	between	sRPE	and	IMA,	the	relationship	was	observed	to	be	large	for	

OFF	(0.59)	and	moderate	for	DEF	(0.48).	In	both	instances,	the	difference	in	

rrpe	between	squads	was	found	to	be	small	(IMATotal:	0.11;	IMA/min:	0.13).	

The	difference	in	rrep	between	these	two	squads	is	interesting	given	the	

“mirroring”	in	the	physical	demands	that	have	been	previously	observed	

between	position	groups	that	oppose	each	other	on	offense	and	defense	

(Chapter	5).	These	finding	seem	to	suggest	that	the	sRPE	of	players	on	
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different	squads	may	be	influenced	by	other	factors	not	captured	in	this	

relationship.	For	example,	certain	position	groups	have	been	observed	to	

require	a	higher	level	of	mental	skill	and	awareness	(Cox	&	Sand,	1995)	to	

perform	the	tactical	aspects	of	game	preparation	compared	to	other	

positions.	These	findings	are	important	for	practitioners	to	consider	as	using	

sRPE	alone,	without	an	objective	measure	of	non-running	activities,	may	

mislead	practitioners	in	their	interpretation	of	a	player’s	training	load	in	a	

given	session.	

	

The	statistical	modeling	strategy	employed	in	this	paper	offers	practitioners	

with	a	novel	way	of	investigating	individual	responses.	While	these	

perceptual	responses	may	be	influenced	by	a	number	of	factors	besides	just	

physical	demands	(Hutchinson	et	al.,	2006)	the	statistical	approach	can	be	

used	in	a	practical	sense	by	comparing	the	expected	sRPE,	provided	by	the	

model,	to	the	actual	sRPE,	provided	by	the	athlete	following	the	given	

training	session.	Large	discrepancies	between	these	two	values	may	indicate	

a	different	psychological	response	by	the	athlete	than	expected	for	the	

training	dose	performed.	Such	discrepancies	may	warrant	further	

investigation	as	to	the	athlete’s	current	physical	state	(Ward	et	al.,	2018).	

This	type	of	approach	has	the	potential	to	extend	beyond	American	football	

and	provide	value	for	sports	scientists	looking	to	evaluate	individual	

responses	of	perceptual	measures	in	other	sports.	
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4.5	Conclusions	
	

This	investigation	is	the	first	to	explore	the	relationship	between	different	

external	training	load	metrics	and	sRPE	in	American	football	training.	While	

these	initial	findings	may	suggest	that	sRPE	can	be	a	useful	measure	of	

overall	training	activity	in	American	football,	practitioners	need	to	keep	in	

mind	that	individual	differences	of	perceptual	responses	to	training	do	exist.	

It	is	important	to	note	that	the	individual	athlete	and	between	squad	(OFF	

and	DEF)	correlations	observed	here	may	be	unique	to	the	team	and	

coaching	staff	in	which	the	study	was	conducted	on.	Different	teams	may	

have	different	practice	routines	or	place	different	levels	of	cognitive	demand	

on	specific	position	groups	based	on	style	of	play,	which	has	the	potential	to	

alter	perceptual	responses.	Given	the	vast	amount	of	physical	and	

psychological	inputs	that	can	influence	perceptual	responses	(Hutchinson	et	

al.	2006),	sRPE	may	be	limited	in	its	utility	to	describe	the	physical	demands	

of	training	in	American	football.	When	attempting	to	quantify	the	physical	

demands	of	sport,	a	broader	limitation	of	sRPE	is	more	likely	due	to	the	

notion	that	sport	scientists	are,	at	the	present	time,	unaware	of	or	are	

unable	to	capture	all	of	the	measures	that	can	influence	an	athlete’s	

perceptual	responses.	As	such,	sRPE	may	be	useful	for	informing	

practitioners	about	more	than	just	the	physical	demands	of	a	given	session,	

however	the	responses	provided	are	highly	individualized.	
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CHAPTER	5	

	

POSITIONAL	DIFFERENCES	IN	RUNNING	

AND	NON-RUNNING	ACTIVITIES	DURING	

ELITE	AMERICAN	FOOTBALL	TRAINING	
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5.1	Introduction	
	
	

Field-based	team	sports	require	that	players	compete	in	different	positions	

that	have	 specific	 technical,	 tactical	 and	physical	 activity	demands.	 Indeed,	

with	 increased	use	of	micro	 technologies	 such	as	GPS	and	accelerometers,	

recent	 studies	 have	 described	 different	 positional	 activity	 profiles	 for	 a	

variety	of	team	sports	(Austin	et	al.,	2013;	Boyd	et	al.,	2013;	Cummins	et	al.,	

2013;	 Suarez-Arrones	 et	 al,	 2014).	 These	 studies	 have	 been	 used	 to	 gain	

greater	 insight	 into	sport	 specific	 requirements	and	may	be	used	 to	aid	 in	

the	 design	 of	 specific	 training	 sessions	 (Torres-Ronda	 et	 al.,	 2016).	

Widespread	profiling	of	activity	profiles	have	been	conducted	in	most	field-

based	 team	 sports	 (Austin	 et	 al.,	 2013;	 Boyd	 et	 al.,	 2013;	 Cummins	 et	 al.,	

2013;	 Suarez-Arrones	 et	 al,	 2014),	 as	well	 as	 collegiate	 American	 football	

(DeMartini	et	al,	2011;	Wellman	et	al.,	2016).	

	

	

American	 football	is	a	collision-based	sport	characterized	by	high	 intensity	

efforts	separated	by	brief	periods	of	rest	(Rhea	et	al.,	2006;	Iosia	&	Bishop,	

2008).	 The	 game	 is	 played	 at	 the	 collegiate	 level	 in	 the	 NCAA	 and	 the	

professional	level	in	the	National	Football	League	(NFL).	Players	are	divided	

into	eight	positional	groups:	Defensive	Backs	(DB),	Defensive	Linemen	(DL),	

Linebackers	(LB),	Offensive	Linemen	(OL),	Quarterback	(QB),	Running	Back	

(RB),	Tight	End	(TE),	and	Wide	Receiver	(WR)),	each	with	different	tactical	

and	 physical	 demands	 (Pincevero	 &	 Bompa,	 1997).	 The	 limited	

quantification	of	such	physical	demands	in	the	literature	revealed	that	non-
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linemen	 (e.g.,	 WR,	 DB,	 RB,	 QB)	 perform	 greater	 amounts	 of	 running	

activities	compared	to	linemen	during	collegiate	football	training	(DeMartini	

et	al.,	2011).	Similarly,	during	Division	1	college	football	games,	WR	and	DB	

cover	 greater	 total	 distance	 (5531	 ±	 997	 m	 and	 4696	 ±	 1115	 m,	

respectively)	and	perform	a	higher	number	of	sprints	(21.9	±	8.1	and	20.9	±	

8.6,	 respectively)	 than	 other	 position	 groups	 (Wellman	 et	 al.,	 2016).	 An	

evaluation	 of	 impacts	 and	 collisions	 during	 collegiate	 football	 games	

revealed	that	RB	and	Defensive	Tackles	(a	position	on	the	DL)	engage	 in	a	

larger	amount	of	severe	(>	10	g-forces)	and	heavy	impacts	(7.1	–	10	G	force),	

respectively,	than	other	position	groups	(Wellman	et	al.,	2017).	These	data	

support	the	idea	that	positional	differences	in	the	physical	demands	exist	in	

American	football.		

	

	

There	are	several	limitations	in	the	previous	studies	that	have	described	the	

position	 demands	 of	 American	 football.	 Indeed,	 previous	 studies	 have	

divided	 playing	 positions	 into	 two	 broad	 groups	 (i.e.	 linemen	 and	 non-

linemen)	 (DeMartini	 et	 al.,	 2011),	which	 limited	 the	ability	 to	describe	 the	

discrete	activity	demands	of	 the	unique	playing	positions	 that	 exist	within	

these	 two	 groups.	 Additionally,	 two	 previous	 studies	 that	 described	

positional	 differences	 in	 12	 collegiate	 American	 football	 games	 only	

examined	position	group	differences	between	players	who	fulfilled	the	same	

function	 within	 the	 team	 (e.g.,	 offensive	 players	 compared	 with	 other	

offensive	players)	(Wellman	et	al.,	2016;	Wellman	et	al.,	2017),	which	limits	

the	 ability	 to	 understand	 how	 competition	 between	 position	 groups	 may	
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influence	 activity.	 This	 study	 also	 monitored	 the	 same	 players	 across	 the	

season	 using	 repeated	 measures	 from	 the	 same	 players,	 which	 violates	

fundamental	 assumptions	 of	 the	 statistical	 analysis	 applied	 (Cnaan	 et	 al.,	

1997).	 A	 final	 limitation	 is	 that	 these	 data	 are	 specific	 to	 the	 collegiate	

competitions,	 which	 limits	 the	 generalizability	 of	 these	 results	 to	

professional	American	football	(i.e.	the	NFL).	

	
	
	
Presently,	 little	 is	 known	 about	 the	 specific	 positional	 differences	 in	

American	football	in	players	competing	at	the	highest	level	within	the	NFL.	

Therefore,	 the	 aim	 of	 this	 study	 is	 to	 investigate	 the	 differences	 among	

position	groups	during	an	NFL	training	camp.		

	

5.2	Methods	

	

5.2.1	Research	Approach	
	

This	 study	 investigated	 the	 positional	 differences	 in	 training	 demands	

during	 an	 NFL	 training	 camp	 consisting	 of	 four	match	 preparation	weeks	

prior	 to	 the	 upcoming	NFL	season.	 The	 first	 10	 days	 of	 the	 training	 camp	

were	dedicated	to	team	practices	with	the	remainder	of	the	time	devoted	to	

preparing	 for	 four	 pre-season	 games	 (1x/week).	 For	 the	 purposes	 of	 this	

study,	only	the	preparation	weeks	for	the	4	games	were	considered	as	these	

weeks	were	used	to	prepare	for	competition	and	follow	the	typical	in-season	

training	 structure.	 Eleven	 training	 sessions	 over	 this	 4-week	 period	were	
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therefore	included	in	the	final	analysis.	The	contents	of	the	training	sessions	

were	determined	by	the	coach	with	the	goal	of	preparing	the	team	for	 the	

upcoming	opponent.	 Training	 sessions	were	 divided	 into	 five	 key	 periods:	

warm	up,	position	specific	 training	drills,	special	 teams’	drills,	preparatory	

plays,	 and	 team	plays	 that	 represent	 the	offense	 running	plays	against	 the	

defense	and	make	up	the	bulk	of	the	training	session.	The	contents	of	these	

periods	 consisted	 of	 a	 diverse	 number	 of	 sporting	 actions,	 with	 certain	

position	groups	performing	running	and	cutting	activities	(e.g.,	DB	and	WR),	

other	groups	performing	a	greater	number	of	collisions	and	physical	contact	

(e.g.,	 OL	 and	 DL),	 and	 some	 position	 groups	 performing	 a	 combination	 of	

both	 locomotor	 and	 collision-based	 actions	 (e.g.,	 TE	 and	 LB)	 (Tables	 5.1-

5.2).		

	

Table	5.1.	Weekly	schematic	of	training	duration	and	percentage	of	time	
devoted	to	specific	drills	across	training	days	in	relationship	to	the	
upcoming	match	(GD	-4	=	Game	Day	-4;	GD	–	3	=	Game	Day	-3;	GD	-2	=	Game	
Day	-2).	
	
Practice	Activity	 GD	-4	 GD	-3	 GD	-2	

Duration	 115.6	±	4.5	min	 115.6	±	8.9	min	 102.2	±	14.7	min	
Warm	Up	 8.1%	 7.7%	 8.8%	

Position	Specific	
Drills	

9.9%	 9.7%	 10.8%	

Special	Teams	
Drills	

21.5%	 20.8%	 20.0%	

Preparatory	Plays	 8.6%	 9.8%	 9.7%	
Team	Plays	 52.6%	 53.9%	 54.9%	
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Table	5.2.	General	overview	of	training	activities	performed	by	each	
positional	group	during	specific	training	activities	(table	columns).	
	

	

	 	



	 95	

5.2.2	Participants	
	

Sixty-three	 American	 football	 players	 from	 the	 same	 NFL	 team	 were	

included	in	this	study	(mean	±	SD;	age:	24	±	2	y;	height:	1.88	±	0.06	m;	body	

mass:	109.4	±	19.9	kg).	The	position	groups	consisted	of	DB	(n	=	12),	DL	(n	=	

7),	LB	(n	=	10),	OL	(n	=	11),	QB	(n	=	2),	RB	(n	=	8),	TE	(n	=	5),	and	WR	(n	=	

11).	 A	 total	 of	 541	 individual	 training	 files	were	 obtained.	 The	 number	 of	

sessions	 performed	 by	 the	 athletes	 can	 be	 observed	 in	 Table	 5.3.	 The	

variation	 in	 session	 number	 is	 a	 consequence	 of	 the	 availability	 of	

participants	 (e.g.	 non-availability	 through	 injury	 and	 participants	 being	

released	or	added	to	the	playing	staff).	This	study	constitutes	a	retrospective	

analysis	of	archived	data	collected	in	an	applied	sports	science	setting	where	

training	load	monitoring	is	considered	best	practice	and	within	occupational	

purview	 (Winter	 et	 al.,	 2009).	 All	 data	was	 de-identified	 prior	 to	 analysis.	

Ethical	 approval	 for	 the	methodology	 of	 this	 study	was	granted	 by	 a	 local	

university	ethics	committee	and	permission	to	publish	was	granted	from	the	

NFL	team.	
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Table	5.3.	Training	completed	by	each	participant	within	the	study	period.	
(Note:	For	example,	28	participants	(44.4%)	completed	11	out	of	11	
training	sessions	while	2	participants	(3.2%)	completed	3	out	of	11	
sessions.)	
	
Number	of	Players	 Sessions	Completed	(n	=	11)	 %	Of	Athletes	

28	 11	 44.4%	

7	 10	 11.1%	

5	 9	 7.9%	

5	 8	 7.9%	

2	 7	 3.2%	

4	 6	 6.3%	

5	 5	 7.9%	

1	 4	 1.6%	

2	 3	 3.2%	

1	 2	 1.6%	

3	 1	 4.8%	

	

	

5.2.3	Experimental	Design	
	

During	training,	players	wore	an	integrated	micro	technology	unit	(Minimax	

S5,	 Catapult	 Innovations,	 Scoresby,	 Australia)	 contained	 within	 a	 custom	

pouch,	provided	by	the	manufacture,	sewn	between	the	shoulder	blades,	on	

the	inside	of	their	practice	shirt.	These	units	contain	a	GPS	sensor	(10	Hz),	

accelerometer	(100	Hz),	gyroscope	(100	Hz),	and	magnetometer	(100	Hz).	

Following	 each	 training	 session,	 data	 was	 downloaded	 using	 the	

manufactures	 software	 (Catapult	 Sports	Openfield	 software)	 and	 exported	



	 97	

to	Excel	(Microsoft,	Redmond,	WA)	for	further	analysis.	To	ensure	intra-unit	

reliability,	athletes	were	assigned	their	own	individual	units	(Rampinini	et	

al.,	 2015).	 The	 reliability	 and	 validity	 of	 these	 units	 have	 been	 previously	

established	 (Boyd	et	 al.,	 2011;	Castellano	et	 al.,	 2011;	Vickery	et	 al.,	 2014;	

Rampinini	et	al.,	2015).		

	

Training	 sessions	were	 classified	 specific	 to	 the	 number	 of	 days	 until	 the	

upcoming	game.	 For	 example,	 day	 to	 game	 -4	 (GD	 -4)	 indicates	 that	 there	

are	 4	 days	 until	 the	 next	 game.	 Three	 main	 training	 sessions	 were	

performed	each	week:		GD	-4	(n	=	3),	GD	–	3	(n	=	4),	and	GD	–	2	(n	=	4).	The	

final	 session	of	 the	week,	GD	 -1,	 included	a	brief	 review	of	 the	game	plan,	

which	 did	 not	 include	 significant	 physical	 activity	 and	 therefore	 was	 not	

included	 in	 the	 study.	 Total	 distance	 (TD)	 and	 high-speed	 distance	 were	

analyzed	 to	 compare	 running	 demands	 between	 position	 groups.	 High-

speed	 distance	 (HSD)	 was	 defined	 as	 distances	 run	 above	 70%	 of	 the	

maximum	 speed	 for	 the	 respective	 position	 group.	 This	 threshold	 was	

established	 using	 all	 training	 data	 from	 the	 previous	 season,	 collected	 via	

the	GPSport	system	(SPI	Pro	X;	GPSports,	Canberra,	Australia).	As	such,	this	

data	 reflect	 the	most	 frequently	 performed	max	 speeds	 of	 each	 positional	

group	during	 real	 training	 sessions.	These	position	group	 thresholds	were	

determined	 using	 the	 median	 maximum	 speed	 observed	 for	 each	 group	

during	training	sessions	within	the	previous	year	(DB:	>	6.8	m·s-1;	DL	>	5.9	

m·s-1;	LB	>	5.9	m·s-1;	OL	>	4.5	m·s-1;	QB:	>	5.9	m·s-1;	RB:	6.2	m·s-1;	TE	>	6.3	

m·s-1;	WR	>	7.1	m·s-1).	
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Player	 Load	 (PL)	 and	 Inertial	 Movement	 Analysis	 (IMA)	 were	 used	 to	

quantify	 non-running	 activities	 such	 as	 collisions,	 impacts,	 or	 changes	 of	

direction	 and	 movements	 taking	 place	 in	 small	 spaces.	 Player	 Load	

represents	 the	 total	 amount	 of	 acceleration	 taking	 place	 on	 three	 axes	 of	

movement	(X,	Y,	and	Z)	and	is	reported	in	arbitrary	units	(Boyd	et	al.,	2011).	

We	 evaluated	 PL	 in	 both	 absolute	 and	 relative	 (Player	 Load	 per	 Minute	

(PL/min))	 forms.	 IMA	 has	 been	 reported	 to	 quantify	 the	 displacement	 of	

force	 over	 different	 vectors	 of	 movement	 (Forward,	 Backward,	 Left,	 and	

Right)	 through	 the	 combined	 use	 of	 accelerometer,	 gyroscope,	 and	

magnetometer	 data	 (Abbott,	 2015).	 Total	 IMA	 (the	 sum	 of	 IMA	 activities	

taking	place	above	3.5	m.s-2)	was	used	to	 investigate	positional	differences	

within	 this	 study.	 Player	 Load	 and	 IMA	 have	 good	 reliability	 when	

measuring	 on	 field	 movement	 activities	 (Boyd	 et	 al.,	 2011)	 and	 game-to-

game	explosive	actions	(Meylan	et	al.,	2016).		

	

5.2.4	Statistical	Analysis	
	

Training	 data	 was	 pooled	 together	 by	 day	 (e.g.,	 all	 GD	 -4	 sessions	 were	

grouped	together)	in	order	to	reflect	the	training	demands	during	each	day	

of	 a	 training	 week.	 Mixed	 models	 have	 been	 suggested	 as	 an	 analytical	

approach	to	deal	with	repeated	measures	data	and	unbalanced	data	sets,	for	

example	 players	 performing	 different	 numbers	 of	 training	 sessions	 during	

the	monitoring	period	(Cnaan	et	al.,	1997).	A	separate	mixed	model	for	each	

dependent	variable	(TD,	HSD,	PL,	PL/min,	and	Total	IMA)	was	constructed.	

Position	group	 and	Day	 to	Game	were	 treated	 as	 fixed	 effect	 independent	
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variables.	 Random	 effects	 within	 the	 models	 were	 represented	 as	 the	

individual	 player	 and	 the	 training	 day.	 Models	 were	 fit	 iteratively	 and	

candidate	 models	 were	 compared	 using	 likelihood	 ratio	 tests	 with	

significance	set	at	p	<	0.05.		

	

Data	are	 represented	as	mean	±	SD.	 Standardized	mean	differences	 (effect	

sizes)	 with	 95%	 Confidence	 Limits	 (CL),	 were	 used	 to	 evaluate	 the	

difference	between	position	groups.	Standardized	differences	relative	to	the	

between	 subject	 SD	 of	 the	 random	 effects	 within	 each	 model	 were	

interpreted	 as	 trivial	 (<	 0.2),	 small	 (0.2	 –	 0.6),	moderate	 (0.6	 –	 1.2),	 large	

(1.2	–	2.0),	and	very	large	(2.0	–	4.0).	Qualitative	statements	about	the	effect	

were	 made	 based	 on	 the	 probability	 of	 a	 real	 difference	 between	 groups	

(75%	 -	 95%	 probability	 indicated	 a	 “likely”	 difference,	 95%	 -	 99.5%	

probability	 indicated	 a	 “very	 likely”	 difference,	 and	 	 >	 99.5%	 indicated	 a	

“most	likely”	difference)	(Batterham	&	Hopkins,	2006).	In	the	event	that	the	

probability	 exceeded	 5%	 in	 both	 the	 positive	 and	 negative	 directions,	 the	

effect	was	reported	as	“unclear”,	indicating	that	no	clear	difference	could	be	

detected	 given	 the	 data.	 This	 type	 of	 statistical	 approach	 was	 selected	 to	

provide	 a	 qualitative	 interpretation	 of	 the	 uncertainty	 surrounding	 the	

observed	 differences	 (Batterham	 &	 Hopkins,	 2006).	 All	 analysis	 was	

conducted	using	the	statistical	software	R	(Version	3.1.2).	
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5.3	Results	
	

5.3.1	Overview	of	Mixed	Models	
	

The	 final	 model	 consisted	 of	 a	 main	 effect	 interaction	 between	 Position	

Group	 and	 Day	 to	 Game	 and	 a	 random	 effect	 allowing	 the	 slope	 and	

intercept	 to	vary	 for	 the	 individual	player	and	Day	to	Game.	These	models	

show	 training	 load	 was	 influenced	 by	 the	 interaction	 between	 playing	

position	and	the	training	day.	

	

5.3.2	Running	Demands	
	

Significant	main	effects	were	observed	for	the	interaction	between	position	

groups	and	Day	 to	Game	 for	both	TD	 (χ2(21)	=	92.1,	p	<	0.0001)	and	HSD	

(χ2(21)	=	71.3,	p	<	0.0001).	Between-athlete	standard	deviations	of	318	m	

and	 39	 m	 were	 observed	 for	 TD	 and	 HSD,	 respectively	 (Tables	 5.4-5.5,	

Figure	5.1).	
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Figure	5.1.	Mean	±	95%	CI	for	Total	Distance	(A)	and	High-Speed	Distance	(B)	relative	to	each	training	day.	The	horizontal	dashed	lines	
represent	the	mean	Total	Distance	(A)	and	High-Speed	Distance	(B)	for	the	entire	group	on	each	training	day.	
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Table	5.4.	Total	running	differences	and	qualitative	inference	for	the	
interaction	between	Position	Group	and	Training	Day.	(Unclear	differences	
have	been	omitted.)	
	
Day	to	Game	 Group	

1	
Group	

2	
Difference	

(m)	±	95%	

CL	

Qualitative	Inference	

-4	 DB	 DL	 1758	±	426	 Most	Likely	Very	Large	
-4	 DB	 LB	 999	±	372	 Most	Likely	Very	Large	
-4	 DB	 OL	 1323	±	358	 Most	Likely	Very	Large	
-4	 DB	 QB	 603	±	626	 Possibly	Large	
-4	 DB	 RB	 744	±	406	 Possibly	Large	
-4	 DB	 TE	 623	±	505	 Likely	Large	
-4	 DL	 LB	 -759	±	429	 Likely	Large	
-4	 DL	 OL	 -435	±	416	 Likely	Moderate	
-4	 DL	 QB	 -1155	±	661	 Likely	Very	Large	
-4	 DL	 RB	 -1013	±	464	 Likely	Very	Large	
-4	 DL	 TE	 -1135	±	548	 Likely	Very	Large	
-4	 DL	 WR	 -1684	±	446	 Most	Likely	Very	Large	
-4	 LB	 OL	 324	±	362	 Possibly	Moderate	
-4	 LB	 RB	 -254	±	408	 Possibly	Moderate	
-4	 LB	 TE	 -376	±	508	 Likely	Moderate	
-4	 LB	 WR	 -925	±	395	 Likely	Very	Large	
-4	 OL	 QB	 -720	±	619	 Likely	Large	
-4	 OL	 RB	 -578	±	403	 Likely	Large	
-4	 OL	 TE	 -700	±	497	 Likely	Large	
-4	 OL	 WR	 -1249	±	381	 Most	Likely	Very	Large	
-4	 QB	 WR	 -528	±	640	 Possibly	Large	
-4	 RB	 WR	 -670	±	433	 Likely	Large	
-4	 TE	 WR	 -549	±	519	 Possibly	Large	
-3	 DB	 DL	 1572	±	379	 Most	Likely	Very	Large	
-3	 DB	 LB	 638	±	329	 Likely	Large	
-3	 DB	 OL	 1278	±	322	 Most	Likely	Very	Large	
-3	 DB	 QB	 473	±	573	 Possibly	Large	
-3	 DB	 RB	 678	±	360	 Likely	Large	
-3	 DB	 TE	 255	±	425	 Possibly	Moderate	
-3	 DL	 LB	 -933	±	380	 Likely	Very	Large	
-3	 DL	 OL	 -293	±	373	 Possibly	Moderate	
-3	 DL	 QB	 -1098	±	603	 Likely	Very	Large	
-3	 DL	 RB	 -893	±	410	 Possibly	Very	Large	
-3	 DL	 TE	 -1317	±	465	 Most	Likely	Very	Large	
-3	 DL	 WR	 -1694	±	396	 Most	Likely	Very	Large	
-3	 LB	 OL	 640	±	323	 Possibly	Large	
-3	 LB	 TE	 -384	±	426	 Possibly	Moderate	
-3	 LB	 WR	 -761	±	349	 Likely	Large	
-3	 OL	 QB	 -805	±	569	 Possibly	Very	Large	
-3	 OL	 RB	 -600	±	358	 Likely	Large	
-3	 OL	 TE	 -1023	±	420	 Likely	Very	Large	
-3	 OL	 WR	 -1400	±	342	 Most	Likely	Very	Large	
-3	 QB	 WR	 -595	±	584	 Possibly	Large	
-3	 RB	 TE	 -424	±	452	 Likely	Moderate	
-3	 RB	 WR	 -801	±	381	 Possibly	Very	Large	
-3	 TE	 WR	 -377	±	434	 Likely	Moderate	
-2	 DB	 DL	 1397	±	416	 Most	Likely	Very	Large	
-2	 DB	 LB	 688	±	366	 Likely	Large	
-2	 DB	 OL	 972	±	358	 Most	Likely	Very	Large	
-2	 DB	 RB	 607	±	401	 Likely	Large	
-2	 DL	 LB	 -710	±	416	 Likely	Large	
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-2	 DL	 OL	 -426	±	409	 Likely	Moderate	
-2	 DL	 QB	 -1102	±	653	 Likely	Very	Large	
-2	 DL	 RB	 -791	±	450	 Possibly	Very	Large	
-2	 DL	 TE	 -1212	±	533	 Likely	Very	Large	
-2	 DL	 WR	 -1619	±	421	 Most	Likely	Very	Large	
-2	 LB	 OL	 284	±	359	 Possibly	Moderate	
-2	 LB	 QB	 -393	±	623	 Possibly	Moderate	
-2	 LB	 TE	 -503	±	495	 Possibly	Large	
-2	 LB	 WR	 -909	±	372	 Possibly	Very	Large	
-2	 OL	 QB	 -676	±	618	 Possibly	Large	
-2	 OL	 RB	 -365	±	398	 Possibly	Moderate	
-2	 OL	 TE	 -787	±	489	 Possibly	Very	Large	
-2	 OL	 WR	 -1193	±	364	 Most	Likely	Very	Large	
-2	 QB	 WR	 -517	±	626	 Possibly	Large	
-2	 RB	 TE	 -422	±	524	 Possibly	Moderate	
-2	 RB	 WR	 -828	±	410	 Possibly	Very	Large	
-2	 TE	 WR	 -407	±	495	 Possibly	Moderate	

	

	

Table	5.5.	High-Speed	Distance	differences	and	qualitative	inference	for	the	
interaction	between	Position	Group	and	Training	Day.	(Unclear	differences	
have	been	omitted.)	
	

