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Abstract

The study of ancient stellar systems in the vicinity of the Milky Way provides a wealth

of information on the conditions, in the early Universe, that led to the properties we

observe today in galaxies and in their constituent components. Resolved stellar popu-

lations enable us to gain detailed insights on the age and chemical composition of such

stellar systems, tracing their properties on a fine spatial scale.

The deep investigation of Local Group objects revealed that even very old, low mass,

stellar systems host unexpected complexities in their stellar populations. Such com-

plexities remain largely unexplained, our understanding limited by observational and

theoretical limitations.

Here I present work aimed at a deeper characterisation of the complex stellar popula-

tions in dwarf spheroidal galaxies and Galactic globular clusters. I use a combination

of observational and modelling techniques to shed light on the detailed stellar proper-

ties of these objects.

Part of my investigation focuses on the horizontal branch of dwarf spheroidal galax-

ies. By careful modelling of the horizontal branch in the galaxy Carina, which has

well known star formation history, I demonstrate that the horizontal branch contains

precious information, that can be used to refine age measurements in nearby galaxies.

To this aim, I develop a new modelling method that, for the first time, combines con-

straints from the main sequence turn-off and the horizontal branch to provide very pre-

cise measurements of the star formation history in resolved galaxies. The combined

information from different regions of the colour-magnitude diagram permits to recover
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the value of mass loss experienced by red giant branch stars with very high precision.

I test this technique on a range of synthetic populations and on the well studied galaxy

Sculptor, demonstrating the increased age resolution that this approach provides.

I apply my modelling tool to the distant galaxy Tucana, determining a very detailed star

formation history, where multiple events of star formation can be clearly distinguished.

The identification of the different stellar populations on the horizontal branch permits

us to characterise the spatial distribution of the star formation events in this galaxy.

I also perform a photometric study of the massive globular cluster M13, focussing on

the multiple stellar populations present in this object. I identify and trace the different

stellar populations out to most external regions of this cluster. The spatial distribu-

tion of these populations, which shows no sign of radial segregation, reveal the very

advanced dynamical evolutionary stage of the cluster.

The work presented in this manuscript constitutes a step forward to understand the

formation of low mass ancient stellar systems and paves the way for deeper studies of

large samples of stellar systems in the Milky Way vicinity.

ALESSANDRO SAVINO SEPTEMBER 7, 2018
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Chapter 1

Introduction

Since the discovery that many of the diffuse nebulae observed in the sky are exter-

nal galaxies, covering a variety of morphological and structural properties (Hubble,

1925, 1926, 1929), one of the main goals of astrophysics has been to understand the

conditions and the processes that led to the galaxy population we observe today. In

particular, given that universe was more actively star forming at redshifts between two

and three (Madau & Dickinson, 2014), an accurate characterization of the properties of

stellar systems at ancient times is pivotal for a comprehensive understanding of galaxy

formation and evolution.

The wide range of techniques and observations that are used to shed light on the early

epochs of galaxy evolution can be divided into two broad categories. The first one

aims to study stellar systems at high redshift. The biggest advantage of this approach

is to directly observe the processes that shaped galaxies, making the scientific inter-

pretation relatively straightforward. On the other hand, such studies require difficult

observations, and they are often limited to the brightest and biggest objects. The other

approach, often referred to as “near-field cosmology” or “stellar archaeology”, focuses

on nearby systems, with the goal of reconstructing their past by looking at their current

properties. Working with nearby objects has the obvious advantage that very detailed

observations can be obtained, but it also requires a more sophisticated modelling to

link the observables to the history of the stellar system.
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In the archaeological approach, objects which are entirely composed by ancient stellar

populations are very valuable, as they carry the most pristine imprint of the conditions

in the early Universe, where they formed. In the Local Group, such objects mainly

belong to two classes: dwarf spheroidal galaxies (dSphs) and globular clusters (GCs).

For long time, these objects were thought to be relatively simple stellar systems. GCs

have for long time been assumed to be the prototype of simple stellar population (i.e.

a population of coeval stars characterized by a homogeneous initial chemical compo-

sition), and they have been extensively used as a laboratory to test stellar evolution

models. dSphs, on the other hand, have been known for decades to present spreads

in age and metallicity. Even so, these spreads were assumed to be associated with

relatively simple and short star formation histories (SFHs).

In recent years ever more accurate observations have led to evidence that both GCs and

dSphs host complexities in their stellar populations. Although intrinsically different in

nature, these complex populations represent a challenge for the formation scenarios of

these objects. Theoretical models for the formation of dSphs and GCs are currently

unable to explain the complex features hosted by these stellar systems. Understanding

the origin of these complex population phenomena will shed new light on the forma-

tion on stellar systems in the early universe and it will provide an important piece of

information for the development of a comprehensive and satisfactory galaxy evolution

framework.

