

EFFICIENT RUNTIME SECURITY SYSTEM

FOR DECENTRALISED DISTRIBUTED

SYSTEMS

Akeel A. Thulnoon

A thesis submitted in partial fulfilment of the

requirements of Liverpool John Moores University

for the degree of Doctor of Philosophy

July/ 2018

i

ABSTRACT

Distributed systems can be defined as systems that are scattered over geographical distances

and provide different activities through communication, processing, data transfer and so on.

Thus, increasing the cooperation, efficiency ,and reliability to deal with users and data

resources jointly. For this reason, distributed systems have been shown to be a promising

infrastructure for most applications in the digital world.

Despite their advantages, keeping these systems secure, is a complex task because of the

unconventional nature of distributed systems which can produce many security problems like

phishing, denial of services or eavesdropping. Therefore, adopting security and privacy

policies in distributed systems will increase the trustworthiness between the users and these

systems. However, adding or updating security is considered one of the most challenging

concerns and this relies on various security vulnerabilities which existing in distributed

systems. The most significant one is inserting or modifying a new security concern or even

removing it according to the security status which may appear at runtime. Moreover, these

problems will be exacerbated when the system adopts the multi-hop concept as a way to deal

with transmitting and processing information. This can pose many significant security

challenges especially if dealing with decentralized distributed systems and the security must be

furnished as end-to-end. Unfortunately, existing solutions are insufficient to deal with these

problems like CORBA which is considered a one-to-one relationship only, or DSAW which

deals with end-to-end security but without taking into account the possibility of changing

information sensitivity during runtime.

This thesis provides a proposed mechanism for enforcing security policies and dealing with

distributed systemsô security weakness in term of the software perspective. The proposed

solution utilised Aspect-Oriented Programming (AOP), to address security concerns during

compilation and running time. The proposed solution is based on a decentralized distributed

system that adopts the multi-hop concept to deal with different requested tasks. The proposed

system focused on how to achieve high accuracy, data integrity and high efficiency of the

distributed system in real time. This is done through modularising the most efficient security

solutions, Access Control and Cryptography, by using Aspect-Oriented Programming

language. The experimentsô results show the proposed solution overcomes the shortage of the

existing solutions by fully integrating with the decentralized distributed system to achieve

dynamic, high cooperation, high performance and end-to-end holistic security.

ii

Acknowledgements

It is a pleasure to thank my Mother and Father, who made this thesis possible and gave

me everything they have got in order to support me to reach this stage.

I offer my regards and blessings to my wife who supported me in all respects during

the completion of the project. She has always been behind me.

I am heartily thankful to my director of study Dr. Kashif Kifayat, whose

encouragement, supervision and support from the preliminary to the concluding level

enabled me to develop an understanding of the subject. His help and guidance have

kept me focused and enabled me to successfully complete this project.

I am grateful to my supervisors Dr. Bo Zho and Dr. Cristopher Carter for their help and

guidance.

I would like to give sincere thanks to Professor Dhiya Algoumily, who offered me

many words of encouragement, support and advice throughout my project. I would like

also to thank Professor Qi Shi for his support and help.

I would like also to thank my friend Mohamed Abdlhamed who support and encourage

me in different stages of this work. I would like to thank my colleagues and friends

Ibrahim, Mohamed, Omer, Ahmed, Younis and Wajdi, for their friendship and advice

throughout the PhD period.

At the finishing of this work, I would like to acknowledge and thank the Department

of Computing at LJMU and the wonderful staff. With particular thanks going to Tricia

Waterson, Ian Fitzpatrick, Neil Rowe, Steven Thompson, Paul Cartwright.

Lastly, all the thanks and regards to the Ministry of Higher Education and Scholarships

department in my beloved country IRAQ that funded this study entirely. Continued

thanks to the University of Anbar and College of Computer and IT, who allowed me

this opportunity.

iii

Contents
Chapter 1 Introduction ... 1

1.1 Distributed System Security Challenges and Solutions .. 1

1.1.1 Cryptography .. 4

1.1.2 Access Control ... 4

1.2 Privacy Preservation .. 4

1.3 Aspect-Oriented Programming ... 5

1.4 Motivation ... 5

1.5 Aim and Objectives ... 7

1.6 Contributions and Novelty .. 8

1.7 Outline of the Chapters ... 10

Chapter 2 Background ... 13

2.1 Distributed system ... 13

2.1.1 Types of distributed systems .. 14

2.1.2 Naturalism of Distributed System Communications .. 15

2.2 Distributed System Security .. 17

2.3 Cryptography... 17

2.3.1 Type of Cryptography Algorithms ... 19

2.4 Data Sanitization ... 21

2.5 Privacy .. 23

2.5.1 Tables and Attributes ... 24

2.6 Access Control Models ... 25

2.6.1 Role-Based Access Control (RBAC) ... 26

2.6.2 Discretionary Access Control (DAC) .. 28

2.6.3 Mandatory Access Control (MAC) .. 29

2.6.4 Attribute Based Access Control (ABAC) .. 30

2.6.5 Identity-Based Access Control (IBAC) .. 32

2.7 Multi-Level Security (MLS) ... 32

2.7.1 Security classification and clearance .. 34

2.7.2 Bell-La Padula Model .. 35

2.7.3 Biba Model ... 37

2.7.4 Lattice ïBased Access control ... 38

iv

2.7.5 Restriction Marking ... 39

2.7.6 Reference monitoring ... 40

2.7.7 Trusted Computing Based .. 41

2.7.8 Multi-level Security Problems ... 42

2.7.9 Guards .. 44

2.7.10 Types of Data Transfer Review Process .. 46

2.8 Aspect-Oriented Programming ... 48

2.8.1 Static and Dynamic Aspect Oriented Programming .. 51

2.8.2 AspectJ ... 53

2.9 Summary ... 57

Chapter 3 Related Works ... 58

3.1 AOP and Access Control... 58

3.1.1 AOP with General Access Control Models. ... 59

3.1.2 AOP With Role-Based Access Control .. 63

3.1.3 AOP With Organization-Based Access Control .. 67

3.1.4 AOP with Multilevel Security System ... 68

3.2 AOP Intrusion Prevention, Cryptography and Privacy ... 72

3.2.1 AOP Intrusion Prevention .. 72

3.2.2 AOP Privacy... 78

3.2.3 AOP Cryptography ... 79

3.3 Non AOP Multi-Level Security Solutions .. 80

3.4 Summary ... 86

Chapter 4 3AC_AOP Model... 88

4.1 3AC_AOP Model .. 89

4.2 3AC_AOP Access Control .. 93

4.3 3AC_AOP Operations .. 98

4.4 3AC_AOP Cryptography .. 99

4.5 3AC_AOP Security Guard .. 100

4.6 Declassification: .. 102

4.7 Separation of duties and service function chain .. 102

4.8 System analysis ... 105

4.9 Summary ... 110

Chapter 5 The Implementation of 3AC_AOP Model .. 111

5.1 Methodology ... 111

v

5.2 Decentralized Distributed system .. 113

5.3 Aspect-Oriented Programming. .. 114

5.4 3AC-AOP Solution ... 118

5.4.1 3AC_AOP Access Control Solution .. 118

5.4.1.1 Access Control Combination .. 126

5.4.2 3AC_AOP Cryptography ... 128

5.4.3 3AC_AOP Access Control with Cryptography.. 134

5.4.4 3AC_AOP Security Guard .. 136

5.5 Summary ... 140

Chapter 6 Evaluation of 3AC_AOP and Comparison with Existing Solution 142

6.1 3AC_AOP Time Performance .. 142

6.2 3AC_AOP Access Control .. 143

6.2.1 ABAC & MLS .. 144

6.2.2 ABAC & IBAC & MLS ... 154

6.2.3 Comparing ABAC+MLS with ABAC+ IBAC + MLS .. 163

6.3 3AC_AOP Cryptography .. 167

6.3.1 Static Cryptography Aspect with Message. ... 168

6.3.2 Static Cryptography Aspect with Files. .. 170

6.4 Dynamic clustering with cryptography ... 173

6.5 3AC_AOP Security Guard .. 176

6.6 Comparing with existing solution ... 185

6.6.1 Algorithms Comparison ... 186

6.6.2 Runtime Performance ... 186

6.6.3 Numerical Evaluation Comparison .. 189

6.6.5 Comparison Summary .. 197

6.7 Summary ... 197

Chapter 7 Conclusion and Future Work .. 199

7.1 Future work ... 201

References .. 203

vi

List of Figures
Figure 2.1. A- Centralized Distributed System, B- Decentralized Distributed System ... 16

Figure 2.2.Symmetric Cryptography and Key Distribution .. 20

Figure 2.3. Asymmetric Cryptography and Key Distribution ... 21

Figure 2.4. Data anonymization .. 23

Figure 2.5. Data collection and data publishing [48] ... 24

Figure 2.6. Role-Based Access Control (RBAC)[60] .. 28

Figure 2.7. Attribute-based access control model[59] .. 31

Figure 2.8. Function permissions between the users and data in MLS ... 33

Figure 2.9. Security and Classifications Levels .. 34

Figure 2.10. Information Flow and Domination Relationship in MLS [60]. ... 37

Figure 2.11. Compartments in MLS[77] .. 40

Figure 2.12. Reference Monitoring ... 41

Figure 2.13. Human Review .. 46

Figure 2.14. Automatic Review ... 47

Figure 2.15. Hybrid Review ... 48

Figure 2.16. OOP and AOP Development .. 49

Figure 2.17. AOP example ... 51

Figure 2.18. Static and dynamic weaving through program execution. .. 52

Figure 2.19. Generic model of an AOP system [96]. ... 53

Figure 2.20. a) Java compiler without Aspect, b) java compiler with aspects. .. 54

Figure 2.21. AspectJ Advices ... 56

Figure 3.22. Struts-Based Web application architecture [92] ... 60

Figure 3.23. -a- OOP distributed nodes, -b- AOP+OOP distributed nodes, (TS, S, C) refers to (Top-secret, Secret,

Confidential) security level respectively. ... 69

Figure 3.24. SmartGuardTM [148] .. 81

Figure 3.25. Trusted RUBIX [149] .. 82

Figure 3.26. SimShieldTM [150] .. 84

Figure 3.27. Forcepoint [151] .. 85

Figure 3.28. MLS Clustering .. 86

Figure 4.29 3AC_AOP security model components .. 89

Figure 4.30. Types of Distributed Systems Nodes ... 90

Figure 4.31. Design of 3AC_AOP Model .. 91

Figure 4.32. 3AC_AOP Model Flow Chart ... 92

Figure 4.33. Proposal Model ... 93

Figure 4.34. Attribute-Based Access Control .. 94

Figure 4.35. Identity-Based Access Control ... 95

Figure 4.36. Identity-Based Access Control ... 95

Figure 4.37. Privacy Preserving Division .. 99

Figure 4.38. Cryptography... 100

Figure 4.39. Temporary sanitation .. 101

Figure 4.40. Full sanitation .. 102

Figure 4.41. -a- Separation of Duty (SoD), -b- Sequential Processing ... 103

Figure 4.42. The Final Model ... 105

Figure 4.43. Data Flow in the Model ... 110

Figure 5.44 intercept node methods using AOP ... 112

Figure 5.45. Decentralized Distributed System Adopted Scenario ... 113

Figure 5.46. Cross Reference for a New Request .. 116

Figure 5.47. Cross Reference for Receiving a Response .. 118

Figure 5.48. Access Control dealing with the node ... 119

Figure 5.49. ABAC in 3AC_AOP working .. 122

Figure 5.50. ABAC and IBAC in 3AC_AOP model ... 124

Figure 5.51. Authority to Classify the Files and Messages According to Node Security Clearance 127

Figure 5.52. Infrastructure of Security and Privacy Concerns in the Model .. 136

vii

Figure 5.53. AOP Guard in Term of Messages ... 138

Figure 5.54. AOP Guard in Terms of Files. ... 140

Figure 6.55 Decentralized nodes, ring distributed system ... 144

Figure 6.56. ABAC and MLS File level with OOP and AOP runtime performance CASE "A". 146

Figure 6.57. ABAC and MLS File level with OOP and AOP runtime performance CASE "B". 147

Figure 6.58. ABAC and MLS File level with OOP and AOP runtime performance CASE "C". 147

Figure 6.59. ABAC and MLS File level with OOP and AOP runtime performance CASE "D". 148

Figure 6.60. ABAC and MLS File level with OOP and AOP runtime performance CASE "E"................................... 148

Figure 6.61.ABAC and MLS Message level with OOP and AOP runtime performance CASE "A". 150

Figure 6.62. ABAC and MLS Message level with OOP and AOP runtime performance CASE "B". 151

Figure 6.63. ABAC and MLS Message level with OOP and AOP runtime performance CASE "C". 151

Figure 6.64. ABAC and MLS Message level with OOP and AOP runtime performance CASE "D". 152

Figure 6.65. ABAC and MLS Image level with OOP and AOP runtime performance CASE "A". 153

Figure 6.66. ABAC and MLS image level with OOP and AOP runtime performance CASE "B". 153

Figure 6.67. ABAC and MLS image level with OOP and AOP runtime performance CASE "C". 154

Figure 6.68. ABAC and MLS image level with OOP and AOP runtime performance CASE "D". 154

Figure 6.69 .ABAC, IDAC and MLS File level with OOP and AOP runtime performance CASE "A". 156

Figure 6.70.ABAC, IDAC and MLS File level with OOP and AOP runtime performance CASE "B".......................... 156

Figure 6.71.ABAC, IDAC and MLS File level with OOP and AOP runtime performance CASE "C". 157

Figure 6.72.ABAC, IBAC and MLS File level with OOP and AOP runtime performance CASE "D". 157

Figure 6.73. ABAC, IBAC and MLS File level with OOP and AOP runtime performance CASE "E". 158

Figure 6.74. ABAC, IBAC and MLS Message level with OOP and AOP runtime performance CASE "A". 159

Figure 6.75. ABAC, IBAC and MLS Message level with OOP and AOP runtime performance CASE "B". 159

Figure 6.76. ABAC, IBAC and MLS Message level with OOP and AOP runtime performance CASE "C". 160

Figure 6.77. ABAC, IBAC and MLS Message level with OOP and AOP runtime performance CASE "D". 160

Figure 6.78. ABAC, IBAC and MLS Image level with OOP and AOP runtime performance CASE "A". 161

Figure 6.79. ABAC, IBAC and MLS Image level with OOP and AOP runtime performance CASE "B". 162

Figure 6.80. ABAC, IBAC and MLS Image level with OOP and AOP runtime performance CASE "C". 162

Figure 6.81. ABAC, IBAC and MLS Image level with OOP and AOP runtime performance CASE "D". 163

Figure 6.82. Comparing between AOP in File level with ABAC+MLS and ABAC+ IBAC and MLS. 164

Figure 6.83. Comparing between OOP in File level with ABAC+MLS and ABAC+ IBAC and MLS. 164

Figure 6.84. Comparing between AOP in Message level with ABAC+MLS and ABAC+ IBAC and MLS. 165

Figure 6.85. Comparing between OOP in Message level with ABAC+MLS and ABAC+ IBAC and MLS. 165

Figure 6.86.Comparing between AOP and OOP in Image level with ABAC+MLS and ABAC+ IBAC and MLS. 166

Figure 6.87. Comparing between AOP and OOP in Image level with ABAC+MLS and ABAC+ IBAC and MLS........ 166

Figure 6.88. Static cryptography aspect, Message Level, CASE "A". ... 168

Figure 6.89. Static cryptography aspect, Message Level, CASE "B". ... 169

Figure 6.90. Static cryptography aspect, Message Level, CASE "C". ... 169

Figure 6.91. Static cryptography aspect, Message Level, CASE "D". ... 170

Figure 6.92. Static cryptography aspect, File Level, CASE "A". .. 171

Figure 6.93. Static cryptography aspect, File Level, CASE "B". .. 171

Figure 6.94. Static cryptography aspect, File Level, CASE "C". .. 172

Figure 6.95. Static cryptography aspect, File Level, CASE "D". .. 172

Figure 6.96. Static cryptography aspect, File Level, CASE "E". .. 173

Figure 6.97. Dynamic cluster of distributed nodes, use 2 different clearance level. .. 173

Figure 6.98.Dynamic cryptography aspect, File Level, CASE "A". .. 174

Figure 6.99. Dynamic cryptography aspect, File Level, CASE "B". ... 175

Figure 6.100. Dynamic cryptography aspect, File Level, CASE "C". ... 175

Figure 6.101. Dynamic cryptography aspect, File Level, CASE "D". ... 176

Figure 6.102. Dynamic cryptography aspect, File Level, CASE "E". ... 176

Figure 6.103. Random connection decentralized distributed system ... 177

Figure 6.104. Evaluation of Sanitization aspect, Ring Connection, message level, CASE "A" 180