Day	to	

Game	
Group	

1	
Group	2	 Difference	

(m)	±	95%	

CL	

Qualitative	Inference	

-4	 DB	 LB	 -35.7	±	38.8	 Possibly	Moderate	
-4	 DB	 OL	 58.9	±	38	 Likely	Moderate	
-4	 DB	 QB	 -70.2	±	67.6	 Possibly	Large	
-4	 DB	 RB	 -47.2	±	41	 Likely	Moderate	
-4	 DB	 WR	 34.1	±	40.9	 Possibly	Moderate	
-4	 DL	 LB	 -35.3	±	45.1	 Possibly	Moderate	
-4	 DL	 OL	 59.3	±	44.3	 Likely	Moderate	
-4	 DL	 QB	 -69.8	±	71.3	 Possibly	Large	
-4	 DL	 RB	 -46.8	±	48	 Likely	Moderate	
-4	 DL	 WR	 34.5	±	46.8	 Possibly	Moderate	
-4	 LB	 OL	 94.6	±	38.5	 Very	Likely	Large	
-4	 LB	 WR	 69.8	±	41.3	 Likely	Large	
-4	 OL	 QB	 -129.1	±	67.3	 Likely	Very	Large	
-4	 OL	 RB	 -106.1	±	41.8	 Likely	Very	Large	
-4	 OL	 TE	 -89.1	±	51.3	 Likely	Large	
-4	 QB	 WR	 104.3	±	69	 Possibly	Very	Large	
-4	 RB	 WR	 81.3	±	44.4	 Likely	Large	
-4	 TE	 WR	 64.3	±	51.8	 Possibly	Large	
-3	 DB	 LB	 -85.9	±	46.2	 Possibly	Large	
-3	 DB	 OL	 88.5	±	46.1	 Possibly	Large	
-3	 DL	 LB	 -110.5	±	53.5	 Likely	Large	
-3	 DL	 OL	 63.9	±	53.3	 Likely	Moderate	
-3	 DL	 RB	 -42.5	±	56	 Possibly	Moderate	
-3	 DL	 TE	 -48.6	±	64	 Possibly	Moderate	
-3	 LB	 OL	 174.5	±	46.2	 Most	Likely	Very	Large	
-3	 LB	 QB	 121.9	±	83	 Possibly	Very	Large	
-3	 LB	 RB	 68	±	46	 Likely	Moderate	
-3	 LB	 TE	 61.9	±	58.3	 Likely	Moderate	
-3	 LB	 WR	 106	±	48.8	 Likely	Large	
-3	 OL	 QB	 -52.6	±	82.9	 Possibly	Moderate	
-3	 OL	 RB	 -106.5	±	49.2	 Likely	Large	
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-3	 OL	 TE	 -112.6	±	58.1	 Likely	Large	
-3	 OL	 WR	 -68.4	±	48.6	 Likely	Moderate	
-3	 QB	 RB	 -53.9	±	84.6	 Possibly	Moderate	
-3	 QB	 TE	 -60	±	90.1	 Possibly	Moderate	
-3	 RB	 WR	 38	±	51.6	 Possibly	Moderate	
-3	 TE	 WR	 44.1	±	57	 Possibly	Moderate	
-2	 DB	 LB	 -74.3	±	33.8	 Possibly	Large	
-2	 DB	 OL	 37.5	±	33.5	 Possibly	Moderate	
-2	 DB	 RB	 -75.4	±	36.4	 Possibly	Large	
-2	 DL	 LB	 -86.9	±	38.7	 Likely	Large	
-2	 DL	 RB	 -88	±	41.5	 Likely	Large	
-2	 LB	 OL	 111.8	±	33.4	 Likely	Very	Large	
-2	 LB	 QB	 65.6	±	58.7	 Possibly	Large	
-2	 LB	 TE	 66.9	±	44.9	 Possibly	Large	
-2	 LB	 WR	 80.1	±	34.3	 Likely	Large	
-2	 OL	 QB	 -46.3	±	58.4	 Possibly	Moderate	
-2	 OL	 RB	 -112.9	±	36.6	 Likely	Very	Large	
-2	 OL	 TE	 -45	±	44.6	 Possibly	Moderate	
-2	 OL	 WR	 -31.8	±	34	 Possibly	Moderate	
-2	 QB	 RB	 -66.6	±	60.5	 Possibly	Large	
-2	 RB	 TE	 68	±	47.3	 Possibly	Large	
-2	 RB	 WR	 81.2	±	37.4	 Likely	Large	

     	

	

Defensive	Backs	and	WR	showed	unclear	differences	in	TD	covered	(GD	-4:	

74	 ±	 392	m;	 GD	 -3:	 -122	 ±	 348;	 GD	 –	 2:	 -222	 ±	 371	m).	 	 However,	 when	

compared	 with	 all	 other	 positional	 groups,	 these	 two	 groups	 performed	

greater	TD	(moderate	to	large	differences),	with	the	exception	of	the	TE	and	

QB,	who	 had	 an	 unclear	 difference	with	 the	DB	 on	GD	 -2.	 The	DL	 and	OL	

positions	were	found	to	cover	the	least	amount	of	distance.		

	

There	were	variable	responses	in	HSD	between	the	playing	positions.	Tight	

Ends	 and	 RB	 performed	 more	 HSD	 than	 WR	 on	 GD	 -4	 (64.3	 ±	 51.8	 m,	

possibly	 large,	and	81.3	±	44	m,	 likely	 large,	respectively).	HSD	differences	

between	OL	and	RB	were	likely	very	large	(-106.1	±	41.8	m)	on	GD	-4,	likely	

large	(-106.5	±	49.2	m)	on	GD	-3,	and	likely	very	large	(-112.9	±	36.6	m)	on	

GD	-2.	Defensive	backs	performed	less	HSD	than	LB	on	GD	-2	(-35.7	+	38.8	
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m,	possibly	moderate),	GD	-3	(-85.9	±	46.2	m,	possibly	 large),	and	GD	-4	(-

75.3	 ±	 33.8	m,	 possibly	 large).	 Linebackers	 performed	more	HSD	 than	DL	

(GD	-4:	-35.3	±	45.1,	possibly	moderate;	GD	-3:	-110.5	±	53.5,	likely	large;	GD	

-2:	-86.9	±	38.7,	likely	large).	

	

5.3.3	Sport	Specific	Movements	

	

Significant	main	effects	were	observed	for	the	interaction	between	Position	

and	Day	to	Game	for	PL	(χ2(21)	=	131.2,	p	<	.0001),	PL/min	(χ2(21)	=	48.0,	p	

=	.0007),	and	Total	IMA	(χ2(21)	=	965,	p	<	.0001).	Between	athletes	standard	

deviations	of	41	AU,	0.4	AU,	and	9	were	observed	for	Player	Load,	PL/min,	

and	Total	IMA,	respectively	(Tables	5.6-5.8,	Figure	5.2).	
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Figure	5.2.	Mean	±	95%	CI	for	Player	Load	(au)	(A),	Player	Load	per	minute	(au)	(B),	and	Total	IMA	(C)	relative	to	each	training	day.	
The	horizontal	dashed	 lines	 represent	 the	mean	Player	Load	 (au)	 (A),	Player	Load	per	minute	 (au)	 (B),	 and	Total	 IMA	 (C)	 for	 the	
entire	group	on	each	training	day.	
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Table	5.6.	Player	Load	(au)	differences	and	qualitative	inference	for	the	
interaction	between	Position	Group	and	Training	Day.	(Unclear	differences	
have	been	omitted.)	
	

Day	to	
Game	

Group	1	 Group	2	 Difference	
±	95%	CL	

Qualitative	
Inference	

-4	 DB	 DL	 81	±	45	 Likely	Large	
-4	 DB	 LB	 49.3	±	39	 Likely	Moderate	
-4	 DL	 LB	 -31.7	±	45	 Possibly	Moderate	
-4	 DL	 OL	 -58.2	±	44	 Likely	Large	
-4	 DL	 QB	 -56.1	±	71	 Possibly	Large	
-4	 DL	 RB	 -54.1	±	48	 Possibly	Large	
-4	 DL	 TE	 -55.8	±	57	 Possibly	Large	
-4	 DL	 WR	 -61.8	±	47	 Possibly	Large	
-4	 LB	 WR	 -30.1	±	42	 Possibly	Moderate	
-3	 DB	 DL	 70.2	±	39	 Likely	Large	
-3	 DB	 LB	 25.5	±	34	 Possibly	Trivial	
-3	 DB	 OL	 26.3	±	33	 Possibly	Trivial	
-3	 DL	 LB	 -44.7	±	39	 Likely	Moderate	
-3	 DL	 OL	 -43.9	±	38	 Likely	Moderate	
-3	 DL	 QB	 -54.3	±	62	 Likely	Moderate	
-3	 DL	 RB	 -51.7	±	42	 Likely	Moderate	
-3	 DL	 TE	 -71.7	±	48	 Likely	Large	
-3	 DL	 WR	 -72.5	±	41	 Likely	Large	
-3	 LB	 TE	 -27	±	44	 Possibly	Trivial	
-3	 LB	 WR	 -27.8	±	36	 Likely	Small	
-3	 OL	 TE	 -27.8	±	43	 Likely	Moderate	
-3	 OL	 WR	 -28.6	±	35	 Possibly	Moderate	
-2	 DB	 DL	 71.1	±	42	 Likely	Large	
-2	 DB	 LB	 38.7	±	37	 Possibly	Moderate	
-2	 DL	 LB	 -32.5	±	42	 Possibly	Moderate	
-2	 DL	 OL	 -51.7	±	42	 Possibly	Large	
-2	 DL	 QB	 -65.9	±	67	 Possibly	Large	
-2	 DL	 RB	 -61	±	45	 Possibly	Large	
-2	 DL	 TE	 -58.7	±	54	 Possibly	Large	
-2	 DL	 WR	 -82.4	±	43	 Likely	Large	
-2	 LB	 RB	 -28.5	±	39	 Possibly	Moderate	
-2	 LB	 TE	 -26.2	±	50	 Possibly	Moderate	
-2	 LB	 WR	 -49.9	±	38	 Possibly	Large	
-2	 OL	 WR	 -30.7	±	37	 Possibly	Moderate	
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Table	5.7.	Player	Load	per	minute	(au)	differences	and	qualitative	inference	
for	the	interaction	between	Position	Group	and	Training	Day.	(Unclear	
differences	have	been	omitted.)	
	

Day	to	
Game	

Group	1	 Group	2	 Difference	
±	95%	CL	

Qualitative	Inference	

	 	 	 	 	-4	 DB	 DL	 0.7	±	0.35	 Likely	Large	
-4	 DB	 LB	 0.4	±	0.31	 Likely	Moderate	
-4	 DB	 OL	 0.2	±	0.3	 Likely	Small	
-4	 DB	 RB	 0.4	±	0.32	 Likely	Moderate	
-4	 DL	 LB	 -0.3	±	0.36	 Possibly	Moderate	
-4	 DL	 OL	 -0.5	±	0.35	 Possibly	Large	
-4	 DL	 QB	 -0.5	±	0.57	 Possibly	Large	
-4	 DL	 RB	 -0.3	±	0.38	 Possibly	Large	
-4	 DL	 TE	 -0.5	±	0.45	 Possibly	Large	
-4	 DL	 WR	 -0.5	±	0.37	 Possibly	Large	
-4	 LB	 RB	 0	±	0.31	 Most	Likely	Trivial	
-4	 OL	 QB	 0	±	0.54	 Most	Likely	Trivial	
-4	 OL	 TE	 0	±	0.41	 Most	Likely	Trivial	
-4	 OL	 WR	 0	±	0.32	 Most	Likely	Trivial	
-4	 QB	 TE	 0	±	0.61	 Most	Likely	Trivial	
-4	 QB	 WR	 0	±	0.55	 Most	Likely	Trivial	
-4	 TE	 WR	 0	±	0.42	 Most	Likely	Trivial	
-3	 DB	 DL	 0.6	±	0.3	 Possibly	Large	
-3	 DB	 LB	 0.3	±	0.26	 Possibly	Moderate	
-3	 DB	 OL	 0.3	±	0.26	 Possibly	Moderate	
-3	 DB	 RB	 0.2	±	0.27	 Likely	Small	
-3	 DB	 TE	 0.1	±	0.33	 Most	Likely	Trivial	
-3	 DL	 LB	 -0.4	±	0.3	 Likely	Moderate	
-3	 DL	 OL	 -0.3	±	0.3	 Possibly	Moderate	
-3	 DL	 QB	 -0.5	±	0.49	 Likely	Moderate	
-3	 DL	 RB	 -0.4	±	0.32	 Likely	Moderate	
-3	 DL	 TE	 -0.6	±	0.37	 Possibly	Large	
-3	 DL	 WR	 -0.6	±	0.31	 Possibly	Large	
-3	 LB	 RB	 0	±	0.26	 Most	Likely	Trivial	
-3	 LB	 WR	 -0.2	±	0.27	 Possibly	Small	
-3	 OL	 TE	 -0.3	±	0.33	 Possibly	Moderate	
-3	 OL	 WR	 -0.3	±	0.27	 Possibly	Moderate	
-3	 QB	 RB	 0	±	0.48	 Most	Likely	Trivial	
-3	 TE	 WR	 0	±	0.33	 Most	Likely	Trivial	
-2	 DB	 DL	 0.6	±	0.36	 Most	Likely	Moderate	
-2	 DB	 LB	 0.4	±	0.31	 Likely	Moderate	
-2	 DB	 OL	 0.3	±	0.31	 Possibly	Moderate	
-2	 DB	 TE	 0.3	±	0.41	 Possibly	Moderate	
-2	 DL	 LB	 -0.3	±	0.36	 Possibly	Trivial	
-2	 DL	 OL	 -0.3	±	0.35	 Possibly	Moderate	
-2	 DL	 QB	 -0.5	±	0.58	 Possibly	Large	
-2	 DL	 RB	 -0.4	±	0.37	 Likely	Moderate	
-2	 DL	 TE	 -0.4	±	0.45	 Possibly	Moderate	
-2	 DL	 WR	 -0.7	±	0.36	 Likely	Large	
-2	 LB	 WR	 -0.5	±	0.31	 Possibly	Large	
-2	 OL	 TE	 0	±	0.41	 Most	Likely	Trivial	
-2	 OL	 WR	 -0.4	±	0.31	 Likely	Moderate	
-2	 RB	 WR	 -0.3	±	0.33	 Possibly	Moderate	
-2	 TE	 WR	 -0.4	±	0.41	 Possibly	Moderate	
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Table	5.8.	Total	IMA	differences	and	qualitative	inference	for	the	
interaction	between	Position	Group	and	Training	Day.	(Unclear	differences	
have	been	omitted.)	
	

Day	to	
Game	

Group	
1	

Group	
2	

Difference	
±	95%	CL	

Qualitative	
Inference	

-4	 DB	 DL	 -16	±	9	 Possibly	Large	
-4	 DB	 OL	 -20	±	8	 Possibly	Very	Large	
-4	 DB	 TE	 -6	±	11	 Possibly	Small	
-4	 DL	 QB	 13	±	15	 Possibly	Moderate	
-4	 DL	 RB	 16	±	10	 Likely	Large	
-4	 DL	 TE	 10	±	12	 Possibly	Moderate	
-4	 DL	 WR	 17	±	10	 Likely	Large	
-4	 LB	 OL	 -17	±	8	 Likely	Large	
-4	 OL	 QB	 17	±	14	 Likely	Large	
-4	 OL	 RB	 20	±	9	 Possibly	Very	Large	
-4	 OL	 TE	 14	±	11	 Likely	Moderate	
-4	 OL	 WR	 21	±	8	 Possibly	Very	Large	
-3	 DB	 DL	 -16	±	9	 Likely	Large	
-3	 DB	 LB	 -9	±	8	 Likely	Moderate	

-3	 DB	 OL	 -24	±	7	
Most	Likely	Very	

Large	
-3	 DL	 LB	 6	±	9	 Possibly	Moderate	
-3	 DL	 OL	 -9	±	9	 Likely	Moderate	
-3	 DL	 RB	 14	±	9	 Possibly	Large	
-3	 DL	 WR	 12	±	9	 Likely	Moderate	
-3	 LB	 OL	 -15	±	8	 Very	Likely	Moderate	
-3	 LB	 RB	 7	±	8	 Possibly	Moderate	
-3	 OL	 QB	 16	±	13	 Possibly	Large	
-3	 OL	 RB	 22	±	8	 Likely	Very	Large	
-3	 OL	 TE	 17	±	10	 Likely	Large	
-3	 OL	 WR	 21	±	8	 Possibly	Very	Large	
-2	 DB	 DL	 -11	±	8	 Likely	Moderate	
-2	 DB	 OL	 -12	±	7	 Likely	Moderate	
-2	 DL	 LB	 9	±	8	 Likely	Moderate	
-2	 DL	 RB	 14	±	9	 Very	Likely	Moderate	
-2	 DL	 WR	 10	±	8	 Likely	Moderate	
-2	 LB	 OL	 -10	±	7	 Likely	Moderate	
-2	 OL	 RB	 16	±	8	 Likely	Large	
-2	 OL	 TE	 10	±	9	 Likely	Moderate	
-2	 OL	 WR	 11	±	7	 Likely	Moderate	

	

	

Defensive	Backs	and	WR	performed	the	highest	amount	of	PL	compared	to	

other	position	groups,	with	unclear	between-position	differences	observed	

between	them	(GD	-4:	19	±	41	AU;	GD	–	3:	-2	±	36	AU;	GD	-2:	-11	±	38	AU).	

Defensive	 linemen	performed	 the	 lowest	PL	 relative	 to	all	 other	positions.	

Conversely,	 the	 OL,	 the	 position	 group	 that	 opposes	 the	 DL	 on	 offense,	
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performed	more	PL	than	the	DL	with	effects	ranging	from	moderate	to	large	

(GD	-4:	-58	±	44	AU,	likely	large;	GD	-3:	-44	±	38	AU,	likely	moderate;	-52	±	

42	 AU,	 possibly	 Large).	 The	 DL	 group	 also	 performed	 the	 lowest	 PL/min,	

with	differences	ranging	from	likely	small	to	likely	large	when	compared	to	

other	positional	groups.		

	

Position	 groups	 that	 oppose	 each	 other	 on	 offense	 and	 defense	 showed	

unclear	differences	in	Total	IMA.	Defensive	Line	and	OL	performed	a	higher	

number	 of	 Total	 IMA	 compared	 to	 all	 other	 position	 groups	 with	 unclear	

differences	between	the	two	groups	on	GD	-4	and	GD	-2	and	OL	performing	

more	Total	IMA	on	GD	-3	(-9	±	9,	Likely	Moderate).	Wide	Receivers	and	DB’s	

had	unclear	differences	in	IMA	as	did	LB’s	and	TE’s	and	LB’s	and	RB’s,	with	

the	exception	of	GD	-3,	where	a	possibly	moderate	difference	was	observed	

(7	±	8).	

	

5.4	Discussion	
	

This	 is	 the	 first	 study	 to	 investigate	 the	 positional	 differences	 in	 external	

training	loads	(both	running	and	non-running	activity)	in	American	football	

players	 during	 a	 NFL	 training	 camp.	 The	 main	 findings	 show	 positional	

differences	in	both	running	and	sports	specific	movements.	Specifically,	DB’s	

and	WR’s	exhibited	moderate	to	most	 likely	very	 large	positive	differences	

in	 TD	 covered	 compared	 to	 other	 position	 groups.	 Conversely,	 DL	 and	OL	

performed	a	 larger	number	of	sports	specific	movements,	as	measured	via	

Total	 IMA.	 The	 observed	 variations	 in	 training	 load	 between	 positions	
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groups	 also	 appear	 to	 be	 influenced	 by	 the	microcycle	 structure,	whereby	

training	intensity	appears	to	decrease	as	the	training	days	progress	closer	to	

competition.	 This	 decrease	 in	 training	 intensity	 across	 the	 week	 is	 a	

consequence	of	the	training	sessions	being	aimed	at	preparing	for	the	game	

(e.g.,	 installing	 plays)	 and	may	 reflect	 a	 tapering	 approach	 as	 competition	

nears.	These	findings	may	have	practical	relevance	in	illustrating	differences	

in	the	training	loads	completed	by	different	positions	in	the	NFL,	during	the	

training	camp	period.	

	

Total	 distance	 is	 often	 reported	 as	 a	measure	 of	 training	 volume	 in	 field-

based	 team	 sport	 athletes	 (Akenhead	&	Nassis,	 2016).	 The	 heterogeneous	

nature	of	position	demands	in	American	football	requires	some	positions	to	

perform	more	 running	 than	others	 (DeMartini	 et	 al.,	 2011).	Differences	 in	

locomotor	activity	between	position	groups	in	the	present	study	are	similar	

to	 previous	 findings	 in	 collegiate	 (DeMartini	 et	 al.,	 2011;	 Wellman	 et	 al.,	

2016;	Wellman	et	al.,	2017)	and	high	school	(Gleason	et	al.,	2017)	American	

football	 athletes.	 For	 example,	 WR	 and	 DBs	 in	 the	 college	 ranks	 were	

observed	to	have	a	higher	amount	of	running	distance	and	sprints	during	a	

season	 compared	 to	 all	 other	 positions	 (Wellman	 et	 al.,	 2016).	 Similarly,	

college	 non-linemen	 performed	 a	 higher	 amount	 of	 TD	 than	 linemen	

(DeMartini	 et	 al.,	 2011).	 These	 findings	 are	 similar	 to	 the	 present	

observations	for	DB	and	WR	who	had	a	greater	amount	of	running	distance	

during	training	compared	to	other	position	groups.	Notably,	total	distances	

observed	in	this	sample	of	NFL	players	are	greater	than	during	a	collegiate	

football	practice	(DeMartini	et	al.,	2011).	This	may	be	a	direct	consequence	
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of	playing	at	the	higher	NFL	level	where	there	are	fewer	players	on	training	

squads	 than	 college	 teams.	 While	 college	 football	 teams	 often	 support	

between	 110-120	 players,	 NFL	 teams	 are	 regulated	 by	 the	 number	 of	

players	they	can	employ	by	the	rules	of	the	league.	These	lower	numbers	of	

available	players	may	also	result	in	lower	opportunities	for	recovery	periods	

from	 practice	 drills	 in	 NFL	 athletes	 thereby	 increasing	 the	 need	 to	 be	

involved	 in	practice	activities.	 It	 is	also	possible	 that	 these	differences	may	

simply	reflect	a	higher	level	of	physical	demand	at	the	elite	end	of	the	game	

(Gabbett,	2005;	Gorostiaga	et	al.,	2005).			

	

In	addition	to	TD,	differences	in	HSD	between	NFL	position	groups	were	also	

evaluated.	HSD	differences	were	observed	between	positions	whereby	WR	

performed	 less	 than	TE’s	on	GD	-4	and	GD	 -3	and	RB	on	all	 three	 training	

days.	In	the	defensive	position	groups,	the	LB’s	were	found	to	perform	more	

HSD	 than	 the	 other	 two	 position	 groups	 (DB	 and	 DL).	 These	 findings	

describe	a	difference	in	the	positional	requirements	for	HSD	irrespective	of	

total	distance	that	is	covered	across	positions.	The	findings	are	in	contrast	to	

previous	 findings,	 from	 collegiate	 games,	 where	 WR	 and	 DB	 performed	

greater	sprint	distance	(>	6.4	m·s-1)	than	other	position	groups	(Wellman	et	

al.,	2016).	These	authors,	however,	used	absolute	speed	zones	for	the	entire	

team,	which	may	overestimate	and	underestimate	HSD	for	faster	and	slower	

athletes	respectively	(Gabbett,	2015).	In	contrast,	the	present	study	utilized	

a	 relative	 speed	 criteria	 specific	 to	 each	 position	 group.	 This	may	 explain	

some	 of	 the	 observed	 differences	 between	 position	 groups.	 Alternatively,	

these	 findings	 may	 indicate	 a	 potential	 volume-intensity	 relationship	 in	
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position	 groups	 that	 perform	 larger	 amounts	 of	 total	 distance	 during	

training.	For	example,	it	is	possible	that	the	amount	of	total	distance	the	WR	

and	 DB	 groups	 are	 required	 to	 perform	 impedes	 their	 ability	 to	 perform	

greater	 HSD	 during	 training	 and	may	 implicate	 within-session	 fatigue	 for	

those	positional	groups.		

	

To	 investigate	 sports	 specific	movements,	we	utilized	 three	 accelerometer	

metrics	–	PL,	PL/min,	and	Total	IMA.	This	study	revealed	that	high	PL	values	

may	be	associated	with	the	completion	of	a	variety	of	specific	actions	other	

than	 running,	 such	 as	 collisions	 and	 tackles.	 	 This	 is	 evidenced	 by	 some	

positions	demonstrating	relatively	high	PL	values	in	the	context	of	low	total	

distances.	For	example,	differences	 in	PL	and	PL/min	between	OL	and	WR	

ranged	 from	 unclear	 to	 possibly	 moderate	 across	 all	 three	 training	 days,	

despite	WR’s	performing	very	large	amounts	of	total	distance.	Similarly,	the	

DB	 group	 performed	 greater	 running	 than	 the	 LB	 group,	 though	 the	 PL	

differences	between	these	two	groups	were	less	substantial.	These	findings	

indicate	that	PL	is	capturing	a	variety	of	different	running	and	non-running	

activities	 and	may	 provide	 practitioners	with	a	 global	measure	 of	 training	

load,	regardless	of	position	demands.	Further	validation	of	PL	 in	American	

football	is	required	to	confirm	its	utility.		