In this thesis, I present work that is aimed to characterize more precisely the properties

of ancient stellar populations in nearby resolved stellar systems. This is done with a

range of observational and modelling techniques based on colour-magnitude diagram

(CMD) analysis. One of the issues with CMD analysis is the presence of large errors

in the derived age and metallicity of very old stars. In this thesis I develop a new

CMD modelling technique that uses the properties of helium burning stars to provide

a detailed insight into the early SFH of dSphs. In addition, GC stellar populations are

analysed by making use of wide field Strömgren photometry. This technique allows to

trace chemical inhomogeneities in the most external regions of GCs, that are thought

to preserve the formation conditions of these objects.
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1.1 Complex stellar populations in dwarf spheroidal galax-

ies

Among the simplest galaxies that can be found in the Local Group, it has been long

recognized that dSphs are not simple stellar populations. Due to the distance of these

galaxies, early studies focused on the brighter (hence easier to observe) stars, nomi-

nally the red giant branch (RGB), the helium burning stars on the horizontal branch

(HB) and the helium burning variables, the RR Lyrae. However, theoretical limitations

and the data quality available at the time prevented a quantitative characterisation of the

SFH in these galaxies, allowing only to assess the presence of stars with a range of age

and chemical composition. Evidence of metallicity spreads in the stellar population of

dSphs arose from the colour distribution of their RGB stars (Zinn, 1981; Mould et al.,

1984; Grillmair et al., 1996) and this was supported by spectroscopic determinations

(Zinn, 1978; Lehnert et al., 1992; Suntzeff et al., 1993). Similarly, indications that

dSphs have extended SFHs emerged from the analysis of their RGB stars (Aaronson

& Mould, 1985), of their RR Lyrae population (Saha et al., 1986) and of their main se-

quence turn-off (MSTO), broader than that of GCs (Mighell, 1990; Monkiewicz et al.,

1999). As increasingly accurate photometry became possible, with advent of large

format CCDs, a few dSphs, such as Carina and Fornax, were identified to have experi-

enced rather complex SFHs, revealed by the structure of their CMDs (Mighell, 1990;

Smecker-Hane et al., 1994; Beauchamp et al., 1995; Stetson et al., 1998; Hurley-Keller

et al., 1998). Compared to these extreme cases, the majority of dSphs were thought to

have relatively simpler stellar populations, composed mainly of old stars. However, the

challenging nature of the observations required to characterise these old populations,

made difficult to distinguish whether the stellar content of these galaxies formed in a

single event of star formation or it is the result of a more complex SFH.

This picture changed in the last 20 years. Thanks to the advent of large aperture tele-

scopes and of the Hubble Space Telescope, evidence mounted that many dSphs host

distinct stellar components. Such conclusion derived from many independent analy-

sis approaches, such as the study of the HB and RGB morphology (e.g., Majewski
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Figure 1.1: Distribution on the sky (top), radial density profile (bottom left) and number ratio
(bottom right) of the two stellar populations identified on the HB of the Sculptor dSph. The
foreground at the level of the HB is also reported for comparison. From: Tolstoy et al. (2004)

et al., 1999; Bellazzini et al., 2001; Harbeck et al., 2001; Tolstoy et al., 2004; Mon-

elli et al., 2010; Weisz et al., 2014), kinematic measurements (Tolstoy et al., 2004;

Battaglia et al., 2006; Ibata et al., 2006), dynamical modelling (Battaglia et al., 2008;

Walker et al., 2009; Zhu et al., 2016) and pulsational characterisation of RR Lyrae stars

(Saha et al., 1986; Clementini et al., 2004; Bernard et al., 2009). An example of such

detections is given, for the Sculptor dSph, in Fig. 1.1.

While several scenarios have been suggested to explain the presence of these multiple

stellar components, such as mergers (Amorisco & Evans, 2012a; del Pino et al., 2015),

tidal interactions with the Milky Way (Pasetto et al., 2011) or bursty SFH modulated

by supernova feedback (Salvadori et al., 2008; Revaz et al., 2009), a definitive answer

on the origin of these complex stellar population has not yet been found. Clearly, the

presence of these distinct components in the stellar content of dSphs carries a great

deal of information on how these systems formed, and it needs to be reproduced in any

satisfactory galaxy evolution framework.

The presence of multiple stellar populations in dwarf galaxies can also be a useful

tool for a deeper understanding of these objects. While there is solid evidence that

low mass galaxies are extremely dark matter dominated objects, the density profile of
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their dark matter halo it is still unclear. There is substantial debate on whether the

dark matter profile at the centre of these objects presents a core or a cusp (e.g., Kleyna

et al., 2002; Koch et al., 2007; Battaglia et al., 2008; Walker et al., 2009; Walker &

Peñarrubia, 2011; Agnello & Evans, 2012; Amorisco & Evans, 2012b; Breddels et al.,

2013). Having different populations of stars residing in the same dark matter halo

is a valuable resource to the resolution of this problem. The simultaneous dynami-

cal modelling of the distinct stellar components can constrain strongly the slope of

the dark matter density profile. However, to obtain a reliable measurement, stars be-

longing to different populations need to be correctly identified and separated. While

several approaches have been taken in this regard (e.g., Battaglia et al., 2008; Walker

& Peñarrubia, 2011; Zhu et al., 2016), contamination still remains an issue. A deeper

identification and characterisation of the distinct stellar populations that reside in dSph

will certainly help to alleviate the problem.

1.2 Star formation history measurements in resolved

stellar systems

In the study of extragalactic objects, distance is one of the major limiting factors in

the information that can be extracted, either through direct observation or by means of

subsequent modelling. Galaxies in the local vicinity can be probed up to small spatial

scales and faint features. For high redshift systems, on the other hand, one is typically

limited to the integrated properties. The most favorable case is when a galaxy is close

enough that we can resolve the individual stars that compose it. Then, very strong

constraints can be obtained on the nature of that stellar population.