Figure 6.105. Evaluation of Sanitization aspect, Ring Connection, message level, CASE "B" 180

Figure 6.106. Evaluation of Sanitization aspect, Random Connection, message level, CASE "C" 181

viii

Figure 6.107. Evaluation of Sanitization aspect, Random Connection, message level, CASE "D" 181

Figure 6.108. Evaluation of Sanitization aspect, Ring Connection, file level, CASE "A" ... 183

Figure 6.109. Evaluation of Sanitization aspect, Ring Connection, file level, CASE "B" ... 184

Figure 6.110. Evaluation of Sanitization aspect, Random Connection, file level, CASE "C" 184

Figure 6.111. Evaluation of Sanitization aspect, Random Connection, file level, CASE "D" 185

Figure 6.112. Algorithms Comparison. .. 186

Figure 6.113. Message Comparison, -a- SDAW, -b- 3AC_AOP. ... 189

Figure 6.114. Evaluation Result, Massage Level ... 190

Figure 6.115. File Comparison, -a- SDAW, -b- 3AC_AOP. .. 191

Figure 6.116. Runtime Performance, File Level, Case1 ... 192

Figure 6.117. File Comparison, -a- SDAW, -b- Proposed solution, CASE 2 .. 193

Figure 6.118. Runtime Performance, File Level, Case2. .. 194

Figure 6.119. File Comparison, -a- SDAW, -b- Proposed solution, CASE 3 .. 194

Figure 6.120. Runtime Performance, File Level, Case3. .. 195

Figure 6.121. File Comparison, -a- SDAW, -b- Proposed solution, CASE 4 .. 196

Figure 6.122.Runtime Performance, File Level, Case4. ... 196

List of Tables
Table 1 GOC information Sensitive [66] .. 34

Table 2 Join points [102]. ... 55

Table 3: ABAC and MLS processing cases.. 145

Table 4. ABAC and MLS File level, OOP and AOP runtime performance. .. 146

Table 5. ABAC and MLS Message level .. 149

Table 6. ABAC and MLS Message Level, OOP and AOP performance time ... 150

Table 7. ABAC, IBAC and MLS, File level, OOP and AOP runtime performance .. 155

Table 8. ABAC, IBAC and MLS, Message level, OOP and AOP runtime performance .. 158

Table 9. ABAC, IBAC and MLS, Image level, OOP and AOP runtime performance. ... 161

Table 10. Static cryptography aspect with message, OOP and AOP performance.. 168

Table 11. Static cryptography aspect with files, OOP and AOP performance ... 170

Table 12. Dynamic cryptography and clustering aspect with files, OOP and AOP performance 174

Table 13. Ring and random connections sanitization cases, Messages level .. 178

Table 14. Execution Time Result for Ring and Random Connections with AOP Guard. Message level 179

Table 15. Ring and random connections sanitization cases, Files level .. 182

Table 16. Execution Time Result for Ring and Random Connections with AOP Guard. File Level 183

Table 17. Evaluation Result of comparison study, Message Level .. 190

Table 18. Runtime Performance, File level, Case1 .. 191

Table 19. Runtime Performance, File level, Case2 .. 193

Table 20. Runtime Performance, File level, Case3 .. 195

Table 21. Runtime Performance, File level, Case4 .. 196

ix

List of Publications

A. A. Thulnoon, B. Lempereur, D. Aljumeily, Q. Shi ά¦ǎƛƴƎ Aspect Oriented Programming to

Enforce Privacy Preserving Communication in Distributed SystemsέΣ {ŜŎƻƴŘ

Internationŀƭ /ƻƴŦŜǊŜƴŎŜ ƻƴ LƴǘŜǊƴŜǘ ƻŦ ¢ƘƛƴƎǎΣ 5ŀǘŀ ŀƴŘ /ƭƻǳŘ /ƻƳǇǳǘƛƴƎ όL//Ωмтύ

A. A. Thulnoon, K. Kifayat ά9ƴŦƻǊŎƛƴƎ !ŎŎŜǎǎ /ƻƴǘǊƻƭ aƻŘŜƭǎ ƛƴ {ȅǎǘŜƳ !ǇǇƭƛŎŀǘƛƻƴǎ ōȅ ǳǎƛƴƎ

Aspect- Oriented Programming: ! [ƛǘŜǊŀǘǳǊŜ wŜǾƛŜǿΣέ млǘƘ LƴǘŜǊƴŀǘƛƻƴŀƭ /ƻƴŦŜǊŜƴŎŜ

Development in eSystem Engineering, France 2017.

1

Chapter One

Introduction

This chapter presents a brief introduction to security and privacy concepts in terms of

the distributed system. It also provides introductions about the solutions components

to address these security and privacy challenges, access control and cryptographic. This

chapter highlights the current problems of distributed systemsô security and motivation

of this research. It also presents the programming paradigm, Aspect-Oriented

Programming (AOP) the tool that we used to modularize the privacy and security

concerns for the proposed solution. The chapter also outlines the projectôs aims and

objectives, novel contributions, and finishes with the thesis structure.

1.1 Distributed System Security Challenges and Solutions

Coulouris [1] defines a distributed system as ñone in which hardware or software

components located at networked computers communicate and coordinate their actions

only by passing messagesò. Systems that are scattered over geographical distances and

provide different activities through communication, processing, data transfer etc are

called distributed systems [2]; for example, web services offering to deal with a huge

distributed system as single resource. There are many different concepts associated

with distributed systems, including distributed file systems, distributed object-based

systems, distributed Web-based systems etc. All of these systems have been built to

fulfil the following objectives [3] :

Å Transparency

Å Openness

Å Reliability

Å Performance

Å Scalability

2

This thesis starts with the focus on the security of distributed systems based on how the

system face different types of threats. These threats could be in the following forms:

¶ Interception: An illegal attempt by unauthorized parties trying to access the

service or certain data to make copies or just corrupt the information, thus

disabling the system or service [4].

¶ Interruption: Destroying the Services or data and converting it to be

unavailable, unusable, Examples of interruption threats include denial of

service attacks, deletion of data, and corruption of data [5].

¶ Modification: Manipulating and changing the data in an unauthorized manner,

thus changing the service to perform a different function from that originally

intended [5].

¶ Fabrication: Generation of additional data or activity that would normally not

exist. Examples of fabrication include adding an entry to a password database

and replaying previously sent messages [6].

Besides these threats, there are different types of attacks that may cause serious

damages on the systems workings like attacking the distributed system channels. For

example, eavesdropping [7] when the attacker obtains copies of the transmitted

messages, thus sniffing some sensitive information. Denial of Service [8] when the

attacker floods the system channel with messages that can cause the service to stop.

To address all the above security issues, security and privacy concepts must be adopted.

Although, these concepts are presented as the non-functional side of the distributed

system, however the naturalism of the functional side (sending, receiving and

processing) needs to adopt these concepts to save the information. According to the

definitions, all distributed entities will be working together as one entity to accomplish

the required tasks, thus sharing same data between them while preserving the locality

for each individual entity. For example, the function performance of a machine relies

on the results of sub-functions performance on the other machine e.g. Web Service

Composition (WSC) [9]. This cooperation makes the data vulnerable when an

unauthorized entity obtains access to sensitive information.

3

To investigate the security issues in distributed systems, there are three main

fundamental security dimensions which should be applied to measure the strength of a

systemôs security and the defense against different types of attacks. These dimensions

are as shown in the following:

1. Confidentiality

The method that shows the ability to protect information from disclosure or exposure

for those who are not authorized to access it [10]. In other words, this concept ensures

that the access to the information is limited to authorized people only, who can handle

and change according to the level of authorization [11]. There are some measures used

to protect the confidentiality of information that are as follows:

o Information classification

o Secure document storage.

o Application of general security policies.

o Education of information custodians and end users.

Confidentiality can be compromised by the loss of a laptop containing data, a person

looking over our shoulder while we type a password, an email attachment being sent to

the wrong person, an attacker penetrating our systems, or similar issues [10].

2. Integrity

It is the ability to prevent information from modification or deletion by an unauthorized

party [12]. This might include the unauthorized modification or deletion of data, or it

could mean an authorized, but undesirable change or deletion of data. To achieve

integrity, we might need to have the methods to protect against the unauthorized

modification to data, but also need the ability to reverse authorized changes that have

to be undone [10].

3. Availability

The ability for the authorized user to access the data when they need it without

interference or obstruction, and the systems that provide this can appropriately resist or

recover from attacks [11].

4

In order to deal with all these listed security issues in distributed systems, one needs to

consider different types of cryptography and access control mechanisms.

1.1.1 Cryptography

A mechanism used to convert the plain file into unreadable file, thus transferring data

safely between system channels in a way that the attacker cannot understand [13]. In

addition, cryptography will prevent any unauthorized system entity from displaying the

data.

1.1.2 Access Control

One of the accepted security solutions is Access Control (AC), itôs a mechanism that is

used to protect the information by controlling who can access the information, or even

pieces of information, and where and when [14]. In addition, AC will give the authority

to the authenticated person, or machine to perform one of the actions read, write or

delete and this will be different in regards to the type of authority that the authenticated

person has [15].

1.2 Privacy Preservation

Privacy preservation is an essential concern especially for applications that deal with

sharing data such as healthcare, security, financial and other applications that deal with

sensitive data [16]. Many governments, corporations and organizations desire to create

an interface that amalgamates data sources to achieve a high level of knowledge base

to reach accurate results and make a right decision [17]. The aggregation of data sources

however will put the privacy of the data stored in these sources in a precarious position.

Many methods, algorithms and models can be used to achieve privacy for applications

that share their resources; however, the most important two main methods used for

enforcing privacy are anonymity and cryptography [18].

5

1.3 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a software paradigm, that supports separation

of concerns (SoC) [19], which play a major role in software evolution. In computer

science, SoC is the procedure of separating a computer program into distinct features

that overlap in functionality as little as possible. SoC can be achieved through

modularity of programming and encapsulation with the aid of data hiding. Researchers

have explored many methodologies in order to assess the reusability of Object Oriented

(OO) software systems. AOP aims to modularize crosscutting concerns in an

application, which can not be modularized using traditional approaches such as Object

Oriented Programming (OOP). By using an aspect oriented approach, concerns like

security and privacy can be isolated, resulting in the increased maintainability and

reusability of the system [20].

1.4 Motivation

Dealing with the naturalism of the distributed systems is still an open challenge,

because of the variety of requirements, environments, ability of expanding, updating,

looselyïcoupled problems and more. Indeed, all these problems represent the

functional side of the distributed system; however, non-functional concerns like

security and privacy protection will add more load to facing the above challenges.

Adding privacy and security concepts to network system applications will increase the

trust between the user and these applications, leading to an increase in the number of

users willing to use them. Unfortunately, obtaining privacy and security assurances in

a distributed system remains difficult; typically, in some places in distributed

applications, there are no trusted relationships among participants of the networked

system. Nonetheless many distributed systems need to be trusted because they handle

sensitive and private data, such as clinical data, financial information, business-to-

business transactions and joint military information [21].

The proposed solution deals with decentralized distributed systems(DDS), in which

each individual node within the system works autonomously. Each node has both

statuses (client and server) at the same time, so can send requests and receive requests

6

or response as well as perform its own function. The features of these systems are that

sometimes there are no direct connections between nodes, so if a node sends a request,

this request might do a multi-hop between different nodes to reach the right process.

Furthermore, the processing of the requested task might require some nodes to process

the task, called processing nodes, and data might be transmitted between some

intermediate nodes which work as bridges to deliver data to the intended nodes, called

bridges (hop) nodes. However, security concerns have emerged as a consequence of

this topology like cooperation will be restricted or sometimes impossible, because

according to the security concepts, data transmitted between system nodes might be

restricted, especially if these nodes have different levels of security. One of the most

widely accepted security models is based on a multi-level security system, in which

system nodes will be classified according to their security clearances, and provides the

authority to access data only if the latter has an appropriate classification. Keeping the

cooperation principles with these systems is extremely difficult, because messaging

between nodes which have the same security clearance might be impossible if data

needs to transmit between some intermediate nodes which have been classified with

greater security clearance.

One of the main concepts in distributed systems that adopt multiple-level security

policy is to prevent data transmission from high clearance entity to lower

clearance [22]. However, in some urgent cases, there is allowance for the data to

transmit from a high security clearance point to a lower one after review of the data by

security guard device or a human resource, to ensure there is no spill of sensitive data

from high to low. This operation requires the use of specialized devices or Meta

software between these nodes to work as security guards. Indeed, the last solution

should be done after clustering the system nodes into sub clustering. Each one holds

the same security clearance nodes, the nodes within the same cluster are connected in

low security measures, and the data transmitted between the clusters will be controlled

by security guards. This process is inadequate to deal with the systems that have

dynamic naturalism as well as facing any incident change during running times, e.g

updating security methods, auto-reclassifications of nodes and information.

7

1.5 Aim and Objectives

The aim of this study is to propose a security mechanism that can achieve security

concepts for the decentralised distributed systems that works dynamically in real time,

while preserving the performance of the whole distributed system network.

To achieve this security system, the proposed solution should be able to fulfil a high

level of cooperation through allowing bidirectional connections between nodes, which

might have different levels of security clearance, and in addition, eliminate the need to

use Trusted-Computing Based (TCB) [23], which sometimes represents one of the

major working conditions with systems based on the Multi -level Security System. The

proposed solution should also allow software to be more flexible and able to be

understood by separating the security concerns into distinct parts which makes it easy

to understand and execute, and separates the security from the core functionality.

Moreover, the system should permit data sharing across system sites while at the same

time preventing the sites from sharing private data directly, and keeping the data in a

protected environment during transmissions and sharing processing.

The main objectives of the thesis are as follows:

1. To perform detailed background research in the area of distributed system

security.

2. To research literature in the field of Aspect-Oriented programming with

security solutions, access control, cryptography and intrusion detection.

3. To research literature in the field of security solutions based on MLS without

using AOP.

4. Based on our investigation, we identify the challenges, which surround the

distributed system security. In addition, Identifying the gaps in the existing

solutions, that proposed to address the security challenges in research area.

5. To develop an integrated security solution called 3AC_AOP which is a

combined between three components; access control models, cryptography and

data sanitization to ensure high integrity and confidentiality of the data

forwarding and processing through the distributed systems entities.

8

6. To propose a technique for automatically reviewing the data that are transmitted

between nodes that have different levels of security clearance.

7. To propose a dynamic technique that improves the performance of the data

transmission and processing, and is integrated with the AOP technique.

8. To perform extensive evaluation of the 3AC_AOP by checking that all

constituent techniques work successfully.

9. To compare 3AC_AOP against existed solutions, to measure the success and

performance of 3AC_AOP.

1.6 Contributions and Novelty

This work introduced several novel approaches; in an attempt to tackle this, firstly, the

work considered the implications of introducing end-to-end security [24] into systems

designed without it. Point-to-point security is relatively straightforward, but gives a

significantly weaker result, since it assumes the trustworthiness of all intermediate

nodes [25]. As we will see in the literature review, some progress has been made on

how to achieve security and privacy concepts by solving a specific problem, but

questions remain, especially about the generality of these solutions. The contributions

and novelty of the thesis are as follows:

1- Access control model.

This thesis presents an access control model modularized in both Object-

Oriented Programming (OOP) and AOP. This model is a composition of three

access control models:

1- Attribute ïBased Access Control (ABAC).

2- Identity-Based Access Control (IBAC).

3- Multi -Level Security (MLS).

All these models are gathered to form a powerful model, starting from ABAC

as the abstract level of the model and IBAC as the intermediate level, ending

with MLS as a core level.

9

2- End- to- end security

The proposed solution deals with end-to-end security after detection of the

security requirements to accomplish this task. We have combined between

access control policies and cryptography algorithms to ensure the security and

integrity of data transmitted between system nodes as well as processing data

inside the authorized node.

3- Privacy-preservation methodology.

The proposed solution allows each node to follow the privacy-preservation

methodologies of dividing the files according to the sensitivity level of the

information. This division will be translated to aspect pointcuts and advices in

order to integrate it with the access control model.

4- Domination relationship

The proposed system has employed a domination relationship, which represents

a special case in MLS systems in order to achieve high cooperation between

system nodes. This relationship works from high to low level by granting a high

security clearance node to send a request to low-level nodes to perform certain

missions on certain data. This supports the concept that not all information in

high-level nodes is classified as being high sensitive.