	

The	DL	produced	the	lowest	PL	and	PL/min	compared	to	all	other	position	

groups.	Observed	differences	between	DL	and	OL	are	 interesting	given	the	

OL	is	the	main	opposition	of	the	DL.	These	findings	may	be	a	consequence	of	

the	 practice	 style	 for	 this	 group	 in	 this	 team.	 Practice	 is	 divided	 in	 such	 a	
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way	 that	 portions	 of	 the	 sessions	 are	 dedicated	 towards	 position	 groups	

competing	 against	 each	 other	 in	 game	 specific	 tasks	 (e.g.	 running	 plays)	

while	 other	 parts	 of	 practice	 are	 devoted	 to	 individual	 position	 groups	

working	 on	 technical	 elements	 of	 play.	 It	 is	 possible	 that	 even	 though	

position	 groups	 like	 the	 OL	 and	 DL	 compete	 against	 each	 other	 during	

structured	periods	of	practice,	 their	position	 specific	 training	periods	may	

provide	different	training	load	intensities	for	these	groups	when	compared	

to	 other	 positions.	 A	more	 thorough	 evaluation	 of	within-session	 training	

drills	would	allow	for	a	better	understanding	of	how	positional	groups	are	

affected	by	these	training	demands.	

	

While	 PL	 is	 influenced	 by	 a	 variety	 of	 actions,	 previous	 literature	 has	

suggested	that	PL	is	correlated	with	upright	running	(Jennings	et	al.,	2010;	

Polglaze	et	al.,	2015).	Therefore,	we	attempted	to	further	quantify	the	sports	

specific	movements	using	Total	IMA.	Differences	in	Total	IMA	were	unclear	

between	 position	 groups	 that	 compete	 against	 each	 other	 on	 offense	 and	

defense.	These	findings	indicate	that	more	data	is	required	to	make	a	more	

thorough	 determination	 regarding	 differences	 in	 positional	 demands	

between	position	groups	 that	directly	oppose	one	another.	The	DL	and	OL	

groups	performed	the	highest	Total	IMA	compared	to	other	position	groups.	

The	main	actions	of	these	two	groups	typically	occur	through	collisions	with	

one	 another	 to	 block	 or	 tackle.	 The	 findings	 suggest	 that	 while	 the	 OL	

perform	 a	 greater	 amount	 of	 total	distance	 and	PL	 compared	 to	 the	DL,	 a	

similar	 number	 of	 sports	 specific	movements	 are	 performed	 between	 the	

two	groups	during	training.	These	observed	differences	show	that	Total	IMA	
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could	be	used	 to	 identify	 the	 contribution	of	 sports	 specific	movements	 to	

the	total	training	load	in	American	football.	This	suggests	that	there	is	also	a	

need	 for	 training	 load	measures	 other	 than	 speed	 and	 distance	 in	 groups	

that	perform	greater	sport	specific	actions	(e.g.,	OL	and	DL)	in	this	sport.		

	

While	this	is	the	first	study	to	describe	training	demands	in	NFL	football,	it	is	

important	to	recognize	that	these	data	are	only	specific	to	a	single	period	of	

training	completed	during	the	training	camp	of	one	team.	Therefore,	 these	

findings	 may	 not	 reflect	 training	 during	 the	 in-season	 phase	 when	

competitive	demands	are	greater	and	the	roster	size	is	smaller.	For	example,	

during	 the	pre-season	phase	 teams	are	allowed	 to	maintain	a	 roster	of	90	

players,	as	opposed	to	63	during	the	regular	season,	which	allows	training	to	

be	 dispersed	 amongst	 a	 greater	 number	 of	 players.	 Therefore,	 the	 key	

players	 on	 the	 team	 are	 not	 required	 to	 train	 with	 the	 same	 amount	 of	

volume	as	 they	would	during	the	 in-season	phase.	Thus,	 this	data	may	not	

reflect	the	outputs	of	the	most	elite	players	within	the	sport.	

	

5.5	Conclusions	
	

This	 study	 has	 described	 positional	 training	 loads	 during	 training	 of	

American	 football	 in	 the	 NFL.	 The	 results	 showed	 differences	 in	 running	

volume,	 intensity	 and	 sport	 specific	 movements.	 These	 data	 have	

implications	 for	 aiding	 coaches	 when	 it	 comes	 to	 specific	 training	 drill	

design	 and	 for	 establishing	 periodization	 strategies	 when	 preparing	 for	

competition.	For	example,	the	observed	decreases	in	physical	output	across	
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the	 microcycle	 may	 be	 reflective	 of	 tapering	 as	 the	 competition	 nears.	

However,	 the	 findings	 here	 may	 lack	 generalizability	 to	 other	 American	

football	teams	given	the	practice	demands	are	unique	to	the	coaching	style	

of	 each	positional	 coach	and	 the	play	 style	 specific	 to	 the	head	coach	who	

designs	 the	 playbook.	 Practitioners	 are	 encouraged	 to	 take	 a	 similar	

approach	 to	 evaluating	 the	 training	 demands	 of	 their	 team	 in	 order	 to	

understand	the	unique	physical	demands	imposed	on	their	athletes.		

	

A	novel	 finding	of	 this	study	 is	 that	 inertial	sensor	data	provides	the	basis	

for	 a	 different	 conceptual	 approach	 to	 quantifying	 training	 load,	 as	 GPS	

metrics	 may	 be	 limited	 in	 identifying	 all	 of	 the	 training	 demands.	 These	

inertial	 sensor	 measures	 provide	 value	 in	 collision-based	 sports	 where	

players	 perform	 different	 types	 of	 actions	 that	may	 not	 be	 solely	 running	

based.	Future	research	should	seek	to	better	understand	these	metrics	and	

their	utility	for	determining	not	only	training	demands	but	also	performance	

outcomes	and	injury	risk.		
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CHAPTER	6	

	

AN	INVESTIGATION	OF	THE	

RELATIONSHIP	BETWEEN	INERTIAL	

SENSOR	METRICS	FOR	MONITORING	

TRAINING	LOAD	IN	AMERICAN	FOOTBALL	
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6.1	Introduction	
	

American	football	is	a	collision-based	sport	consisting	of	brief	bouts	of	high	

intensity	activity	interspersed	with	longer	rest	intervals	(Rhea	et	al.,	2006;	

Iosia	&	Bishop,	2008).	Each	team	is	allowed	11	players	on	the	field	at	one	

time	with	those	players	being	dedicated	to	one	of	eight	positional	groups.	

The	defense	includes	three	positions	-	Defensive	Backs	(DB),	Defensive	Line	

(DL),	and	Linebackers	(LB)	-	while	the	offense	is	based	on	five	positions;	

Offensive	Line	(OL),	Quarterback	(QB),	Tight	Ends	(TE),	Running	Backs	(RB),	

and	Wide	Receivers	(WR).	Players	have	been	observed	to	perform	a	variety	

of	actions	including	sprinting,	decelerating,	changing	direction,	blocking	and	

tackling	(Pincevero	&	Bompa,	1997).	These	physical	demands	are	thought	to	

vary	amongst	position	groups	with	these	activity	profiles	depending	on	each	

positions	tactical	requirement.	For	example,	during	matches,	larger	players	

on	the	defensive	and	offensive	line	will	collide	with	one	another	to	block	and	

tackle	while	smaller	sized	players,	such	as	WR,	will	sprint	with	the	ball	in	an	

effort	to	gain	field	position	while	the	DB	players	will	attempt	to	stop	them	

(Pincevero	&	Bompa,	1997).	

	

Recently,	GPS	technology	has	allowed	for	more	direct	quantification	of	

training	and	match	activity	within	the	sport	of	American	football.	The	

application	of	such	technology	has	provided	a	platform	for	the	deeper	

understanding	of	the	physical	demands	of	the	sport	by	providing	objective	

quantification	of	the	activities	performed	by	players	(DeMartini	et	al.,	2011;	

Wellman	et	al.,	2016;	Wellman	et	al.,	2017).	For	example,	during	collegiate	
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football	matches,	the	WR	and	DB	position	groups	performed	greater	running	

(4696	±	1,115	m	and	5531	±	997	m,	respectively)	and	sprinting	(10.6	±	4.3	

m	and	12.7	±	5.7	m,	respectively)	volumes	than	other	position	groups.	

Similar	running	volumes	to	those	in	matches	have	also	been	observed	for	

these	groups	in	collegiate	football	training,	with	the	non-linemen	(DB,	LB,	

WR,	QB,	and	RB)	performing	a	larger	total	running	volume		(3532	±	943	m)	

compared	to	linemen	(DL,	OL,	and	TE)	(2573	±	489	m)	(DeMartini	et	al.,	

2011).	The	quantification	of	running	based	activities	during	practice	may	

however	only	partially	describe	the	demands	placed	on	certain	positional	

groups.	This	is	a	consequence	of	each	positions	tactical	need	to	complete	

specific	actions	(e.g.,	blocking,	change	of	direction)	and	the	collision-based	

nature	of	the	game.	For	example,	while	lineman	may	perform	less	running	

distance	than	other	position	groups	they	are	required	to	engage	in	a	greater	

amount	of	collisions	and	physical	contact	(Chapter	5).	There	would	seem	to	

be	a	need	for	the	quantification	of	training	load	metrics,	that	quantify	both	

running	and	non-running	based	actions,	to	fully	understand	the	demands	

placed	on	players	and	the	true	nature	of	the	differences	in	activity	demands	

between	positions.	

	

Integrated	micro	technology	systems	combine	GPS	with	inertial-sensor	

metrics	(e.g.,	Player	Load,	Inertial	Movement	Analysis	(IMA),	and	Impacts)	

in	an	attempt	to	provide	data	around	non-running	activities	(Boyd	et	al.,	

2011;	Meylan	et	al.,	2016;	Gastin	et	al.,	2013).	These	metrics	have	recently	

been	used	within	American	football.	For	instance,	RB’s	and	Defensive	

Tackles	(a	position	on	the	DL)	performed	the	highest	amount	of	heavy	(7.1	–	
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8	g)	and	very	heavy	(8.1	–	10	g)	impacts	during	a	season	of	collegiate	

matches	(Wellman	et	al.,	2017).	The	Player	Load	metric	has	also	been	used,	

during	training,	to	identify	players	at	risk	of	injury	and	provide	an	

understanding	of	the	ramifications	of	playing	the	sport	at	the	collegiate	level	

(Wilkerson	et	al.,	2016).	While	these	examples	enhance	the	discussion	

around	the	physical	demands	of	American	football	it	is	still	not	clear	which	

inertial	sensor	variables	may	be	most	effective	at	classifying	positional	

differences	in	training/match	demands.	This	challenge	may	be	made	more	

difficult	by	the	large	variety	of	training	load	metrics	in	commercially	

available	integrated	micro	technology	systems	(Cardinale	&	Varley,	2017).	

Additionally,	several	of	the	available	metrics	may	be	highly	correlated,	

indicating	that	they	are	not	discrete	descriptors	of	activity	but	are	instead	

describing	similar	physical	constructs	(Gabbett,	2015).	Due	to	these	

limitations,	an	approach	to	reduce	the	number	of	variables	and	determine	

which	metrics	may	be	most	related	and	therefore	describe	similar	physical	

constructs	seems	warranted.	

	

Principal	components	analysis	(PCA)	is	a	statistical	method	that	seeks	to	

reduce	the	dimension	of	a	dataset	that	consists	of	highly	correlated	

variables	down	to	a	few	key	factors	or	“principal	components”	that	explain	

similar	constructs	(Witte	et	al.,	2010;	Clark	&	Ma’ayan,	2011;	Federolf	et	al.,	

2012).	In	this	way,	PCA	can	be	thought	of	as	a	parsimonious	approach	to	

data	analysis.	The	weighting	of	each	of	the	variables	within	their	respective	

principal	component	can	be	used	as	coefficients,	similar	to	regression,	and	

produce	a	single	metric	describing	a	specific	training	load	construct.	This	
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type	of	statistical	approach	has	practical	relevance	as	it	allows	for	an	

understanding	of	the	relationship	between	various	training	metrics	while	

helping	reduce	the	number	of	variables.	This	may	ultimately	simplify	any	

reporting	structures	in	an	applied	setting.	Therefore,	the	aim	of	this	paper	is	

to	utilize	Principal	Component	Analysis	(PCA)	to	understand	the	

relationship	between	different	inertial	sensor	metrics	within	American	

football.	A	secondary	aim	is	to	use	the	loadings	of	these	principal	

components	to	evaluate	if	there	are	new	training	constructs	that	may	be	

used	to	better	represent	the	physical	requirements	of	each	positional	group.		

	

6.2	Methods	

	

6.2.1	Research	Design	
	

This	study	evaluated	training	load	data,	quantified	with	inertial	sensors,	in	

American	football	players	through	the	use	of	PCA.	The	motivation	to	use	

such	a	statistical	approach	was	to	attempt	to	understand	the	relationship	

between	different	inertial	sensor	variables	and	through	this	process	reduce	

these	variables	down	to	key	principal	components.		This	process	may	be	

useful	in	identifying	outcome	measures	that	describe	the	same	physical	

constructs.	This	study	is	descriptive	in	nature	and	utilized	a	longitudinal	

research	design	whereby	training	load	data	to	be	used	in	the	analysis	was	

collected	over	the	course	of	an	NFL	in-season	for	one	team.	The	season	

consisted	of	16	games	in	17	weeks	with	the	majority	of	weeks	consisting	of	

3	training	sessions	that	lead	into	the	upcoming	competitive	fixture.	Forty-
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eight	training	sessions	were	recorded	in	total	giving	2332	individual	

training	files	obtained	during	the	course	of	the	study.	All	training	sessions	

were	dictated	by	the	coaching	staff	and	were	broadly	aimed	at	preparing	the	

players	for	the	upcoming	competition.	

	

6.2.2	Participants	
	

Training	load	data	was	collected	on	82	American	football	athletes	belonging	

to	one	NFL	team	(mean	±	SD;	age:	24	±	2	years;	height:	1.88	±	0.07	m;	body	

mass:	113.3	±	21.0	kg).	Players	were	categorized	into	one	of	eight	different	

positional	groups:	DB	(n	=	12),	DL	(n	=	14),	LB	(n	=	9),	OL	(n	=	14),	QB	(n	=	

3),	RB	(n	=	15),	TE	(n	=	5),	WR	(n	=	10).	This	study	received	ethical	approval	

from	a	local	research	ethics	committee	and	permission	to	publish	was	

granted	from	the	NFL	club.	

	

6.2.3	Experimental	Design	
	

Integrated	micro	technology	sensors	(Minimax	S5,	Catapult	Innovations,	

Scoresby,	Australia)	were	used	to	capture	training	load	during	each	training	

session.	These	sensors	house	a	10	Hz	GPS	unit	and	a	100	Hz	accelerometer,	

gyroscope,	and	magnetometer.	Units	were	worn	by	each	player	between	

their	shoulder	blades	in	a	custom	designed	pouch	provided	by	the	

manufacturer.	Following	the	completion	of	each	training	session,	data	was	

downloaded	using	the	manufactures	software	(Catapult	Sports,	Openfield	

software)	and	exported	into	Excel	(Microsoft,	Redmond,	WA)	for	further	



	 123	

analysis.	To	help	ensure	the	reliability	of	the	data,	each	player	was	assigned	

his	own	micro	technology	unit	for	the	duration	of	the	study	(Rampinini	et	

al.,	2015).	These	units	are	valid	and	reliable	for	tracking	the	on-field	

activities,	such	as	running	and	collisions,	in	team	sport	athletes	(Boyd	et	al.,	

2011;	Wundersitz	et	al.,	2015;	Van	Iterson	et	al.,	2017).	

	

American	football	players	perform	a	variety	of	movement	actions,	consisting	

of	both	running	and	non-running	(e.g.,	physical	collisions)	activities.	The	

extent	that	each	position	produces	these	actions	is	partly	dependent	on	the	

tactical	requirements	of	the	position	(Pincevero	&	Bompa,	1997).	To	capture	

such	diverse	movements,	eleven	inertial	sensor	variables	were	selected	for	

PCA	(i.e.,	Total	Player	Load,	Player	Load	Low	Effort	Band,	Player	Load	

Medium	Effort	Band,	Player	Load	High	Effort	Band,	Player	Load	Very	High	

Effort	Band,	Low	IMA,	Medium	IMA,	High	IMA,	Low	Impacts,	Medium	

Impacts,	and	High	Impacts).	While	GPS	and	velocity-based	measures	are	

commonly	applied	in	team	sports,	such	as	soccer	(Akenhead	&	Nassis,	

2016),	the	inertial	sensor	metrics	we	chose	to	utilize	in	this	study	were	

selected	for	their	ability	to	potentially	quantify	both	running	movements	

and	non-running	movements.		Relevant	movements	include	changes	of	

direction,	decelerations,	and	physical	contacts	(Boyd	et	al.,	2011;	Petersen	et	

al.,	2017;	Gabbett,	2015);	activities	that	are	specific	to	American	football	

training	(Chapter	3	&	5).	

	

Given	the	diverse	nature	of	actions	performed	by	American	football	players	

during	training,	Total	Player	Load	was	chosen	as	an	overall	proxy	for	total	
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training	activity.	Total	Player	Load	was	derived	from	the	tri-axial	

accelerometer	and	was	calculated	as	the	square	root	of	the	sum	of	squared	

instantaneous	rate	of	change	in	acceleration	in	each	of	the	three	movement	

planes	(X,	Y,	and	Z)	(Boyd	et	al.,	2011).	Player	Load	is	reported	in	arbitrary	

units	(AU)	and	reflects	physical	stress	resulting	from	accelerations,	

decelerations,	change	of	directions,	and	impacts.	Additionally,	this	metric	

has	been	reported	to	have	a	strong	relationship	with	the	total	distance	

covered,	making	it	useful	for	describing	total	running	volume	(Cardinale	&	

Varley,	2017;	Gabbett,	2015;	Polglaze	et	al.,	2015).			

	

In	addition	to	the	use	of	Player	Load	to	reflect	the	overall	load,	Player	Load	

Effort	Bands	were	analyzed.	The	thresholds	for	these	bands	were	specific	to	

manufacturer	pre-sets:	Player	Load	Low	Effort	Band	(1	–	2	g),	Player	Load	

Medium	Effort	Band	(2	–	3	g),	Player	Load	High	Effort	Band	(3	–	4	g),	and	

Player	Load	Very	High	Effort	Band	(>	4	g).	These	bands	were	used	to	

represent	discrete	movement	efforts	(e.g.,	running,	jumping,	etc.)	performed	

within	each	pre-designated	threshold	during	training.		Such	distinctions	may	

be	useful	for	understanding	how	acceleration	forces	during	training	are	

distributed.	For	example,	lower	intensity	movements	such	as	walking,	and	

jogging	would	be	represented	as	actions	in	lower	effort	bands	while	intense	

changes	of	direction	or	collisions	with	other	players	would	register	actions	

in	higher	effort	bands.	These	types	of	discrete	activities	may	help	to	

differentiate	positional	differences	more	clearly	than	a	single	continuous	

measure	of	force,	such	as	Total	Player	Load.	
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Both	IMA	and	Impacts	were	selected	to	represent	non-running	activities	

during	training	as	position	groups	perform	less	running	and	more	physical	

contact	activities	(DeMartini	et	al.,	2011;	Wellman	et	al.,	2016;	Wellman	et	

al.,	2017).	IMA	utilizes	the	three	inertial	sensors	(accelerometer,	gyroscope,	

and	magnetometer)	to	quantify	how	acceleration	forces	are	displaced	in	

specific	directions	(Forward,	Backward,	Left,	and	Right).	This	metric	has	

good	reliability	when	measuring	game-to-game	explosive	activities	(CV	=	

14%)	(Meylan	et	al.,	2016)	and	has	been	used	to	quantify	explosive	actions	

taking	place	in	confined	spaces	in	the	sport	of	basketball	(Petersen	et	al,	

2017).	IMA	activity	was	classified	into	Low	(1.5	–	2.5	m�s-2),	Medium	(2.5	–	

3.5	m�s-2),	and	High	(>	3.5	m�s-2)	bands,	which	were	pre-set	by	the	

manufacturer.	Finally,	three	“Impact”	Bands	were	used	to	describe	the	

amount	and	intensity	of	collision-based	activities	performed	by	the	players	

during	training.	Impacts	were	grouped	into	Low	(5	–	6	g),	Medium	(6	–	7	g),	

and	High	(>	7	g)	categories.	The	use	of	inertial	sensors	to	calculate	collisions	

and	impacts	has	been	previously	established	(Wundersitz	et	al.,	2015;	Kelly	

et	al.,	2012)	and	these	types	of	measures	have	been	used	to	quantify	the	

volume	and	magnitude	of	impact	during	collegiate	football	matches	

(Wellman	et	al.,	2017).		

	

6.2.4	Statistical	Analysis	
	

Training	variables	were	first	normalized	by	dividing	the	value	by	the	

duration	of	training	(min)	in	a	given	session.	Prior	to	PCA	analysis,	all	

variables	were	scaled	to	have	a	mean	of	0	and	SD	of	1.	To	determine	the	
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appropriateness	for	PCA,	Bartlett’s	Test	of	Sphericity	was	used	to	evaluate	

whether	correlations	between	variables	were	sufficiently	large	and	the	

Kaiser-Meyer-Olkin	(KMO)	measure	was	used	to	determine	sample	size	

adequacy.	Bartlett’s	Test	of	Sphericity	was	found	to	be	significant	(p	<	

0.001)	indicating	the	correlations	between	variables	were	acceptable	for	

PCA.	The	overall	KMO	score	was	0.81	with	each	individual	variable	having	a	

KMO	between	0.76	–	0.91.	This	exceeds	the	minimum	criteria	of	0.50	

established	by	Kaiser	(1974).	These	tests	indicate	acceptability	for	PCA	

therefore	permitting	the	eleven	training	variables	to	be	subjected	to	further	

analysis.	Three	principal	components	were	found	to	have	eigenvalues	

greater	than	1	and	were	thus	retained	for	extraction	(Kaiser,	1960).	These	

three	components	explained	a	cumulative	variance	of	79%.	Due	to	the	

correlation	between	the	3	principal	components,	oblique	rotation	(promax)	

was	applied	to	improve	interpretation	of	the	loading	values.	Variables	with	

loading	values	greater	than	0.4	were	highlighted	as	being	most	important	

for	a	given	principal	component	(Burnett	et	al.,	1997).	Loading	values	were	

applied	as	coefficients	to	their	respective	variables	within	the	data	set	to	

create	single	values	that	describe	the	specific	construct	of	the	given	

principal	component.	The	mean	of	each	position	group	was	calculated	for	

the	three	principal	components	and	then	standardized	so	that	the	principal	

components	could	be	compared	to	one	another.	Statistical	analysis	was	

carried	out	in	the	statistical	software	R	(Version	3.1.2).	
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6.3	Results	
	

Descriptive	statistics	(mean	±	SD)	of	the	11	training	variables	for	each	

position	group	are	displayed	in	Table	6.1.	The	rotated	loadings	for	the	three	

principal	components	along	with	their	eigenvalues,	proportional	variance,	

and	cumulative	variance	are	displayed	in	Table	6.2.	Variables	with	a	loading	

of	>	0.4	are	highlighted	as	the	most	important	variables	within	that	principal	

component.	The	correlation	between	the	three	components	is	shown	in	

Table	6.3.
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Table	6.1.	Normalized	(per	minute	of	training)	mean	±	SD	for	all	training	load	variables.	
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Table	6.2.	Principal	component	loadings,	eigenvalues,	and	variance	
explained	for	each	principal	component	following	oblique	rotation.	
Variables	with	a	weighting	greater	than	0.4	are	bolded	to	show	their	
relevance	to	the	given	principal	component.	
	

Variable	(per	minute)	
Principal	

Component	1	
Principal	

Component	2	
Principal	

Component	3	
Player	Load	 -0.14	 0	 0.98	
Low	IMA		 -0.11	 0.98	 -0.07	

Medium	IMA		 0.08	 0.90	 0.01	
High	IMA	 0.39	 0.6	 0.06	

Player	Load	Low	Effort	Band	 -0.22	 0.58	 0.58	
Player	Load	Medium	Effort	Band	 0.33	 0.15	 0.63	
Player	Load	High	Effort	Band		 0.61	 -0.2	 0.55	

Player	Load	Very	High	Effort	Band	 0.77	 -0.23	 0.28	
Low	Impacts	 0.77	 0.05	 0	

Medium	Impacts	 0.91	 0.13	 -0.22	
High	Impacts		 0.93	 0.04	 -0.18	
Eigenvalue	 3.67	 2.7	 2.35	
%	Variance	 33%	 25%	 21%	

Cumulative	Variance	 33%	 58%	 79%	
	

Table	6.3.	Correlation	matrix	representing	the	relationship	between	the	3	
principal	components.	(PC	=	Principal	Component)	
	

	
PC	1	 PC	2	 PC	3	

PC	1	 1	
	 	PC	2	 0.33	 1	

	PC	3	 0.49	 0.47	 1	
	

	

Evaluation	of	the	weighting	applied	to	the	variables	within	the	3	rotated	

principal	components	demonstrated	that	each	described	a	specific	

construct.	Principal	Component	1	has	greater	emphasis	placed	on	all	3	of	the	

impact	bands	as	well	as	high	and	very	high	player	load	effort	bands.	

Alternatively,	Principal	Component	2	was	weighted	higher	on	all	3	IMA	

bands.	Finally,	the	third	Principal	Component	was	weighted	most	heavily	on	

Player	Load	and	low,	medium,	and	high	Player	Load	Effort	bands.	The	

weightings	of	the	variables	within	the	respective	principal	components	were	
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then	used	as	coefficients	and	applied	to	the	dataset.	In	this	way,	we	are	able	

to	describe	positional	group	training	loads	using	the	three	principal	

components	instead	of	the	11	different	inertial	sensor	metrics.	Each	

principal	component	was	represented	as	a	single	score	and	used	in	an	

attempt	to	describe	the	different	physical	constructs	for	each	position	group.	