One of the most interesting advantages of having deep photometry of resolved galaxies

is the possibility to measure detailed SFHs, potentially back to the oldest times. It has

been long known that stars of different age and metallicity occupy different regions in

the CMD of a stellar population (an example is given in Fig. 1.2). This means that, with

the appropriate modelling, the CMD of a galaxy can reveal a lot about the distribution
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Figure 1.2: Synthetic Hertzsprung-Russel diagram (left) and (V-I) vs I CMD (right) of a stellar
population with solar metallicity and costant star formation rate over a Hubble time. Stars
corresponding to different age ranges are marked with different colours. Main sequence tracks
for 1, 1.2, 1.5, 1.9, 3 and 7 M� stars are also reported. From: Gallart et al. (2005).

of age and metallicity of its stars (and hence the galaxy SFH).

There are many techniques to measure the SFH of a galaxy from its CMD, but the

most commonly employed make use of synthetic CMDs, which are generated from

theoretical evolutionary tracks and compared to the observed CMD (e.g., Tosi et al.,

1991; Tolstoy & Saha, 1996; Gallart et al., 1996). A very useful approach is to consider

the CMD of a complex stellar population as the superposition of many simpler CMDs,

each having a small range of age and metallicity (Aparicio et al., 1997; Dolphin, 1997).

In this way, once parameters like the binary fraction and the IMF are assumed, many

partial CMD models can be generated, covering a grid in the age-metallicity parameter

space. These models can be linearly combined to make a complex CMD, where the

weights of the linear combination represent the SFH. The best fitting SFH is the one

that most resembles the observed CMD. The best fit is usually found by maximizing

a merit function, that compares the stellar density across the observed and modelled

CMDs. Many different implementations of this approach exist and are able to extract

the SFH of resolved galaxies (e.g., Aparicio & Hidalgo, 2009; de Boer et al., 2012;

Cignoni & Tosi, 2010; Harris & Zaritsky, 2012; Cignoni et al., 2015).

It is important to note that different CMD features have different importance in tracing
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Figure 1.3: SFH time resolution as function of cosmic look-back time, evaluated for a range of
synthetic simple stellar populations. The arrow marks the age of the input stellar population.
The Gaussians show the recovered SFH. The means and standard deviations of the measured
distributions are also reported. From: Hidalgo et al. (2011).

the SFH. Different regions of the CMD have a different dependence on the age and

metallicity of the stellar population. The RGB colour, for instance, is strongly sensitive

to metallicity but has a much weaker dependence on the age. For this reason the

RGB alone is not sufficient to recover the star formation as a function of cosmic time.

Other features have a strong dependence on age and metallicity but present theoretical

challenges that make them hard to interpret. This is the main reason why the HB is

typically neglected, when more suitable age indicators are available. In this regard,

a wealth of information is contained in the MSTO. The brightness of this feature is

sensitive to both age and metallicity, and the theoretical models for this evolutionary

phase are reliable and well understood. This feature is considered to be the main age

indicator of a stellar population and, when detected, it permits to reconstruct detailed

SFHs that stretch back to the oldest times (Cignoni & Tosi, 2010).

In spite of the huge improvement that synthetic CMD modelling has experienced in

recent years, there are still challenges. One of the most important regards the precision

of the measured SFHs. Ideally, one would like to measure colours and magnitudes of

stars with minimal errors, to get the most reliable SFH of the galaxy. However there
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are a number of effects that limit the precision of the measurements from a CMD (Hi-

dalgo et al., 2011; de Boer et al., 2012). This is caused by theoretical, observational

and numerical problems. A first problem is the degeneracy between age and metal-

licity, which strongly affects the magnitude of the MSTO. Moreover, main sequence

stars are relatively faint, meaning that even in close galaxies they are affected by siz-

able photometric uncertainties and incompleteness. Finally, effects linked to the finite

number of stars in the stellar populations, and to the binning of both the CMD and

the age-metallicity parameter space degrade the information that can be extracted from

the CMD. The result is that the recovered SFH for a simple stellar population will not

be a Dirac delta but a Gaussian with a non-zero width (Fig. 1.3). This width informs

about the time resolution of the method, the ability to resolve two events of star forma-

tion separated by a small amount of time. Time resolution tends to be worse at larger

look-back times and, for very old populations, it is typically of the order of 1-1.5 Gyr.

This obviously limits the constraints that can be put on the very early phases of galaxy

formation.

1.3 Properties of horizontal branch stars

HB stars are bright stars that can be easily identified in the CMD of any old (& 8 −

10Gyr) stellar population (see Fig. 1.4). These stars are the helium burning progeny of

low mass (. 1M�) RGB stars. The HB phase can cover a wide effective temperature

range, that includes the instability strip. When HB stars cross this region of the CMD

they become pulsators, referred to as RR Lyrae variables. HB stars which are hotter

and cooler than the instability strip are referred to as blue HB and red HB, respectively.

It has been known for decades that the main parameter that drives the HB morphology

of a stellar population is metallicity (Sandage & Wallerstein, 1960). This is clear by

looking at the population of galactic GCs. On average, metal rich clusters tend to have

red HBs, while metal poor ones tend to have blue HBs. There are however exceptions,

with clusters that show different HB morphologies than expected from their metallicity.

This issue implies that there are additional parameters controlling a stellar population
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Figure 1.4: (V-I) vs I CMD of the Sculptor dSph. The major CMD features are marked by red
boxes. The HB of this galaxy can be clearly identified in the bright part of the CMD. From: de
Boer et al. (2011).