5- AOP security guard

Adaptation of the domination relationship between system nodes requires

filtering data between nodes. This thesis presents a novel approach of injecting

security guards between system nodes called AOP security guards. This guard

is a bidirectional automatic guard injected between nodes which have different

security clearance levels. This side of the proposed solution is based on dynamic

aspect-oriented programing, to arise only if data is forwarded from high to low

level node, and in cases of processing only.

10

6- Dynamic Multilevel Security System Clustering

In chapter 6 we present a brief explanation about how we can utilize AOP to

create a dynamic clustering between the nodes in the distributed system. This

clustering is based on different security levels in which the neighbour nodes

within the same level will be in the same security cluster in real time. Thus,

decrease the cryptography processes between individual nodes and make it

between clusters.

7- Designed to face incident changes of access control policies

The proposed solution is designed and developed to face all changes of access

control policies that might occur during runtime when data is processed or

transmitted between system nodes. Although the changes of the policy may

impact on the information and thus cannot guarantee the response of the sent

request, the proposed methodology guarantees the proper response, even if

changing policies by keeping the source node ID and applying data sanitization

methods on the receipt data.

1.7 Outline of the Chapters

This thesis is divided into 7 chapters, each covering a specific area of the project work.

The following outline sections provide an overview for each of the chapters to guide

the reader through the report.

Chapter 1 Introduction: This chapter outlines the fundamental elements of this work

firstly, starting with a brief introduction of these elements following with a short

clarification of the problem and motivation, followed by aims and objective of this

research. The novelty and contributions part are also presented in this chapter. Finally,

this chapter finishes with the thesis structure section.

Chapter 2 Background: This chapter deals with the proposed systemôs elements in

detail. In fact, there are three main pillars that the proposed system is based on. These

11

pillars are access control, cryptography and Aspect-oriented programming (AOP).

With access control, the author presents this part through dealing with some main

access control models like RBAC, MAC, and DAC. We are dealing with ABAC, IBAC

and MLS which are considered as the basis of the proposed system. In the cryptography

part, we deal with cryptography algorithms of types symmetric and asymmetric. The

final part of this chapter is focused on aspect-oriented programming, through

highlighting the components of this language tool, how it works, and how to apply it to

the code body.

Chapter 3 Related Works: This chapter navigates with three main security fields that

have been designed and developed by Aspect-oriented programming languages. These

fields are access control, intrusion detection, and cryptography. Although these files

share the same concept of ensuring the security in application systems, they differ on

the technical side of how to apply to these systems. This chapter has concentrated on

the varieties and methods which have adopted AOP as a tool to insert the security and

privacy concept on different systems.

Chapter 4 Proposed System: This chapter focuses on the proposed solution by dealing

with access control model, cryptography model, and AOP security guard model. All

methodologies, algorithms, and designs are presented in detail to show the benefit of

using these models and what are the positive impacts of aggregating all these models

to produce a powerful security and privacy model.

Chapter 5 implementation of the proposed solution: This chapter details the technical

side of the proposed solution. It starts with a clarification of the distributed system that

has been adopted, on which to apply the proposed solutions. Afterwards, we explain

how to convert access control models from Object-Oriented programming to be treated

as pointcuts and aspect advice with Aspect-Oriented Programming, followed by the

cryptography method and AOP guard. This chapter includes snapshots of the original

code and of AspectJ codes for all methodologies, as well as many algorithms which

give the proposed solution more generality if we try to apply them by using different

programming languages.

12

Chapter 6 Evaluation and comparing with existing solutions: This chapter shows the

evaluation results of the proposed solution. Both OOP and AOP are used as a base for

comparing the run time performance. Finally, this chapter finishes with comparing

studies between proposed system results, and existing system.

Chapter 7 Conclusion and future works: This chapter covers the whole project and

reviews the findings. It also outlines future work that can be done to improve the

project.

13

Chapter 2

Background

This chapter provides a background of the fundamental elements which represent the

infrastructure of the proposed system. Firstly, this chapter begins with the environment

that we used to apply the proposed solution which is distributed systems and especially

decentralized distributed system (DDS). The second part of this chapter focuses on

security and privacy methodologies, starting with a brief explanation of the security

concepts and ending by dealing with the most accepted solutions of security, which are

cryptography and access control. With cryptography, this chapter presents the main

algorithm types, and with access control models presents the main access control

models as well as a detailed explanation of the access control models which are the

basis of the proposal access control model. Furthermore, the data sanitization method

is presented in this chapter. Finally, the aspect-oriented programming is explained in

detail including most topics related to this powerful language tool.

2.1 Distributed system

Many definitions have been used to define distributed system concepts, the most

acceptable to the author is the definition by A. Tanenbaum and M. Steen [26] when

they defined the distributed system as:

ñA distributed system is a collection of independent computers that appears to its users

as a single coherent system.ò

This is exactly what the thesis is based on. Each node (machine, computer) is a fully

autonomous node which has the ability to run and implement its own function

independently, in addition to communicating with other nodes in the system. The

intercommunication between system nodes enables the users of each node to feel that

he/she works with only a single system. In practice, there are various layers between

the user and the system being worked, these layers are called middleware and will be

hidden from the users, making these systems relatively more easy to use [26].

14

In spite of the fact that each machine in a distributed system is an independent machine,

this does not prevent the fact that some distributed systemôs machines are controlled

by the same server to act and use the facilities of the connected machines to achieve

the system goals. This will create a kind of confusion over the concept of independence,

and these systems are called a centralized distributed system. Some distributed systems

however, have enjoyed high independence though their machines have been designed

to hold both statuses (client/server) all together, to create what is called a decentralized

distributed system. There are four fundamental objectives which should be available in

distributed systems and these are: resource accessibility, transparency, openness and

scalability [26].

2.1.1 Types of distributed systems

1. Distributed computing system

This type of distributed system is used to handle complex tasks because of its high

performance systems. The computational task will be divided into sub tasks and each

will be processed by one or a group of machines to achieve a high level of efficiency

[27]. For example, cluster computing networks, where each connected node within the

clustering has the same operating system and shares the hardware, in order to create a

high or super speed local-area network however, with grid computing, which is the

second example of distributed computing, the structure is quite different. The

individual nodes or groups will be constructed as a federation of computer systems in

which each system might follow different domains, and thus might be dealing with

various hardware and software [26].

2. Distributed information system

This type is utilizing the distributed computing systems to control and run data

resources between the communication machines. Indeed, it is a combination of

software that runs the data and hardware that runs the data storages and

telecommunication network [28]. All these fundamental elements are gathered to prop

up the cooperation, coordination, decision making and more distributed system

objectives[29]. Generally, these systems represent the backbone of our digital life by

15

controlling most applications around use in automated or even manual processes; for

this reason human resources are considered as a component of these systems associated

with data, software, hardware, process and networking [30].

2.1.2 Naturalism of Distributed System Communications
1. Decentralized Distributed System

It is a distributed system in which the control and management will be distributed over

nodes [30]. Decentralized systems provide a high level of autonomy for the system

nodes to deal with their own data and software, without taking into account the impact

on other system nodes. In other words, each node or a certain group of nodes will be

under their own responsibilities, and own business destiny; for this reason, these

systems are considered of high reliability. Moreover, DDS are more flexible and

scalable than centralized distributed systems and any fault in any system node will not

stop the whole system working [31]. The most observed example of these systems is

unstructured peer-peer network such that each node within the network has connections

with one or some nodes (neighbours). Some algorithms are used to control sharing files

and searching tasks between the peers, and the data and queries will be flooded between

the distributed peers to accomplish a specific task. Enforcing security policy over these

systems is a major mission, facing scale-up problems, and autonomy for each node to

change and update their software and policies will demand the security procedures to

keep up with the changes. Figure 2.1-B- shows an example of these distributed systems.

16

Figure 2.1. A- Centralized Distributed System, B- Decentralized Distributed System

2. Centralized Distributed System.

Contrary to the Decentralized Distributed System, these systems show more

dependence on a central controller [31]. It is most popular because it is the easiest to

be controllable, manageable, and maintainable because running and controlling tasks

will be located in the central core. Many websites and enterprises adopt it, for example

Facebook, Twitter and some other chatting applications in which there are servers

controlling the communications and messaging between clients. A simple example of

this type is a socket program (client-server) and multiple clients with one server, in

which the server works as a communication bridge to satisfy the required messages and

communication between clients. Applying security within these systems will be easier

if comparing with the decentralized one, because the majority of these policies will be

held in the server and the clients should follow any changing or updating in future.

Figure 2.1A shows how the terminals are connected with the central point, to control

the messages and communication services.

17

2.2 Distributed System Security
In order to increase the trustworthiness between distributed system nodes and the users

within the distributed system, the availability of security principles should be

considered. Although adding a security represents the most challenging task because

of the difficulty of controlling and running different security policies throughout the

distributed systemôs nodes. Security concerns in distributed systems have two main

parts. The first part concentrates on securing the communication channels between

system nodes. The best mechanism to deal with this part is to use cryptography

algorithms to ensure the integrity of data transmitted between communication channels.

The second part is the authorizations, in which accessing data resources will be granted

only to the nodes which have the right authentication to use these resources. The

mechanism that is used to deal with this part is called access control, and the access to

data resources will be controlled by different access control policies. Recently, the

research direct to the way that use cryptography to enforce access control or mixing

between them[32], [33].

Instead of cryptography algorithms, access control models are the most popular

solutions to deal with distributed system security, but this will add extra heaviness upon

the system as well as the variety of applying these solutions on distributed systems. For

this reason, many different access control models and various cryptography algorithms

are adopted just to decrease the negative impact of using these optimal security

solutions. In different sections within this chapter we deal with access control and

cryptography in more detail, to prepare the entry to the design chapter which shows

how we adopted these solutions to enforce security and privacy concepts in distributed

systems.

2.3 Cryptography

Cryptography is a mathematical method applied to a plain text (clear, organized text)

to transmit it to a cipher text (unclear, disorganized text). Cryptology is classified into

two subjects. Cryptography which deals with designing of the cryptosystem, and in

18

contrast cryptanalysis used to break the cryptosystem [13]. One definition of

cryptography [34] is ñCryptography is the hiding of and exchanging of information or

data which is not in readable form over a public or private networkò. In my opinion,

we partially agree with this definition when the author said exchanging the information

would make it unreadable. However, to say ñhiding ofò does not make sense, because

to hide anything we need a cover, and the cover must be clear and as visual as possible

to prevent the phishers from doubting that there is something which has been hidden

by this cover; this is what is called Steganography.

The historical background of cryptography dates back centuries to when Julius Caesarôs

letters were encrypted, by writing D for A, E for B and so on. After that, the Arabs

generalized the idea to monoalphabetic substitution [13]. In the past the main reason

for using this art is to protect the transmitted messages between sender and receiver

from any kind of attacker or eavesdroppers especially in military cases.

Presently, the main reason is still with an additional extra motivation to face the

challenges of data protection in WWW. We have listed some objectives that cryptology

includes to create them:

Confidentiality: is to ensure data remains private and the eavesdropper cannot

understand the content of it. This principle, applied to both transmitted message and

stored data is to protect them from illegal access [35].

Integrity: To ensure that the receiver will receive the message without any modification

and alteration which can happen through message transmission [36].

Authentication: To ensure that information came from the authenticated party. In other

words, the receiver will recognize that the information is coming from the expected

source and not from somebody else. This possibility is equivalent to a signature

[35][36].

Non- repudiation: It proves that the sender has really sent the message that the sender

denies having sent [35][36].

19

2.3.1 Type of Cryptography Algorithms

There are two main common types of cryptography 1) Secret Key Cryptography which

is also known as Symmetric Key Cryptography and 2) Public Key Cryptography which

is also known as Asymmetric Key Cryptography. In the next subsection, we will

discuss each type individually and review the advantages and disadvantages of each.

1. Symmetric Cryptography

What distinguishes this type is both sender and receiver sharing the same key. In other

words, the sender encrypts the message by using a key and sends the encrypted message

to the receiver, which in turn decrypts it by using the same key. This type is known as

a classical cryptography in which the key may be identical or there may be a simple

transformation to go between the two keys [37].

 Given an alphabet A we define Az to be the set of all strings over A. In order to define

a cryptosystem, we require a collection of sets:

 A = plaintext alphabet Aǋ = ciphertext alphabet

 M = plaintext space C = ciphertext space

 K = (plaintext) keyspace Kǋ = (ciphertext) keyspace

Where M is a subset of Az, C is a subset of Aǋ,z and K and Kǋ are sets which are

generally strings of fixed finite length over some alphabets (e.g. An or Aǋn). A

cryptosystem or encryption scheme is a pair (E,D) of maps

E : K ĬMīŸ C

D : KǋĬ C īŸM

such that for each K in K there exists a Kǋ in Kǋ such that

D(Kǋ,E(K,M)) = M

for all M in M. We write EK for the map E(K, ה) :MŸ C and similarly write DKǋ for

D(Kǋ, ה) : C ŸM. With this notation the condition on E, D, K and Kǋ is that DKǋ ǓEK

20

Indeed, Symmetric key algorithms are quicker than asymmetric key algorithms and

most commonly used for encryption [36]. It is easier however to break them than the

asymmetric ones. Moreover, there is a problem of the distribution of the symmetric key

to be shared between Alice and Bob [38]. To solve this problem, a trusted key

distribution center (KDC) has been suggested to manage the key distribution process.

Figure 2.2 shows the symmetric Cryptography and Key Distribution.

Figure 2.2.Symmetric Cryptography and Key Distribution

2. Asymmetric Cryptography

Also known as public key cryptography, this refers to the concept of this kind of

cryptographic algorithm which depends on key pairs: one public key and one private

key; both are required for the encryption and decryption process respectively[36][38].

Diffie and Hellman in 1976 came up with this method to fill the weakness gaps of

symmetric cryptography, which are the distribution of the key and the concept of a

digital signature [39].

The principle of this type of cryptography is: the sender encrypts the message using the

receiver public key (published key), while the receiver decrypts the message using his

private key (hidden key). The mathematical definition of this type is:

21

DEFINITION

1. A set K called the key space whose elements are called keys.

 2. A rule by which each k ɴ K is associated with a trap-door one-way function Ek with domain

Mk (the plaintext space) and range Ck (the ciphertext space).

 3. A procedure for generating a random key k ɴK together with a trap-door d for Ek and the

ƛƴǾŜǊǎŜ ƳŀǇ 5ƪ Υ /ƪ ҍҦ aƪ ǎǳŎƘ ǘƘŀǘ 5ƪό9ƪόƳύύ Ґ ƳΣ ŦƻǊ ŀƭƭ Ƴ ɴMk [40].

Figure 2.3 shows Asymmetric Cryptography and Key Distribution.

Figure 2.3. Asymmetric Cryptography and Key Distribution

2.4 Data Sanitization

Data sanitization is a method used to clean and remove data that has been classified as

highly sensitive from the documents, to produce clean documents which can be

released after making sure the documents are free of sensitive information. Data

sanitization has different shapes and methodologies even if all sharing the same

objectives, and is how to keep sensitive information on the safe side. Some of these

methods are implemented normally, like when someone has a document which includes

sensitive information, he/she would use a correction ink or any bold dark colour pen to

strike off the sensitive information characters before sending to publishing. These

methods are however not 100% practicable because, by using some chemical liquid,

22

the receiver can just clean the covering bold to distinguish the original information.

The best way to solve this problem, is to do what we mentioned, as well as using sticky

tape over the data without sending the original, but photocopy the result document and

send the cloned version. In this case, the secret risk to discover the sensitive data will

be minor especially if we use a very dark colour pen [41].

In a digital world, data sanitization has sanitization methods not too much different

from the manual ones but itôs a more difficult task. Redaction, which is one of the

computational sanitization methods and provides a way to sanitize information in

different aspects, for example in the context of security protection using cryptography

algorithms to protect the information [42]. In the context of privacy preservation using

anonymity methodologies, as well as data masking, has been adopted in Oracle

Database since 11g as shown in Figure 2.4, or can erase data from a hard disk as well.

Similarly, as in manual methods however, there are some anti-sanitization methods

used to retrieve sensitive information after sanitization is done. Unfortunately, some

software productsô features can be used as a tool to recover (anti sanitization) the

sensitive information after sanitization. For example, about what happened in May

2005 when a US military report was talking about the death of an Italian secret agent

called Nicola Calipari [43]. This report had been published after the name had been

sanitized using commercial software and the publishing version was PDF format.