This	allows	for	a	clear	representation	of	the	how	each	positional	group	may	

be	reflected	by	different	physical	constructs.	The	relationship	of	the	three	

principal	components	to	each	position	group	is	shown	in	Figure	6.1.		
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Figure	6.1.	Relationship	between	positional	groups	across	the	three	principal	components.	(A)	Principal	Components	1	and	3;	(B)	
Principal	Components	1	and	2;	(C)	Principal	Components	3	and	2.	
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Positional	groups	that	compete	against	each	other	on	defense	and	offense	

such	as	the	DB	and	WR	and	the	TE	and	LB	were	found	to	be	similar	(e.g.,	

similar	z-scores)	for	all	three	principal	components	in	most	cases.	

Conversely,	the	OL	and	DL	groups,	two	groups	that	also	compete	against	

each	other,	differed	in	all	three	principal	components.	The	QB	and	RB	

groups	had	a	unique	relationship	with	the	principal	components.	The	QBs	

are	represented	by	the	highest	weighting	in	all	three	principal	components,	

while	the	RB	group	only	had	a	positive	weighting	in	Principal	Component	1	

(consisting	of	all	Impact	variables	and	the	Player	Load	High	and	Very	High	

effort	bands).	

	

6.4	Discussion	
	

The	primary	aim	of	this	paper	was	to	utilize	PCA	to	identify	the	relationship	

between	different	inertial	sensor	metrics	during	the	training	of	American	

football	athletes	to	simplify	reporting	of	training	load	variables	in	practice.	

PCA	analysis	identified	three	principal	components	that	described	79%	of	

the	variance	within	the	data.	These	three	principal	components	revealed	a	

difference	in	the	emphasis	placed	on	specific	inertial	sensor	metrics	thereby	

indicating	that	the	three	components	that	are	described	may	identify	unique	

physical	constructs	during	training.	For	example,	Principal	Component	1	

had	a	high	weighting	on	all	three	of	the	impact	bands	and	the	high	and	very	

high	Player	Load	effort	bands	whilst	Principal	Component	2	was	loaded	

more	heavily	on	all	three	IMA	bands.	Principal	Component	3	placed	more	

weight	on	Player	Load	and	the	low,	medium,	and	high	Player	Load	effort	
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bands.	The	loadings	of	these	three	principal	components,	once	identified,	

were	then	applied	to	the	data	in	an	attempt	to	describe	the	physical	

requirements	of	eight	positional	groups	within	American	football.	The	

present	findings	suggest	that	certain	positional	groups	are	more	heavily	

weighted	in	different	principal	components	than	others	while	some	position	

groups	that	oppose	each	other	on	offense	and	defense	share	similar	physical	

requirements.	Collectively,	these	results	indicate	that	the	three	observed	

principal	components	could	be	utilized	to	provide	context	around	specific	

training	load	constructs	within	American	football.	

	

For	data	sets	consisting	of	a	large	number	of	highly	correlated	variables	PCA	

has	been	suggested	as	a	statistical	method	to	reduce	the	dimension	of	a	

dataset	to	“principal	components”,	which	can	then	be	used	to	explain	similar	

constructs	(Clark	&	Ma’ayan,	2011;	Federolf	et	al.,	2012;	Witte	et	al.,	2010).	

This	statistical	method	has	been	used	previously	in	sports	science	literature	

to	identify	different	sRPE	(Williams	et	al.,	2017)	constructs	and	classify	

training	drills	in	Rugby	athletes	(Weaving	et	al.,	2014).	However,	this	is	the	

first	investigation	to	use	PCA	to	create	a	parsimonious	model	that	attempts	

to	reflect	inertial	sensor	data	within	a	collision-based	sport.	Given	the	large	

variety	of	potential	metrics	for	the	practitioner	to	choose	from	this	approach	

was	necessary	in	order	to	reduce	these	metrics	down	to	a	smaller	number	

that	may	identify	specific	physical	constructs.	This	approach	may	aid	

practitioners	in	identifying	key	training	load	variables	that	best	describe	the	

sport	and	help	to	reduce	the	presentation	of	redundant	variables	that	are	

highly	correlated.		
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Previous	research	into	American	football	training	has	revealed	that	groups,	

which	play	opposite	each	other	on	offense	and	defense	share	similar	

physical	demands	(Chapter	5).	In	agreement,	this	study	reveals	that	the	DB	

and	WR	groups	and	the	TE	and	LB	groups	are	similarly	weighted	in	all	three	

principal	components.	Interestingly,	this	relationship	was	not	found	

between	the	OL	and	DL	groups,	who	also	compete	against	each	other	during	

activities	of	blocking	and	tackling.	The	DL	group	performed	lower	than	the	

OL	group	in	both	Principal	Component	3	and	Principal	Component	2	while	

having	higher	values	in	Principal	Component	1.	These	findings	may	be	a	

consequence	of	the	tactical	demands	exhibited	by	these	position	groups.	For	

example,	the	offensive	linemen	are	seldom	substituted	out	when	their	

positional	group	is	performing	a	consecutive	series	of	plays.	This	will	clearly	

lead	to	a	larger	total	training	load	compared	to	the	DL	group	(Chapter	5).	

Conversely,	players	on	the	DL	engage	in	a	large	volume	of	physical	collisions	

(Chapter	5)	and	are	frequently	substituted	in	and	out	depending	on	the	

tactics	of	the	offense.	This	would	make	their	demands	more	intermittent	

collision-based	in	nature.	As	such,	this	may	explain	why	the	disparity	

between	competing	positions	and	why	DL	group	was	so	highly	loaded	in	

Principal	Component	1	compared	to	the	other	two	principal	components.	

These	findings	indicate	the	potential	role	that	exercise-to-rest	ratio	has	on	

influencing	the	physical	demands	for	certain	positional	groups.	

	

The	OL	and	QB	position	group	were	the	only	two	groups	that	revealed	a	high	

emphasis	in	all	three	principal	component	indices.	These	two	positional	
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groups	play	a	critical	role	in	the	offense	as	the	team	attempts	to	drive	down	

the	field	and	score.	As	such,	these	positional	groups	may	engage	in	larger	

amounts	of	diverse	training	activities	compared	to	other	groups	given	they	

are	required	to	stay	on	the	field	for	the	entire	offensive	series.	Interestingly,	

the	QB	position	observed	a	high	weighting	in	Principal	Component	1	in	this	

study,	which	places	an	emphasis	on	impacts	and	high	and	very	high	Player	

Load.	These	findings	are	surprising	given	that	the	QB	position	is	the	only	

position	that	does	not	engage	in	contact	at	any	time	during	training.		

Because	the	inertial	sensor	unit	is	worn	on	the	torso,	it	is	possible	that	the	

impact	metrics	are	related	instead	to	activities	that	are	not	specific	to	

collisions,	particularly	in	the	lower	band	(e.g.,	torso	movements	when	

throwing	a	ball	or	intense	changes	of	direction	and	sprinting)	(Cunniffe	et	

al.,	2009).	These	findings	may	reflect	the	need	for	specific	QB	metrics	that	

are	able	to	quantify	torso	movements	during	throwing	activities.	

	

6.5	Conclusions	
	

This	study	was	the	first	to	utilize	PCA	with	the	aim	of	creating	a	

parsimonious	description	of	several	training	load	variables	for	one	team	

within	the	sport	of	American	football.	The	findings	indicate	that	three	

principal	components	could	be	used	to	summarize	11	inertial	sensor	metrics	

and	provide	an	overall	description	of	the	training	loads	relative	to	eight	

positional	groups.	From	a	practical	perspective,	the	reduction	of	variables	

into	three	principal	components	may	ease	the	processes	of	reporting	such	

data	to	coaches	and	support	staff	members	who	need	to	make	daily	
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decisions	regarding	training	load	prescription.	To	assist	with	reporting,	

principal	components	are	often	named	to	help	identify	the	constructs	they	

are	describing.	As	such,	we’ve	provided	the	following	naming	conventions	

for	the	three	principal	components	(Table	6.4).	While	these	names	are	

convenient	for	practical	purposes,	caution	should	be	used	when	interpreting	

them	scientifically	given	the	limitations	surrounding	a	more	thorough	

understanding	of	the	types	of	movement	activities	these	metrics	are	truly	

quantifying.	For	example,	these	findings	show	that	the	variables	within	each	

of	the	principal	components	are	related	in	some	way.	However,	it	is	possible	

that	adjustments	in	how	some	of	these	specific	values	are	derived	needs	to	

be	investigated	to	improve	the	identification	of	more	specific	actions	and	not	

add	redundancy	into	the	monitoring	process.	While	these	findings	may	be	

limited	to	the	specific	training	style	of	the	team	and	players	which	the	study	

was	conducted	on,	thus	potentially	lacking	generalizability	to	other	

American	football	clubs,	the	statistical	approach	taken	highlights	a	way	for	

sports	scientists	to	evaluate	large	data	sets	consisting	of	a	number	of	

correlated	features.	Additionally,	the	findings	presented	in	this	study	are	

limited	by	the	fact	that	they	do	not	include	internal	training	load	metrics	in	

the	PCA.	It	is	possible	that	internal	training	load	measures	may	have	unique	

relationships	with	the	external	training	load	measures	examined	here,	

leading	to	different	training	load	constructs	which	describe	the	ways	in	

which	players	perform	the	prescribed	training	dose.	Finally,	this	analysis	

was	conducted	at	the	team	level	and	therefore	is	not	specific	to	positional	

demands.	Each	position	groups	may	require	a	different	principal	component	

structure	given	their	unique	ergonomic	demands	(Chapter	5);	however,	a	
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lack	of	sample	size	for	each	position	group	did	not	provide	confidence	that			

the	principal	components	generated	from	such	analysis	would	offer	stability	

or	generalizability.	Therefore,	data	was	pooled	in	this	study	to	borrow	

statistical	strength	from	the	large	sample	of	team	training	data.	Future	

research	should	seek	to	address	these	limitations	and	add	to	the	knowledge	

of	how	various	internal	and	external	training	load	measures	may	be	aligned	

in	similar	constructs	across	positional	groups.	

	

	

Table	6.4.	Proposed	naming	convention	for	the	three	principal	components	
specific	to	the	training	load	variables	with	the	highest	weighting	in	each.	
	
Principal	
Component	

Main	Training	Load	Variables	 Name	

PC	1	 Low	Impacts,	Medium	Impacts,	High	
Impacts,	High	Player	Load,	Very	High	Player	

Load	
	

Impact	Index	

PC	2	 Low	IMA,	Medium	IMA,	High	IMA	 Mutli-Directional	
Movement	Index	

PC	3	 Player	Load,	Player	Load	Low	Effort	Band,	
Player	Load	Medium	Effort	Band,	Player	

Load	High	Effort	Band	

Action	Index	

	



	 138	

	

CHAPTER	7	

	

AN	EVALUATION	OF	THE	MICROCYCLE	

AND	SEASON	LONG	POSITION	GROUP	

RATE	OF	CHANGE	IN	TRAINING	VOLUME	

AND	INTENSITY	
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7.1	Introduction	
	
	

Periodization	refers	to	the	planned	manipulation	of	training	variables	to	

provide	a	specific	stimulus	to	the	body	(Gamble	et	al,	2006).		The	

manipulation	of	such	training	variables	is	parsed	into	phases	or	training	

blocks,	termed	mesocycles	(~3-6	weeks)	and	microcycles	(~1	week)	each	

with	specific	training	goals	(Plisk	&	Stone,	2003).	Recently,	the	use	of	GPS	

and	integrated	micro	technology	sensors	has	provided	practitioners	with	

the	ability	to	quantify	external	training	load;	the	physical	output	of	the	

athlete,	during	training	(Halson,	2014;	Cardinale	&	Varley,	2017).	

Quantification	of	such	training	demands	has	allowed	for	investigations	of	

periodization	strategies	in	team	sport	athletes	(Manzi	et	al.,	2010;	Malone	et	

al.,	2015;	Ritchie	et	al.,	2016).	Although	little	evidence	supports	the	use	of	a	

completely	structured	periodization	model	in	team	sports	(Morgans	et	al.,	

2014)	small	changes	in	training	load	patterns	have	been	identified	across	

different	team	sport	training	phases	(Ritchie	et	al.,	2016),	which	may	

indicate	coaches	are	intuitively	adjusting	training	in	a	systematic	way.	In	

particular,	these	fluctuations	in	training	load	appear	to	be	most	evident	in	

the	smallest	training	phase,	the	weekly	micro-cycle,	as	teams	prepare	for	the	

upcoming	competition	(Morgans	et	al.,	2014;	Malone	et	al.,	2015).	For	

example,	Malone	and	colleagues	(2015)	identified	weekly	micro-cycle	

periodization	patterns	for	one	English	Premier	League	team	whereby	

training	was	incrementally	reduced	in	the	sessions	closest	to	match	day.	
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The	NFL	is	the	highest	level	of	American	football	competition.	Aside	from	

one	report	on	pre-season	training	(Chapter	5),	little	is	known	about	the	in-

season	training	characteristics	of	athletes	at	this	level.	The	NFL	in-season	

consists	of	16	games	played	in	17	weeks	with	each	team	being	provided	a	

one-week	“bye”	(a	period	where	no	game	is	played	which	is	assigned	by	the	

league	prior	to	the	commencement	of	the	upcoming	season).	The	most	

common	training	week	within	the	NFL	consists	of	Wednesday,	Thursday,	

and	Friday	training,	with	games	played	on	Sunday.	However,	deviations	

from	this	common	week	occur	when	teams	are	designated	to	play	on	

Monday	or	Thursday	or	when	half	of	the	teams	play	on	Saturday,	during	the	

last	two	weeks	of	the	season.	An	investigation	of	weekly	preparation	during	

game	weeks	in	pre-season	has	identified	positional	differences	in	movement	

demands,	which	are	thought	to	be	due	to	the	tactical	demands	placed	on	

each	position	(Chapter	5).	For	example,	linemen	engage	in	more	collisions	

and	impacts	compared	to	receivers	and	defensive	backs,	who	perform	a	

greater	amount	of	locomotor	activity	(Wellman	et	al.,	2016;	Wellman	et	al.,	

2017;	Chapter	5).	While	these	studies	define	the	physical	demands	of	

position	groups	within	sport,	details	about	how	the	volume	and	intensity	are	

adjusted	within	the	training	week	and	across	the	season	to	prepare	the	

players	for	competition	has	yet	to	be	explored.	

	

From	an	analytical	standpoint,	the	statistical	approaches	taken	in	team	sport	

periodization	studies	(Malone	et	al.,	2015;	Moreiera	et	al.,	2015;	Ritchie	et	al.	

2016)	have	focused	mainly	on	comparing	training	loads	between	various	

phases	of	the	pre-	and	competitive	season.	Other	than	providing	a	
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description	of	training	periodization,	these	studies	have	limited	use	for	

practitioners,	as	relevant	information	can	often	get	lost	in	a	substantial	

number	of	planned	comparisons.	Conversely,	a	statistical	approach	that	

identifies	how	training	volume	and	load	change	across	a	season	may	be	

more	in-line	with	the	type	of	information	practitioners	require	when	

planning	training	sessions.	For	example,	rate	at	which	training	is	changing	

over	time	can	be	used	by	practitioners	to	adjust	training	session	load	based	

on	identified	trends	from	previous	phases	of	training.	In	this	way,	training	

volume	outcomes	can	be	viewed	as	time	series	measurements	across	the	

season.	As	such,	a	summary	measures	approach	(Matthews	et	al.,	1990)	can	

be	used	to	analyze	serial	measurements	and	may	provide	a	useful	starting	

point	for	an	explanatory	study	of	this	kind	(Weston	et	al,	2011).		

	

Therefore,	the	aim	of	this	study	is	to	understand	the	rate	of	change	in	

training	load	(i.e.,	volume	and	intensity),	both	within	and	between	positional	

groups,	across	a	competitive	NFL	season	and	within	training	microcycles	

between	competitive	games.	Understanding	the	changes	in	training	

demands	within	and	between	positional	groups	across	these	training	cycles	

may	help	practitioners	to	better	prescribe	training	and	mitigate	unwanted	

trends	in	training	outcomes.		
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7.2	Methods	

	

7.2.1	Research	Approach	
	

The	training	load	and	intensity	of	one	NFL	team	was	quantified	for	47	

training	sessions	over	the	course	of	the	17-week	competitive	season.	The	

number	of	training	sessions	per	weekly	microcycle	and	number	of	days	

between	games	can	be	viewed	in	Table	7.1.	Training	session	volume	and	

intensity	was	quantified	through	the	use	of	integrated	micro	technology	

units.	The	weekly	training	plan	was	developed	by	the	coaching	staff	with	the	

objective	of	preparing	the	team	for	the	upcoming	opponent	(Weston,	2018).	

	

Table	7.1.	Seasonal	overview	of	the	breakdown	of	the	number	weekly	
training	sessions	and	days	between	matches	in	each	microcycle.		
	
Weekly	Microcycle	
(Training	Week)	

Number	of	Days	Between	
Games	

Number	of	Training	
Sessions	Per	Microcycle	

1	 10	(since	last	pre-season	
game)	

4	

2	 7	 3	
3	 7	 3	
4	 7	 3	
5	 Bye	Week	
6	 14	 4	
7	 7	 3	
8	 7	 3	
9	 8	 3	
10	 6	 3	
11	 7	 3	
12	 7	 3	
13	 7	 3	
14	 7	 3	
15	 4	 1	
16	 9	 3	
17	 8	 3	
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7.2.2	Participants	
	

Inclusion	criteria	for	this	investigation	consisted	of	players	who	participated	

in	≥	80%	(38)	of	the	47	total	sessions	in	the	season,	as	this	represents	

between	2-3	sessions	per	week,	on	average,	being	completed	by	the	athlete	

(38/16	=	2.4	sessions).	In	total,	thirty-six	American	football	players	from	the	

same	NFL	club	were	included	in	the	final	analysis	(mean	±	SD;	age:	24	±	2	y;	

height:	1.88	±	0.06	m;	body	mass:	109.4	±	19.9	kg).	Reasons	for	missing	

sessions	consisted	of	injury	or	the	player	being	granted	an	“off	day”	by	his	

position	group	coach	to	allow	for	more	recovery	before	the	next	match.	

Players	were	assigned	by	the	coaching	staff	to	one	of	seven	positional	

groups;	these	were	used	for	the	classification	of	position	groups	in	this	

investigation:	Defensive	Back	(DB,	n	=	7),	Defensive	Line	(DL,	n	=	3),	

Linebacker	(LB,	n	=	6),	Offensive	Line	(OL,	n	=	9),	Quarterback	(QB,	n	=	2),	

Tight	End	(TE,	n	=	5),	and	Wide	Receiver	(WR,	n	=	7).	The	running	backs	

group	was	excluded	from	this	analysis	due	to	the	low	sample	size	of	players	

who	met	the	inclusion	criteria	across	the	season	(n	=	1).	This	data	

represents	retrospective	data	collected	as	a	best	practice	approach	in	

professional	sport	(Winter	et	al.,	2009)	and	is	used	solely	for	descriptive	

purposes.	All	data	was	anonymized	prior	to	analysis	and	ethical	approval	for	

this	study	was	granted	by	a	local	university	ethics	committee.		Permission	to	

publish	was	granted	by	the	NFL	club	in	question.	
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7.2.3	Experimental	Design	
	

During	training,	players	wore	an	integrated	micro	technology	unit	(Minimax	

S5,	Catapult	Innovations,	Scoresby,	Australia)	situated	within	a	

manufacturer	provided	custom	pouch,	which	was	sewn	into	their	practice	

shirt	in	a	position	that	situated	it	between	the	two	scapula.	These	micro	

technology	units	consist	of	a	GPS	sensor	(10	Hz),	tri-axial	accelerometer	

(100	Hz),	tri-axial	gyroscope	(100	Hz),	and	magnetometer	(100	Hz).	Each	

player	was	issued	his	own	micro	technology	unit	to	be	worn	for	all	training	

sessions	to	ensure	intra-unit	reliability	(Rampinini	et	al.,	2015).	Data	was	

downloaded	immediately	following	each	training	session,	using	the	

manufacturers	software	(Catapult	Sports	Openfield	software)	and	exported	

into	Excel	(Microsoft,	Redmond,	WA)	for	further	analysis.	

	

The	physical	requirements	of	American	football	consist	of	both	running	and	

non-running	(e.g.,	collisions,	cutting,	change	of	direction)	activities	

(Wellman	et	al.,	2016;	Wellman	et	al.,	2017;	Chapter	5	&	6).	Therefore,	the	

physical	demands	associated	with	each	training	session	were	quantified	

using	two	accelerometer-derived	metrics,	Player	Load	(PL)	and	Total	

Inertial	Movement	Analysis	(IMA).	Player	Load	is	quantified	by	taking	the	

square	root	of	the	rate	of	change	in	acceleration	occurring	in	each	of	the	

three	movement	vectors	(x,	y,	and	z)	divided	by	100	(Boyd	et	al.,	2011).	

Thus,	PL	represents	the	cumulative	amount	of	acceleration	force	

experienced	by	the	individual	during	training	and	is	used	to	reflect	the	total	



	 145	

volume	of	the	training	session.	The	validity	and	reliability	of	PL	has	been	

established	in	both	laboratory	and	on-field	team	sport	running	activities	

(Boyd	et	al.,	2011)	and	has	a	strong	relationship	with	running	volume	

(Polglaze	et	al.,	2015).	Non-running	actions	(e.g.,	cutting,	collisions,	etc)	

make	up	a	large	portion	of	American	football	(Pincevero	&	Bompa,	1997;	

Chapter	3	&	5)	for	several	of	the	positional	groups.	These	actions	were	

quantified	using	the	IMA	metric.	Through	the	use	of	the	tri-axial	

accelerometer,	tri-axial	gyroscope,	and	magnetometer,	IMA	provides	a	count	

of	the	number	of	accelerations	occurring	above	3.5	m�s-2	in	four	movement	

vectors	(forward,	backward,	right,	and	left).	The	number	of	IMA	actions	

taking	place	in	each	direction	was	summed	to	produce	a	total	IMA	count	for	

each	training	session.	This	cumulative	number	was	used	as	an	indicator	of	

session	intensity.	Both	IMA	and	PL	have	been	previously	used	to	describe	

American	football	training	activities	(Chapter	3)	and	to	differentiate	the	

volume	and	intensity	of	training	between	position	groups	during	an	

American	football	training	camp	(Chapter	5).	

	

7.2.4	Statistical	Analysis	
	

Training	during	the	17-week	competitive	season	was	evaluated	by	summing	

both	PL	and	IMA	to	obtain	a	total	weekly	PL	and	total	weekly	IMA	values	for	

each	player.		Each	player’s	data	is	represented	as	a	time	series,	whereby	

repeated	training	load	data	is	represented	for	each	training	week	across	the	

season.	Because	of	the	serial	nature	of	the	data	we	employed	a	summary	

measures	approach	to	the	analysis,	as	proposed	by	Mathews	et	al	(1990).		
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The	summary	measure	chosen	was	the	regression	slope,	as	this	statistic	

quantifies	the	rate	of	change	in	training	load	over	time	(e.g.,	a	negative	slope	

is	indicative	of	a	decrease	in	training	load).	Two	linear	regression	models	

were	built	for	each	player:	PL	Model	and	IMA	Model.	Both	of	these	models	

consisted	of	the	microcycle	week	as	a	continuous	independent	variable	

(week	1	to	17)	and	the	respective	inertial	sensor	metric	(PL	or	IMA)	as	the	

dependent	variable.	A	“Team”	rate	of	change	was	evaluated	by	taking	the	

average	rate	of	change	for	PL	and	IMA	across	all	players.	To	create	a	position	

average	rate	of	change	for	both	PL	and	IMA,	a	mean	of	the	regression	slope	

for	each	player	in	each	positional	group	was	then	calculated.	Both	within	

and	between	position	group	comparisons	were	made	by	obtaining	a	t-

statistic	(effect	statistic	–	threshold	value	/	SE),	which	was	then	converted	to	

a	probability	via	the	t-distribution	(Barrett	et	al.,	2018).		

	

Microcycle	periodization	was	evaluated	for	the	commonly	performed,	3-day	

training	weeks,	which	occurred	13	out	of	the	16	game	weeks	in	the	given	

season.	During	these	weeks,	players	performed	training	on	Game	Day	(GD)	-

4,	-3,	and	-2.	Game	Day	-1	consisted	of	a	45	min	walk	through	that	serves	to	

review	the	playbook	for	the	upcoming	match	but	is	not	strenuous	and	does	

not	constitute	a	true	training	session.	Game	Day	-6	is	the	day	immediately	

following	the	previous	Game.	This	day	does	not	consist	of	any	football	

training	and	players,	instead,	perform	light	activities	in	the	gym.	Therefore,	

GD	-6	and	GD	-1	received	a	training	load	of	0	(AU)	to	reflect	the	fact	that	on-

field	training	activities	are	not	performed	on	those	days.	Game	Day	-5	is	a	
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mandatory	day	away	from	the	training	grounds,	per	league	rules,	and	is	

therefore	not	represented	in	this	analysis.	

	

Microcycle	training	has	been	previously	explored	in	other	team	sports	and	

found	to	be	larger	early	in	the	week	and	decrease	as	the	game	nears	(Malone	

et	al.,	2015).	Traditionally,	this	type	of	periodization	model	has	been	

analyzed	by	making	comparisons	between	discrete	training	days	(e.g.,	GD	-4	

compared	to	GD	-2).	However,	given	the	time	series	nature	of	weekly	

training	we	chose	to	take	a	summary	measures	approach	(Matthews	et	al,	

1990)	and	model	the	microcycle	training	using	a	quadratic	curve	to	reflect	

the	rise	and	fall	of	training	across	the	week.	Using	this	approach,	two	

polynomial	models	were	built	for	each	individual	athlete	(Player	Load	

model	and	IMA	model).	To	determine	the	microcycle	training	load	trend,	the	

coefficients	of	these	models	were	then	averaged	across	players	within	each	

position	group.	Additionally,	Team	models	were	built	for	PL	and	IMA	to	

determine	the	weekly	trend	in	training	for	the	squad.	The	parameter	of	

interest	in	these	models	is	the	squared	regression	coefficient	as	this	

represents	the	direction	(increase	or	decrease)	and	rate	of	change	in	

training	load	from	the	peak	training	day	in	the	microcycle.	The	peak	training	

day	was	identified	using	the	beta	coefficients	from	the	respective	models	

and	applying	the	equation		–b	/	(2	*	b2).		Within	and	between	position	group	

comparisons	were	made	by	obtaining	a	t-statistic	(effect	statistic	–	threshold	

value	/	SE),	which	was	then	converted	to	a	probability	via	the	t-distribution	

(Barrett	et	al.,	2018).	
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Differences	in	the	rate	of	change	in	training	load	between	position	groups	

are	presented	along	with	99%	CI,	to	account	for	type	I	error	due	to	the	large	

number	of	inferences	(Ritchie	et	al.,	2016).	The	magnitude	of	the	effects	for	

within	and	between	position	comparisons	were	interpreted	in	reference	to	a	

threshold	value	of	10	PL	units,	for	the	PL	Model,	and	2	IMA	units,	for	the	IMA	

Model,	in	the	seasonal	periodization	analysis	and	66	PL	units,	for	the	PL	

Model,	and	3	IMA	units,	for	the	IMA	model,	in	the	weekly	microcycle	

analysis.	These	threshold	values	reflect	1	*	between	subject	SD	of	the	

regression	slopes	value	across	the	entire	sample	of	athletes.	Effects	were	

assessed	mechanistically	as	being	“increasing”,	“decreasing”,	or	“trivial”	for	

within	position	comparisons	and	“positive”,	“negative”,	or	“trivial”,	for	

between	position	comparisons.	Qualitative	statements	regarding	the	

probability	of	the	effects	were	assessed	as	“trivial”	(<	25%),	“possibly”	(25-

75%),	“likely”	(75-95%),	“very	likely”	(95-99.5%),	and	“most	likely”	(>	

99.5%).	If	the	probability	exceeded	5%	in	both	the	positive	and	negative	

directions,	effects	were	reported	as	“unclear”,	indicating	that	no	discernable	

difference	could	be	detected	(Batterham	&	Hopkins,	2006).	All	statistical	

analysis	was	performed	in	R	statistical	software	(Version	3.3.4).	