HB, and it is often referred as the “HB second parameter problem” (Dotter et al.,

2010; Gratton et al., 2010). In reality, it is more likely that a combination of many a

parameters affects the shape of the HB in GCs, making a prediction for a given stellar

population difficult to make.

From the theoretical point of view, stellar models tell us that the luminosity and effec-

tive temperature of stars at the beginning of the helium burning (which define the zero

age horizontal branch, or ZAHB) are uniquely determined by three ingredients: the

mass of the helium core, the mass of the helium burning star and the chemical compo-

sition of the envelope (e.g., Cassisi & Salaris, 2013). For low-mass stars (. 1.5M�),

the mass of the helium core is mainly controlled by the chemical composition of the

star (where the global metallicity and the helium abundance dominate, with a weaker

dependence on the detailed chemical pattern). At a fixed stellar mass, an increase in

metallicity will make the ZAHB fainter and cooler. An increase in helium abundance

will make the ZAHB hotter, and its luminosity will generally increase, except for very

low mass HB stars.

At fixed chemical composition, a change in the total stellar mass will not affect the

luminosity of the ZAHB and only the ZAHB temperature will change, increasing for
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Figure 1.5: The effect of changing stellar population parameters on the (B-V) vs V morphol-
ogy of a synthetic HB, compared to a reference realisation (blue). The top panel shows the
effect of increasing metallicity (red) and decreasing RGB mass loss or age of the stellar pop-
ulation (green). The bottom panel shows the effect of increasing helium abundance (red) and
increasing the spread in the RGB mass loss (cyan). The dashed lines mark the boundary of the
pulsation instability strip. Credit: M. Salaris.

smaller mass values. The mass of a ZAHB star, of a given chemical composition,

depends on the age of the stellar population and on the amount of mass that is lost

along the RGB. So older ages (higher mass loss) will result in hotter HB stars and

younger ages (lower mass loss) will result in cooler ones. At fixed age, an intrinsic

spread in the value of mass loss will result in a range of ZAHB effective temperatures.

The interplay among these several parameters is displayed in Fig. 1.5. Regardless

of the ZAHB properties, HB stars in later stages of the helium burning will become

more luminous with time and, after looping toward the blue, they will move to cooler

temperatures, while they migrate to the asymptotic giant branch. During this phase

is possible that these evolved stars cross the instability strip. The only exception is

represented by very low mass HB stars that, instead, move directly to the hot and faint

white dwarf sequence.

The morphological dependence makes the HB a promising SFH tracer in a galaxy. In
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fact, if we assume helium abundance in dwarf galaxies can be scaled with metallicity

(Geisler et al., 2007; Salaris et al., 2013; Fabrizio et al., 2015), then the morphology

of the HB is uniquely determined by the galaxy SFH and the RGB mass loss. The

possibility to extract information about the SFH from the HB presents several advan-

tages. First, these stars are very bright. This means that they can be detected with

much less exposure time compared to the old MSTO or, at fixed exposure time, they

can be detected in more distant galaxies. In addition, at fixed metallicity, the colour

of HB stars changes dramatically with modest changes in stellar mass. This means

that, potentially, very detailed SFHs can be obtained by the modelling of this phase.

Finally, as the HB is an independent SFH indicator compared to the MSTO, the age-

metallicity degeneracy can be strongly alleviated when both these evolutionary phases

are modelled together.

Obviously, the interpretation of the properties of HB stars requires knowledge about

the amount of mass lost on the previous RGB phase. Measuring this quantity proved

to be very hard for decades (Willson, 2000), also due to the peculiar nature of GCs

(see § 1.4). The poor understanding of mass loss processes is the main reason why HB

stars are typically neglected in the SFH measurements of Local Group dwarf galaxies.

In recent years, empirical measurements in both GCs and dSphs (Gratton et al., 2010;

Salaris et al., 2013; Origlia et al., 2014) revealed that metallicity seems to be the main

parameter driving mass loss, with higher metallicity corresponding to higher mass loss

values during the RGB. There are also indications that, at fixed metallicity, mass loss

variations among RGB stars of the same population are very small (Caloi & D’Antona,

2008; Salaris et al., 2013; Tailo et al., 2016). However, a solid understanding of the

processes regulating RGB mass loss is still missing and whether RGB mass loss obeys

a universal law among different stellar systems, or exhibits more complex variations,

remains still an open question.
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Figure 1.6: High-resolution spectroscopy measurements of [O/Fe] and [Na/Fe] for a sample
of 19 Galactic GCs. Red circles have measurements of both sodium and oxygen, while blue
arrows have only upper limits in the oxygen abundance. Average measurement error bars are
reported. The anticorrelation between the sodium and oxygen abundances can be clearly seen
in this plot. From: Carretta et al. (2009).

1.4 Multiple stellar populations in globular clusters

Galactic GCs were for long time believed to be the prototype of simple stellar popula-

tion. They are massive star clusters with a very low binary fraction and they generally

have no metallicity dispersion and negligible age spreads (Renzini & Buzzoni, 1986).

Some indication that the stellar populations of GCs are chemically more complex then

previously assumed came already more than 40 years ago (see, e.g, Kraft, 1979; Pi-

lachowski et al., 1983, and references therein). However, it is with the advent of 8-m

class telescopes, multi-object spectrographs and the exquisite photometry that Hubble

Space Telescope can provide, that we have realised the extent and complexity of what

is nowadays called the “GC multiple population phenomenon”.