Unfortunately, the publisher after a while discovered that the black portion (an agentôs

name) can be removed by just copying this part and pasting into the word processor.

For this reason, dealing with such software should be more careful to discover all

powerful and weak points before using this as a reliable sanitization software [44].

 In the proposed solution, a sanitization method has been adopted to do the filtering and

removing of sensitive information from the data which has been transferred to the node,

classified as lower than the sender nodes.

23

Figure 2.4. Data anonymization

2.5 Privacy

Privacy enforcement is an essential issue especially for applications that deal with

sharing data such as health care, security, financial and other applications which deal

with sensitive data [16]. V. Safanov [45] used the common definition of privacy,

ñPrivacy is the ability of an individual or group to keep their lives and personal affairs

out of public view, or to control the flow of information about themselvesò. He

considered that privacy is one of the main pillars of trustworthy computing (TWC).

Many governments, corporations and organizations wish to create an interface that

collects databases to achieve a high level of knowledge base to find accurate results

and help in making a right decision [17]. The aggregation of databases however, will

put the privacy of data stored in the database in a precarious position. Many methods,

algorithms and models can be used to achieve privacy for applications, which share

their resources. The most important two methods used however for enforcing privacy

are anonymization and cryptography [18]. The highlight topic that privacy preservation

revolves around is Privacy Preserving Data Publishing (PPDP), which is a method for

for publishing data in an untrusted environment, while at the same time keeping it

24

practically useful while individual privacy is preserved [46] [47]. Figure 2.5 shows

data collection and data publishing in database system.

Figure 2.5. Data collection and data publishing [48]

2.5.1 Tables and Attributes

A database can be represented as a table or collection of tables which either have a

relationship between them, or are stored separately in a storage device. These tables

have the ability to save the information in different files and formats. The dominant

purpose of a database table however is to store binary information. The attributes

(columns) of database tables are the linchpin which is surrounded by privacy issues.

All the privacy preservation methods agreed to divide the attributes of the table into

four different types of attributes, taking into consideration the probability of all of these

types not being present in the same table.

Identifiers (I): There are some attributes that fully and distinctly lead to identify a

person. These attributes, also called identical attributes, include SSN, passport number

and full name; such attributes are removed before publishing. In some cases, [49], more

https://www.cs.sfu.ca/~wangk/pub/FWCY10csur.pdf

25

than one identifier is required to uniquely identify the individual. For example, the

name ñJohn Smithò is a popular name and appears hundreds of times in the searching

of public telephone directories in a certain city, however, combined with a telephone

number, the individual can be more easily identified uniquely [49].

 Quasi-identifiers (QID): Types of attributes used with some extra knowledge to do

some statistics, analysis and linking process with the anonymized table in order to

uniquely identify individuals. These attributes are not less dangerous than the

identifiers, because they are used to narrow the range of searching and thus, release the

information for individuals or groups. Example of these attributes are, postcode,

gender, age, religion and so on. Sweeney [49]ôs study showed 87% of the US

population can probably be directly identified by using only the QID (zip code, gender,

age). The major dilemma here is the data publisherôs decision to establish which

attributes should be treated at quasi-identifiers, because adding too many attributes will

impact the data utility, while too little will increase the risk to the privacy of the

individuals [49].

Sensitive attribute(S): These attributes have a sensitive value for the individuals, for

example, diseases, salary and so on [50].

Non-sensitive attributes (NS): after having classified the table into identifiers, quasi-

identifiers and sensitive attributes, the rest of the attributes represent the non-sensitive

attributes [51].

For the general form of PPDP, the data publisher has a table of the form

D(Identifiers, Quasi-identifiers, Sensitive-attribute, Non-sensitive-attributes) [52].

2.6 Access Control Models

Access control (AC) which may also be referred to as authorization, is a mechanism

used to coordinate and control the interactions between the users and data resources in

26

a way that only authorized users are allowed access to these resources [53]. Access

control has been broadly used to organize the dealings with different sides in our life,

for example controlling the access of employees to their offices within enterprises when

the employerôs ID card represents the access clearance of the employers and so on. In

a context of computer and system application, access control represents the backbone

of much security software such as in database management systems, where the need

for access control is essential to give authorization for the user to access only what they

are allowed to access, otherwise the access will be denied. In some systems which are

based on working on sensitive data, like the healthcare system, access control is very

important to preserve the privacy of patient's records and thereby increase the

recommendations of the system. By using user name and password or sometimes with

more security steps, the user can have access to data resources to do his/her own

authorization actions, according to access control policy [54].

There are many access control models that have been used in past decades and

currently. In this section we will discuss briefly the main access control models: Role-

Based Access Control (RBAC), Discretionary-Based Access Control (DBAC),

Mandatory-Based Access Control (MBAC), and finally we finish this section with

Attribute-Based Access Control (ABAC) and Identity-Based Access Control (IBAC)

which represents the pivot of the proposed work.

2.6.1 Role-Based Access Control (RBAC)

RBAC is an approach based on restricting access to data resources according to the

roles of the user, which gives him/her a privilege that authorizes them access to the

permitted resource only. The userôs role is the main concept of this model and can be

seen as a userôs job within an enterprise or organization. Giving permission by

assigning privileges to the user is totally based on the userôs job duties or qualifications.

Roles is the intermediate layer between the users and data resources [55]. Permission

is updatable by increasing or decreasing the limitation according to changes in usersô

roles. Roles can be seen as a group of transactions associated with data items in which

each role is assigned by an individualôs organisation membership. The RBAC concept

27

can be represented as a many-to-many relationship between subjects and data

resources [56].

What distinguishes this model from another is it is the easiest way of achieving integrity

and availability of the system by explicitly controlling access to resources, as well as

how access can occur [57]. RBAC was founded to decrease the administration

difficulties which occur when dealing with large and commercial organizations, when

sometimes using DAC or MAC may not be an appropriate option to apply access

control policy [58]. Hu Vincent and others described RBAC in detail through present

RBAC terminologies which are Object, Operations, Permissions, Roles, User, Group,

Constraint, Session and Role Hierarchy. Objects, user(s), permissions and roles

represent the pillars that the model is based on, and the rest of the terminologies are

used to organize the model working [59].

For example, in the context of the organization, when the user U tries to access an

object O to do a specific operation OP, then the procedure will take these steps:

1- U will open a session with the role in order to map him to his assigned roles

2- Roles will assign u to a certain privileges pr.

3- According to this assignment, will detect Uôs permission and the ability to

perform the operation op upon objects.

Figure 2.6 shows the interactions of RBACôs components.

28

Figure 2.6. Role-Based Access Control (RBAC)[60]

2.6.2 Discretionary Access Control (DAC)

DAC is one of the common access control models. This model adopts an objectôs

ownership relation in which the owner of the object is responsible to grant access

permissions to the subject, thereby the subject with a given discretionary access to a

data resource has the ability to pass the access to another subject [56]. Many operation

systems have adopted this principle of access control model like UNIX, Windows2000,

and FreeBSD. In fact, this mode is based on implementing the Access Control Matrix,

which can be seen as a three-dimensional matrix where rows are subjects, columns are

objects and the mapping between them represents the permission that the subject has

over the object [57]. Despite the high reliability of DAC, the latter may be vulnerable

to an intensive risk, coming especially from the user. For example, the user can violate

the otherôs right, like the classical ñchmod 777ò which gives permission to anyone in

Unix/Linux system. Moreover, the problem of transactive read access, when a user A

has a permission to read a user Bôs file because the latter has gave him this permission,

there is not 100% assurance that user A is trusted. In other words, user A can copy a

fileôs contents and save it in a different name, thus giving the other user a right to

access this file, considering that user A is the original owner [58].

http://researchonline.ljmu.ac.uk/4453/1/158259_Securing%20Access%20to%20Cloud%20Computing%20for%20Critical%20Infrastructure%20%28final%20version%291.pdf

29

Finally, this model is not designed for dealing with big systems which have large

numbers of users and objects, the Access Control Matrix will be huge and this leads to

the system maintenance becoming enormously difficult, because it deals with a large

number of users having varying access rights to their own resources [57].

2.6.3 Mandatory Access Control (MAC)

MAC is widespread in systems which have adopted Multi-level Security access control

as a working base. Basically, this model is associated with the Bell-LaPadulla Model

[61]. This model restricts the access allowance based on the subjectôs clearance and

objectôs classifications. In other words, the security for both subjects and object will be

divided into four main levels: Top-secret (TS), Secret (S), Classified (C), and

Unclassified (U) in which TS > S > C > U [1]. The security level which is related to a

subject is called clearance and that which is associated with objects is called

classification. Accessing from subjects to objects will be controlled in a way that

prevents a low level subject from viewing a high-level object, thereby preventing

information from spilling [58]

Data flow in this model is one-directional from low level to high level and not vice

versa. In this model users have no authority to organize the access to data like DAC,

but the security policy of this model is totally controlled by the security policy

administrator [62]. In our view, the strategy of the inventory dealing with data by only

a security policy administrator will increase the reliably of the system. Through

restricting the access law to one person, this is better than scattering this law between

different system users, which may lead to a rise in tangling as well as exposing the data

to illegally disclosed risks.

The main principles of this model can be seen through two properties [62]:

Simple Security Property: restrict reading by a subject s to an object o only and only if

the security level of subject is greater than or equal to the security classification level

of an object, SL (s) SL (o) where SL=Security level.

30

* -Property: restrict writing by a subject s to an object o only and only if the security

level of subject is lower than or equal to the security classification level of an object,

SL (s) SL (o).

For more information about this model, the reader can see the Multi -level Security

section, where this model is discussed in more detail.

2.6.4 Attribute Based Access Control (ABAC)

ABAC is the model where the direction of accessing rights to the data resources is

totally restricted to the attributes of objects (requestor), subjects (distention), service

and sometimes even the attribute of system environment [56]. The National Institute of

Standard and Technology (NIST) SP 800-162 [59] has defined Attribute Based Access

Control (ABAC) as:

ñ Attribute Based Access Control (ABAC): An access control method where

subject requests to perform operations on objects are granted or denied based

on assigned attributes of the subject, assigned attributes of the object,

environment conditions, and a set of policies that are specified in terms of

those attributes and conditions ò

Given the importance of this model in the proposed system, we will be dealing with it

in more detail than others because it is the kernel of the proposed system. The core of

this model incudes some categories used to classify model attributes see Figure 2.7,

these categories are [63]:

User Attribute: this is the attribute related to the subject, and may include name,

age, office number, job titleéand so on. In fact, these attributes are divided into

two sets, static attribute like name and gender, and dynamic attributes like age,

office number, job title and so forth.

Object Attributes: Attributes of data resource of the system. May include the

attribute of meta-data of the objects like the file creator, modify date, file size

and so on, or the attribute of the contents like the columns address in database

tables.

31

Environmental Attributes: These attributes come from measuring the state of

system environments currently; for example, CPU usage, day of the week,

current time and so on.

Connection Attributes: these attributes express the current connection session

of the user like IP address, physical location.

Administrative Attributes: Attributes have been set manually by an

administrator. These attributes will be enforced to the whole system, for

example a threat level, minimum trust level and the like.

Figure 2.7. Attribute-based access control model[59]

Other aspects of the component of the model are [62]:

users (U), subjects (S), objects (O), user attributes (UA), subject attributes (SA), object

attributes (OA), permissions (P), authorization policies, and constraint checking

policies for creating and modifying subject and object attributes. In which U associates

with a set UA and S is created by U to do some actions in the system. Each S in turn is

https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-162.pdf

32

associated with a set of SA. O is the data resource which needs to be protected, Each

O is also associated with OA. Giving P from the system administrator to the subject to

access required objects is totally dependent on the relationship between these two

components and what the matching level of their attributes are.

2.6.5 Identity-Based Access Control (IBAC)

IBAC is an access control model which is used to restrict access to the data source only

to the authorized user or group of users who have the intended identity. The identity

here means the id of the user or job title or what service provider, or anything that

makes the user unique from other users or group of users; different from other groups

if we take the nature of the work as a basis for identification. IBAC has been defined

by the National Institute of Standards and Technology (NIST) in source: SP 800-53;

CNSSI-4009 as [64]:

ñAccess control based on the identity of the user (typically relayed as a characteristic

of the process acting on behalf of that user) where access authorizations to specific

objects are assigned based on user identityò

In the proposal system we used Identity-Based Access Control (IBAC) as the second

layer between the Attribute-based access control (ABAC) and multilevel security

(MLS) to achieve a high level of accuracy through directing data to the intended nodes

only in distributed application environments.

2.7 Multi -Level Security (MLS)

Despite many of the security policies having been suggested in the past and present,

the Multi -Level Security (MLS) policy remains the pioneer in terms of its adaptation

by the highly sensitive system. The Department of Defence (DoD) in U.S [65] has

adopted this type of security policy for having a high capability to deal with both the

data on one side and the users on another side. MLS systems depend on data by giving

it different labels according to its degree of sensitivity, and users through giving them

different clearances according to their sensitive position within the enterprise. Through

these divisions, access to the data will be restricted according to the data and the user

33

who wants to deals with it. Therefore, even the functions (read/write) will be restricted

according to users' classifications.

According to DoD and some other organizations which adopt MLS, the user will be

assigned to one of the four clearances (Top Secret, Secret, Classified, Unclassified); in

contrast, data will be assigned to one of the four labels (Top Secret, Secret, Classified,

Unclassified). The general idea of these classifications is that each user who has a

specific clearance can have access to the data which has the same level or lower. The

function of this access is (read/write) in the case where user and data have the same

level, and moving to read only in the case where a user has a higher level than data, as

shown in Figure 2.8.

Figure 2.8. Function permissions between the users and data in MLS

 Although this type of security policy is popular among other policies, this does not

prevent the presence of a dark side. Indeed, there are many problems that can be

represented through restriction of data flow between systems entities and poor data

integrity; there is no 100% guarantee that the data will not be leaked, as well as the

possibility of attacks (i.e. Trojan horse)[65]. In this chapter, we review MLS models,

deal with the classification of DoD for both data and users, and discuss the drawbacks

of these models and what is the most acceptable solution.

34

2.7.1 Security classification and clearance

As we mentioned before, the object side of the MLS models will take one level of

security (T, S, C, U). Sometimes the unclassified level does not appear in security levels

set on the ground, in that if the information does not occupy any from the first three

security levels, we already consider it as unclassified. The simple hierarchy of security

levels is shown in Figure 2.9. The arrows in the Figure refer to the direction of data

flow of MLS: form ñlow levelò to ñhigh levelò and not vice versa.

Figure 2.9. Security and Classifications Levels

The Government of Canada (GOC), see Table 1 has classified information in a sensitive

category, where an unauthorized reveal can be defined in terms of national injury, and

applying the Protected type where the injury is defined according to a person or

organization [66].

Table 1 GOC information Sensitive [66]

Information Sensitivity Classified

(i.e. National

interest)

Protected

 (i.e. Individual or

Organization)

Unauthorized disclosure

could cause exceptionally

grave injury

Top Secret Protected C

Unauthorized disclosure

could cause exceptionally

serious injury

Secret Protected B

35

Unauthorized disclosure

reasonably expected to cause

injury

Confidential Protected A

Clearance Level refers to the trustworthiness level which has been given to a person

with a security clearance, or a computer system which processes classified information,

or a storage device which has been physically secured for storing classified

information.

Classification level refers to the level of sensitivity of information. These levels will be

associated with the information in different formats like document or computer files.

Disclosure of this information could cause a national disaster, according to the

sensitivity level of this information.

Security level is a term referring to either a clearance level or a classification level [67]

The sensitivity of the information will be labelled and mapped to an appropriate

domain, which represents the security level of the object. Domains can be broken down

by caveats, which are levels of sensitivities restricted to access by specific groups or

categories. According to GOC, domains are classified as Top Secret, Secret,

Designated and Unclassified [67].

2.7.2 Bell-La Padula Model

This is a distribution of a ñmathematical model of security in computer systemsò. In

the early seventies of the last century, Len La Padula and David Elliot Bell were asked

by the MITRE Corporation to produce a report entitled ñSecure Computer Systemsò.

They produced a security model called after them: the Bell-La Padula model [67]. This

model is widely used in MLS systems, because of its potential to cover the

fundamentals of the access restrictions that are used in MLS systems [68].