	

7.3	Results	

	

7.3.1	Seasonal	Periodization	
	
	

The	rate	of	change	in	the	PL	and	IMA,	presented	in	Figure	7.1	(Team	PL	

and	IMA),	Figure	7.2	(Position	Group	PL)	and	Figure	7.3	(Position	
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Group	IMA),	was	negative	for	the	entire	team	and	for	all	position	groups,	

indicating	a	decrease	in	training	load	across	the	17-week	competitive	

season.		Across	the	season,	decreases	in	weekly	PL	were	most	likely	for	

Team,	DB,	and	OL,	very	likely	for	LB	and	WR,	and	likely	for	DL	and	TE.	

Decreases	in	IMA	across	the	season	were	most	likely	for	Team,	LB,	and	OL,	

likely	for	DB	and	TE,	and	possible	for	DL	and	WR	(Table	7.2).	In	both	

models,	the	rate	of	change	for	QB	was	deemed	unclear.	The	across-season	

rate	of	change	in	PL	between	position	groups	was	unclear	to	trivial	(Table	

7.3).	Differences	for	the	rate	of	change	in	IMA	were	likely	for	DB	compared	

to	OL,	and	OL	compared	to	WR,	and	possible	for	DB	compared	to	LB,	DL	

compared	to	OL,	and	both	LB	and	TE	compared	to	WR	(Table	7.4).	
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	Figure	7.1.	The	trend	in	total	weekly	Player	Load	(au)	(A)	and	IMA	(B)	
across	the	17-week	season	for	one	NFL	team.	
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	Figure	7.2.	The	trend	in	total	weekly	Player	Load	(au)	across	the	17-week	season	for	each	positional	group	of	one	NFL	team.
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Figure	7.3.	The	trend	in	total	weekly	IMA	across	the	17-week	season	for	each	positional	group	of	one	NFL	team.	
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Table	7.2.	Mean	±	SD	rate	of	change	across	the	season	for	Player	Load	(au)	
and	IMA.	(↓	=	decreasing	rate	of	change)	
	

	 Player	Load	Model	 IMA	Model	
Position	 Mean	±	SD	 Inference	 Mean	±	SD	 Inference	

	
Team	 -25.9	±	10.7	 Most	Likely	↓	 -3.6	±	1.9	 Most	Likely	↓	
	
DB	 -25.7	±	6.6	 Most	Likely	↓	 -2.5	±	1.2	 Likely	↓	
	
DL	 -19.4	±	14.1	 Likely	↓	 -3	±	2.4	 Possibly	↓	
	
LB	 -31.5	±	3.1	 Very	Likely	↓	 -4.6	±	1.2	 Most	Likely	↓	
	
OL	 -28.7	±	8.4	 Most	Likely	↓	 -5.3	±	1.4	 Most	Likely	↓	
	
QB	 -5.7	±	24.5	 Unclear	 -2.3	±	4.5	 Unclear	
	
TE	 -33.4	±	8.9	 Likely	↓	 -4.3	±	0.9	 Likely	↓	
	

WR	 -24.3	±	10.9	 Very	Likely	↓	 -2.2	±	1.1	 Possibly	↓	
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Table	7.3.	Comparison	of	the	mean	difference	±	99%	Confidence	Interval	
(CI)	for	the	between	position	season	long	rate	of	change	in	Player	Load	(au).	
	

Comparison	 Difference	(±	99%	CI)	 Inference	
DB	-	DL	 -6.3	(-71.4	to	58.7)	 Possibly	Trivial	

	
DB	-	LB	 5.8	(-3.4	to	14.8)	 Likely	Trivial	

	
DB	-	OL	 3.0	(-8.1	to	14.2)	 Very	Likely	Trivial	

	
DB	-	QB	 -20.1	(-974.4	to	934.2)	 Unclear	

	
DB	-	TE	 7.7	(-158.1	to	173.4)	 Possibly	Trivial	

	
	DB	-	WR	 -1.4	(-16.7	to	13.8)	 Likely	Trivial	

	
DL	-	LB	 12.1	(-63.7	to	87.9)	 Unclear	

	
DL	-	OL	 9.3	(-52.7	to	71.3)	 Unclear	

	
DL	-	QB	 -13.8	(-382	to	354.5)	 Unclear	

	
DL	-	TE	 14.0	(-46.6	to	74.6)	 Unclear	

	
DL	-	WR	 4.9	(-47.2	to	56.9)	 Possibly	Trivial	

	
LB	-	OL	 -2.8	(-12.3	to	6.8)	 Very	Likely	Trivial	

	
LB	-	QB	 -25.9	(-1087.9	to	1036.1)	 Unclear	

	
LB	-	TE	 1.9	(-301.4	to	305.2)	 Possibly	Trivial	

	
LB	-	WR	 -7.2	(-22.2	to	7.7)	 Possibly	Trivial	

	
OL	-	QB	 -23.1	(-940.7	to	894.6)	 Unclear	

	
OL	-	TE	 4.7	(-134.1	to	143.4)	 Likely	Trivial	

	
OL	-	WR	 -4.4	(-19.9	to	10.9)	 Likely	Trivial	

	
QB	-	TE	 27.8	(-500.7	to	566.2)	 Unclear	

	
QB	-	WR	 18.7	(-739.2	to	776.4)	 Unclear	

	
TE	-	WR	 -9.1	(-85.6	to	67.3)	 Possibly	Trivial	
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Table	7.4.	Comparison	of	the	mean	difference	±	99%	Confidence	Interval	
(CI)	for	the	between	position	season	long	rate	of	change	in	IMA.	(↓	=	
negative	effect,	indicating	the	second	group	in	the	comparison	is	larger	than	
the	first.	↑	=	positive	effect	indicating	the	first	group	in	the	comparison	is	
larger	than	the	second)	
	

Comparison	 Difference	(±	99%	CI)	 Inference	
DB	-	DL	 0.44	(-10.1	to	11.0)	 Possibly	Trivial		

	
DB	-	LB	 2.08	(-0.06	to	4.23)	 Possibly	↑	

	
DB	-	OL	 2.73	(0.78	to	4.69)	 Likely	↑	

	
DB	-	QB	 -0.23	(-172.8	to	172.4)	 Possibly	Trivial		

	
DB	-	TE	 1.74	(-5.64	to	9.12)	 Possibly	Trivial		

	
DB	-	WR	 -0.35	(-2.27	to	1.59)	 Very	Likely	Trivial		

	
DL	-	LB	 1.64	(-8.58	to	11.86)	 Possibly	Trivial		

	
DL	-	OL	 2.29	(-8.31	to	12.89)	 Possibly	↑	

	
DL	-	QB	 -0.67	(-75.44	to	74.08)	 Unclear		

	
DL	-	TE	 1.30	(-8.50	to	11.09)	 Possibly	Trivial		

	
DL	-	WR	 -0.79	(-11.71	to	10.14)	 Possibly	trivial		

	
LB	-	OL	 0.65	(-1.45	to	2.75)	 Very	Likely	Trivial		

	
LB	-	QB	 -2.31	(-170.53	to	165.90)	 Unclear		

	
LB	-	TE	 -0.34	(-7.02	to	6.33)	 Likely	Trivial		

	
LB	-	WR	 -2.43	(-4.51	to	-0.35)	 Possibly	↓	

	
OL	-	QB	 -2.96	(-176.26	to	170.32)	 Unclear		

	
OL	-	TE	 -0.99	(-8.42	to	6.43)	 Likely	Trivial		

	
OL	-	WR	 -3.08	(-4.94	to	-1.21)	 Likely	↓	

	
QB	-	TE	 1.97	(-147.14	to	151.09)	 Unclear		

	
QB	-	WR	 -0.12	(-177.08	to	176.85)	 Possibly	Trivial		

	
TE	-	WR	 -2.09	(-10.57	to	6.39)	 Possibly	↓		
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From	a	practical	perspective,	the	full	linear	regression	model	can	be	used	to	

understand	how	training	changed	across	the	season.	For	example,	the	model	

coefficients	for	the	DL	group	as	a	whole	and	for	each	of	the	three	players	

within	in	that	group	are	displayed	in	Table	7.5.	For	the	DL	group,	the	rate	of	

change	indicates	that	for	each	week	of	the	season	there	is	a	corresponding	

19.4	unit	decrease	in	Player	Load.	Correspondingly,	the	parameter	values	

for	each	player	within	that	group	reveal	their	individual	differences	from	the	

group	model.	For	example,	Player	1	is	seen	to	have	a	larger	overall	Player	

Load	during	training	than	Player	3.	However,	Player	1	also	has	a	more	rapid	

decline	in	Player	Load	across	the	season	than	the	other	players	in	this	group.	

	
Table	7.5.	Player	Load	regression	model	coefficients	for	the	DL	group	as	a	
whole	and	each	individual.	
	

	 DL	Group	 Player	1	 Player	2	 Player	3	
Intercept	 925.4	 1073	 966.7	 736.7	

Rate	of	Change	 -19.40	 -31.71	 -22.51	 -3.98	
	

	

7.3.2	Microcycle	Periodization	
	

Microcycle	peak	training	day	and	rate	of	decrease	from	peak	to	game	day	for	

PL	and	IMA	are	displayed	in	Table	7.6	and	visually	presented	in	Figure	7.4	

(Team	PL	and	IMA),	Figure	7.5	(Position	Group	PL),	and	Figure	7.6	

(Position	Group	IMA).	The	peak	training	day	was	observed	to	differ	

between	positional	groups	with	some	groups	experiencing	their	highest	

weekly	PL	or	IMA	on	GD	-4	while	others	experiencing	their	highest	weekly	

loads	on	GD	-3.	Clear	decreases	in	PL	and	IMA,	from	the	peak	day,	as	game	
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day	approached,	were	observed	for	all	positional	groups.	Although	these	

decreases	were	clear	for	the	PL	model,	all	effects	were	trivial.	Conversely,	a	

likely	decrease	in	microcycle	IMA	was	observed	in	the	QB	and	TE	group	with	

all	other	groups	showing	a	most	likely	decrease	from	their	peak	training	

day.	

	

Table	7.6.	Microcycle	peak	training	day	and	the	mean	±	SD	in	the	rate	of	
change	for	Player	Load	(au)	and	IMA	from	the	peak	training	day	for	the	team	
and	each	positional	group.	(↓	=	decreasing	rate	of	change)	
	

	 Player	Load	Model	 IMA	Model	

Position	
Microcycle	
Peak	Day	

Mean	±	
SD	 Inference	

Microcycle	
Peak	Day	 Mean	±	SD	 Inference	

	
	

Team	 -4	 -63.8	±	7.2	
Very	Likely	
Trivial	 -3	 -12.1	±	6	 Most	Likely	↓	

	
DB	 -4	 -69.7	±	6.9	 Likely	↓	 -3	 -5.5	±	1.1	 Most	Likely	↓	
	
	
	
DL	 -3	 -46.7	±	4.3	

Very	Likely	
Trivial	 -3	 -7	±	1.2	 Most	Likely	↓	

	
LB	 -3	 -63.7	±	8.3	 Possibly	↓	 -3	 -7	±	2	 Most	Likely	↓	
	
	
OL	 -4	 -64	±	5.4	

Likely	
Trivial	 -3	 -11.1	±	1.8	 Most	Likely	↓	

	
QB	 -4	 -63.3	±	4.8	 Possibly	↓	 -4	 -8.6	±	3.3	 Likely	↓	
	
TE	 -3	 -65.2	±	5.7	 Possibly	↓	 -3	 -8.1	±	1.3	 Likely	↓	
	

WR	 -3	 -64.5	±	6.6	 Possibly	↓	 -3	 -6.9	±	1.3	 Most	Likely	↓	
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Figure	7.4.	The	microcycle	trend	in	Player	Load	(au)	(A)	and	IMA	(B)	for	
one	NFL	team.	
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Figure	7.5.	Microcycle	trend	in	Player	Load	(au)	for	each	positional	group	of	
one	NFL	team.	
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Figure	7.6.	Microcycle	trend	in	IMA	for	each	positional	group	of	one	NFL	
team.	
	

	

All	between-group	differences	for	PL	were	observed	to	be	most	likely	trivial.	

Differences	in	the	decrease	of	IMA	ranged	from	possibly	to	very	likely	for	all	

comparisons	with	the	exception	of	unclear	differences	between	the	LB	and	

TE	groups	and	the	QB	and	TE	groups.	Differences	in	the	microcycle	decrease	

in	IMA	were	likely	for	DB	compared	to	DL,	LB,	OL,	and	WR;	DL	compared	to	

LB,	OL,	and	WR;	LB	compared	to	OL,	QB,	and	WR;	OL	compared	to	WR;	and,	

WR	compared	to	QB	and	TE	(Table	7.7).	

	



	 161	

Table	7.7.	Comparison	of	the	mean	difference	±	99%	Confidence	Interval	
(CI)	for	the	between	position	microcycle	rate	of	change	in	IMA.	(↓	=	negative	
effect,	indicating	the	second	group	in	the	comparison	is	larger	than	the	first.	
↑	=	positive	effect	indicating	the	first	group	in	the	comparison	is	larger	than	
the	second)	
	

Comparison	 Difference	(±	99%	CI)	 Inference	
DB	-	DL	 1.5	(-0.6	to	3.6)	 Very	Likely	Trivial		

	
DB	-	LB	 1.5	(-0.8	to	3.8)	 Likely	Trivial		

	
DB	-	OL	 5.6	(3.7	to	7.5)	 Very	Likely	↑	

	
DB	-	QB	 3.1	(-2.9	to	9.1)	 Possibly	↑	

	
DB	-	TE	 2.6	(0.1	to	5.1)	 Possibly	↑	

	
DB	-	WR	 1.4	(-0.3	to	3.1)	 Likely	Trivial		

	
DL	-	LB	 0	(-2.7	to	2.7)	 Very	Likely	Trivial		

	
DL	-	OL	 4.1	(1.7	to	6.5)	 Likely	↑	

	
DL	-	QB	 1.6	(-4.6	to	7.8)	 Possibly	Trivial	

	
DL	-	TE	 1.1	(-1.8	to	4)	 Possibly	Trivial	

	
DL	-	WR	 -0.1	(-2.3	to	2.1)	 Very	Likely	Trivial		

	
LB	-	OL	 4.1	(1.5	to	6.7)	 Likely	↑	

	
LB	-	QB	 1.6	(-4.7	to	7.9)	 Likely	Trivial		

	
LB	-	TE	 1.1	(-2	to	4.2)	 Unclear	

	
LB	-	WR	 -0.1	(-2.5	to	2.3)	 Very	Likely	Trivial		

	
OL	-	QB	 -2.5	(-8.6	to	3.6)	 Possibly	↓		

	
OL	-	TE	 -3	(-5.8	to	-0.2)	 Possibly	↓		

	
OL	-	WR	 -4.2	(-6.2	to	-2.2)	 Likely	↓	

	
QB	-	TE	 -0.5	(-6.9	to	5.9)	 Unclear		

	
QB	-	WR	 -1.7	(-7.8	to	4.4)	 Likely	Trivial	

	
TE	-	WR	 -1.2	(-3.9	to	1.5)	 Likely	Trivial		
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7.4	Discussion	
	

The	aim	of	this	study	was	to	investigate	and	attempt	to	understand	the	rate	

of	change	in	indicators	of	training	load	both	within	and	between	positional	

groups,	across	both	a	competitive	NFL	season	and	within	training	

microcycles	between	competitive	games.	While	much	of	the	periodization	

research	in	team	sport	has	made	comparisons	between	discrete	training	

phases	(Malone	et	al.,	2015;	Moreira	et	al.,	2015;	Ritchie	et	al.,	2016),	the	

approach	taken	in	this	study	was	to	evaluate	the	rate	of	change	in	serial	

measurements	across	the	time	periods	of	a	competitive	season	and	within	

training	microcycles.	The	data	suggests	that	all	positional	groups,	with	the	

exception	of	QB,	demonstrated	decreases	in	both	the	volume	(PL)	and	

intensity	(IMA)	of	training	over	the	course	of	the	season.	The	across	season	

trend	for	volume	and	intensity	was	observed	to	be	unclear	for	the	QB	group,	

indicating	no	discernable	effect	could	be	detected.	The	between	position	

across-season	rate	of	change	in	PL	ranged	from	unclear	to	trivial.	Conversely	

playing	position	had	an	effect	on	the	rate	of	cross-season	change	in	IMA,	

with	clear	differences	observed	between	groups.	Changes	in	training	load	

were	also	observed	across	a	microcycle.	These	shorter	periods	of	training	

indicated	that	specific	position	groups	were	different	in	their	peak	training	

day	for	volume	(PL)	and	intensity	(IMA).	Between	position	group	

differences	in	these	decreases	in	training	load	were	most	likely	trivial	for	PL,	

however	clear	differences	were	found	for	the	decrease	in	IMA	from	the	peak	

training	day	for	all	groups	except	LB	compared	to	TE	and	QB	compared	to	

TE.	These	findings	suggest	that	a	lack	of	periodization	is	observed	across	the	
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season	though	there	does	appear	to	be	a	systematic	decrease	in	training	

load	as	the	season	progresses	for	all	positional	groups.	It	does,	however,	

appear	that	coaches	employ	some	form	of	periodization	between	games.		

This	is	illustrated	by	a	training	load	decrease	as	the	days	within	the	week	

moves	closer	to	the	game.	Such	information	can	provide	a	basis	for	an	

evaluation	of	the	effectiveness	of	such	approaches	to	planning.	For	example,	

analyzing	the	rate	of	change	in	training	across	the	week	in	relationships	to	

cumulative	training	load,	injury	risk,	and	performance	outcomes.	Evaluating	

training	using	a	summary	measures	approach	also	seems	useful	in	providing	

a	more	specific	understanding	of	how	players	training	changes	over	the	

course	of	a	season	and	within	the	microcycle.	These	insights	provide	an	

opportunity	to	develop	more	appropriate	strategies	to	ensure	that	more	

effective	training	stimuli	are	delivered	to	enable	players	to	cope	with	the	

demands	of	the	sport.	For	example,	depending	on	the	amount	of	fatigue	

experienced	by	the	players	from	the	previous	game,	training	could	be	

modulated	across	the	week	to	have	a	larger	reduction	from	the	peak	day	

leading,	allowing	for	greater	recovery.	

	

The	approach	to	data	analysis	used	in	the	present	study	differed	from	

previous	approaches	that	have	been	utilized	to	evaluate	periodization	

strategies	in	team	sport	athletes	(Malone	et	al.,	2015;	Moreira	et	al.,	2015;	

Ritchie	et	al.,	2016).	Rather	than	treating	phases	of	the	season	as	discrete	

periods	of	time,	we	used	a	summary	measures	approach	(Mattews	et	al.,	

1990;	Weston	et	al.,	2011)	to	identify	the	rate	of	change	in	serial	measures.	

Training	volume	is	an	important	component	of	the	training	stimulus	as	it	is	
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an	important	determinant	of	the	adaptive	response	(Stone	et	al.,	2009).			The	

findings	from	this	study	showed	a	systematic	decrease	in	PL	(ranging	from	

5.7	to	33.4	au)	across	the	season	in	all	playing	positions	aside	from	QB.	

These	trends	have	been	observed	in	other	team	sports	such	as	soccer	

(Malone	et	al,	2015)	and	AFL	(Moriera	et	al.,	2015;	Ritchie	et	al.,	2016).		

	

The	observed	decrease	in	PL	for	all	groups	maybe	a	consequence	of	specific	

coaching	strategies	to	reduce	the	training	volume	across	the	season	to	

mitigate	any	fatigue	experienced	by	the	athletes			These	strategies	may	be	a	

reflection	of	planning	traditions	that	have	been	passed	down	from	other	

more	experienced	coaches	(Weston,	2018).	It	is	also	possible	that	this	trend	

in	the	data	is	simply	a	reflection	of	the	response	to	other	situational	factors	

experienced	in	the	later	stages	of	the	season	that	are	not	linked	to	physical	

preparation	(e.g.	the	success	of	the	team,	the	monotony	of	the	

training/competition	routine).		This	investigation	did	not	attempt	to	

evaluate	the	reasons	for	any	changes	in	training	load	and	so	the	specific	

reasons	for	these	declines	remain	unknown.		A	more	thorough	

understanding	of	how	coaches	within	the	sport	of	American	football	

consider	periodization	and	the	planning	of	training	is	required	to	fully	

understand	the	reasons	behind	the	outcomes	in	this	study.	

	

Understanding	how	coaches	periodize	training	in	a	microcycle	is	critical	in	

team-sports	as	this	represents	the	most	important	unit	of	the	yearly	training	

program	given	that	each	week	ends	with	a	competition	(Morgans	et	al.,	

2014).	We	found	a	decrease	in	PL	from	the	peak	training	day	of	the	week	
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(range	from	-46.7	to	-69.7	au)	across	the	seven	positional	groups.	As	a	

whole,	the	team	exhibited	a	63.8	au	decrease	in	PL	from	the	peak	training	

day	of	the	week	(GD	-4).	Between	group	comparisons	revealed	most	likely	

trivial	differences	indicating	that	positional	groups	are,	for	the	most	part,	

experiencing	similar	weekly	declines	in	PL	from	their	peak	training	day,	as	

the	game	nears.	While	the	peak	PL	training	day	for	each	position	group	may	

differ	the	decline	in	PL	for	all	groups	suggests	that	there	is	a	systematic	

strategy	used	by	coaches	to	decrease	training	volume	as	the	week	

progresses	and	the	game	nears.		This	would	seem	to	make	sense	from	a	

physiological	perspective	as	it	provides	an	opportunity	for	players	to	arrive	

at	match	day	in	“peak”	physical	condition.	This	would	in	some	way	mirror	

the	tapering	strategies	observed	in	other	sports	(Manzi	et	al.,	2010),	

however	at	this	time	we	do	not	know	if	this	strategy	is	optimal	for	American	

football.		

	

Intensity,	as	reflected	by	IMA,	was	found	to	decrease	across	the	season	for	

all	position	groups,	by	a	range	of	2.2	to	5.3	IMA	units.	In	contrast	to	the	

observations	on	training	volume,	clear	effects	in	the	rate	of	change	in	IMA	

across	the	season	were	only	observed	for	some	position	groups.	The	

smallest	decline	in	IMA	was	found	in	players	typically	associated	with	skill	

positions	(DB,	WR,	and	QB)	while	a	larger	decline	was	observed	for	the	

positions	that	require	physical	contact	such	as	the	LB	and	TE	and	linemen	

(OL	and	DL).	While	the	exact	reasons	for	these	changes	are	unknown	they	

may	be	a	consequence	of	the	rule	changes	imposed	by	the	sport’s	governing	

body.	For	example,	after	the	14th	week	of	the	season	teams	are	no	longer	
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allowed	to	hold	padded	practices,	which	results	in	a	decrease	in	the	amount	

of	hitting	and	collisions	that	take	place	within	a	given	training	session.	This	

change	would	clearly	impact	the	OL,	DL,	TE,	and	LB	groups	given	the	

physical	nature	of	these	positions	and	the	type	of	activities	they	perform	

(Pincevero	&	Bompa,	1997).	Other	groups	that	perform	more	locomotor	

activity	(DB	and	WR)	may	however	be	less	influenced	by	these	changes	as	

their	dominant	training	stimulus	would	remain	unchanged.			

	

All	positional	groups	observed	likely	to	most	likely	decreases	in	IMA	from	

the	peak	IMA	training	day	across	the	microcycle.	Aside	from	the	QB	group,	

positional	groups	observed	their	peak	IMA	training	day	to	be	GD	-3.	Reasons	

for	this	may	be	due	to	how	coaches	choose	to	install	the	plays	for	the	

upcoming	game	with	less	intense,	more	“learning-based”,	plays	taking	place	

on	GD	-4	before	attempting	to	perform	them	at	full	pace	on	GD	-3.	

Interestingly,	the	peak	training	day	for	IMA	(GD	-3)	was	observed	to	be	

different	from	the	day	in	which	peak	PL	was	observed	(GD	-4).	This	may	

support	the	notion	that	coaches	prioritize	a	higher	training	volume	earlier	in	

the	post-game	phase	of	the	microcycle	before	then	increasing	the	intensity	

of	training	on	GD	-3.	While	the	specific	reasons	for	such	loading	patterns	are	

currently	unknown,	they	may	either	reflect	the	coaches	“intuitively”	feel	that	

players	require	extra	days	of	recovery	prior	to	increasing	training	intensity	

or	simply	favor	higher	intensity	training	on	certain	days	for	game	

preparation	reasons.	These	ideas	are	in-line	with	those	proposed	by	

Fullagar	and	colleagues	(2016)	in	collegiate	American	football,	who	

observed	reductions	in	self-reported	soreness	and	wellness	measures	up	to	
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GD	-3.	The	rationale	for	such	an	approach	should	be	the	subject	of	future	

research.	