When talking about multiple populations in GCs, we refer to variations in the chemi-

cal abundance pattern among stars of the same cluster. These variations are observed

only in certain light elements and do not affect the abundance of iron-peak elements,

thus excluding the link with supernova enrichment. Specifically, this pattern emerges
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Figure 1.7: Synthetic spectra of two RGB stars with Teff = 4476K, log g = 1.2, [Fe/H] =
−1.5 and typical abundance patterns of the primordial/first (black) and enriched/second (red)
populations. Absorption features of CN, NH and CH are indicated. Overplotted, there are the
response curves of Johnson UBVI (thin black lines) and Strömgren uvby (grey shaded regions)
passbands. From: Sbordone et al. (2011).

in the form of correlation and anti-correlation in the elemental abundance of different

elements (Gratton et al., 2012, and references therein). While some of the stars in a

cluster have a chemical mixture fully compatible to what observed in halo stars of the

same metallicity (these are generally called first, or primordial, population), a signifi-

cant fraction of the cluster members are enhanced in the abundance of N and Na, and

they are depleted in the abundance of C and O (second, or enriched, population). Some

clusters present analogous trends in the abundance of Mg, Al and Si. These chemical

differences, which are currently thought to differentiate distinct stellar populations, are

observed with high-resolution spectroscopy studies, as shown in Fig. 1.6.

These distinct stellar components can also be detected with precision photometry, in

the form of multiple sequences in the CMD (e.g., Piotto et al., 2007; Piotto, 2009;

Piotto et al., 2012). Although these splits in the CMD are caused by several effects,

depending on the passbands used and the evolutionary phase observed, the most com-

monly used tracer is the photometric signature of RGB stars in specific optical and

ultraviolet filters. When a photometric band comprises strong features of molecules

such as CN, CH and NH, the abundance of C and N leaves an imprint on the measured

magnitude. This effect is clearly showed in Fig. 1.7.

An important discovery was that stars that are enriched in Na and N also show enhance-

ment in the helium abundance (Piotto et al., 2007; Gratton et al., 2011; Dalessandro
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et al., 2011). Helium abundance is one of the parameters driving the colour of the HB.

Indeed, there is evidence that, within a cluster, stars belonging to different populations

end up in different locations on the HB (Gratton et al., 2011; Dalessandro et al., 2011).

It is now clear that the presence of multiple populations in GCs is the reason why the

HB second parameter problem was so difficult to tackle. Interestingly, the chemical

patterns seen in GCs are not observed in dwarf galaxies (Geisler et al., 2007; Salaris

et al., 2013; Fabrizio et al., 2015). If this holds true, this might give clues as to what

is special about GCs. It also makes the interpretation of HB morphology in dwarf

galaxies simpler.

To date, the origin of multiple stellar populations in GCs remains a mistery. It gen-

erally accepted that the elemental abundance variations observed in GC stars must

be linked to high-temperature CNO nuclear reaction cycle. However, the astrophys-

ical object where this nuclear processing took place, and the mechanism that led to

the imprint of this chemical pattern in GC stars are still matter of debate. Many of

the theoretical scenarios put forward so far invoke the pollution of gas in the cluster

by objects such as rotating massive stars, asymptotic giant branch stars or supermas-

sive stars (e.g., Ventura et al., 2001; Decressin et al., 2007; Denissenkov & Hartwick,

2014). This processed material is then locked into newly formed stars either through a

subsequent event of star formation or through dynamical interactions in the dense and

young proto-cluster. While each one of these models has strengths and weaknesses in

reproducing the observables, there are still several major problems that have not been

addressed properly, such as the fraction of primordial to enriched stars, as well as the

ratio between helium enhancement and light element enrichment (Bastian et al., 2015;

Bastian & Lardo, 2015). A thorough review of the main scenarios, of their successes

and limitations is given in Bastian & Lardo (2017).

In recent years, interest has arisen about the radial distribution of multiple populations

within GCs. Models requiring multiple star formation events predict an initial differ-

ence in concentration between the primordial and the enriched population (D’Ercole

et al., 2008, 2010). A characterisation of the spatial and kinematic properties of mul-

tiple population has the potential to give strong clues about the origin of this phe-



1.5. This thesis 15

nomenon. However, GCs are collisional stellar systems, meaning they experience a

significant dynamical evolution during their lives (Spitzer, 1987). The initial condi-

tions linked to multiple population formation will then progressively be erased by the

dynamical relaxation of the cluster, which proceeds rapidly in the dense central re-

gions. It has been shown (Vesperini et al., 2013) that an imprint of the initial spatial

distribution might still present in old GCs. However, this is mainly the case for the

external regions of the cluster, where dynamical timescales are much longer than in

the centre. Wide-field studies become then necessary, in order to reach the outermost,

pristine, regions of GCs. To date, many studies have been carried out on the radial

distribution of multiple populations (Carretta et al., 2009; Lardo et al., 2011; Beccari

et al., 2013; Dalessandro et al., 2014; Nardiello et al., 2015; Larsen et al., 2015; Massari

et al., 2016; Nardiello et al., 2018; Dalessandro et al., 2018). However a homogeneous

analysis on a large sample of clusters, over a wide field of view and on a large stellar

sample is still lacking.