The basics of the Bell-La Padula modelôs working falls into two terminologies: subjects

which represent processes and programs (active elements of the system that execute

actions), dealing with objects which form information resources like files, I/O devices,

messages and so on. Both subjects and objects carry security labels, in subjects these

36

are called clearance levels and in objects they are called classification levels of

information. Permissible access is controlled by the relationship and the matching

between subjectôs clearance and objectôs classification, therefore the access matrix will

show how the subject is allowed to get the object according to the level matching

relationship [69]. The operations which are to be applied by subjects to objects is

called the access mode and include {read, write, execute, append}. MLS access

restrictions are enforced by the Bell-La Padula model, through implementing the

following properties and rules:

¶ Simple Security Property:

An access mode {read} can only be done if a subject clearance is higher than or equal

to the objectôs classification. For example, a subject with a Classified clearance cannot

access (read) an object with a Secret or Top-Secret classification. This rule is called

ñNo read-upò [70]

¶ * -Property:

An access mode {write} can only be done if a subjectôs security clearance is lower or

the same as the objectôs classification. It is a way of preventing write-down actions

happening when these are allowed. For example, a subject with a Top-Secret clearance

cannot write an email to an object with a Secret classification. This rule is called ñNo

write-downò [71].

Now both properties are obvious: the simple security property prohibits users from

reading data with classification over the top userôs clearance ñread-upò, at the same

time it prevents ñread downò which means reading data which has the same

classification or lower than the userôs clearance [68]; while *-property will restrict the

higher clearance users from passing their sensitive data (high classification) to the users

who donôt have suitable clearance [68]. Enforcing these two properties will help to

protect systems from a Trojan horse, such as leaking information or OS viruses [71].

The two principles ñNo read-upò and ñNo write-downò can be represented by the

domination relationship as follows [72]:

37

We call class A as dominating Class B if the security clearance of Class A is greater

than or equal to security clearance of Class B.

We call class A as being dominated by Class B if the security clearance of Class A is

lower than security clearance of Class B.

Figure.2.10 shows the accessing operation from subjects to objects using different

security levels.

Figure 2.10. Information Flow and Domination Relationship in MLS [60].

Although both properties are used in BLM, both properties are also in need of support

by two extra rules and properties, to control the data flow between MLS system

applications. These properties are:

Strong Tranquility Property: which mean no changing of security label will happen

during system work [73].

Weak Tranquility Property: which mean no changing of security labels in a way that

are inconsistent with the defined security properties [73].

2.7.3 Biba Model

 Sometimes the security model focuses on one of the security principles (validity,

confidentiality and integrity) at the expense of the others. For example, BLM

http://researchonline.ljmu.ac.uk/4453/1/158259_Securing%20Access%20to%20Cloud%20Computing%20for%20Critical%20Infrastructure%20%28final%20version%291.pdf

38

concentrates on confidentiality at the expenses of integrity, because there is a ñNo write

downò rule but no ñNo write upò rule. In this case for example, the subject with a Secret

clearance can write to a Top secret classification object; therefore, this may lead to

corrupting the system object if the lower subjects try to distort higher security

objects [74].

The Biba model addresses this problem by using two simple rules:

¶ Simple Integrity Axiom:

A subject with a specific clearance cannot read data at a lower classification level. This

is called ñNo read downò. This will protect the integrity of the system through restricted

access of the subject to information at a lower integrity level1 and thus prevent bad

information from moving up from lower integrity levels [74].

¶ *Integrity Axiom:

A subject with a specific clearance cannot write data at a higher classification level.

This is called ñNo write upò. This will protect the integrity of the system through

preventing passing information up to a higher integrity level [74].

2.7.4 Lattice ïBased Access control

This type of access control is used to control the security in complex environments.

There are lower and upper limits implemented by the system to organize the

relationship between the subjects and objects. Depending on the need of the subject,

the lattice model allows reaching the higher and lower data classification of the object,

and the security clearance that is assigned to the object. Access operations are based on

two bounds, greatest lower bound (GLB) and least upper bound (LUB) which are used

by the subject to access the object on their lattice position[75].

1 Integrity level is a terminology which has two meanings: integrity level of a subject which means the
trustworthiness level of the subject and integrity level of an object meaning the trust level that can be
assigned on the information stored in the object [74]

39

2.7.5 Restriction Marking

In order to strengthen the restriction and make the subject achieve the appropriate

objects only, some organizations have introduced new markings to classify their

subjects and objects more deeply. These markings play an important role associated

with the hierarchical security levels to customize the general meaning of MLSôs

concepts. In the following we review some of these markings and show how they affect

the accessing restriction, while at the same time keeping the main principles of MLS

rules.

¶ Compartments

This is additional marking associated with the security level for both subjects

and objects. For example, if a file with a specific security level has one or more

compartments, in addition the subjectôs security level must meet the fileôs

security level, and the subject should include the same compartments of the file

to achieve full accessing, or otherwise the subject wonôt be able to read the file

[68]. This type of marking is used widely in the relational directed graph called

a lattice [68]. For example, suppose we have two objects Obj1 and Obj2, both

have a security clearance Secret and Top Secret respectively, and let C have a

compartment set such that C={Black, White, Grey} ; the data flow between

system and object must be treated with the flowing formula:

Let AĄB is a data flow relationship, such that we say that information is

flowing from A to B and this is accomplished if Bcompartments subset of

Acompartments as illustrated in Figure 2.11.

ñNeed-to-knowò (NTK): is the ability applied when the subject has been granted access

to a piece of information to perform some processing on it. This concept is enforced

with Mandatory or Discretionary Access Control [76].

ñRight-to-knowò (RTK): is the general ability of a subject to get partial or total access

to a specific object, according to matching between the subjectôs clearance and objectôs

classification. This concept is widely used with Mandatory Access Control [76].

40

Figure 2.11. Compartments in MLS

2.7.6 Reference monitoring

This is a concept based on the relationship that allows system entities called subjects

to make reference to other passive entities called objects, depending on the access

authorization between both. A security kernel is used to prove the concept of reference

monitoring through ensuring that every change comes on authorization, or any

reference by subject to object must go through Reference Monitoring [78]. T. Jaeger

[79] defined the reference monitoring concept as: a design requirement used to organize

the referencing mechanism in the system and control the accessing between subjects

associated with specific authorization levels and the ability to run some operations

(read, writeé) on the objects within the system, as illustrated in Figure 2.12

41

Figure 2.12. Reference Monitoring

2.7.7 Trusted Computing Based

This is a collection of all security and protection mechanisms within a computer system

and this includes hardware, software, controls and processing; all these elements are

combined to be responsible in enforcing the security policy over the system [78]. The

TCB is responsible for satisfying both integrity and confidentiality of security

requirements as well as monitoring four fundamental system functions [80]:

¶ Input/output operations: is a monitoring of I/O operations through previewing

the outermost and determining which appropriate security protection it may

need.

¶ Execution domain switching: is monitoring of different invocations between

entities working in different security domains.

¶ Memory protection: is a memory reference monitoring in order to ensure

integrity and confidentiality of storage device.

¶ Process activation: is a monitoring of different system processing actions like

registration, process status information and access file lists as these activations

are considered vulnerable points in multiprogramming environments.

42

2.7.8 Multi-level Security Problems

Despite precautions taken by MLS systems, this does not however guarantee 100% that

the information will not be leaked. Indeed, these systems may be suffering from some

intended or non-intended misuse which leads to serious ramifications through

threatening national security in terms of the governmentôs systems, or lost files or even

breakdown of systems at the level of enterprises. In fact, most of these disasters (so to

speak) are caused by data flow between system entities or sometimes any flaw in the

system software, even if it is tiny, which may put the whole system under threat. In the

following, we will review some of these problems briefly, and we will be concentrating

on the cross domain problem as representing the heart of the proposed system.

1. Covert Channel

In the DoD Trusted Computer System Evaluation Criteria, the ñOrange Book [81]

defines the covert channel as ñany communication channel that can be exploited by a

process to transfer information in a manner that violates the system's security policyò.

It is a mechanism of information flow by channels that were not designed for

communication and not controlled by the security policy of the system, and thus may

allow data flow from high to low level [82].

For example, a low level subject creates a file F1 at its own level. If a high level subject

has access to this file it either upgrades the security label of the file or leaves it the

same. If a low level tries to read the file, this case has two probabilities, 1) success, for

disclosing the high level action if the latter did not change the file security level, thus

one bit of information will flow from high to low, or 2) failure if security upgrade has

been applied to file.

There are two types of covert channel [83]:

¶ Storage channels involve the direct/indirect writing of object values by the

sender and the direct/indirect reading of the object values by the receiver.

¶ Timing channels involve the sender signalling information by modulating the

use of resources (e.g. CPU usage) over time such that the receiver can observe

it and decode the information.

43

There are some channel terminologies related to covert channels, like a side channel

where the sender leaks the information unintentionally and only the receiver wants the

communications to succeed. The steganography channel is a collusion between sender

and receiver to hide the communication in a way that the observer cannot realize

whether the communication has happened or not. Finally, a subliminal channel, where,

using a cryptography algorithm in a covert channel, in this case, the communication

will be undetectable [84].

2. Polyinstantiation

This problem arises when the low level has knowledge about the high level. For

example, letôs suppose that a high-level object tries to create a file with the name salary,

and an object with low-level security try to create a file with the same name. In this

case, if the MLS system prohibits the low object to do this, then it will cause leaked

information, because the low object will know that there is a file called salary in the

high object; at the same time if the system allows the low user to create the file, then

we have a problem, two files have the same name [82].

3. Cross-Domain

Before talking about cross-domain we need to understand what is the information

domain? The Information domain can be described as a silo or system entity which has

information labelled by a certain security level [85]. Cross-domain security deals with

data transformation between system entities which have in advance been assigned to

varying security, authority and mutually trusted levels [86]. For example, at the

enterprise level, cross-domain flow arises when the manager shares information with

the heads of departments, and the latter share this information with employees. This

problem worsens when there is a need to share information between networks related

to different organizations or even governments. This sharing between different security

levels exposes the information to risk, through increasing the likelihood of sensitive

information being spilt to a specific destination with a certain security level which is

not allowed to obtain that information.

A trusted solution for this problem is called the Cross-Domain Solution (CDS), which

has been defined clearly by the Committee on National Security System (CNSS) in

44

Canada as ñA form of controlled interface that provides the ability to manually and/or

automatically access and/or transfer information between different security

domainsò [87].

CDS falls into three types:

¶ Access Solution

This is represented as a subjectôs ability to access to read and manipulate information

from domains which have different security levels. The ideal solution is to prevent the

overlap data between different domains preventing information spill between separate

domains [67].

¶ Multi -level Solution

This is different from above solutions which are based on domain separation. In this

solution, all information will be stored in one domain, and dealing with these data will

be controlled by using Mandatory Access Control (MAC) [67]. Applying this solution

is expensive.

¶ Transfer Solution:

This is the ability of information to transfer between varying domains with respect to

data sensitivity and security policy of domains, in order to prevent violations even if

by accident [67].

2.7.9 Guards

A guard is described as a combination between hardware and software used to ensure

security of data transfer between different information domains. The main function of

the guard is to do an inspection upon information to prevent leakage of sensitive

information to a wrong domain [85].

¶ Low to high guards Sometimes called a one-way filter in which the data is

transmitted in one direction only, from the domain classified as low to the other

domain classified as high. The working of this type of guard totally depended

on the concept of the Bell-La Padula model to prevent the spill of information

45

in the high domain. This is achieved through applying ñread downò, write upò

policy. Thereby, the users cannot read information from a domain classified

higher than their own, simultaneously they cannot write information to a

domain classified lower than their own. The way that information flows from

low to high however will not guarantee the integrity of the data being

transferred. This type of guard is popular in the environments that do not need

periodic checking of file integrity in case of file manipulation or corruption. For

example, weather data which is desired by a pilot or ship at sea, at the same

time this data is frequently updatable, there is no need to check the integrity

each time [85].

¶ High to low guards as with the previous guard, this is a one-way data

transmission, but in this type the information is being transmitted from the

domain classified as high to the domain classified as low. This guard is quite

complicated when comparing with the low to high guard. Many precautions

need to be taken into account to prevent the likelihood of disclosing the

sensitive data from high to low domain. For this reason, some other auxiliary

processing is required to address this problem, like using human review to

ensure that the information is free from any sensitive information, or using data

sanitation methods or sometime there is a need to use both. Indeed, this type of

guard has been designed to ease transmission of unclassified data from a high

domain to a low domain [85].

¶ Bidirectional guards in this type of guard, the data will be allowed to transfer

in both directions from high to low and from low to high simultaneously. This

guard in much complex than the others, because it needs to gather conditions

and restrictions for both the previous types to create a balance and controller

for the data flow between different domains. To achieve this, some security

components are required to be embodied in this guard, like virus scanners,

intrusion detection devices, file type checkers, trusted operating systems and so

on [85].

46

2.7.10 Types of Data Transfer Review Process

In this section we concentrate on the main types of review and monitoring data transfer

between different security domains.

1. Human Review

This is the most reliable and simplest review process which has adopted human

resource. In this process, the human operator will be within the domain that is classified

as higher to observe and filter any data flow from high to the low domain. The human

operator is responsible for ensuring the integrity of information, by performing the

required sanitation process or security insurance, at the same time he/she works as a

judge to approve or deny the transmission as shown in the Figure 2.13 [67].

Figure 2.13. Human Review

 2. Automatic Review

This type of review process has a mode to address the human limitation. Human senses

have limitations to observe the contents of some digital multimedia, like audios, videos,

images all of these media and more, which make content inspection by humans to be a

mission which is almost impossible. There are many features belonging to this review

model like being fast, scalable and consistent and also which has the ability to check

the data flow is free from obscene language, and steganography in media files in

context of data flow from low to the high domain; while at the same time preventing

47

sensitive data from being disclosed from the high to the low domain as illustrated in

the next Figure 2.14. This mode of review is ideal for the static environment with

structured, high volume and traffic data flows.

Figure 2.14. Automatic Review

3. Hybrid Review

This mode of review is designed to deal with an environment which has adopted a

dynamic, high volume, high traffic and unstructured data flow. To address all of these

issues, human review and automatic review are grouped to achieve high data flow

integrity. Instead of rejecting the content by the automatic filter because of unintended

error, the content will move to the human operator for more inspection and to see if

they can correct the error to approve or reject the content as the final decision, as shown

in Figure 2.15.

48

Figure 2.15. Hybrid Review

2.8 Aspect-Oriented Programming

Software developers had realized that there are some problems and concerns that are

not well identified or executed by traditional programming methodologies. Moreover,

some concerns do not represent the functional objective of application software, for

example, bank applications offer to their clients some services (functions) like ñonline

money transactionsò, ñwithdrawò, ñ display statementsò and more other functions. All

of these functions embody the base of the service interfaces that the service providers

(bank application) offer to the client by their service interfaces. However, there are

some concerns that non-functional tasks must be associated with the functional tasks

to enhance the system working through, for example, coordinating the access to the

system operations, adding security to the application system, updating a specific

function in the system and so on. Adding or updating these concerns in system

applications represents a difficult task for system developers because they need to track

all program code to detect where these concerns methods should be inserted. At the

same time, they have to define which piece of code needs to be applied for different

policies. All of these concerns accumulate in the problem of scattering and tangling of

system software.

49

A widely suggested but underused solution to these problems is that of Aspect Oriented

Programming (AOP). AOP represents a high-level mechanism that deals with

modularization of crosscutting concerns [88]. ñIt is a technology for separating

crosscutting concerns into single units called aspects.ò Each aspect is used to add a new

behaviour to the methods or constructor or field through calling or execution of

additional code [89]. Adding aspects of a program helps to cut across the OOP part by

using aspect elements such as join points, pointcuts and aspect advice. All of these

components establish the ability to change the behaviour of the program to meet user

requirements, and at the same time supporting software developers by representing

software code at a high level of abstraction, making it easier to modify and update.

Figure 2.16 illustrates how a security and logging concerns crosscutting the main code

and how this crosscutting modular by using AOP technology.

Figure 2.16. OOP and AOP Development

To understand AOP more clearly we will explain the main AOP terminologies:

1. Concern: A concern is a specific purpose, goal, concept or area of interest [90].

As stated by Laddad ñA credit card processing systemôs core concern would be

processing payments, while its system-level concerns would handle logging,

transaction integrity, authentication, security, performance, and so onò [91].

2. Cross-cutting concerns: Many such concerns ï known as cross-cutting

concernsï tend to affect multiple implementation modules [91]. As defined in

[16] cross-cutting concern is a behaviour that may across a scope of piece of

50

the software. It may be simple behaviour running in some software classes or it

may be more complicated through applying restrictions that totally affect the

software working. From a technical point of view, a typical software system

contains some core concerns and system-level concerns [90]. For example

cross-cutting concerns are ñsecurity (authorization and auditing, logging and

debugging, synchronization, persistence and more.