	

7.5	Conclusions	
	

This	is	the	first	study	to	evaluate	the	periodization	strategies	used	by	one	

team	in	the	sport	of	American	football.	This	study	showed	likely	decreases	

in	training	volume	(PL)	and	possible	to	likely	decreases	in	training	intensity	

(IMA)	across	the	season	as	well	as	decreases	in	volume	(PL)	and	intensity	

(IMA)	across	position	groups	within	the	microcycle.	These	findings	are	

consistent	with	findings	from	other	sport	where	training	has	been	found	to	

decrease	across	the	season	as	well	as	decrease	within	the	microcycle,	as	the	

competition	nears	(Weston	et	al.,	2011;	Malone	et	al.,	2015).		The	present	

results	also	revealed	different	days	for	the	completion	of	peak	training	

volumes	and	intensity	within	the	microcycles	analyzed.	This	data	together	

illustrates	that	the	training	loads	completed	by	this	team	would	seem	to	

follow	some	pattern	of	systematic	change	as	would	be	expected	in	

periodization.	The	exact	reasons	for	these	changes	are	however	currently	

unknown.	Potential	explanations	could	include	specific	strategies	to	respond	

to	changes	in	the	fatigue	status	of	players,	situational	factors	that	may	

influence	planning	and/or	important	considerations	in	the	short-term	

preparation	strategies	for	the	upcoming	competition.	Future	research	

should	therefore	attempt	to	understand	the	implications	of	such	programs	

for	performance	and/or	injury	outcomes.	Additionally,	a	limitation	of	the	

study,	that	requires	future	investigation,	is	that	the	weekly	microcycle	
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models	presented	here	do	not	differentiate	between	player	ranks	within	the	

club.	It	is	possible	that	players	who	are	going	to	be	featured	in	the	upcoming	

game	(rank	=	1)	exhibit	a	different	periodization	strategy	across	the	week	

than	those	who	are	back	up	players	(rank	=	2)	or	players	on	the	practice	

squad,	who	are	not	available	to	participate	in	the	game	and	only	participate	

in	team	activities	during	training	(rank	=	3).			Finally,	future	research	is	

required	to	evaluate	the	periodization	strategies	of	other	coaches	across	the	

sport.	Other	teams	may	utilize	different	microcycle	or	season	long	

periodization	strategies,	however,	the	current	landscape	of	such	approaches	

is	not	well	understood	at	this	time.	

	

The	statistical	approach	taken	in	this	study	has	value	across	multiple	team	

sports	besides	American	football.	Traditional	approaches	to	investigating	

periodization	in	team-sport	have	been	limited	to	making	discrete	

comparisons	between	training	phases	(Malone	et	al.,	2015;	Moreira	et	al.,	

2015;	Ritchie	et	al.,	2016).	Such	an	approach	to	analysis	does	not	provide	

the	practitioner	with	an	understanding	of	the	athlete’s	adaptation	as	

training	progresses	overtime	(serial	measures).	The	approach	taken	in	this	

study	has	the	potential	to	assist	sports	scientists	in	better	understanding	the	

dose-response	relationship	of	training	(Bannister	et	al.,	1975)	as	it	honors	

the	time-series	nature	of	training	across	a	competitive	season.		
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CHAPTER	8	

	

VOLUME	AND	INTENSITY	ARE	IMPORTANT	

TRAINING-RELATED	FACTORS	IN	

INJURY	INCIDENCE	IN	AMERICAN	

FOOTBALL	ATHLETES	
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8.1	Introduction	
	

Injury	is	an	unintended	consequence	of	participating	in	sport.	In	America,	an	

estimated	7	million	individuals	participating	in	sport	require	medical	

attention	each	year	(Conn	et	al.,	2003).	Due	to	the	physical	nature	of	the	

sport,	American	football	carries	with	it	a	high	injury	risk.	Over	a	16-year	

period,	Hootman	and	colleagues	(2007)	observed	the	risk	of	injury	in	

American	college	football	to	be	9.6	injuries	per	1000	athlete	practice	

exposures	and	35.9	injuries	per	1000	athlete	game	exposures.	These	figures	

were	the	highest	of	16	collegiate	sports	during	the	study	period	(Hootman	et	

al.,	2007).	At	the	elite	level,	in	the	National	Football	League	(NFL),	a	10-year	

investigation	of	pre-season	training	camp	injuries	indicated	that	injuries	

occur	at	a	rate	of	12.7	per	1000	athlete	exposures	during	training	and	64.7	

injuries	per	athlete	exposure	in	games	(Feeley	et	al.,	2008).	While	some	of	

these	injuries	may	be	related	to	contact	with	another	player,	a	large	number	

of	injuries	are	non-contact	in	nature	(e.g.,	muscle	strains)	(Dick	et	al.,	2007;	

Elliot	et	al.,	2011)	and	have	been	suggested	to	be	a	consequence	of	high	

training	loads	(Gabbett,	2010).	

	

Prescription	of	training	load	can	be	aided	by	the	use	of	player-monitoring	

strategies,	which	help	to	inform	on	the	different	physical	responses	

experienced	by	the	athletes	(Halson	et	al.,	2014).	One	of	the	most	common	

methods	of	training	load	monitoring	in	team	sport	athletes	is	through	the	

use	of	integrated	micro	technology	sensors	(Cardinale	&	Varley,	2017).	

These	wearable	technologies	consist	of	GPS	and	inertial	sensor	units	making	
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them	useful	for	quantifying	both	running	and	non-running	(e.g.,	change	of	

direction	and	collisions)	actions	in	team	sport	athletes	(Cardinale	&	Varley,	

2017).	As	such,	integrated	micro	technology	systems	have	been	utilized	to	

objectively	quantify	training	demands	in	a	variety	of	different	sports	

(DeMartini	et	al.,	2011;	Boyd	et	al.,	2013;	Schelling	et	al.,	2016;	Chapters	3,	

5-7).	The	use	of	such	technologies	has	recently	been	explored	in	American	

football,	where	positional	groups	were	observed	to	experience	different	

physical	loads	based	on	their	tactical	demands	(DeMartini	et	al.,	2011;	

Wellman	et	al.,	2016;	Wellman	et	al.,	2017;	Chapter	5	&	6).	For	example,	

during	training	at	both	the	collegiate	(DeMartini	et	al.,	2011)	and	NFL	levels	

(Chapter	5),	players	in	the	wide	receiver	and	defensive	backs	group	

performed	greater	amounts	of	running	volume	while	those	on	the	line	(e.g.,	

Defensive	and	Offensive	Linemen)	engaged	in	a	higher	number	of	collision	

and	physical	contact.	These	descriptions	of	training	demands	provide	a	

unique	perspective	on	the	ergonomic	demands	of	the	sport	but	offer	little	in	

the	way	of	understanding	the	physical	consequences	of	the	game	for	either	

positive	(e.g.	performance)	or	negative	(e.g.,	muscle	injury)	outcomes.	

	

While	the	multi-faceted	nature	of	injury	makes	it	challenging	to	predict	

(Bittencourt	et	al.,	2016),	a	first	step	in	mitigating	risk	lies	in	understanding	

the	relationship	between	training	load	and	injury	(Roe	et	al.,	2017).	Collision	

sports	present	a	unique	challenge	for	understanding	injury	due	to	the	

diverse	demands	of	both	locomotor	tasks	and	physical	contact	(Gabbett	et	

al.,	2011).	In	American	football,	Wilkerson	and	colleagues	(2016)	identified	

an	association	between	inertial	sensor	derived	training	loads	and	increased	
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injury	risk	in	collegiate	football	athletes.	However,	a	limitation	of	this	study	

was	that	only	one	inertial	sensor	variable,	Player	Load,	was	utilized	in	the	

investigation.	Player	Load	may	help	to	quantify	the	total	volume	of	practice,	

given	its	large	correlation	with	running	distance	(Polglaze	et	al.,	2015),	

although	it	may	not	identify	the	more	high	intensity	actions	observed	in	

American	football	(Wellman	et	al.,	2017;	Chapter	5	&	6).	Therefore,	

additional	metrics	may	be	required	to	evaluate	the	intensity	of	a	session,	to	

better	understand	the	volume-intensity	relationship	of	training	and	what	

this	might	mean	for	non-contact	injury.	Additionally,	given	the	diverse	

positional	demands	in	American	football	it	is	still	not	understood	which	

metrics	provide	the	best	option	for	describing	training	load.	Therefore,	it	is	

possible	that	other	inertial	sensor	variables	or	a	combination	of	inertial	

sensor	variables	may	provide	greater	detail	regarding	injury	risk	because	

they	quantify	different	aspects	of	the	players’	movement	demands.	Finally,	it	

is	not	clear	whether	similar	findings	are	applicable	to	higher	levels	of	

American	Football	such	as	the	NFL.	

	

While	the	physical	demands	of	American	football	training	have	been	

described	at	the	high	school	(Gleason	et	al.,	2017),	collegiate	(DeMartini	et	

al.,	2011),	and	NFL	levels	(Chapters	5-7),	the	relationship	between	training	

load	and	non-contact	soft-tissue	injury	in	the	sport	is	poorly	understood.	

Therefore,	the	aim	of	this	study	was	to	identify	the	relationship	between	

inertial	sensor	training	load	metrics	and	non-contact	injury	in	NFL	athletes.	
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8.2	Methods	

	

8.2.1	Research	Approach	
	

This	study	investigated	the	relationship	between	training	load	and	non-

contact	soft	tissue	injury	in	NFL	football	players.	The	study	period	consisted	

of	24	weeks	of	training	from	the	pre-season,	regular	season,	and	playoff	

periods	for	one	NFL	team.	During	this	time	76	training	sessions	in	total	were	

completed.	Training	load	was	evaluated	through	the	use	of	integrated	micro	

technology	sensors	worn	by	the	players	during	all	on-field	training	sessions.	

Injury	data	was	recorded	by	the	team	physical	therapist	using	a	proprietary	

injury	database	and	was	subsequently	combined	with	training	data	for	

further	evaluation.	All	training	sessions	were	directed	by	the	coaching	staff	

with	the	aim	of	preparing	the	players	for	the	upcoming	opponent.	

	

8.2.2	Participants	
	

One	hundred	and	one	participants	competing	for	one	NFL	team	were	

included	in	this	study	(mean	±	SD;	age:	25	±	3	y;	height:	1.88	±	0.06	m;	body	

mass:	112.9	±	20.2	kg).	Participants	were	classified	by	the	coaching	staff	into	

one	of	7	positional	groups:	Defensive	Backs	(DB;	n	=	16),	Defensive	Line	(DL;	

n	=	18),	Linebackers	(LB;	n	=	13),	Offensive	Line	(OL;	n	=	17),	Running	Back	

(RB;	n	=	18),	Tight	End	(TE;	n	=	7),	and	Wide	Receiver	(WR;	n	=	12).	All	

playing	positions	were	included	in	this	study	with	the	exception	of	the	

Quarterback	position	given	their	unique	training	actions	compared	to	other	
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position	groups	(e.g.,	throwing	passes)	and	the	lack	of	clarity	in	the	inertial	

sensor	readings	due	to	these	actions	(Chapter	6).	This	study	was	approved	

by	a	local	ethics	committee	and	permission	to	publish	was	granted	by	the	

NFL	club.		

	

8.2.3	Experimental	Approach	
	

Each	player	was	provided	with	an	integrated	micro	technology	unit	

(Minimax	S5,	Catapult	Innovations,	Scoresby,	Australia)	to	be	worn	during	

on-field	training	activities.	These	integrated	micro	technology	units	contain	

three	inertial	sensors	-	tri-axial	accelerometer,	tri-axial	gyroscope,	and	

magnetometer	-	each	sampling	at	100	Hz.	The	units	were	worn	between	the	

shoulder	blades	in	a	custom-made	pouch	provided	by	the	manufacturer.	In	

order	to	ensure	inter-unit	reliability,	each	player	was	provided	their	own	

unit	for	the	duration	of	their	time	with	the	team	(Rampinini	et	al.,	2015).	At	

the	completion	of	each	training	session	data	was	downloaded	from	the	units	

using	the	manufacturer’s	software	(Catapult	Sports,	Openfield	Software)	and	

imported	into	Microsoft	Excel	(Microsoft,	Redmond,	WA)	for	further	

analysis.	

	

A	bespoke	injury	database	was	created	to	code	the	injury	status	of	players	

throughout	the	study	period.	At	the	completion	of	each	week	the	team’s	

sports	scientist	and	physiotherapist	coded	the	injury	type	(contact/non-

contact)	and	whether	the	injury	resulted	in	time	loss	for	the	players	

suffering	injury	during	that	week	of	training.	While	no	consensus	on	injury	
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data	collection	and	coding	methods	has	been	established	for	American	

football	the	recommendations	set	forth	by	the	UEFA	consensus	statement	

were	applied	in	this	study	(Fuller	et	al.,	2006).	This	approach	has	been	used	

previously	in	other	sports	besides	soccer	(Caparrós	et	al.,	2017).	As	

American	football	is	a	contact	sport,	a	substantial	number	of	injuries	occur	

due	to	player	collisions	(Dick	et	al.,	2011).	These	collision	injuries	are	a	

consequence	of	playing	the	sport	and	are	thus	frequently	recognized	as	

being	unavoidable	and	not	attributable	to	changes	in	training	load.	

Therefore,	this	study	focused	on	the	relationship	between	training	load	and	

non-contact	injuries	(e.g.,	injuries	that	may	be	a	consequence	of	the	training	

load	performed	by	the	athlete).	As	such,	a	non-contact	soft	tissue	injury	was	

defined	as	any	injury	that	did	not	occur	due	to	contact	with	another	player	

and	which	resulted	in	the	player	having	to	miss	a	subsequent	training	

session	or	game	(Fuller	et	al.,	2006;	Ehrmann	et	al.,	2016).	Additionally,	if	a	

player	was	removed	from	a	training	session	due	to	injury	their	data	was	

excluded	from	the	data	on	the	given	injury	day.	This	is	necessary	to	ensure	

that	the	group-training	load	is	not	biased	downward	due	to	the	injured	

athlete	being	unable	to	complete	the	session	or	potentially	limiting	their	

overall	activity	during	training	due	to	pain	or	discomfort.	

	

8.2.4	Inertial	Sensor	Training	Load	Metrics	
	

American	football	is	comprised	of	a	variety	of	movement	actions	with	

players	performing	different	volumes	of	running,	cutting,	and	collisions	

depending	on	their	positional	and	tactical	requirements	(Pincevero	&	
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Bompa,	1997;	Wellman	et	al.,	2016;	Wellman	et	al.,	2017;	Chapter	5	&	6).	

Inertial	sensors	are	useful	in	quantifying	a	number	of	relevant	movement	

actions	in	team	sport	athletes	(Boyd	et	al.,	2011;	Cardinale	&	Varley,	2017;	

Peterson	et	al.,	2017).	Therefore,	eleven	inertial	sensor	variables	were	used	

in	this	study	to	quantify	training	load	activities.	These	eleven	variables,	

defined	in	detail	later,	consisted	of	total	Player	Load	(PL),	Player	Load	effort	

bands	such	as	Low	(PLLow),	Medium	(PLMed),	High	(PLHigh),	and	Very	High	

(PLVH),	IMA	bands	including	Low	(IMALow),	Medium	(IMAMed),	and	High	

(IMAHigh),	and	three	Impact	Bands	(Low	(ImpactsLow),	Medium	(ImpactsMed),	

and	High	(ImpactsHigh)).	Utilizing	the	tri-axial	accelerometer,	Player	Load	

reports	the	amount	of	acceleration	taking	place	in	three	axes	of	movement	

(x,	y,	and	z)	in	arbitrary	units	(Boyd	et	al.,	2013).	The	reliability	of	this	

metric	for	tracking	a	variety	of	movement	activities	has	been	previously	

established	(Boyd	et	al.,	2011;	Van	Iterson	et	al.,	2017).	Due	to	its	high	

correlation	with	total	running	distance	in	team	sport	athletes	Player	Load	

was	selected	in	this	study	as	a	measure	of	overall	movement	activity	

(Polglaze	et	al.,	2015;	Cardinale	&	Varley,	2017).	Conversely,	counts	of	

activity	in	Player	Load	effort	bands	were	used	to	reflect	the	amount	of	

training	performed	with	different	levels	of	acceleration	within	a	training	

session.	Unlike	Player	Load,	a	continuous	variable,	effort	bands	are	not	time	

dependent;	rather,	they	provide	a	count	activities	taking	place	above	pre-set	

thresholds.	These	effort	bands	were	discretized	into	four	categories:	PLLow	

(1-2	g);	PLMed	(2-3	g);	PLHigh	(3-4	g);	PLVH	(>	4g).	As	such,	Player	Load	effort	

bands	would	seem	to	report	a	different	type	of	activity	than	PL	as	they	likely	

represent	discrete	accelerations	across	a	range	of	categories	rather	than	a	
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“global”	continuous	representation	of	accelerations	performed	by	the	

player.	

	

Non-running	training	activities	(e.g.,	changes	of	direction,	shuffling,	cutting)	

were	quantified	through	data	collectively	generated	from	the	tri-axial	

accelerometer,	tri-axial	gyroscope,	and	magnetometer	and	were	provided	as	

a	count	via	the	IMA	metric	(Peterson	et	al.,	2017).	IMA	has	been	previously	

used	to	quantify	explosive	movements	in	soccer	and	basketball	(Meylan	et	

al.,	2016;	Peterson	et	al.,	2017).	Recently,	this	metric	was	used	to	describe	

positional	differences	during	American	football	training,	where	linemen	(e.g.	

OL	and	DL)	were	found	to	perform	a	larger	volume	of	IMA	actions	compared	

to	skill	position	players	(e.g.,	WR	and	DB)	(Chapter	5).	These	explosive	

actions	were	classified	into	three	IMA	band	levels:	IMALow	=	1.5	–	2.5	m�s-2,	

IMAmed	=	2.5	–	3.5	m�s-2,	IMAhigh	>	3.5	m�s-2).	Finally,	three	Impact	Bands	

(ImpactsLow	=	5-6	g,	ImpactsMed	=	6-7	g,	and	ImpactsHigh	>	7	g)	were	used	in	

an	attempt	to	identify	the	amount	and	magnitude	of	collisions	during	

training	for	each	player.		

	

8.2.5	Statistical	Analysis	
	

Average	training	load	per	minute	for	the	eleven	inertial	sensor	variables	was	

calculated	for	each	position	group	following	each	training	session.	To	better	

understand	the	relationship	between	these	eleven	variables	correlation	was	

assessed	using	Pearson’s	correlation	coefficient	and	interpreted	as		
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trivial	(r	<	0.1),	small	(0.1	–	0.3),	moderate	(0.3	–	0.5),	large	(0.5	–	0.7),	very	

large	(0.7	–	0.9),	almost	perfect	(r	>	0.9)	and	perfect	(r	=	1).		

	

Logistic	regression	models	were	constructed	in	an	attempt	to	understand	

the	relationship	between	training	load,	position	group,	and	non-contact	soft	

tissue	injury	(the	dependent	response).	To	compare	the	intensity	of	training	

equally	across	all	sessions,	inertial	sensor	variables	were	normalized	to	

reflect	the	amount	of	training	activity	per	minute	of	practice	in	a	given	

training	session	and	then	standardized	to	have	a	mean	0	and	SD	1.	Models	

were	first	fit,	both	with	and	without	position	group	as	a	categorical	

predictor,	for	each	of	the	training	load	variable	sub-groups	(e.g.,	Player	Load	

variables	only,	IMA	variables	only,	and	Impact	Variables	only).	A	final	joint	

model	consisted	of	iteratively	fitting	all	training	load	variables	with	and	

without	position	group.		

	

Model	comparison	was	made	using	the	Bayesian	Information	Criterion	(BIC)	

and	out	of	sample	likelihood	(Drichoutis	et	al.,	2014)	with	the	model	

consisting	of	the	lowest	BIC	and	the	highest	out	of	sample	likelihood	in	each	

group	being	retained.	To	understand	the	relationship	that	these	eleven	

variables	have	on	non-contact	soft	tissue	injury	we	present	the	five	best	

joint	models,	according	to	BIC.	Finally,	the	joint	model	with	the	strongest	

relationship	to	non-contact	soft	tissue	injury	was	compared	with	the	sub-

group	models	using	out	of	sample	likelihood.	The	top	model	in	each	category	

was	interpreted	practically	using	a	magnitude-based	inference	approach	

(Batterham	&	Hopkins,	2006)	whereby	the	smallest	worthwhile	increase	in	
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risk	for	non-contact	injury	was	an	odds	ratio	of	1.11	and	the	smallest	

worthwhile	decrease	in	risk	was	an	odds	ratio	of	0.90	(Hopkins	et	al.	2009).	

Effects	were	qualified	in	probabilistic	terms:	<	0.5%,	most	unlikely;	0.5%	to	

5%,	very	unlikely;	5%	to	25%,	unlikely;	25%	to	75%,	possible;	75%	to	95%,	

likely;	95%	to	99%,	very	likely;	and	>	99.5%,	most	likely	(Hopkins,	2007).	If	

the	chance	that	the	true	value	was	beneficial	was	>25%,	with	an	odds	ratio	

of	<	66	(or	vice	versa)	the	effect	was	deemed	unclear.	Model	results	are	

presented	as	OR	×/÷	90%	CI.	All	statistical	analysis	was	performed	in	the	

statistical	software	R	(Version	3.2.2).	

	

8.3	Results	
	

Twenty-eight	non-contact	soft	tissue	injuries	resulting	in	time	loss	were	

recorded	during	the	76	training	sessions	completed	by	this	team.	The	

breakdown	of	these	injuries	and	injury	type	per	positional	group	is	

represented	in	Table	8.1.		
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Table	8.1.	Breakdown	of	the	number	of	non-contact	soft	tissue	injuries	by	
positional	group.	
	
Position	 Number	of	

Players	
Non-Contact	Soft	
Tissue	Injuries	

Injury	Type	

DB	 16	 4	 Groin	(n	=	3),	Knee	(n	=	1)	
	 	 	 	
DL	 18	 7	 Calf	(n	=	4),	Elbow	(n	=	1),	

Hamstring	(n	=	1),	Knee	(n	=	1)	
	 	 	 	
LB	 13	 3	 Foot	(n	=	1),	Groin	(n	=	1),	Oblique	

(n	=	1)	
	 	 	 	
OL	 17	 1	 Ankle	(n	=	1)	
	 	 	 	
RB	 18	 4	 Achilles	(n	=	1),	Ankle	(n	=	1),	

Hamstring	(n	=	1)	
	 	 	 	
TE	 7	 5	 Achilles	(n	=	1),	Ankle	(n	=	1),	

Foot	(n	=	1),	Hamstring	(n	=	1),	
Low	Back	(n	=	1)	

	 	 	 	
WR	 12	 4	 Groin	(n	=	1),	Hamstring	(n	=	3)	

	

	

Table	8.2	displays	the	correlation	matrix	for	all	11	inertial	sensor	variables.	

Several	large	and	very	large	relationships	were	found	between	the	inertial	

sensor	variables	with	an	almost	perfect	relationship	existing	for	PLHigh	and	

PLVH.	These	findings	may	introduce	collinearity	between	predictor	variables	

that	may	confound	statistical	models.
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Table	8.2.	Correlation	matrix	of	all	inertial	sensor	variables	(†	=	Large,	§	=	Very	Large,	•	=	Almost	Perfect).		
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8.3.1	Player	Load	Models	
	

Player	load	models	were	compared	with	and	without	position	group	as	a	

categorical	predictor.	A	model	consisting	of	total	PL	and	PLVH	was	found	to	

have	the	highest	association	with	injury	(BIC	=	180.2,	out	of	sample	log	

likelihood	=	-84.4)	and	was	retained	for	interpretation.	The	model	

parameters	and	qualitative	inference	are	displayed	in	(Table	8.3).	The	

probability	of	non-contact	soft	tissue	injury	in	a	given	training	session	was	

very	likely	higher	with	a	one-unit	increase	in	z-score	for	PL	(OR	=	1.96;	90%	

CI:	1.22	–	3.19)	and	most	likely	higher	with	a	one-unit	increase	in	z-score	for	

PLVH	(OR	=	2.84;	90%	CI:	2.06	–	3.99).		

	

Table	8.3.	Model	Parameters	for	the	best	Player	Load	model.	
	

Variable	 OR	 90%	CI	 Clinical	
Inference	

%	Likelihood	effect	is	
beneficial/trivial/harmful	

Constant	 0.02	 0.01,	0.03	 	 	

	 	 	 	 	

PL	 1.96	 1.22,	3.19	 Very	Likely	

Harmful	

0.4%	/	2.1%	/	97.5%	

	 	 	 	 	

PLVH	 2.84	 2.06,	3.99	 Most	Likely	

Harmful	

0.0%	/	0.0%	/	100.0%	

	

	

8.3.2	IMA	Models		
	

IMA	models	both	with	and	without	positional	group	as	a	categorical	

predictor	were	evaluated	for	their	associated	risk	with	non-contact	soft	

tissue	injury.	The	inclusion	of	position	group	along	with	all	3	IMA	bands	did	

not	have	a	substantial	improvement	over	the	model	consisting	of	only	IMA	
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variables.	Table	8.4	displays	the	model	coefficients	and	magnitude-based	

inferences	for	the	effects	of	the	best	model	according	to	BIC,	containing	all	

three	IMA	bands.	A	one-unit	increase	in	IMAHigh	z-score	was	associated	with	

a	most	likely	higher	risk	of	non-contact	soft	tissue	injury	(OR	=	5.89;	90%	CI:	

3.18	–	11.4)	while	a	one	unit	increase	in	IMALow	was	associated	with	a	very	

unlikely	increase	in	the	probability	of	non-contact	soft	tissue	injury	(OR	=	

0.47;	90%	CI:	0.24	–	0.87).	An	unclear	relationship	was	observed	between	

IMAMed	and	non-contact	soft	tissue	injury	(OR	=	1.05;	90%	CI:	0.45	–	2.42).	

	

	

Table	8.4.	Model	Parameters	for	the	best	IMA	model.	
	

Variable	 OR	 90%	CI	 Clinical	
Inference	

%	Likelihood	effect	is	
beneficial/trivial/harmful	

Constant	 0.02	 0.01,	0.036	 	 	

	 	 	 	 	

IMALow	 0.47	 0.24,	0.87	 Very	

Unlikely	

Harmful	

95.4%	/	3.3%	/	1.3%	

	 	 	 	 	

IMAMed	 1.05	 0.45,	2.42	 Unclear	 37.6%	/	17.1%	/	45.4%	

	 	 	 	 	

IMAHigh	 5.89	 3.18,	11.4	 Most	

Likely	

Harmful	

0.0%	/	0.0%	/	100%	

	

	

	

	 	 	 	

8.3.3	Impact	Models	
	

Similar	to	the	Player	Load	and	IMA	models,	positional	group	was	not	found	

to	improve	model	performance	when	attempting	to	describe	the	association	

between	impacts	during	training	and	non-contact	soft	tissue	injury.	As	such	

a	model	utilizing	all	three	Impact	bands	was	retained	for	the	final	

interpretation	(Table	8.5).	An	unclear	association	was	found	between	non-
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contact	soft	tissue	injury	and	ImpactsLow	(OR	=	0.64;	90%	CI:	0.29	–	1.38)	

and	ImpactsMed	(OR	=	1.83;	90%	CI:	0.78	–	4.23).	However,	similar	to	the	

Player	Load	and	IMA	models,	the	highest	band	of	activity,	ImpactsHigh,	had	a	

most	likely	harmful	association	with	non-contact	soft	tissue	injury	risk	(OR	

=	2.66;	90%	CI:	1.77	-	4.11).	