1.5 This thesis

In this thesis I identify and characterise the different populations of stars in ancient

stellar systems. The first object I investigate is the Carina dSph (chapter 2). This

chapter demonstrates the potential that the information in the HB of a galaxy has to

refine our knowledge of the early phases of galaxy formation. Modelling the HB of

this galaxy, I discover that certain HB features cannot be reproduced by current SFH

determinations. By modelling the stellar distribution on the HB, I suggest that the

SFH of this galaxy is made of more distinct events of star formation than previously

assumed. A quantitative measurement of the SFH is prevented by the uncertainties

inherent to the very simple modelling of only the HB.

Motivated by the previous study, I develop a new CMD modelling tool, MORGOTH,

presented in chapter 3. This new technique models the entire CMD of a resolved

galaxy, consistently treating the MSTO region and the HB morphology in accordance

with the adopted RGB mass loss.This allows to explore the mass loss parameter space,
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resulting in a solid measurement of this quantity. The simultaneous modelling of many

CMD features helps to soften the degeneracies and allows to greatly improve the time

resolution of the resulting SFH. I apply this method to the CMD of Sculptor (previously

analysed by de Boer et al., 2012; Salaris et al., 2013), recovering a very detailed SFH,

where the two populations of Sculptor are clearly visible as two distinct events of star

formation.

In Chapter 4 I apply my method to the distant dwarf galaxy Tucana, where the mor-

phology of the HB clearly reveals the presence of three distinct events of star formation.

I constrain the age and metallicity range of these events, focussing on how these are

reflected in the details of the HB stellar distribution and of the RR Lyrae properties.

This allows me to trace the spatial distribution of different star formation events in the

galaxy, concluding that star formation proceeded in an outside-in progression.

Chapter 5 is focused on the multiple populations in GCs. I perform a wide-field photo-

metric study of the cluster NGC6205 (M13). By making use of Strömgren photometry,

I am able to identify RGB stars belonging to the different populations of the cluster.

The wide fields allow me to trace the spatial profile of the multiple populations out

to ∼ 6.5 half-light radii. I find no evidence of radial segregation, probably due to the

dynamical evolution of the cluster. This chapter highlights the effectiveness of wide-

field, ground based, Strömgren photometry to probe the outer regions of galactic GCs,

and it demonstrates how important it is to take the dynamical evolution of the cluster

into account when considering the spatial distribution of multiple populations.

Finally, chapter 6 summarizes the main results described in this thesis and paves the

ground for additional work to be carried out in the future. This will include a deeper

study of the ancient SFH of dSphs, both in the Local Group and in external galaxy

groups, and the development of a large, homogeneous survey of galactic GCs with

Strömgren photometry.



Chapter 2

Horizontal branch modelling of the

Carina dwarf spheroidal galaxy

This Chapter has been published as Savino et al. (2015).

2.1 Introduction

Dwarf galaxies (DGs) play a major role in modern astrophysics as they are believed to

be the building blocks of the process of galaxy formation. Therefore DGs constitute a

sort of fossil record of the formation epoch of the cosmic structures, and the determi-

nation of their star formation history (SFH) is crucial to understanding the mechanisms

of galaxy formation and early evolution.

Detailed SFHs of DGs can only be determined in the Local Group where they can

be resolved into individual stars down to the oldest main sequence (MS). These de-

terminations are usually based on the theoretical interpretation (via stellar evolution

models and isochrones) of observed colour magnitude diagrams (CMDs) and, when

available, spectroscopic heavy-element abundances, typically of the red giant branch

(RGB) populations. The primary age indicators for these populations are found in the

main sequence turn-off (TO) region of the CMD, which is located at faint magnitudes

17



2.1. Introduction 18

for the oldest populations and is very sensitive to photometric errors.

The horizontal branch (HB) is routinely neglected in SFH determinations of DGs, in

spite of its brightness compared to the old TO, and the extreme sensitivity –in terms

of colour and brightness distribution– to the mass and metallicity distribution of the

parent stars. The reason is that the interpretation of the HB morphology in potentially

simpler populations like Galactic globular clusters is problematic. Numerous studies

of Galactic globular clusters (GCs) have shown that age and metallicity alone cannot

account for the mean colour and extension of the HB (e.g. Catelan, 2009; Dotter et al.,

2010; Gratton et al., 2010). A major difficulty is that stars arriving on the zero age HB

(ZAHB) have lost mass during the previous RGB phase, and to date it is still impossible

to predict from first principles the amount of mass lost by RGB stars. This issue is

further complicated by the currently well-established presence in individual GCs of

multiple populations of stars with enhanced helium abundances at fixed metallicity

(e.g. Gratton et al., 2012, , and references therein), which affect both the colour and

magnitude of the HB.

Despite these complications (and the presence of He-enhanced populations at fixed

metallicity may well be just a feature of GCs), HB stars contain a wealth of information

for constraining the star formation rate and metallicity evolution of DGs at the earliest

times. In Salaris et al. (2013) we presented the first detailed simulation of the HB of the

Sculptor Dwarf Spheroidal (dSph) galaxy by means of synthetic modelling techniques,

taking into account the SFH and metallicity evolution determined from the MS and

RGB spectroscopic observations. We found that the number count distribution along

the observed HB could be reproduced with a simple mass loss law (that agrees very

closely with the determinations by Origlia et al., 2014, for a sample of GCs), and that

there is no excess of bright stars that require He-enhanced populations.