3. Aspect: The modular representation of a cross-cutting concern. A concern may

cross-cut one or more components; security and logging are examples of cross-

cutting concerns [92]. An aspect defines a pointcut and advice, and is compiled

by the aspect compiler, such as the AspectJ compiler, in order for concerns

(both dynamic and static) to be woven into existing objects (to interweave).

Through separating aspects, crosscutting relations can be handled easily [90].

4. Join point: A join point is a point where a concern will cross-cut the main code.

Join points can be at method calls, functions, constructors etc. Join points are

defined generally, and useful for identifying problem points in code [93]. A

specific join point is a precise execution point in the program, for example, a

method in a class. We take join points to be an abstract concept; for our purposes

itôs not necessary to define them precisely [90].

5. Pointcut: Tells the aspect compiler when it should match a join point [93].

Essentially, it is a structure for the capture of join points. In contrast, a point-

cut needs to be defined in an aspect [90]. A pointcut represents the specific

aspect implementation that will be associated with a specific method [92].

6. Advice: The actual code that will be executed when the control flow reaches

the join point [92]. In AOP you can specify the advice code to execute before,

around or after the join point.

7. Weaver: The engine that weaves aspects along with their respective functional

components. There are two main weaving kinds: Static and Dynamic. In the

next subsection, we will expand on the main differences between them [94].

In the following Figure, we put all AOP terminologies together to be clearer and we

will talk in semi detail about these terminologies in AsepctJ section.

51

public aspect HelloAspectExample
{
pointcut update (): call (public
String Hello (String)) ;

before (): update () {

 // Do Something
}

}

public class SayHello {

 public String Hello (String x) {
 return (" Hello " + x) ;

}
 public static void main (String arg []) {

 SayHello greeting = new SayHello () ;

 String Greeting = greeting . Hello (" Bob") ;

System. out . println (Greeting) ;
}

}

Advic e body des cribe s what

advice s hould do

Adv ic e

Join po int
Pointcut s elec ts jo in po int in the

clas s

Advic e do

tas k

before

call

me thod

/ / Ase pct Clas s

/ / Application Class

Figure 2.17. AOP example

Because of the importance of the various kinds of weaving used throughout this report,

we discuss them in more detail in the next subsection.

2.8.1 Static and Dynamic Aspect Oriented Programming
AOP provides two kinds of weaving; static weaving and dynamic weaving. In the

following we discuss each type separately.

1. Static Weaving

Static weaving consists of combining the aspectsô and componentsô functionality prior

to application execution. This combination consists of inserting calls to advice in the

componentôs code. It causes little performance penalty because all the code is combined

and statically optimised before its execution. Since the application is woven at compile

time, any functionality to be adapted at runtime requires the application to be stopped,

recompiled, rewoven and restarted from scratch, often losing persistency in the process.

For this reason, this kind of weaving is not used in applications that require a high level

of runtime adaptation; dynamic weaving is used instead [94].

52

2. Dynamic Weaving

As explained by Fletcher and Akkawi, ñDynamic weaving achieves the separation of

concerns by separating the properties of the system such as logging, security,

scheduling, etc., from the functionality of the system, it then weaves them together at

run time to achieve the overall application system in order to achieve dynamic

adaptability at run timeò. During run time the aspect will be added or removed

dynamically without the need to recompile the code each time [92]. For example,

ñdynamic weaving has been used in handling Quality of Service (QoS) requirements

in CORBA distributed systems, managing web cache pre-fetching, balancing the load

of RMI applications, and changing the control policy of distributed systemsò [95].

Figure 2.18. Static and dynamic weaving through program execution.

Both static and dynamic weaving can be adopted in a software system simultaneously,

but with weaving applied at different times: static weaving at compile time and

dynamic at running time as shown in Figure 2.18 Dynamic aspects may be more

appropriate for a software program under development, because it offers to the

developer the ability to measure and debug a program's behaviour without needing to

change the source code after each execution or debug cycle. However, if the program

has been designed so that no runtime adaptation is required, it is preferable to change

the dynamic aspects to the static aspects to provide a higher level of performance at a

run-time [95].

53

Sometimes the program developer needs to identify a specific condition, modifying

any existing join points or debugging any pieces of the program that come in contact

with the aspect before execution. Weave-time declarations give the opportunity to

achieve this. Figure 2.19 shows the relationships between these concepts in an AOP

system [96].

Figure 2.19. Generic model of an AOP system [96].

2.8.2 AspectJ
In this section we will consider AspectJ, which represents a platform for AOP

implementation using the Java programming language. Originally developed at Xerox

PARC [97], AspectJ offers a simple approach for dealing with aspect oriented

extensions in Java by providing obvious modularization of cross-cutting concerns [98].

It works as a pre-compiler that generates class files that can be adopted by Java byte-

code programs, as shown in Figure 2.20. By using AspectJ, the potential to modify and

update application software has become possible without needing to change the

application source code [97], [98]. It also provides further benefits, so thereôs no need

for the end user to install anything special to run the programs except the Java Virtual

Machine and AspectJ tools [97]. In Java there are also two further interesting

approaches for applying AOP: JBoss AOP and AOP Spring. Moreover, AOP is used in

many other languages, including AspectC for C, Aspect C++ and FeatureC++ for C++,

and Sprint .Net for the CLR languages [99]. ñAspectJ adds to Java just one new

https://www.researchgate.net/publication/265794449_The_Use_Of_The_Aspect_Oriented_Programming_AOP_Paradigm_In_Discrete_Event_Simulation_Domain_Overview_And_Perspectives

54

concept, a join point, and a few new constructs: pointcuts, advice, introduction and

aspectsò [20].

For the work described in this report, we use the AspectJ Development Tools for

Eclipse (AJDT) [100]. They constitute an open source Eclipse Technology Project that

provides the required tools to develop and run AspectJ applications. We discuss the

AspectJ concepts briefly as follows:

Figure 2.20. a) Java compiler without Aspect, b) java compiler with aspects.

¶ Join Points

Consider the following Java class:

class Coordinate

{

private int x, y;

Point(int x, int y) { this.x = x; this.y = y; }

void setX(int x) {this.x = x; }

void setY(int y) { this.y = y; }

int getX() { return x; }

int getY() { return y; }

}

55

If any code calls a method such as setX(5) the program will match the name of the

method and type of argument (int). If the matching result is true then the output is

(private int x =5). This happens for all methods and constructors in a Java program and

follows the base: ñWhen something happens, then something gets executedò[101].

OOP provides several kinds of ñthings that happenò which we refer to as join points.

Join points consist of things like method calls, method executions, object instantiations,

constructor executions, field references and handler executions [101], as shown in

Table2.

Table 2 Join points [102].

kind signature this target args Bytecode shadow

Method-execution method ALOAD_0

or none

Same as this Local vars Entire code segment of

method

Method-call method ALOAD_0

or none

From stack From stack Invokeinterface,

invokespecial (only for

privates), invokestatic,

invokevirtual

Constructor-

execution

constructor ALOAD_0 Same as this Local vars Code segment of <init>

after call to super

Constructor-call constructor ALOAD_0

or none

None From stack Invokespecial (plus

some extra pieces)

Field-get Field ALOAD_0

or none

From stack none Getfield or getstatic

Field-get Field ALOAD_0

or none

From stack From stack Putfield or putstatic

Advice-execution None ALOAD_0 Same as this Local vars Code segment of

corresponding method

Initialization Correspond

ing

constructor

ALOAD_0 Same as this Complex Requires in-lining of all

constructors in a

given class into one

Static-initialization Typename None None None Code segment of

<clinit>

Pre-initialization Correspond

ing

constructor

None None Local vars Code segment of <init>

before call to super, this

may require in-lining

56

Exception-handler Typename

of

exception

ALOAD_0

or none

None From stack Start is found from

exception handler table.

(only before advice

allowed because end is

poorly defined in

bytecode)

¶ Aspect Advice

Code that is written in the aspect class and modifies the behaviour of the Java class at

a certain join point. The general form of an AspectJ advice is:

[strictfp] AdviceSpec [throws TypeList]: Pointcut {Body}

Where AdviceSpec is one of

 before(Formals)

 after(Formals) returning [(Formal)]

 after(Formals) throwing [(Formal)]

 after(Formals)

 Type around(Formals)

 Here Formal refers to a variable binding such as those used for method parameters,

of the form Type Variable-Name, and Formals refers to a comma-delimited list of

formal [74]. Figure 2.21 shows the applying of aspect advices on a method.

Method (Χ.)@ around

@ after

@ before

Figure 2.21. AspectJ Advices

57

2.9 Summary
This chapter has covered the background information about the fundamental

components of the proposed system in order to clarify the main objectives and

motivation when we deal with these components in the following chapters. It has also

reviewed the security and privacy preservation challenges that might face any system

developers when trying to apply these policies upon their system. Access control has

obtained the largest amount of explanation in this chapter because it represents the core

of the proposed as well as dealing with all sides that revolve around the access control.

Besides concentrating on ABAC and IBAC as the first and second layer of the proposal

system, this chapter presented the MLS model (third layer) in depth, by dealing with

topics which are related to MLS like, compartments, Trusted-Based computing,

domination relationship, reference monitoring and security guards. All these titles open

the gate to understanding the proposed access control model.

Cryptography algorithms, privacy preservation and data sanitization are also presented

in this chapter and we will show how to employ them to support the model in

chapter 5. Finally, the last part of this chapter details the suggested programming tool,

Aspect-Oriented Programming (AOP) through dealing with all topics which are

associated with AOP.

58

Chapter 3

Related Works

This chapter provides a review on enforcing Aspect-Oriented Programming (AOP) in

three objects: Access Control (AC), intrusion detection, and cryptography. We will be

concentrating in depth on using AOP in AC models through exploring how we can

exploit AOP to modules of different access control models. This will be done by

separating these models from their core system in order for the easiest system to work

as well as to increase the modularity, manageability, and flexibility of the system. At

the end of the access control section, we will focus on applying AOP to deal with the

systems that are based on the Multi -level security or (authority) concept, through using

Mandatory Access Control (MAC) or other similar models. We will review the gaps in

these models and look at what ways can be used to enhance these systems, and this will

be workôs contribution. This chapter presents some current methodologies which are

used to apply access control models and deal with the MLS system without using AOP.

3.1 AOP and Access Control

Access control and other security solutions, which are considered as a non-functional

service, are used to increase the reliability of the software by applying security

concepts. The aim of this section is to review the capacities of using Aspect-Oriented

Programming to modules and separates these non-functional services from the system

code, thereby getting rid of scattering and tangling problems which arise when mixing

between functional and non-functional service codes in the same program body. We

will deal with some proposals, methodologies, and ideas that have leveraged AOP

language to enforce Access control models in their systems. Regardless of the date of

publishing these papers and the proposed ideas, this study focused on the objective of

using AOP in such a way that we donôt need to change the original code of the software,

and therefore will not insert additional burdens on the system working. The following

59

subsections are divided according to access control model used to be modularized by

AOP:

3.1.1 AOP with General Access Control Models.

This subsection deals with different types of access controls (not the main AC models)

which are been designed under the fundamentals access control conditions and

according to the system requirements.

K. Chen et al. [103] Proposed Fine-Grained Access control for web applications

supported by aspect oriented programming, the Model-View-Controller (MVC) and

Apache Struts framework have been adopted to structure the web application (see

Figure 3.22). Their model depends on the interaction between a user and a web

application through a sequence of access tuples of three main elements: < user,

function, data > which means a user request to execute the function on a specific type

of data object.

Their dealings with AOP fell into three stages:

1- Choosing the pointcuts: by selected Action class in Struts framework to be a

target to aspect pointcuts because Action class is the class that is dealing with

the user request and intermediate result as well as the response.

2- Constricting the Aspects: the constriction of their model concentrated on

dividing the aspect code into two parts: generic part realized by abstract aspects

and rule specific part realized by concrete aspects.

3- Aspects factory: they built different authentication codes to be available to all

aspects in their framework to be like a factory of authentication objects and

called AAAspectit. Afterwards, building two access control aspects called pre-

checking dealing with common access cases, while post-filter uses it if the

access constraint needs to refer to data attributes. Finally, they employ the AOP

advice to enforce all the above policies.

 K. Chen et al. [104] leveraged AOP technology to develop a privacy-ware Access

Control framework through modular privacy preferences of the person (PII) available

to the aspect responsible, in order to protect the personally identifiable information

60

(PII) from unauthorized access. Their proposal extended from [103] by utilizing inter-

type declaration of AspectJ as

Figure 3.22. Struts-Based Web application architecture [103]

well as AspectJ advices. As in [103] Model-View-Controller (MVC) and Apache

Struts the framework had been adopted to structure the web application. The pointcut

targets the execute method of user action because it provides all the information needed

to evaluate the access control constraints. The privacyïaware access control rules take

the formò allow or deny action on data categories by user categories for certain

purposes consented by the data subject under certain conditionò. By comparing with

the traditional access control method, they add the privacy aware rule, referred to as

privacy preferences through extending the rules required by two kinds of additional

information ñthe action and the purpose consented by the data subjectò. The authors

benefited from AOP characteristics through separating the management of privacy

preferences from the application and linking them to the access control aspects by a

preference factory. Both static and dynamic aspects are adopted in their proposal, such

static tasks add a privacy preference field to all classes that included data subjectôs PII

https://pdfs.semanticscholar.org/8123/6da90907f28782deb572657c63e6aaf63b86.pdf

61

to protect. While the dynamic one is conducted by an object construction advice, which

is triggered right after any object is instantiated from those classes with PII. Thus, the

advice will ask the privacy factory about a proper privacy preferences object which is

matching the requested PII object and associates the preference object with the PII

object. Note that each data subject specifies its privacy preferences regarding its PII in

a consent form which is collected and managed by the privacy preferences management

module. The preferences aspect will be invoked in both static and dynamic form to run

the retrieval of the data subjectôs privacy preferences and associate them with the

requested data.

F. Yang et al. [105] proposed AspectKLAIM which represents the extension of

KLAIM. KLAIM is a language specially designed to program distributed systems

consisting of several mobile components that interact through multiple distributed tuple

spaces or databases. The actions and their permissions will be given as aspects, and by

having a fixed set of such aspects the access policies specify when an action is

permitted, thus governing the execution of the proposed net. The proposed aspect

allows the user to trap both the action and the processes to be executed in future. The

authorsôs point of view is focused on the consideration of ñwhom should be trusted by

preventing the means for expressing trust in terms of how data is actually usedò.

K. Chen et al. [106] proposed the analysis of access control approaches from two

different dimensions: 1) is the granularity level which concerns user requirements, 2)

is the implementation technology adopted by application developers. With 1 we used

three tuples <user, function, data> to model the interaction between users and

application system. With 2 we divided the implementation technology for access

control into three different levels: hard-wired, adopted and configuration level.

Afterwards we made the intersection between 1 and 2 to find that most use of AOP will

be in the adopted level for all users, functions and data. The authors used MVC Apache

Struts framework to represent the proposal. They considered that the execute method

will be a proper join point in order to catch and control the forwarding mapping and

Http Req, and Resp. K. Chen et al defined three aspects: ñauthenticationò, ñPrecheckò

and Postcheckò to capture the code structure for enforcing fine-grained access control,

which is represented by granularity levels namely user, function and data.

62

R. Toledo el at. proposed a modular access control called ModAc, to modularize both

using and supporting of access control through restriction aspects and scoping

strategies, even in the existence of untrusted aspects [107]. The authors deal with access

control, including privileged execution and first-class permission context (like in java,

class- privileged execution allows a trusted entity to hold responsibility for a certain

action, while first-class permission allows the programmer to capture a set of

permissions at a certain point and restore it later on). The restriction aspect is used to

ensure proper resource protection, and works by adhering to a different, dual pattern:

the pointcut selects access to a sensitive resource but the aspect advice immediately

disallows the access by not proceeding with the primitive operations. Whilst scoping

strategies are used to ensure that the aspect only sees forbidden access through

permitting fine-grained access control over the scope of the deployed aspect and

specified by two propagation functions, a call stack specifies how an aspect propagates

along with method calls and a delayed evaluation, to specify whether or not an aspect

is ñcapturedò in the object when they are created. In this way they modularized the

proposal as an aspect: untrusted aspects cannot inhibit access control and trusted

aspects are able to see any join point. Their implementation relied on R0 and ZAC

library.