	

Table	8.5.	Model	Parameters	for	the	best	Impact	model.	
	

Variable	 OR	 90%	CI	 Clinical	
Inference	

%	Likelihood	effect	is	
beneficial/trivial/harmful	

Constant	 0.03	 0.016,	0.042	 	 	

	 	 	 	 	

ImpactsLow	 0.64	 0.29,	1.38	 Unclear	 76.7%	/	11.4%	/	11.9%	

	 	 	 	 	

ImpactsMed	 1.83	 0.78,	4.23	 Unclear	 8.4%	/	8.2%	/	83.4%	

	 	 	 	 	

ImpactsHigh	 2.66	 1.77,	4.11	 Most	

Likely	

Harmful	

0.0%	/	0.0%	/	100%	

	 	 	 	 	

	 	 	 	 	

8.3.4	Joint	Model	
	

Joint	models	were	compared	using	BIC	due	to	the	large	combination	of	

variables	that	could	be	fitted	in	a	model.	The	variables	contained	in	each	of	

the	top	five	joint	models	are	displayed	in	Table	8.6.	The	joint	model	

displaying	the	lowest	BIC	value	included	PL,	PLLow,	and	ImpactsHigh.	

Therefore,	this	model	was	retained	as	the	“best”	joint	model	and	was	used	

for	interpretation	and	comparison	to	the	sub-group	models.	
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Table	8.6.	Variables	contained	within	the	top	5	joint	models	according	to	
BIC.	Shaded	regions	indicate	the	variables	included	in	each	of	the	specific	

models.	Coefficients	displayed	within	the	shaded	regions	are	represented	in	

log-odds.	

	

	 Model	1	 Model	2	 Model	3	 Model	4	 Model	5	
Intercept	 -4.12	 -3.6	 -4.26	 -3.86	 -4.35	

PL	 1.87	 	 2.45	 0.69	 2.08	

PLLow	 -1.18	 	 -1.20	 	 -1.83	

PLMed	 	 	 	 	 	

PLHigh	 	 	 	 	 	

PLVH	 	 	 	 	 	

IMALow	 	 	 	 	 	

IMAMed	 	 	 	 	 	

IMAHigh	 	 	 	 	 1.13	

ImpactsLow	 	 	 -0.79	 	 	

ImpactsMed	 	 	 	 	 	

ImpactsHigh	 0.7	 1.14	 0.97	 1.0	 	

	

	

Model	parameters	and	qualitative	inference	for	the	best	joint	model	can	be	

seen	in	Table	8.7.	A	one-unit	increase	in	PL	z-score	was	associated	with	a	

most	likely	higher	risk	of	non-contact	soft	tissue	injury	(OR	=	6.48;	90%	CI:	

2.79	-	15.8).	Similarly,	a	one-unit	increase	in	ImpactsHigh	was	also	found	to	

have	a	most	likely	higher	association	with	non-contact	soft	tissue	injury	(OR	

=	2.01;	90%	CI:	1.42	-	2.86).	Conversely,	PLLow	had	a	negative	coefficient	in	

the	model	and	was	observed	to	have	a	most	unlikely	harmful	relationship	

with	non-contact	soft	tissue	injury	(OR	=	0.31;	90%	CI:	0.15	-	0.61).	
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Table	8.7.	Model	Parameters	for	the	best	Joint	model.	

Variable	 OR	 90%	CI	 Clinical	
Inference	

%	Likelihood	effect	is	
beneficial/trivial/harmful	

Constant	 0.02	 0.008,	0.03	 	 	

	 	 	 	 	

Player	

Load	

6.48	 2.79,	15.8	 Most	

Likely	

Harmful	

0.0%	/	0.0%	/	100%	

	 	 	 	 	

PLLow	 0.31	 0.15,	0.61	 Most	

Unlikely	

Harmful	

99.4%	/	0.5%	/	0.1%	

	 	 	 	 	

ImpactsHigh	 2.01	 1.42,	2.86	 Most	

Likely	

Harmful	

0.0%	/	0.3%	/	99.7%	

	

	

Figure	8.1	displays	the	predicted	probability	densities	for	both	the	injured	

and	non-injured	groups	within	the	observed	data.	The	mean	probability	of	

injury	in	the	injured	group	is	25%	while	the	mean	probability	of	injury	for	in	

the	uninjured	group	is	4.2%.	While	there	is	overlap	in	the	model	predictions,	

the	injured	group	is	observed	to	have	a	larger	range	of	probability	values	

with	the	average	predicted	probability	in	the	injured	group	being	20.8%	

greater	than	the	non-injured	group.	
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Figure	8.1.	Probability	density	for	the	non-injured	(N)	and	injured	(Y)	
groups.	The	injured	group	is	observed	to	have	a	higher	predicted	mean	

probability	of	injury	(25%)	compared	to	the	non-injured	group	(4.2%).	

	

	

The	out-of-sample	log	likelihood	and	BIC	comparison	between	each	sub-

group	model	and	the	best	joint	model	is	presented	in	Table	8.8.	The	joint	

model	out	performs	each	of	the	top	sub-group	models	and	should	be	

accepted	as	the	preferred	model	to	explain	the	association	between	inertial	

sensor	training	load	variables	and	non-contact	soft	tissue	injury	in	NFL	

athletes.	
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Table	8.8.	Out	of	sample	log	likelihood	and	BIC	for	the	top	models	in	each	
category.	

	

	
Model	Category	

	
Model	

Out	of	Sample	
Log	Likelihood	

	
BIC	

Player	Load	Model	 PL	+	PLVH	 -84.4	 180.2	

	 	 	 	

IMA	Model	 IMALow	+	IMAMed	+	IMAHigh	 -91.3	 197.9	

	 	 	 	

Impacts	Model	 ImpactsLow	+	ImactsMed	+	ImpactsHigh	 -86.6	 189.0	

	 	 	 	

Joint	Model	 PL	+	PLLow	+	ImpactsHigh	 -80.5	 176.6	

	

	

8.4	Discussion	
	

The	present	study	is	the	first	to	evaluate	the	relationship	between	training	

load	variables	and	non-contact	injury	in	an	NFL	sample	across	a	single	

season.	Training	load	was	evaluated	using	11	inertial	sensor	metrics	that	

were	defined	according	to	three	sub-categories:	(1)	Player	Load	variables;	

(2)	IMA	variables;	and,	(3)	Impact	variables.	Twenty-eight	non-contact	soft	

tissue	injuries	were	observed	during	76	training	sessions	for	one	NFL	club.	

Logistic	regression	models	were	built	for	each	of	these	three	sub-categories.	

Following	the	development	of	sub-category	models,	five	“joint	models”,	

which	combined	all	of	the	variables,	were	iteratively	fit	in	an	effort	to	

identify	the	model	that	had	the	strongest	relationship	with	injury.	Models	

were	compared	against	each	other	using	BIC	and	out	of	sample	log	

likelihood.	The	best	models	in	each	sub-category	consisted	of	a	Player	Load	

model	with	PL	and	PLVH,	an	IMA	model	with	IMALow,	IMAMed,	and	IMAHigh,	

and	an	Impact	model	with	ImpactsLow,	ImpactsMed,	and	ImpactsHigh.	

Evaluation	of	the	five	joint	models	indicated	a	variety	of	different	metrics	
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identified	as	having	a	relationship	with	non-contact	injury.	Interestingly,	PL	

was	included	in	four	out	of	the	five	joint	models	and	may	therefore	

represent	a	useful	measure	of	overall	training	activity	for	practitioners	to	

consider	when	designing	training	sessions.	Of	the	five	joint	models	the	

model	consisting	of	PL,	PLLow,	and	ImpactsHigh	had	the	strongest	relationship	

with	non-contact	soft	tissue	injury	as	it	had	the	lowest	BIC	and	highest	out	of	

sample	log	likelihood.	Collectively,	these	findings	suggest	that	a	combination	

of	inertial	sensor	variables	may	be	useful	in	describing	injury	risk	in	

American	football	players.	

	

While	the	best	model	identified	in	this	study	as	having	the	largest	

relationship	with	non-contact	soft	tissue	injury	was	a	joint	model	consisting	

of	PL,	PLLow,	and	ImpactsHigh,	it	is	important	to	acknowledge	that	differences	

between	the	joint	model	and	sub-group	models	were	not	very	large.	This	

finding	may	be	due	to	the	fact	that	several	of	the	inertial	sensor	variables	are	

highly	correlated	with	each	other	and	may	be	describing	similar	training	

constructs.	For	example,	when	evaluating	the	five	joint	models,	ImpactsHigh	

is	observed	in	four	out	of	the	5	top	models	though	it	is	not	included	in	a	

model	with	PLHigh,	PLVH,	or	IMAHigh.	Understandably,	PLHigh	and	PLVH	share	a	

very	large	correlation	with	ImpactsHigh	(r	=	0.80	and	0.89,	respectively)	

while	IMAHigh	shares	a	large	correlation	(r	=	0.64)	with	ImpactsHigh.	These	

findings	indicate	that	these	metrics	are	potentially	describing	the	same	

types	of	activities.	Therefore,	perhaps	practitioners	only	need	to	focus	on	

one	of	the	variables	for	monitoring	purposes.	Additionally,	these	findings	

suggest	that	the	thresholds	utilized	for	these	inertial	sensor	variables	need	
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to	be	evaluated	to	ensure	that	they	are	describing	the	intended	actions	in	

American	football.	For	example,	threshold	bands	for	the	Impacts	metric	

have	been	created	based	on	work	in	Rugby	(Gabbett,	2013)	and,	therefore	

may	misclassify	these	actions	in	other	collision-based	sports	(Gastin	et	al.,	

2014;	Chapter	6).	More	specific	validation	work	is	required	to	determine	

whether	different	metrics	are	truly	measuring	the	same	types	of	activities	or	

whether	more	specific	thresholds	need	to	be	defined	for	American	football	

to	ensure	proper	activity	classification.	

	

The	inertial	sensor	variable,	Player	Load,	has	been	previously	shown	to	

reliably	quantify	on-field	activities	in	collision	sport	athletes	(Boyd	et	al.,	

2011)	and	has	recently	been	used	to	describe	training	loads	across	

positional	groups	in	American	football	at	the	NFL	level	(Chapter	5).	The	best	

joint	model	identified	Player	Load	as	having	the	highest	relationship	to	non-

contact	soft	tissue	injury	(OR	=	6.48,	95%	CI:	2.79,	15.8)	of	the	three	

variables	in	the	model.	Training	load	variables	were	standardized	per	

minute	prior	to	analysis,	however,	because	the	duration	of	training	across	

all	sessions	was	similar,	PL	provided	a	proxy	for	overall	movement	activity.	

As	such,	these	findings	indicate	that	training	volume	plays	an	important	role	

in	describing	injury	risk	in	American	football.	In	collegiate	American	

footballers,	Wilkerson	and	colleagues	(2016)	evaluated	the	relationship	

between	Player	Load	and	injury	and	concluded	that	both	high	levels	of	game	

exposure	and	low	variability	in	Player	Load	(coefficient	of	variation)	led	to	

significant	increases	in	injury	(OR	=	8.04;	90%	CI:	2.39,	27.03).	The	present	

study	did	not	take	into	account	game	exposure	as,	as	in-game	data	was	not	
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available	at	this	that	time	due	to	NFL	regulations.	Additionally,	the	present	

approach	differed	from	that	of	Wilkerson	(2016)	whereby	it	did	not	take	

into	account	the	variability	in	training	load	over	time.	Rather	this	study	

sought	to	understand	the	utility	of	different	inertial	sensor	variables	to	

identify	injury	risk	during	American	football	training	in	the	NFL.	The	

incorporation	of	metrics,	which	quantify	training	intensity	into	the	injury	

model	may	aid	in	describing	the	relationship	between	training	and	injury	

more	succinctly.	While	Wilkerson	and	colleagues	(2016)	only	used	Player	

Load	in	their	analysis,	the	present	findings	indicate	that	some	measure	of	

intensity	may	be	additionally	useful	for	understanding	injury	risk.		

	

Player	Load	and	ImpactsHigh	were	observed	to	have	a	most	likely	harmful	

relationship	to	non-contact	injury	within	the	joint	model.	Conversely,	PLLow	

demonstrated	a	negative	relationship	with	non-contact	injury.	Intuitively,	

these	findings	are	logical	given	that	sessions	with	a	substantial	amount	of	

low	intensity	activity	cannot	also	consist	of	large	amounts	of	high	intensity	

activity,	which	was	related	to	greater	injury	risk.		Collectively,	these	findings	

suggest	a	volume-intensity	relationship	whereby	one	metric	is	quantifying	

the	overall	activity	of	the	session	while	the	other	is	more	sensitive	to	the	

intensity	of	the	activities	being	performed.		Indeed,	when	evaluating	the	5	

joint	models	presented	in	Figure	8.1	it	is	important	to	consider	that	all	

models	except	for	one	(Model	2)	contained	both	a	volume	(Player	Load)	and	

intensity	(e.g.	ImpactsHigh	or	IMAHigh)	variable.	This	volume-intensity	

relationship	is	supported	in	previous	literature	evaluating	positional	

differences	during	American	football	training	(Chapters	5-7).	Differences	
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between	position	groups	were	observed	whereby	certain	groups	(e.g.,	WR	

and	DB)	performed	a	greater	volume	of	running	and	Player	Load	while	the	

DL	and	OL	group	had	higher	volumes	of	IMA	compared	to	the	rest	of	the	

positions.	Thus,	it	is	possible	that	metrics	quantifying	volume	and	intensity	

help	not	only	describe	positional	differences	but	also	the	physical	

consequences	of	players	actions	within	their	respective	positional	groups.	

For	example,	three	non-contact	injuries	observed	in	this	study	were	not	

specific	to	locomotor	actions	–	Elbow	(DL),	Oblique	(LB),	and	Low	Back	

(TE).	These	injuries	were	repetitive,	overuse	injuries	and	specific	to	the	

types	of	training	activities	these	groups	are	asked	to	perform	(e.g.,	hitting	

bags	and	working	on	collision	techniques).	Unfortunately,	the	categorical	

predictor	“position	group”	was	not	found	to	be	useful	in	any	model.	The	

limited	number	of	injuries	observed	within	the	each	positional	group	makes	

it	challenging	to	infer	anything	specific	about	the	relationship	between	

injury	risk	and	training	load	for	each	position.	Thus,	a	larger	sample	set	

would	be	required	to	identify	if	a	relationship	between	position	group,	

training	load,	and	injury	truly	exists.	Despite	this,	the	results	indicate	that	

both	volume	and	intensity	should	be	evaluated	when	trying	to	understand	

injury	risk,	as	one	single	metric	(e.g.,	Player	Load)	may	not	adequately	

describe	the	training	activities	of	all	positional	groups.		

	

8.5	Conclusions	
	

This	study	evaluated	the	relationship	between	injury	and	training	load	for	

one	American	football	at	the	elite	level.	As	such,	these	findings	may	lack	
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generalizability	to	other	American	football	teams	who	may	adopt	different	

practice	strategies	or	approaches	to	player	management	(e.g.,	interventions	

to	modify	training).	For	the	NFL	team	in	this	study,	the	key	findings	reveal	

that,	regardless	of	the	position	group,	training	days	with	high	amounts	of	

volume	and	intensity	share	an	association	with	risk	of	non-contact	soft	

tissue	injury	while	training	days	with	a	high	amount	of	low	intensity	

training	are	negatively	associated	with	the	risk	of	non-contact	soft	tissue	

injury.		These	findings	indicate	a	volume-intensity	relationship	that	is	

important	for	practitioners	to	be	aware	of	in	a	sport	where	players	perform	

a	wide	variety	of	movement	activities.	For	sessions	where	a	player	is	

injured,	that	individual's	data	are	often	censored	(when	the	session	gets	cut	

off	after	the	injury)	or	biased	(as	player	finishes	the	session	with	the	injury).	

As	a	result,	we	diverge	from	recent	investigations	which	have	attempted	to	

understand	injury	at	the	individual	athlete	level	(Rogalski	et	al.,	2013;	Hulin	

et	al.,	2016;	Colby	et	al.,	2017)	and	take	a	pooled	position	group	approach	to	

predicting	injury,	looking	retrodictively	at	the	group	as	a	whole	to	predict	

the	likelihood	of	an	injury	in	a	given	group	session.	Such	a	retrodictive	

approach	is	key	to	the	research	aim	of	identifying	injury	risk	factors	

inherent	to	the	training	session	rather	than	attempting	to	identify	risk	

factors	prior	to	the	training	session.	As	such,	the	approach	taken	in	this	

study	allowed	for	a	borrowing	of	strength	within	a	position	group	to	

understand	how	differences	in	training	sessions	impact	injury	risk,	while	

also	mitigating	the	class	imbalance	that	occurs	due	to	the	relative	rarity	of	

individual	injuries. Future	research	should	seek	to	solve	these	issues	and	

develop	the	concept	of	individual	injury	prediction	further	using	different	
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statistical	modeling	approaches	which	can	handle	issues	such	as	class	

imbalance	(Rahman	et	al.,	2013)	and	take	into	account	the	repeated	nature	

of	training	sessions	across	a	season	(Cnaan	et	al.,	1997).	While	this	study	

examined	only	at	training	load	on	a	given	training	day,	practical	application	

for	practitioners	and	coaches	lies	in	the	ability	to	understand	the	volume-

intensity	factors	that	have	an	association	with	injury	as	the	monitoring	and	

manipulation	of	these	factors	may	help	to	mitigate	risk	when	designing	

future	training	sessions.	
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CHAPTER	9	
	

SYNTHESIS	OF	FINDINGS	
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9.1	Introduction	
	

The	purpose	of	this	chapter	is	to	firstly	review	the	completion	of	the	aims	

and	objectives	associated	with	this	project.	This	will	be	followed	by	a	

general	discussion	section	that	will	orientate	the	outcomes	of	the	research	

within	this	project	to	broader	theoretical	and	methodological	frameworks	

associated	with	the	area	of	training	and	monitoring	in	American	football.		

Practical	considerations	for	the	sport	that	may	come	from	the	data	are	also	

presented.	Finally,	suggestions	for	future	research	based	on	the	insights	

gained	from	this	project	will	be	made.	

	

9.2	Completion	of	Aims	and	Objectives	
	

The	primary	aim	of	this	thesis	was	to	investigate	the	physical	demands	of	

training	for	American	football	at	the	highest	level,	in	the	NFL.	This	

framework	established	to	fulfill	this	aim	included	three	phases:	(1)	

Methodological	Evaluation	of	Monitoring	Strategies	(Chapters	3-6);	(2)	

Description	of	Training	Demands	(Chapter	7);	(3)	Consequences	of	Training	

(Chapter	8).		
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9.2.1.	Determining	the	Utility	of	Integrated	Micro	Technology	

Units	for	Quantifying	Commonly	Performed	Training	

Activities	in	American	Football.	

	

A	proof-of-concept	study	(Chapter	3)	was	designed	to	evaluate	whether	

integrated	micro	technology	sensors	could	detect	and	differentiate	between	

“football	actions”	commonly	performed	by	positional	groups	during	

training.	The	results	demonstrated	that	various	inertial	sensor	metrics	were	

sensitive	to	different	types	American	football	movement	activities.	

Therefore,	it	was	deemed	that	integrated	micro	technology	sensors	provide	

a	measure	of	position	specific	movements	within	American	football	

indicating	its	use	for	quantifying	training	demands	within	in	this	thesis.	

	

9.2.2.	Evaluating	the	Usefulness	of	Subjective	Rating	of	

Perceived	Exertion	to	Quantify	American	Football	Training.	

	

Session	RPE	represents	a	frequently	reported	marker	of	training	load	used	

in	collision-based	sport	(Scott	et	al.,	2013;	Lovell	et	al.,	2013;	Weston	et	al.,	

2014;	Johnston	et	al.,	2015).	This	measure	had	yet	to	be	investigated	within	

NFL	football	training	prior	to	this	thesis	(Chapter	4).	At	the	group	level,	

moderate	to	large	correlations	between	sRPE	and	measures	of	external	

training	load	were	observed	between	the	offensive	and	defensive	groups	

with	lower	correlation	being	observed	between	measures	of	sRPE	and	

training	load	(Player	Load)	and	intensity	(IMA).	These	results	suggest	that	



	 198	

sRPE	may	not	provide	as	a	strong	a	measure	of	training	intensity	as	it	does	

total	training	volume.	A	large	amount	of	individual	variability	was	observed	

in	the	relationship	between	sRPE	and	external	load	factors.	While	individual	

perceptual	responses	to	training	may	be	useful	for	answering	other	research	

questions,	the	results	of	Chapter	4	call	into	question	the	utility	of	sRPE	to	

provide	a	measure	of	external	training	load	intensity	in	American	football.		

	

9.2.3	Evaluating	Between	Position	Group	Differences	in	On-

Field	Activities	During	Training	

	

To	investigate	between	group	differences	in	movement	demands,	a	study	

was	conducted	to	evaluate	pre-season	training	sessions	of	an	American	

football	team	using	integrated	micro	technology	(Chapter	5).	The	results	

confirm	previous	studies	of	match	analysis	in	lower	levels	of	the	sport	

(Wellman	et	al.,	2016;	Wellman	et	al.,	2017)	and	suggest	that	some	position	

groups	perform	a	greater	volume	of	running	while	other	position	groups	

engage	in	a	larger	number	of	non-locomotor	actions.	More	specifically,	the	

smaller	players	in	the	“skill”	position	groups	(e.g.,	DB	and	WR)	performed	a	

high	amount	of	locomotor	actions,	as	their	role	is	to	get	downfield	and	

attempt	to	make	plays.	Conversely,	the	linemen	(offense	and	defense)	are	

engaged	in	more	physical	contact	between	each	other	as	they	block	and	

tackle.	Importantly,	the	results	of	this	chapter	suggest	that	commonly	used	

measures	of	locomotor	activity	(e.g.,	GPS)	are	not	appropriate	for	describing	

the	movement	demands	faced	by	some	of	the	position	groups	(e.g.,	DL	and	
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OL),	which	perform	a	low	volume	of	locomotor	activity.	Therefore,	the	use	of	

inertial	sensors	to	quantify	training	load	within	American	football	may	

provide	a	more	thorough	representation	of	the	sport’s	demands,	as	such	

measures	are	able	to	capture	both	locomotor	and	non-locomotor	actions.		

	

	

9.2.4	Use	of	a	Parsimonious	Statistical	Approach	to	Help	

Reduce	the	Number	of	Integrated	Micro	Technology	Features	

when	Reporting	Training	Demands	in	American	Football	

	

To	understand	the	relationship	between	these	various	measures	in	

American	football	the	sixth	chapter	in	this	thesis	used	a	Principal	

Components	Analysis	to	parsimoniously	reduce	the	training	load	variables	

into	correlated	components,	which	represent	similar	training	constructs.	

Results	revealed	three	principal	components,	each	component	containing	

several	variables	that	share	a	correlation	between	them.	These	findings	

show	that	several	variables	are	providing	details	about	similar	training	load	

constructs	indicating	that	such	a	large	number	of	available	variables	may	

not	be	necessary.	For	example,	PC1	consisted	of	all	of	the	impacts	variables	

as	well	as	the	high	and	very	high	player	load	effect	bands,	PC2	was	heavily	

weighted	on	all	three	IMA	bands,	and	PC3	consisted	of	total	Player	Load	as	

well	as	Player	Load	effort	bands	low,	medium,	and	high.	A	proposed	naming	

convention	of	the	three	identified	principal	components	was	developed,	for	

practical	purposes,	to	highlight	the	physical	constructs	of	each	(Impact	



	 200	

Index	(PC1),	Multi-Directional	Movement	Index	(PC2),	and	Action	Index	

(PC3)).	The	results	of	this	chapter	should	indicate	to	practitioners	that	

reporting	to	a	coach	or	athlete	a	large	number	of	variables	is	not	required	

and	rather,	only	one	or	two	variables	may	be	needed	to	adequately	describe	

training.	For	example,	knowledge	about	training	volume	(e.g.,	Player	Load)	

and	intensity	(e.g.,	IMA)	may	only	be	required	for	practitioners	to	report	to	

coaches,	in	which	case	only	two	metrics	are	needed	to	describe	those	

constructs.	

	

9.2.5	Describing	the	Periodization	Strategies	of	Coaches	

During	the	In-Season	Period	for	One	American	Football	

Team	

	

To	understand	the	role	that	periodization	plays	in	the	preparation	of	

American	Football	athletes	Chapter	7	investigated	the	weekly	microcycle	

and	season	long	periodization	strategies	of	coaches	within	the	sport.	In	

doing	so,	this	study	employed	a	summary	measures	approach	to	analysis	

(Matthews	et	al.,	1990;	Weston	et	al.,	2011)	to	evaluate	the	rate	of	change	in	

training	load	overtime.	These	findings	suggest	that	training	does	change	

across	the	season;	with	position	groups	showing	meaningful	decreases	in	

both	training	volume	(Player	Load)	and	intensity	(IMA).	At	the	weekly	

microcycle	level,	training	loads	were	observed	to	decrease	in	training	days	

closer	to	the	match.	The	analytical	approach	used	in	this	chapter	may	be	

beneficial	to	practitioners	as	the	serial	measurements	of	athletes	are	
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routinely	collected	within	the	applied	sports	setting.	Such	an	approach	

allows	for	an	understanding	of	the	rate	at	which	individuals	change	

overtime	allowing	for	a	more	specific	understanding	of	constructs	such	as	

‘dose-response’	to	training,	which	may	not	be	as	clear	with	more	discrete	

measures	of	analysis	(e.g.,	t-test,	ANOVA,	etc).	

	

	

9.2.6	Identifying	the	Relationship	Between	Training	Load	

and	Injury	in	One	American	Football	Team	

	

The	final	study	of	this	thesis	aimed	to	understand	the	consequences	of	

training	within	American	football	by	evaluating	the	likelihood	of	injury	

during	training	(Chapter	8).	A	relationship	between	training	sessions	with	

high	volume	and	intensity	and	non-contact	soft	tissue	injury	was	identified.	