The purpose of the present work is to investigate, by means of the same synthetic

HB modelling as for Sculptor, the HB populations of another DG belonging to the

Local Group, the Carina dSph galaxy. This galaxy has a SFH that is very different

from that of Sculptor, showing multiple star formation episodes separated in time

and in the amount of stellar mass involved. Numerous studies have probed a broad
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range of properties, through deep photometric investigations (e.g. Smecker-Hane et al.,

1996; Monelli et al., 2003; Bono et al., 2010); spectroscopic analysis, both at medium

(e.g. Smecker-Hane et al., 1999; Koch et al., 2006; Helmi et al., 2006) and high (e.g.

Shetrone et al., 2003; Koch et al., 2008; Fabrizio et al., 2012; Lemasle et al., 2012;

Venn et al., 2012) resolution; variable star characterization (e.g. Saha et al., 1986; Ma-

teo et al., 1998; Dall’Ora et al., 2003; Coppola et al., 2013); and SFH analysis (e.g.

Pasetto et al., 2011; Small et al., 2013; de Boer et al., 2014). These detailed works

provide us with the information needed to make a meaningful comparison between

synthetic and observed HB populations. In particular, our analysis will provide strong

additional constraints on the controversial issue of the galaxy metallicity distribution

function (MDF) as determined spectroscopically and photometrically from RGB stars

(see e.g. Bono et al., 2010; VandenBerg et al., 2015, for different conclusions about

the consistency between spectroscopic and photometric MDFs).

This work is structured as follows: We present the data set used for our investigations

in § 2.2; we compare the synthetic and observed HBs in § 2.3; we discuss the impact

of our results on the SFH in § 2.4; we present a summary in § 2.5.

2.2 Data

For the computation of our synthetic HB we employed, as reference SFH, that de-

termined by de Boer et al. (2014) (hereafter dB14). Among the several SFHs in the

literature, we chose the dB14 solution because it is the only one that combines the pho-

tometric modelling of the CMD with spectroscopic information about the metallicity

distribution. Given the very high sensitivity of the HB morphology to metal content,

this approach is preferable.

For the sake of homogeneity we adopted the dB14 solution obtained with the BaSTI

evolutionary tracks (Pietrinferni et al., 2004), which are the same ones used in our

synthetic HB calculations. Carina photometry has been divided by dB14 into three

concentric annuli inside the tidal radius of the galaxy, plus a fourth field outside the
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Figure 2.1: Carina dSph. Upper panel: Star formation rate as a function of time from the
adopted SFH. Lower panel: Weighted mean metallicity as a function of time. The red dotted
histograms show the 1σ dispersion.

tidal radius. For each field, an independent SFH has been computed. The solution

gives the star formation rate in a grid of age and [Fe/H] bins, and includes an estimate

of [α/Fe] in each bin. The SFH used in our synthetic HB calculations refers to the sum

of the annuli inside the tidal radius. Our synthetic HB simulation with this SFH will

be called reference simulation.

Figure 2.1 shows star formation rate and mean stellar [Fe/H] as a function of time.

There are at least two major epochs of star formation at old and intermediate ages,

ranging between 9-14 and 3-7 Gyr, respectively, while the mean metallicity remains in

the relatively narrow interval −2 < [Fe/H] < −1.6.

We compare the synthetic CMDs with the photometric data from Bono et al. (2010)

(hereafter B10), which include 4152 CCD images acquired between December 1992

and January 2005. Although the use of dB14 photometry would have granted a perfect

match between the stellar population sampled and the SFH, we chose to employ a

different data set because of the several advantages it offers.

First, the smaller photometric errors in the B10 CMDs, of the order of ∼ 0.004 mag
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Figure 2.2: Carina dSph. Comparison between the different fields of our data set. The black
dots represent stars in the de Boer et al. (2014) photometric catalogue inside one tidal radius.
The blue rectangle is the field of the Bono et al. (2010) catalogue. The red stars mark the
position of RR Lyrae stars, while the blue squares are the stars with spectroscopic measure-
ments (Helmi et al., 2006). The zero point of the horizontal and vertical axis is set to RA =
6h 41m 36.6s and Dec =−50◦ 57′ 58′′ (J2000).

at the HB level, allow for a more robust comparison between observed and synthetic

CMDs. In addition, the same field has been the subject of a deep variable star search

(Coppola et al. submitted). Furthermore, as the B10 photometric catalogue merges

observations taken at different epochs, different random phases in different frames

for a given variable star tend to be averaged. The colour and magnitude of possible

undetected RR Lyrae in B10 will therefore be closer to the intrinsic mean values than

it is for a single-epoch data set.

Finally, the photometric data set from dB14 retains the contamination by foreground

stars of the Milky Way, as it is statistically taken into account at later stages during

the SFH determination. Since Carina is a fairly diffuse stellar system at relatively

low Galactic latititude, the number of foreground stars is large and, because the HB is

much less populated than other evolutionary stages, the contamination can be a serious

problem. The B10 catalogue, instead, has been carefully cleaned of Milky Way stars

and unresolved galaxies.
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Figure 2.3: CMD of the Carina dSph from the B10 photometric set

Figure 2.2 shows the comparison between the dB14 field inside the tidal radius and the

B10 field. In theory, a spatial gradient in the stellar population properties may affect

our comparison because of the different areas sampled. Nonetheless, as the difference

in the spatial coverage is a minor fraction of the total sampled area, and since the star

counts are dominated by the central region of the galaxy, we expect this effect to be

quite small. It should be also noted that the results presented in this paper still hold

when the synthetic CMD is compared with the dB14 photometric catalogue.