T. Scheffler et al. [108] proposed an approach that uses ñsticky privacy policiesò

written in the eXtensible Access Control Markup Language (XACML) to control the

access rules for protecting resources. They present a privacy scheme associated with a

reference monitoring implementation using the Java Security Framework. In their

solution, they mix XACML and the Java Security Framework by implementing a

client-side reference monitor. They developed a theme park location scenario that

highlights privacy protection issues based on three main bases: localisation, privacy

settings and service architecture. In their approach, they allowed for users to get

benefits from the application without needing to share private information directly. The

authors fixed some problems in their approach through using JBoss, which represents

an implementation of AOP for Java. This was achieved by implementing a security

layer that enforces the data-ownerôs defined privacy policies for protected resources.

The reference monitor uses a set of task-specific advices to monitor access to the

63

resource and interrupt it if necessary. Before granting access to a resource, an advice

evaluates its sticky policy and if the evaluation is not successful, the advice prohibits

access by cancelling the method invocation that is trying to do it.

3.1.2 AOP With Role-Based Access Control

X. Li et al. [109] introduced conditions for adding to the role-based access control

permission in order to enhance the traditional concept through minimizing the number

of permissions. They completely separate their concept of access control from the

application logic by using aspect oriented programming which allows access control to

be integrated into a legacy 3 tier information system, without the need to change the

application program. Their approach can be summarized as follows: when the user

with role r wishes to perform a specific operation op on a certain data dr1 of a table t,

the success of this operation will be totally dependent on specific conditions. The

application will scan the permission table for the entire (r, op, t, somecondition) if any

of these conditions doesnôt match, then the operation op will be denied otherwise it will

be allowed. The usage of AOP is enacted by:

1- The access control developer implements all methods needed to perform access

control in a special module, called aspect. For instance, an update-check

method.

2- The access control developer must first decide which methods in the application

programs require access control. These methods are defined as join points.

3- Then, he/she has to group join points that require the same type of access control

(e.g., update-check). These groups are called pointcuts.

4- Finally, he/she has to indicate what access control actions have to be performed

for the join points in the pointcut and when these actions should be performed

(e.g., before, after or instead of the execution of the join point method). This is

called an advice.

They used AspectJ as the most popular AOP tool and applied their proposal on

Laboratory information system (LIMS).

64

I. Ray et al. [110] proposed Role-based Access control model aspect as patterns using

UML diagram templates through composing between the aspect oriented model

(AOM) approach which deals with access control concerns, referred to an aspect and

functionality application referred to as a primary model. Before the composition the

aspect model must be instantiated in the context of the application domain. This is

obtained by binding elements in the aspect model to elements in the application

domain, therefore producing the context-specific aspect model. Afterwards, the aspect

models are produced for each part of the primary model and woven into the base model

using composition directives.

J. Pavlich et al. [111] they proposed a formal framework for security software

applications that is able to support the automatic translation of a new UML artifact

through translating the role-slice access control policy into an aspect oriented

programming enforcement code. The authors have shown the power of using AOP to

intercept every call to the set of classes in which access needs to be controlled, and

grants or denies access, depending on the permissions stored in the policy database.

They submitted their proposal formally to enforce it by any programming languages.

C. Braga [112] deals with RBAC, proposed model driven architecture

(MDA) [113] approach and shows how to transfer the code generator of the access

control policy from SecureUML, an RBAC modelling language, to the language of

Aspect for Access Control(AAC). The code generator for access control policies

represents the transformation contract which specifies the relationships between the

abstract syntax of the SecureUML and AAC and constrains the two languages. Their

aspect language especially concentrated on defining pointcuts in the application body

at any place needing to do a certain function, for example create method in Text Report

Configuration (TRC) class and apply before advices to gathering with permission for a

given method, thus dealing with access control processing as a precondition. The author

used a metamodel to represent the language and to specify the transformation.

M. Hazaa et al. [114] used aspect for a design for CORBA access control supporting

the RBAC model. They divided their design into three phases:

65

¶ Main concern Base design: The main concern of their study is to realize a

CORBA AC mechanism that supports RBAC0. Afterward, any modification,

reused in the future will be accounted for by AOD.

¶ Aspect1:Role hierarchy (RH) they aggregated the roles that need to be included

in the base design in role hierarchy concern. By using aspect orientation design

(AOD) they simplify the tangling and scattering which rely on regular

modification and updating and reusing of some roles to modify the base design

of the RBAC0, to produce RBAC1,through transfer of the crosscutting concerns

into aspects.

¶ Aspect2: RBAC2 allows security administrator to set static separation of duty

constraints on the assignment of users to a role. In other words, the security

administrator puts the new function that should be executed every time in a

static aspect.

¶ RBAC3 : finally combines role hierarchy and static constraint to produce

RBAC3. This combination shows the advantage of using AOD through

applying dynamic (RH) and static aspect with a minor modification of the main

system.

S. Kallel et al. [115] deals with the concept of delegation in access control, which

represents the core that allows users to assign all or part of their permission to other

users. They combine between the formal method of delegation used in RBAC and AOP

to enforce their delegation policies. They used TemprolZ as a formal language to

represent the RBAC model as well as delegation and revocation models. Their

approach has three steps,1: the specification step (security policies and their

corresponding constraint using TemporlZ), and verification step, to verify the

consistency of the system specification using theorem proving and 2: the

implementation step which used java to implement the functional codes which are not

including any logic for authorization. 3: the enforcement step, in this step the developer

uses an aspect generator tool to generate the security module by translating the formal

policies from TemprolZ to the aspect oriented programming language ALPHA (which

is an AOP which uses a pointcut language based on logic queries). This language used

a subset of Prolog queries for pointcut expression. Each delegation operation will use

66

one aspect to enforce the pre-condition and delegation constraints. The pointcut

constituted by ALPHA predicate ñCallò to intercept calls to the method in the

functional code which holds the formal delegation operation. In the advice body each

Z constraint is translated to a conditional statement by using a Z-based java package.

P. Colombo et al. [116] proposed an approach called PuRBAC (Purpose and Role-

based Access control) which is a java application which operates in between relational

DBMS in order to govern the execution of both SQL queries based on purpose, and

role based privacy policies. In their methodology, they exploited AOP techniques for

dealing with the dynamic features of relational DBMS environment, and to do

precondition evaluation filtering at running time.

J. Pavlich et al. [117] proposed a role slices method to provide an abstract to collect

information on the security of roles that cut across all the classes in an application.

Afterwards they transform the role slices into the application code using aspect oriented

programming to capture the access control policy (authorized or prohibited) which is

already defined by role slices.

The system works by using an aspect-oriented code to control the access control to the

method, through checking whether the presented method is denied for the active role

(which the current user has when logged in) and raises an exception if that occurs;

otherwise the method is allowed to execute. In other words, the AOP advice will be the

link between the database which holds the security permission (role slices) and the user

who logs into the system. To summarize the working of the system it includes: security

policy database and access control aspects which include role slices to represent the

security method and aspect advice that is woven at the pointcuts, defined by role slices

and the security database.

A. Mourad et al. [118] proposed an aspect-oriented approach for the dynamic

enforcement of web service security, based on the synergy between AOP and business

processing execution language (BPEL) of the composed web service. The author used

Role-Based Access control applied on Flight service (RBAC-FS) to ensure the

authentication and authorization for accessing the web service resources. The result

shows how the propsed model can separate the security concerns totally from the web

67

service composition, and how we can apply these concerns in a specific join point in

the BPEL execution body.

3.1.3 AOP With Organization-Based Access Control

M. S. Idrees et al. [119] they exploited the aspect oriented concept to enforce their

security policy as Organization Base Access Control (Or-BAC) in dynamic form. Their

motivated problem revolves around how an evaluation can dynamically modify

security enforcement with respect to the new rule, especially obligation rules and how

to manage the obligations and changes during the runtime. Their contribution is

showing how different knowledge modelled in the security policies can be extracted

and translated into security aspectual knowledge that is used to define appropriate

security aspects. They applied the security policy as a set of rules (permission,

prohibition, and obligations). Afterwards the module will be responsible for taking a

decision (allow/deny). They deal with aspects in a generation phase which is based on

a translation process which translates the concepts used to define a security rule (role,

activity, view) to the concept used to define the aspects, such as aspect type, advice

code and pointcuts. Thus, the functional requirement to enforce the security policy will

be dynamically associated. In this case, any changes at running time will be accounted

through weaving /unweaving aspects. They proposed ñContext Awarenessò which is

used to monitor any change in the system during running time.

S Ayed et al. [120] proposed a framework based on the INYER_TRUST project with

a security model based on the (Or-BAC) to govern the security policy based on AOP.

This framework presented the whole architecture which describes the loop of security

aspect generation and weaving, as well as depending on the AOP approach to dealing

with this loop and making a dynamic control of security requirement.

S. Ayed et al. [121] proposed a security framework architecture through modularized

(Or-BAC) by using AOP approach to enforce security policies dynamically on

distributed systems. They deal with access control and usage control as a security

requirement to making a link with the deployments of these policies by translated to

68

aspects. The authors combined various security modules (security policy modeling,

policy engine, policy interpreter, Aspect generation and context awareness) to by

linking them to clarify the security policy cycle. This cycle will be established during

the running time and be able to face any security changes during run time. Aspect

generation is the database of all security policies received from policy interpreter and

modular by aspect. This generation will be divided into modules: Generic Aspect

Generation module which deal with the general security policy part which not related

to the AOP framework. While the second module is Concrete Aspect Generation

module which is generate during run time and has related to the AOP framework. The

access control aspect will be generated according to set of permissions relaying on the

access policy and not depend on prohibitions. The aspect will follow the tuple <subject,

action, object> which are coming from policy interpreter module. Thus, control the

accessing by allowing the authorized user (subjects) to perform a specific action on the

objects (data) in a modularization way by using AOP.

3.1.4 AOP with Multilevel Security System

Despite all the reviewed solutions, they succeeded to perform their objectiveôs mission

by a separate access control concept from the body of their systems by using AOP, and

thus to achieve the main objectives of what the AOP was designed for. Interactions

between the system code and AOP code however, to use the latter as the core part to

control the access and build a simple solution working in a system, has already been

designed based on the Multi -level security concept.

García et al. [94] considered the adaptation of security measures of distributed systems,

even when their sizes and arrangements changed. This is achieved without

compromising global security, and while attempting to improve flexibility and ease in

dealing with distributed systems. The proposed approach uses dynamic AOSD to

implement security mechanisms in distributed systems when the system is running,

without requiring its execution to be stopped or interrupted. They submitted solutions

for two common security problems in distributed systems: (i) access control and data

flow and (ii) encryption of transmissions. In this way, the distributed system is able to

69

adapt to security measures when required, and can vary in size and arrangement without

compromising security. Their scenario revolves around the ability of flow data between

distributed system nodes which have different levels of authority. The authors created

an AOP shield around each individual node used to give allowance to the data to access

the node or just be discarded. They used this scenario to enhance the access model,

working on a system based on Multi-level authority by allowing any source node with

a specific security level to send information, labelled with the same nodeôs level, to any

node in the distributed system which has a higher or same level of the source node

security. Regardless of this transmission, they passed intermediate nodes before

approaching the distention node as illustrated in Figure 3.23, there is a data flow

comparing between two distributed systems.

The first one: (a) is based on object oriented programming concept, shows that the

Node 1 cannot send information to Node 4 even if they have same level of security

because data cannot flow from Top Secret (Node 3) to Classified (Node 4). However,

if a node is shielded by AOP language, the data flow will be handled in an abstract

level as seen in ï(b)- the level will be checked before entering the data to the node. In

this case, data will flow freely between system nodes.

 -a- -b-

Figure 3.23. -a- OOP distributed nodes, -b- AOP+OOP distributed nodes, (TS, S, C) refers to
(Top-secret, Secret, Confidential) security level respectively.

They used a real client-server FTP scenario to test the proposed system. They show

that dynamic aspects can be used in order to cipher all messages exchanged between

the clients and the server when increased communication security is needed, while

70

reverting to the default channel when the exchanged information can be transmitted in

the clear. We are going to discuss this paper in more depth in the next chapter.

R. Ramachandran et al. [122] deal with Multi-level security systems based on the Bell-

La Padula model (BLP) using Aspect-Oriented Programming. Their scenario discusses

the payroll system which deals with the managers supposed as high security clearance,

and employees who are supposed as low level. The interaction between high and low

level will be implemented by using AspectJ. The pointcuts intercept each read or write

operation. Thus, the manager will be able to view or modify the payroll database while

the employee will be restricted according to what the pointcuts allow him to use. They

use JFTPd which is an FTP server implemented in java, to evaluate their proposal.

U Huseyin et al. [123] they developed Vigilies as a firewall to apply a Fine-Grained

Access Control (FGAC) on the MapReduce system. They augmented the cloudôs front-

end API by implementing Vigilies as a middleware layer to work as reference

monitoring. Vigilies deals with the MapReduce jobs as untrusted to prevent the

probability of the user who submitted this job having suspect intentions. They used

AOP to enforce the Vigilies security policy on Apache Hadoop by an injected aspect

into three pointcuts: 1) initialization aspect used to intercept the initialized () method,

2) predicate aspect used to intercept the nextKeyValue() method and 3) modification

aspects used to intercept the getcurrentKey()/ getcurrentValue() methods. They used

static AspectJ to evaluate their proposal.

K. Padayachee [124] they explore the ability of enforcing multi-level security concepts

upon systems by implementing aspect-oriented programing language. They

concentrated on a simple mode which works as a pre-authorization model where a

decision is made before allowing access to the data. They claim that they enhanced

working of [122] by two sides, the first one they used the extended aspect-oriented

programming to circumvent around the problem of java API, which is not able to permit

getting back directly the file name which is already intercepted by read and write

pointcuts. The second problem is embedding the userôs clearance with the original

implementation, the authors separate this clearance totally from the original data, thus

the access control model will be totally separated from the original program. Their

71

Aspect classes have two pointcuts methods called Read and Write used to intercept all

read and write operations associated with the subject trying to access the object to

perform the operation. They used around advice instant of before advice to proceed the

accessing rights, only after meeting all the authorization and obligation conditions.

A. M. Hernandez et al. [125] proposed approach is based on combining between history

and future sensitive policy in a distributed system. They focused on the concept looking

to the future by using multilevel access control policies as suited to past analysis of

how the system reached its current state. The Bell-La Padula model is presented to

extend the AspectKB framework in order to allow to express policies that look to the

past. The aspect is to trap an action, the response will be considered, granting access

only if the security level of the subject is not lower than that of the object. This proposal

gives some power to access information according to the past performance of the

system.

S. M. Khan et al. [126] proposed a novel implementation approach, SilverLine (Secure-

information flow verification in lined), that enforced Mandatory Access Control (MAC)

and information flow security policies on untrusted Java jobs binaries in Hadoop

cloud.foot, which exploited an AOP to elegantly specify, implement, and put in-line

reference monitoring (IRM) into untrusted jobs without access to a job source code.

They used aspect-weaving as a pre-processing step to rewrite automatically untrusted

java binaries before passing them to the cloud. To enable aspects in the Hadoop

environment, AspectJ JAR and aspects are distributed to all nodes in the cloud.

SilverLinesô aspect weaver will intercept the submitted jobs at the cloud edge and in-

lines in the IRM. The aspect weaver may reside on any node inside the cloud, or may

be deployed on a separate machine outside the cloud. The resulting self ïmonitoring

binaries are then dispatched to the cloud for execution.

72

3.2 AOP In trusion Prevention, Cryptography and Privacy

3.2.1 AOP Intrusion Prevention

E. Kajo-mece et al. [127] the proposal system is based on three parts: 1) Call

WebAppInputFilter which is used to filter usersô inputs through using the AspectJ

advice that controls the validation process. 2) Validator used to validate against XSS

and SQL injection attacks and this is done by AOP devices as well. 3) Finally the

encoder which is used to encode the dangerous characters by converting them to their

decimal equivalent to make them harmless.

The main idea is based on the userôs inputs being validated before use as a part of the

query. By the way, the authors focused on userôs input without the partial SQL

statement defined by the developer, in order to speed up the processing, especially

when they considered that this part is already trusted. The mechanism of the system is

summarized when the aspect captures the user input string and sends it to the first

analyser (Syntactic Validator). If the string is not dangerous it is passed on to the second

validation step (Semantic Validator). If the string is dangerous it is sent to the encoder.

It encodes the dangerous characters and the result is passed to the Semantic Validator.