More	specifically,	training	sessions	consisting	of	large	amounts	of	Player	

Load	(volume)	and	ImpactsVeryHigh	were	identified	as	increasing	the	risk	of	

injury	within	the	session.	A	key	finding	of	this	study	is	the	increase	risk	of	

non-contact	soft	tissue	injury	with	training	sessions	that	also	had	a	high	

amount	of	ImpactsVeryHigh.	This	evidence	suggests	that	more	intense	training	

sessions,	with	higher	amounts	of	physical	contact,	also	have	implications	

towards	the	increased	risk	of	non-contact	injuries.	The	reason	for	this	is	not	

clear	but	it	is	possible	that	athletes	become	more	fatigued	during	these	

physical	training	sessions,	exposing	them	to	greater	injury	risk.	
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9.3	General	Discussion	
	

Monitoring	athlete’s	during	training	activities	has	become	commonplace	in	

team	sports	over	the	past	decade	or	more.	Such	data	has	helped	to	provide	a	

unique	understanding	of	the	physical	demands	of	team	sports	and	the	

implications	of	training	practice	(e.g.	changes	in	performance	and/or	

injury).	American	football	is	a	popular	collision-based	sport	yet	only	limited	

data	exists	on	the	physical	demands	at	the	collegiate	level	(DeMartini	et	al.,	

2011;	Wellman	et	al.,	2016;	Wellman	et	al.,	2017;	Wilkerson	et	al.,	2016)	and	

no	data	exists	at	the	elite	level	in	the	NFL.	The	paucity	of	research	

surrounding	the	sport	provided	the	primary	motivation	for	the	present	

thesis.		As	a	means	to	facilitate	the	structure	of	the	research	projects	within	

this	thesis	we	identified	three	discrete	phases	of	experimental	work:	

	

1) Methodological	Evaluation	of	Monitoring	Strategies	

2) Description	of	Training	Demands	

3) Consequences	of	Training	

	

9.3.1	Phase	1:	Methodological	Evaluation	of	Monitoring	

Strategies	

	

When	evaluating	the	demands	of	a	sport	it	is	important	to	first	understand	

which	methods	are	most	useful	for	monitoring	training	or	competition.	

Practitioners	may	be	faced	with	a	number	of	monitoring	strategies	when	

attempting	to	quantify	training	demands.	However,	not	all	of	these	
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strategies	may	be	useful	or	relevant	within	the	context	of	their	given	sport.	

Phase	1	of	this	thesis	was	established	to	evaluate	a	number	of	measures	that	

may	be	useful	for	describing	the	demands	of	American	football	(e.g.	GPS,	

sRPE,	and	inertial	sensors).		

	

The	varied	nature	of	movement	actions	performed	by	athletes	in	American	

Football	(Pincevero	&	Bompa,	1997)	may	indicate	that	inertial	sensors	offer	

a	way	for	practitioners	to	quantify	training	loads	of	players	in	positional	

groups	that	perform	lower	volumes	of	locomotor	activity	(e.g.,	DL	and	OL).	

Prior	to	doing	so,	a	more	formal	evaluation	of	whether	or	not	such	measures	

can	differentiate	between	more	fundamental	sports	movements	was	

required.	Chapter	3	of	this	thesis	established	that	such	inertial	sensors	

variables	are	able	to	differentiate	between	movement	demands	in	

movements	that	would	seem	important	to	American	Football.	For	example,	

Player	Load	appeared	to	be	sensitive	to	locomotor-based	movements	while	

a	greater	amount	of	IMA	was	registered	during	change	of	direction	activities.	

However,	there	did	seem	to	be	some	crossover	between	inertial	sensor	

variables	during	the	majority	of	movement	tasks	(e.g.,	Player	Load	was	

registered	during	change	of	direction	and	collision	activities).	These	results	

show	that	these	measurements	may	not	be	identifying	discrete	movements	

per	se	but	rather	activity	at	a	more	general	level.		These	findings	would	

agree	with	the	outcomes	of	other	methodologically	based	chapters	

(Chapters	3-6)	particularly	the	research	focused	on	the	use	of	Principal	

Components	Analysis	(PCA)	(Chapter	6).		
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While	these	findings	are	novel	contributions	to	the	understanding	of	

American	football,	the	reason	for	the	relationship	between	some	of	these	

variables	was	not	full	understood.	For	example,	these	variables	may	be	

identifying	similar	training	load	constructs	or	maybe	recording	similar	

activities	thereby	representing	a	redundancy	within	the	measures	provided	

by	the	technology.	Such	issues	may	simply	be	a	consequence	of	the	

positioning	of	the	sensor	unit	on	the	torso	meaning	that	any	number	of	

movement	activities	is	able	to	register	different	inertial	sensor	loads.	These	

ideas	may	be	supported	by	the	observations	on	the	QB	position	in	Chapter	6.	

In	this	chapter	the	QB	was	identified	as	having	the	highest	values	in	all	three	

of	the	principal	components	even	though	the	QB	position	is	the	only	position	

during	training	that	does	not	engage	in	physical	contact.	This	suggests	that	

the	sensor	unit,	in	such	situations	may	be	picking	up	a	more	general	

movement	process	linked	to	the	throwing	action	performed	by	this	position.		

	

While	such	an	implication	suggest	the	need	for	more	specific	movement	

templates	(i.e.	throwing	measurements	etc)	it	may	also	suggest	that	the	data	

can	only	really	reflect	a	measure	of	overall	‘training	load’	not	how	that	load	

has	been	achieved	(e.g.,	running,	cutting,	colliding).	While	these	findings	

warrant	further	investigation,	practitioners	may	still	be	able	to	utilize	such	

measures	usefully	to	provide	a	‘gross’	account	of	training	demands.	From	a	

practical	perspective	it	may	also	indicate	that	practitioners	do	not	need	to	

report	all	inertial	sensor	variables	when	describing	daily	training	activities.	

Indeed,	practitioners	may	be	able	to	describe	the	demands	of	American	

football	using	a	measure	of	training	volume,	such	as	Player	Load,	and	
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intensity,	such	as	IMA.	These	reasoning	for	these	two	variables	is	their	

ability	to	differentiate	position	demands	during	training		(Chapter	5)	and	

the	demonstration	that	they	registered	some	form	of	load	during	all	

fundamental	American	football	movement	tasks	(Chapter	3).		

	

Perceptual	measures	(e.g.,	sRPE)	of	training	are	often	used	in	sport	to	

evaluate	the	athlete’s	subjective	response	to	training	activities	(Halson,	

2014).	The	use	of	sRPE	in	American	Football	has	yet	to	be	explored.	The	

findings	in	this	thesis	suggest	that	sRPE	exhibits	a	large	number	of	inter-

individual	differences.	Such	differences	may	be	brought	upon	by	different	

levels	of	psychological	demand	required	by	different	position	groups	(Cox	et	

al.,	1995)	or	by	different	physical	requirements	of	training	(McLaren	et	al.,	

2017).	These	specific	individual	factors	are	not	precisely	exhibited	in	a	

gestalt	measure	such	as	sRPE	(Hutchinson	et	al.,	2006).	Additionally,	while	

anchoring	can	help	the	players	calibrate	to	the	scale,	it	is	important	to	

consider	that	different	players	may	still	interpret	the	RPE	scale	in	different	

ways.	Finally,	as	with	all	subjective	measures,	we	should	consider	the	fact	

that	players	may	not	be	honest	with	their	responses	or	only	interact	with	a	

small	range	of	values	on	the	sRPE	scale,	therefore,	making	the	relationship	

between	sRPE	and	external	load	variables	nothing	more	than	a	statistical	

artifact.	While	the	present	results	provide	new	information,	more	research	

is	warranted	to	understand	the	nature	of	inter-individual	responses	to	sRPE	

in	American	football.	At	the	present	time,	it	would	appear	that	sRPE	is	

unable	to	inform	on	discrete	training	activities.	More	refined	subjective	

assessments	of	training	load	may	help	counter	some	of	these	methodological	
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issues.	Differential	Rating	of	Perceived	Exertion	scales	have	been	used	to	

quantify	specific	internal	load	constructs	such	as	breathlessness,	leg	muscle	

exertion,	upper-body	muscle	exertion,	or	cognitive/technical	demands	in	

Rugby	athletes	(McLaren	et	al.,	2017).	It	is	possible	that	this	type	of	

approach	may	be	more	useful	in	a	sport	such	as	American	football	where	the	

positional	requirements	create	a	number	of	different	physical	and	

psychological	demands	(Chapter	4).		

	

Chapter	3	revealed	that	inertial	sensors	have	some	capability	to	differentiate	

between	fundamental	American	football	movements	(albeit	at	a	more	‘gross	

level’)	while	Chapter	4	suggested	sRPE	is	confounded	by	inter-individual	

differences	and	is	influenced	by	training	load	constructs	of	volume	and	

intensity	in	different	ways,	making	it	challenging	to	use	when	attempting	to	

describe	sporting	demands	as	a	whole.	Therefore,	Chapter	5	investigated	the	

utility	of	GPS	and	inertial	sensor	technology	by	evaluating	whether	they	

could	differentiate	between	positional	demands	during	American	football	

training	in	the	NFL.	When	evaluating	GPS	data,	similar	to	research	

conducted	in	the	collegiate	game	(DeMartinin	et	al.,	2011;	Wellman	et	al.,	

2016),	different	positional	groups	exhibited	different	amounts	of	locomotor	

activity.	While	this	finding	may	be	useful	for	describing	locomotor	activity,	

in	American	football	such	metrics	may	not	adequately	depict	the	training	

demands	of	position	groups	that	perform	less	running-based	movements.		

	

Inertial	sensor	variables	offer	a	number	of	unique	ways	for	exploring	

training	load,	which	may	have	greater	utility	in	American	football	and	more	
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broadly	within	other	collision-based	sports.	These	measures	may	provide	a	

more	comprehensive	way	for	scientists	and	practitioners	to	understand	

sporting	demands	and	conceptualize	new	ways	of	looking	at	the	activities	

performed	by	position	groups	(e.g.,	training	prescription	and	periodization).	

A	limitation	of	the	current	technology	is	however	still	related	to	the	fact	that	

it	is	only	identifying	training	load	at	a	gross	level	(see	above	and	Chapter	3).	

Additionally,	it	is	important	to	note	that	within	each	position	group	there	

are	more	nuanced	positional	differences	(e.g.,	Cornerbacks,	Free	Safeties,	

and	Strong	Safeties,	make	up	the	DB	group)	that	may	magnify	those	

observed	due	to	very	specific	tactical	requirements.	It	is	therefore	possible	

that	subtle	ergonomic	differences	exist	both	within	and	between	position	

groups	in	American	Football.	Unfortunately,	the	number	of	players	at	these	

nuanced	positions	is	small	within	a	single	team	and	therefore	we	were	not	

able	to	explore	such	differences	with	the	present	sample.	

	

9.3.2	Phase	2:	Description	of	Training	Demands	
	

An	understanding	of	the	training	demands	of	athletes	in	a	sport	can	be	

investigated	by	examining	the	training	loads	imposed	on	them	by	the	

coaching	staff.	Coaches	adjust	specific	aspects	of	training	based	on	their	

perception	of	the	team’s	needs	as	they	prepare	for	the	upcoming	

competition.	These	adjustments	can	be	related	to	both	longer	(months)	and	

shorter	(weeks)	periods	of	time.		Such	adjustments	should	ideally	require	a	

systematic	processes	regarding	planning	and	periodization.	Phase	2	of	this	

thesis	revealed	that	training	volume	and	intensity	appear	to	decline	across	
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the	season.	Moreover,	these	changes	do	not	seem	to	be	a	result	of	any	clear	

pattern	of	a	periodized	program.	The	reason	for	such	a	decline	is	uncertain	

at	this	time	but	such	trends	have	been	observed	previously	in	team	sports	

(Malone	et	al,	2015).	It’s	possible	that	coaches	and	performance	staffs	are	

intuitively	adjusting	training	demands	as	the	players	accrue	fatigue	as	the	

season	progresses.	However,	without	measures	of	fatigue	or	markers	of	

muscle	damage,	it	is	difficult	to	say	what	type	of	consequences	these	

observed	decrease	in	training	volume	and	intensity	may	have	on	the	fitness-

fatigue	relationship.	In	addition,	this	insight	into	the	training	process	is	only	

specific	to	on-field	training	activities	and	thus	may	not	provide	a	complete	

overview	of	all	training	demands.	It	is	common	for	American	footballers	to	

spend	time	in	the	gym	completing	additional	strength	and	conditioning	

activity.	As	this	training	has	been	omitted	in	this	thesis	future	research	

should	seek	to	include	gym-based	sessions	in	the	evaluation	of	total	training	

load.		A	final	consideration	is	that	the	structure	of	training	explored	within	

this	study	is	specific	to	one	out	of	thirty-two	NFL	teams	and	may	not	reflect	

the	periodization	strategies	adopted	by	coaches	at	other	clubs.	

	

At	the	weekly	microcycle	level,	a	periodization	structure	similar	to	that	

previously	observed	in	other	sports	was	discovered.	American	football	

coaches	appear	to	decrease	training	load,	at	different	rates	of	training	

decline	for	different	positions,	as	the	week	progresses	towards	match	day.	

This	decrease	is	training	load	occurs	from	different	time	points	within	the	

week	as	different	position	groups	seem	to	experience	different	peak	training	

days.	Such	variety	may	indicate	that	coaches	are	more	concerned	with	
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tactical	periodization	and	teaching	the	players	the	playbook	for	the	

upcoming	match	rather	than	considering	the	physical	ramifications	of	their	

program.		

	

In	light	of	such	findings	it	is	possible	to	consider	the	traditional	concept	of	

periodization	in	American	football	needs	to	be	reconsidered.	The	coaching	

staff	studied	within	this	investigation	utilized	a	plan	that	emphasized	

training	for	different	position	groups	on	specific	days,	which	varies	for	

positional	groups,	directed	towards	tactical	requirements.	This	may	be	an	

overly	rigid	approach	to	weekly	planning	that	is	effectively	unidimensional	

in	its	considerations	to	team	preparation.	Such	strategies	may	prove	to	be	

challenging	from	an	athlete	health	standpoint	given	that	players	may	

recover	from	game	day	at	different	rates	(Fullagar	et	al.,	2017)	and	not	be	

ready	to	be	exposed	to	different	types	of	load	at	different	times.	Rather	than	

having	a	standard	weekly	training	template,	as	coaches	appear	to	have,	it	

may	be	more	useful	for	to	adopt	a	flexible	approach	to	weekly	periodization	

(Kiely,	2012)	whereby	the	most	intense	training	day	of	the	week	is	allowed	

to	fluctuate	based	on	the	team’s	recovery	from	the	previous	competition.	

This	type	of	approach	would	therefore	allow	coaches	to	teach	the	necessary	

tactical	components	to	prepare	the	team	for	the	upcoming	opponent	while	

obeying	the	dose-response	relationship	of	training.	Such	an	approach	

requires	further	investigation	with	regards	to	the	implications	this	may	have	

not	only	on	decreasing	injury	outcomes	but	also	on	team	performance.	
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9.3.3	Phase	3:	Consequence	Training	
	

The	physically	demanding	nature	of	the	sport	is	reflected	in	the	fact	that	the	

risk	of	injury	in	American	football	is	higher	compared	to	other	team	sports	

(Hootman	et	al.,	2007).	Ideas	discussed	in	the	above	section	have	also	

provided	a	rationale	for	how	the	training	loads	that	are	completed	by	the	

team	could	also	be	implicated	in	this	high	injury	rate.		Phase	3	of	this	thesis	

provide	information	regarding	the	risk	of	injury	during	American	football	

training.	Specifically,	sessions	with	higher	amounts	of	either	Player	Load	or	

ImpactsVeryHigh	appear	to	increase	the	risk	of	injury	within	the	training	

session.	From	a	practical	perspective,	such	information	may	allow	

practitioners	to	plan	training	sessions	that	limit	the	amount	of	to	such	

volumes	or	intensities	of	training.		

	

The	present	research	provides	a	basis	for	understanding	injury	risk	as	it	

relates	to	external	training	load	for	one	NFL	club.	However,	it	is	important	to	

point	out	that	this	study	was	conducted	on	training	injuries	only	and	such	a	

study	is	retrodictive	in	nature,	i.e.	it	provides	a	historic	account	of	how	

injuries	occurred,	and	lacks	the	predictive	ability	to	forecast	injury	risk	prior	

to	the	training	session	taking	place.	Given	the	multi-faceted	nature	of	injury,	

more	variables	are	required	to	understand	the	true	risk	of	injury	and	gain	a	

full	picture	of	the	training	process.	For	example,	understanding	the	internal	

response	to	the	training	session	performed	and	the	daily	wellness	of	the	

athletes	may	be	useful	for	evaluating	fatigue,	which	could	influence	injury	

risk	in	subsequent	sessions.	Additionally,	other	intrinsic	factors	such	as	
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prior	injury	history,	age,	and	positional	group	could	be	useful	for	identifying	

a	link	to	future	injury.	Collectively,	such	information	could	be	used	to	build	

more	specific	predictive	modeling	of	injury,	which	may	require	more	

specific	statistical	approaches	that	can	handle	the	non-linear	relationships	

between	such	a	broad	variety	of	intrinsic	and	extrinsic	factors	(Meeuwise	et	

al,	2007;	Bittencourt	et	al.,	2016).	

	

9.4	Future	Research	
	

In	light	of	the	findings	contained	within	this	thesis,	a	number	of	future	

research	opportunities	may	be	relevant	to	further	understanding	the	

demands	of	American	football	training.	

	

9.4.1	Determining	the	Effectiveness	of	Inertial	Sensor	

Devices	to	Identify	Specific	Movements	in	American	Football	

	

The	uncertainty	around	the	extent	that	inertial	sensor	devices	can	detect	

specific	movements	suggests	that	future	research	should	attempt	to	

complete	investigations	that	help	identify	what	specific	movements	these	

metrics	may	be	measuring	in	American	football.		This	type	of	research	could	

be	done	by	(i)	identifying	specific	movements	completed	by	all	players	and	

evaluating	these	in	isolation	or	(ii)	by	examining	specific	movements	

completed	by	certain	positions.	Potential	studies	in	this	area	would	include:	
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i)	Evaluation	of	an	inertial	sensor	analysis	specific	to	throwing	

A	more	specific	evaluation	of	the	inertial	sensor	variables	contained	within	

this	thesis	is	required	to	determine	their	use	for	evaluating	the	movement	

demands	at	the	QB	position.	Such	a	study	requires	the	capture	of	throwing	

movements	in	a	controlled	laboratory	setting	using	both	inertial	sensors	and	

high-speed	motion	capture.	Data	from	the	inertial	sensor	variables	would	

need	to	be	evaluated	with	respective	to	the	torso	movements	taking	place	

during	various	throwing	actions	recorded	from	the	motion	capture	so	that	a	

‘throwing	signature’	can	be	detected	within	the	data.	This	‘throw	signature’	

could	then	be	used	develop	a	metric	that	is	able	to	categorize	throw	

intensities.	Such	a	methodological	study	would	then	need	to	be	followed	up	

with	on-field	research,	conducted	during	actual	training	sessions.	Using	the	

inertial	sensors	and	video	footage	the	‘throw	signature’	algorithm	could	be	

critically	evaluated	to	ensure	that	it	is	correctly	classifying	throwing	

movements	during	training.	

	

ii)	The	development	of	linemen	specific	metrics	

The	OL	and	DL	produce	unique	movements	within	the	sport	of	American	

football.	Their	actions	are	non-locomotor	in	nature	and	occur	within	a	

confined	space	of	movement	as	the	OL	creates	a	wall	of	protection	for	the	

QB	and	the	DL	attempt	to	breach	that	wall.	The	present	results	show	that	the	

inertial	sensor	technology	is	able	to	provide	a	general	measure	of	training	

load	for	these	position	groups,	although	a	more	discrete	measure	is	

currently	lacking.	This	study	would	need	to	be	set	up	in	a	controlled	

environment	where	offensive	and	defensive	linemen	can	compete	against	
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one	another	in	a	fashion	similar	to	what	takes	place	during	training	and	

competition.	The	inertial	sensor	trace	could	be	used	to	identify	a	brief	

period	of	non-movement	(i.e.,	before	the	ball	is	snapped)	and	then	the	

movement	actions	after	that	non-movement	phase	where	the	players	come	

out	of	their	stance	and	collide	with	each	other.	For	defensive	linemen,	a	

metric	could	be	developed	to	identify	the	force	at	which	they	come	out	of	

their	stance	and	make	impact	with	the	offensive	linemen.	Opposite	to	that,	

the	offensive	linemen	would	require	a	metric	that	identifies	the	way	in	

which	they	receive	force	from	the	defensive	lineman	and	are	pushed	back.	

Collectively,	such	measures	could	be	used	to	provide	a	count	of	these	

collision	actions	that	are	specific	to	the	positional	demands.	

	

9.4.2	The	Use	of	Differential	RPE	in	American	Football	
	

Perceptual	responses	in	American	football	were	found	to	exhibit	inter-

individual	differences	that	may	indicate	that	athletes	perceive	training	

demands	in	different	ways.	Reasons	for	this	may	be	due	to	individual	

physical	or	psychological	requirements	specific	tactical	demands.	Future	

investigations	into	the	utility	of	dRPE	are	warranted	to	gain	perspective	on	

the	specific	training	related	demands	that	influence	the	athlete’s	perception.	

Prior	research	into	dRPE	has	evaluated	scales	for	breathlessness,	lower	bod	

exertion,	upper	body	exertion,	and	psychological	strain	(McLaren	et	al,	

2018).	Given	the	unique	positional	demands	of	American	football,	dRPE	

scales	should	be	designed	to	record	the	player’s	perceptions	of	the	

locomotor	activity,	physicality	and	collisions,	and	psychological	effort	
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occurring	during	training.	This	type	of	research	project	should	be	conducted	

on	training	days	where	the	coaches	have	specific	goals	(e.g.,	tactical,	

physical,	or	psychological)	to	evaluate	the	face	validity	of	such	

measurements.	

	

9.4.3	Periodization	Strategies	Across	the	NFL	
	

The	data	contained	within	this	thesis	is	specific	to	a	single	NFL	football	club	

and	therefore	reflects	the	strategies	unique	to	that	coaching	staff.	A	more	

thorough	investigation	of	periodization	and	planning	strategies	across	the	

NFL	is	required	to	better	understand	these	practices	at	the	highest	level.	A	

study	of	this	nature	could	be	conducted	by	circulating	an	anonymous	

questionnaire	to	all	32	head	coaches	within	the	league	asking	about	their	

approach	to	planning	both	weekly	and	seasonal	training	for	their	team.	

	

9.4.4	The	Physical	Consequences	of	Training	Demands	

Relative	to	Fitness	and	Fatigue	

	

Research	contained	in	this	thesis	suggests	that	training	decreases	across	the	

competitive	season.	The	consequences	of	such	changes	in	training	are	

currently	unknown	and	may	have	implications	towards	declines	in	

performance	or	increased	injury	risk.	The	application	of	sub-maximal	fitness	

testing	(Thorpe	et	al.,	2015),	jumping	testing	(McLean	et	al.,	2010),	or	

musculoskeletal	screening	(e.g.,	hamstring	range	of	motion,	groin	strength)	
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(Esmaeili	et	al.,	2018)	have	been	employed	on	a	weekly	basis	within	other	

competitive	sports.	Such	approaches	should	be	explored	in	American	

football	to	understand	if	the	yearly	training	plan	is	appropriate	for	

maintaining	athlete	fitness	across	the	season	while	mitigating	large	

increases	in	fatigue.	

	

9.4.5	Forecasting	Injury	Risk	in	American	Football	Players	
	

The	present	thesis	provided	an	initial	understanding	of	the	relationship	

between	training	load	and	injury	risk.	However,	injury	is	multi-faceted	and	

related	to	a	number	of	interactions	between	both	intrinsic	and	extrinsic	

variables	(Meeuwise,	2007).	Future	research	should	seek	to	incorporate	

these	variables	into	a	more	holistic	model	of	injury	within	the	sport.	To	

handle	such	interactions,	some	of	which	may	be	non-linear,	and	the	fact	that	

the	group	of	interest,	the	injury	group,	is	often	under-sampled	relative	to	the	

non-injured	group,	new	statistical	approaches	should	be	undertaken.	Such	

approaches	would	allow	for	the	classification	of	risk	prior	to	the	training	

session,	which	may	then	aid	in	the	alteration	of	training	for	individual	

athletes	and	the	fluid	periodization	structure	that	has	been	discussed	in	

prior	parts	of	this	thesis.	

	

9.5	Conclusion	
	

The	aim	of	this	thesis	was	to	examine	the	physical	demands	of	American	

football	training	in	the	NFL.	This	thesis	was	written	using	a	“flat”	structure,	
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which	differs	from	the	more	commonly	used	approach	to	a	PhD	thesis.	Using	

this	structure,	this	thesis	was	able	to	examine	a	variety	of	pertinent	

questions	relevant	to	practitioners	who	are	required	to	examine	the	

physical	demands	of	the	sport,	model	training	load	demands	overtime,	and	

understand	the	potential	negative	outcomes	(e.g.,	injury)	associated	with	

training.	A	key	finding	of	this	thesis	was	that,	while	traditional	velocity	and	

distance	based	measures	(GPS)	of	training	may	be	useful	in	sports	with	

substantial	locomotor	demands,	the	unique	requirements	of	different	

position	groups	within	American	football	make	these	measures	less	

applicable.	As	such,	it	is	recommended	that	practitioners	seek	to	understand	

training	through	the	use	of	inertial	sensors,	which	offer	more	flexibility	for	

capturing	a	wide	range	of	movement	activities.	It	should	be	noted	that,	while	

this	thesis	has	accomplished	its	aim	of	beginning	the	journey	into	evaluating	

the	demands	American	football	it	merely	scratches	the	surface.	A	substantial	

amount	of	future	research	is	required	to	fully	understand	the	sport	and	

catch	up	with	the	body	of	knowledge	generated	in	other	team	sports	(e.g.,	

AFL,	Rugby,	Association	Football).	Hopefully	this	thesis	provides	scientists	

with	a	jumping	off	point	to	investigate	the	sport	more	thoroughly	and	the	

“future	research”	section	of	this	thesis	may	provide	a	road	map	in	doing	so.	

Finally,	while	this	thesis	was	conducted	on	the	sport	of	American	football,	

the	goal	was	to	provide	approaches	that	may	be	useful	across	the	landscape	

of	sports	science.	As	such,	several	of	the	statistical	approaches	contained	

within	the	chapters	of	this	thesis	may	be	of	value	to	scientists	investigating	

other	sports.	For	example,	the	time	series	approach	to	periodization	

(Chapter	7)	offers	a	new	way	of	evaluating	training	demands	across	a	
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training	program	or	season	and	may	assist	those	looking	to	understand	the	

dose-response	relationship	to	training	more	explicitly.	Collectively,	the	

knowledge	generated	from	this	thesis	is	novel	given	such	a	paucity	of	

research	within	the	sport	of	American	football,	however,	the	approaches	to	

analysis	taken	here	will	hopefully	have	broader	implications	within	the	area	

of	sports	science	research.		
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