If the string is not considered dangerous, it is passed on to the web application as a

legitimate request. If it is considered dangerous, it is erased. JMeter is used for

performance evaluation.

G. Hermosillo et al. [128] the authors used AspectJ and Jboss AOP to design a security

aspect called AproSec for detecting SQL injection and Cross Site Scripting (XSS).

Their proposal application AProSec (aspect security for web application server(WAS))

is used by intercepting and validating all the requests from the clients to the WAS and

from WAS to the database server. The authors considered the SQL and XSS to be in

the same aspects advice after they divided the advice into two validation parts: 1) HTTP

request parameters and 2) DB queries. During the implementation, several syntaxes

should be validated: double and single quotes, SQL injection, and XSS. HTTP request

should validate the parameter value to void code injection and invalid HTML tags to

73

prevent XSS. For DB queries, the validation is made through analysing the query string

to prevent ñalways trueò comparisons, semicolons and comments. They used AspectJ,

Tomcat for web application and MySQL as the database manager.

Z. Zhu et al. [129] proposed a model-based aspect-oriented framework for building

intrusion-aware software systems. The authors started the design by identifying the

vulnerable points in the target system and specifying the probable attacks that may

exploit the system vulnerabilities. They used Aspect-Oriented Unified Modelling

Language (UML) to model the attack scenarios and intrusion detection aspects. Their

framework consists of five stages: identify vulnerabilities and attacks; model attack

scenarios using UML; generate the intrusion detection aspect (IDA) code using an

aspect code generator; weave aspects into the target system; test and deploy the

integrated system.

M. Coates et al. [130] proposed AppSensor for intrusion detection. Their methodology

depends on using some metrics to detect malicious use through studying and filtering

user behaviours. They put some factors in order to distinguish between the suspicious

(not if the user is attacker or just misuser of application) and the ñAttackerò which is

the real attack. Their application is integrated into business, presentation and data

layers. This proposal has two modules the ñdetection moduleò to detect the attacks and

malicious use and the ñresponse moduleò to give an appropriate response for the

detection at that time. They used AOP to inject their solution into the application

system.

V. Schiavoni et al. [131] proposed an annotation toolkit that allows building DoS

resistant component-based systems. The solution mechanism is able to handle the

robustness concern as a separated and modularized but yet integrated aspect of the

system. In typical component based applications, each component exposes a service.

The key idea is to annotate such services and use the annotations as a means to detect

an attack. They used Aspect-Oriented Programming techniques for modularizing and

separating the implementation of annotation processing. The proposal implementation

relied on the using of AOP techniques with java 1.5 annotation and implement it within

Fractal, which is a java-based component model and provides an Architecture

74

Description Language (ADL). They show an improvement over a low level approach

through focusing on a comment-based system, with which it was possible to provide a

general mechanism to detect DoS attacks.

The proposal of K. Padayachee et al. [132] is dealing in how to use AOP techniques

for monitoring the information flow between objects and how to detect vulnerabilities

and misuse detection of this information. They considered a server application

comprising of three classes Server, Session and Account, where there was vulnerability

in that the server allows a malicious client to avoid getting charged for his/her

connection time. They used AspectJ advices to intercept the vulnerabilities in order to

detect any misuse of data flow, in which these advices can take a decision to permit the

information flow or not, after examining the given message and classification of the

sender and receiver. For example if source object (A) sends data to destination object

(B), the flow will be intercepted by AOP and tested if it violates the policy of

information flow. If any abnormal behavior the aspect will perform a specific action to

deal with, otherwise the flow will proceed smoothly.

G. Georg et al. [133] proposed a methodology based on aspect oriented modelling

(AOM) to design a secure application system. They separate between the

implementation model called the primary model and attack and security mechanism

which are localized in a different model. Their approach is focused on the impacts of

the attack (aspect attack), after applying it to the primary model, and indicating whether

the primary model may be compromised, then the proper security mechanism (aspect

security) is used against this attack. This proposal has two types of aspect: generic

aspect and context aspect. The first one is used to represent attack patterns and security

protocols, while the context aspect is used for instantiating the generic aspect and both

are modelled by UML models. The execution of this proposal can be summarized by

two stages: the first stage, the attack aspect applies on a primary model to produce the

misuse model, the latter will be analysed to determine if the protected resources are

compromised by attack. For the second stage, if the results are unaccepted, then the

aspect security will integrate with the primary system to produce the security treated

75

model. They used Alloy Analyser because it is easy to use and has been used for

verifying many real-world applications.

J. M. Horcas et al. [134] proposed an approach based on the Interoperable Trust

Assurance Infrastructure (INTER-TRUST) framework to deal with enforcing security

policies in a dynamic form at running time. They used Montimage monitoring tools

(MMT) security properties to formally specify security objectives and attack

behaviours related to the application or protocol under test. This proposal has

concentrated on two sides of the objectives, the first one is dealing with the dynamic

deployment of security policies, while the second is used for dynamic monitoring of

vulnerabilities through testing of the operation phases. The first objective is achieved

by proceeding with the security specification through the Aspect Generation which

connects with the Aspect Weaver, which in turn is connected with the repository of the

security aspect. By designing a correct correlation between the security policies aspect

and security specification, the application will be able to capture the modification of

the security at running time as well as detecting some kinds of attacks. The second

objective is the performance of monitoring and this is done through a defined set of

vulnerabilities point in their approach that may break the correlations and defines a set

of the kind of attacks which can affect these points. The authors evaluated their

approach by applying the proposed system on two real case studies: The Intelligent

Transportation System (ITS) and e-voting system.

SQL injection and XSS web attacks are used as examples of attacks that might be

prevented this way. Hermosillo et al. [135] deal with SQL injection and XSS web

attacks through design, and implement a security aspect called AProSec to harden a

website against these attacks. Their design is based on a mixture of both AspectJ and

JBoss using AspectJ at compile time to validate and filter the user information, and by

implementing an SQL analyser to intercept and validate all the database queries before

they are processed. Moreover, they used JBoss to weave aspects at runtime. They

established the advantages of their approach by testing it with a vulnerable online

bookstore, and their achieved objectives through preventing any query that contains a

76

commentary inside it, or any statement that is always true being passed to the database

manager.

L. K. E. Mece [136] also suggested defending web services against SQL and XSS web

attacks., The difference with this approach however, is that it can abstract through this

system and will analyse the user input directly before it is used as a part of an SQL

query, and the SQL validator checks the presence of SQL keywords in the user input.

This processing will help check if there is any malicious injection.

K. Kawauchi et al. [137] suggested an aspect detect cross-site scripting. Their solution

depends on sanitizing, i.e changing special characters for quoted ones, the input

information being submitted by clients to web applications. They considered the

scenario of servlet-based web applications. When information is submitted to a servlet,

one of the subjects which occurs consists in determining whether it comes from an end

user, or whether it occurs from a different servlet which delegates the request by means

of the transfer mechanism supplied by the servlet container. In the latter case, data is

assumed to be trustworthy as it simply grows from another section of the application.

In such cases, the sanitizing can be skipped to be able to save computation time. To

accomplish this, the authors propose to extend the syntax of the AspectJ pointcut

language with another construct to detect data flows: the servlet input is sanitized if,

and only if, it is written back to the servlet output stream.

G. Fan et al. [138] focused on service authorization, implementation traceability, data

protection and fault handling through proposing a formal aspect-oriented approach

used to analyse secure service composition. They used Petri1 (Petri net is a

mathematically based technique for modelling and verifying software artifact) net for

formalising their model and describe the behavioural features of service composition.

Through the integration between the advantages of using AOP and Petri net, they have

shown how this integration reflects good results to observe the behaviour of service

composition. Their proposal has two main processes:

Implementation phase: used Petri net for the modell ing tool and AOP to separate

crosscutting concerns and core concerns of the system. They integrated these two

modules into a complete model.

77

Analysis stage: analysis of the security and fault handling of service composition by

using the operation of Petri nets.

The result of this paper achieved security service composition and to reduce the effect

of the single Web serviceôs fault on service composition as much as possible.

P. Falcarin et al. [139] focused on ensuring that the software is not maliciously

tampered with prior to and during the execution. They used an aspect to encapsulate a

function that is used to generate an idiosyncratic signature which is associated with

data transmission. Their proposal is based on the TrustedFlowTM protocol which in turn

is based on the cooperation between Trusted Flow Generator (TFG), Trusted Tag

Checker (TTC) and some network interfaces (e.g. firewall, gateway) as well as

Message Authentication Code (MAC) all working cooperatively to detect the

tampering software.

H. Ulusoy et al. [140] proposed TrustMR, in order to detect attacks with a high

probability while minimizing the overheads, TrustMR decomposes MapReduce tasks

into smaller computations by means of aspect-oriented programming and replicates a

subset of these tasks to verify the integrity of computations. TrustMR initiates multiple

replicated map tasks on the replicated input splits. Some outputs of the map phase are

randomly selected at runtime, and replicated map tasks only generate these keyïvalue

pairs. The results of replicated and original map tasks are verified at a map verifier by

using a voting system. The results of replicated and original reduced tasks are also

verified in the same manner as a reduce verifier.

P. Falcarin et al. [141] proposed an approach to dealing with secure messaging in

Client-Server application. Their methodology is based on using Aspect Oriented

programing tools in both client and server to control the transmitted messages from

client to server, as well as to provide evidence to the remote server that the client code

is authentic. The prototype of implementation is called TrustedFlow is held in the

chatting server and contains three main aspect components: Aspect Manager, Aspect

factory and Code Checker, while the client side holds the Tag Generator aspect.

Through the cooperation between client and server aspects, the latter will be able to

evidence that the code which has been sent by the user is authentic by checking the tag

78

values after each sending. They used the PROSE platform for the implementation part.

Their system limits the possibility of some attacks like Discovery, disablement and

replacement.

3.2.2 AOP Privacy

K. Chen et al. [142] designed an Aspect-base privacy management framework used to

collect and manage patientsô preferences independently yet can integrate with Health

Information System (HIS) to support patientsô privacy. The proposed framework is

based on three main components: action purpose manager, privacy aspect and patient

preference manager. The privacy aspect interacts with the Policy Decision Point (PDP)

as the join point for advice weaving. The main task of the privacy aspect is to monitor

the result of PDP and perform the enforcement and audition of the patient preference

if necessary. The result summarizes that if the PDP grants an access request, the privacy

aspect will then take responsibility to ensure that the intended use of the data matches

those consented to by the patients.

C. Hankin et al. [143] used Belnap Logic to deal with aspect-oriented coordination

language AspectK in order to apply security policy in each location, and then combine

the relevant security policies when an interaction between locations takes place. Their

framework is based on a four-valued logic for solving the conflicts such as: the value

tt is interpreted as permitting the access, ff is interpreted as denying the access, ṶṶ is

interpreted as missing information, and TT is interpreted as conflicting information.

They are ñattachingò aspect advices to each location to make the system more

understandable and scalable.

P. Yu et al. [144] deals with the implementation of privacy-aware services in a Platform

as a Service (PaaS) context. Their privacy enforcement mechanisms use AOP such that

the aspects can be manipulated in the process and at the platform level. In this scenario,

they adopted three main bundles managed by the cloud providers (JDBC Wrapper,

Annotation Detector and SQL Filter) and one additional bundle (Policy Handler)

providing privacy translation. All of these bundles increase scattering and tangling

problems, thus they used AOP to address this and for better modularization.

79

C. Vanden et al. [145] introduced the Privacy Injector which also relies on AOSD to

modularize and encapsulate privacy enforcement. The approach is based on a privacy

metadata tracking part and a privacy policy enforcement part. Each piece of collected

personal data will be associated with privacy metadata in the system, and any

operations in the system should work only in compliance with what the metadata

dictates. The proposed architecture manages the data using the sticky policy paradigm

to enforce the privacy rule on the data before disclosure.

3.2.3 AOP Cryptography

H. Mestiri et al. [146] used SystemC and AspectC++ together to design an AOP-based

system-level fault injection/detection environment to evaluate the robustness of the

cryptographic design against fault injection attack. The fault injection/detection system

has three AOP modules: fault controller specialization (FCS), fault injector

specialization (FIS) and fault analysis specialization (FAS). FCS is a state controller

that drives the synchronization between the other models. FIS is used to specify the

injecting faults in times and locations and finally, FAS provides a report about the

effects of the faults on the functional design. To show the capability of their solution

they made a comparison between pure SystemC and SystemC with AspectC++ when

applying the proposal fault injection/detection system into two types: single faults and

multiply faults. The results show that the AOP does not have significant impact on both

simulation time and size of the executable file.

A. A. Thulnoon et al. [147] utilized AOP features to control cryptography algorithms

that used to ensure security and privacy of distributed system works based on

choreography network. They proposed a super node called Judgment Node (JN) to

control the processing starting from the source node to destination node. The main

functionality of this node is to divide the distrusted nodes according to trustworthiness

level to trusted and untrusted node as well as divide the sending file into portions

according the process that required to finish the task. This file will be encrypted using

different keys and algorithms (symmetric and asymmetric). JN will distribute the

public and private keys to each node in the system as well as the symmetric key.

Encryption/decryption operation are totally controlled by AOP (encrypt before sending

80

and decrypt after receiving). The scenario her, JN will create a balance of using

cryptography algorithms be selecting the proper routing path to do the process and try

to select the trusted path. If the processing routing pathôs nodes are trusted, then

symmetric algorithm will be considered. However, if there are any untrusted nodes in

the processing path then AOP will change working form symmetric to asymmetric

algorithm because it more hard to be broken.

3.3 Non AOP Multi -Level Security Solutions

In this section we will review some of the projects that have been done by organizations

and companies which are based on MLS concept to handle their data, and we will be

concentrating on how they dealt with the ñcross-domainò problem which is the major

pivot of the proposed solution.

1- AXIOMATICS [148] is a company located in Stockholm, Sweden. Its premier

vendor used Attribute-Based Access Control (ABAC) as a dynamic authorization

adopted by more than 500 companies in a variety of fields such as healthcare,

finance, manufacturing, and federal government agencies.

AXIOMATICS presents ñSmartGuardTM for Big Data 1.1ò to show the high

flexibility and the true full ability and dynamic behavioural variety of Attribute-

Based Access Control (ABAC) when dealing with big data. This guard stratifies

fine-grained access control principles for the data centre in Hadoop by using SQL-

on-Hadoop engines HIVE and HAWQ. The basis of the guard working can be

summarized through the following points:

1- An application sends an access request to the data stored in Hadoop.

2- An intercept agent which is appendixed with the application will intercept the

SQL query and send it to SQL Transformer.

3- Depending on the authorization policies which are associated with the

application which sent the SQL query, the SQL transformer will do

modifications to the query according to these policies.

81

4- According to the access policies, the SQL filter service will do the filtering

and masking of the data which has been classified as sensitive.

5- Afterwards, the modified SQL query will return back to the SQL Transformer

which is forwarded to the Application.

6- Now the Application sends the SQL query to a data store with the associated

policies and rights to access only to the right data as can be seen in Figure 3.24

Figure 3.24. SmartGuardTM [148]

Although this guard has features like applying fine-grained access control for big data,

masking the sensitive data, automatic modification of SQL query and applying all of

these in dynamic manner, this guard however is a specialist only with environments

that deal with databases and SQL queries. Moreover, this guard uses the Many-to-one

relationship when one or more applications send SQL requests to access the data store.

As has been mentioned before, the guard deals with the clients who want to access the

data store, by ensuring that he/she will have access only to the permitted data. This

https://www.axiomatics.com/

82

guard forgot the side of probability processing and flowing of data between distributed

applications, and what sudden changes will happen to the access policy upon this data.

2- Trusted RUBIXTM [149] is the outcome of results of a collection of researches

carried out by Infosystems Technology, Inc. (ITI) to achieve high assurance

database software for clients who work in sensitive environments and need

integrity and confidentiality for their data. The general model of Trusted

RUBIXTM consists of three mandatory access control layers: 1) The abstract layer

is Attribute-Based Access Control (ABAC), 2) the intermediate layer is Type

Enforcement/RBAC (SELinux), 3) and the internal layer is Multilevel Security

(MLS), so we can say the information is shielded by three Mandatory Access

Control (MAC) policies as can be seen in Figure 3.25.

Figure 3.25. Trusted RUBIX Model [149]

For the cross-domain solution, the developers of Trusted RUBIXTM have adopted

the Trusted RUBIX Security Markup Language (RXSML) policy to apply security

policies. In fact RXSML policy consists of four major sub-policies (xdomain-

select, mac_check, deny and xdomain-open), associated with two policy sets called

http://rubix.com/cms/abac_arch.