For the variable star modelling, we used the catalogue from Coppola et al. (2015,

submitted), which contains information about spatial position, intrinsic mean colour

and magnitude, as well as pulsation properties of RR Lyrae stars. Using the stars’

coordinates, we removed variables caught at random phase in our photometry, and

replaced them with their intrinsic position on the CMD. We used the period distribution

to add additional observational constraints to our HB simulations.

A glance at the Carina (V,B − V ) CMD (Fig. 2.3) reveals the complexity of its stel-

lar population. Two distinct MS turn offs can be clearly seen, with distinct subgiant

branches merging in a very narrow RGB. The accepted scenario envisages Carina as a

system that has undergone two or more major events of star formation, separated by a



2.3. Synthetic horizontal branch modelling 23

period of several Gyr (Smecker-Hane et al., 1996; Monelli et al., 2003). In addition,

a very young population is probably present, as suggested by the presence of a blue

plume above the MS and by the detection of several Anomalous Cepheids (Monelli

et al., 2003). The narrow RGB, coupled with the observed broad metallicity distribu-

tion (Koch et al., 2006; Helmi et al., 2006), suggests a conspiracy among age, metal

content, and alpha element abundances that leads to all stars having a very similar

colour on the RGB.

The burstiness of the Carina SFH can be seen in the helium burning loci as well, with an

old extended horizontal branch that is clearly detached from a younger, more populated

red clump (RC). The discreteness of the Carina stellar populations is very helpful since

it allows us to simplify our analysis and model each component separately.

2.3 Synthetic horizontal branch modelling

We computed synthetic HB models with the code developed and fully described by

Salaris et al. (2013) together with the BaSTI library of scaled solar evolutionary tracks

(Pietrinferni et al., 2004). The use of scaled solar models with the same total metallicity

[M/H] of Carina stars is justified, since α-enhanced evolutionary tracks closely mimic

scaled solar ones with the same total metallicity Z, in the metallicity regime of this

galaxy (see e.g. Salaris et al., 1993).

We adapted the code to allow for the large mass range on the Carina HB reaching

∼1.4M�. Higher masses correspond to a population younger than 1Gyr (at Carina’s

typical metallicity) and can be ignored in our analysis as their magnitudes in the helium

burning phase are considerably brighter than the RC and are a small contribution to the

SFH of Carina.

Briefly, for each each bin of the input SFH, a number of synthetic stars is generated

spanning the whole range of age and metallicity inside the bin (employing a uniform

probability within both age and metallicity bins), and with a value of [α/Fe] given for

that bin. For each star, the corresponding evolutionary track is computed interpolating
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in mass and metallicity the tracks from the BaSTI grid. If the age of a star is greater

than the age at the RGB tip, a specific amount of mass is removed and the position on

the corresponding HB track is determined.

Once the position of a star in the CMD is determined, its colour and magnitude are

perturbed with a magnitude dependent Gaussian photometric error, as provided with

B10 photometry. We then applied to the resultant synthetic CMD a reddening ofE(B−

V ) = 0.06 (Schlegel et al., 1998) and a distance modulus of (m −M)0 = 20.11, as

used in dB14. Unless specified differently, we populated our synthetic CMDs with

a considerably higher number of stars than the observed CMD of Carina in order to

minimize the Poisson error in the final model.

The comparison of the model and the observed HB is a two-step process. First, an

initial analysis is made by eye to see whether the colour extension and the main features

of the HB are recovered. Then, after rescaling the total number of HB stars in the

synthetic sample to the observed counterpart, we compare star counts and the mean

colour and magnitude inside three boxes that encompass the RC (hereafter box RC),

the red HB plus the RR Lyrae instability strip (IS – hereafter box R), and the blue

HB (hereafter box B –see Fig. 2.4). If the star counts are reproduced within one σ

Poisson uncertainty and the difference in the mean photometric properties are within

±0.01 mag, we consider the synthetic model to be a good match.

We note that we take into account only the uncertanties arising from the Poisson dis-

tribution of the star counts. Another source of uncertainties is represented by the error

bar associated with the star formation rate in every bin of our reference SFH. Unfortu-

nately, including this uncertainty in our analysis is problematic because the errors are

not independent from each other. Indeed, the conservation of the total number of stars

and of the density distribution across the CMD required by the SFH fitting procedure

introduces a correlation among the individual error bars, so a realistic modelling of the

resulting uncertainty on the model HB star counts is unfeasible without the covariance

matrix of the SFH solution that is not provided by dB14. Undoubtedly, the issue of a

proper inclusion of the SFH errors deserves to be addressed in future works.
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Clearly, theoretical HB models have also intrinsic uncertainties that affect the predicted

HB star counts as a function of colour and magnitude. The main source of uncertainty

is related to the treatment of the He-core convective mixing (see e.g. Cassisi & Salaris,

2013; Gabriel et al., 2014; Spruit, 2015, and references therein) that affect evolutionary

timescales, luminosities and morphology of the HB tracks in the CMD. The treatment

of core mixing in the adopted BaSTI models includes semiconvection, as described in

Pietrinferni et al. (2004), and allows the so-called R2-parameter to be reproduced; this

parameter is defined as the number ratio of asymptotic giant branch to HB stars, mea-

sured in a sample of galactic Globular clusters, and is very sensitive to the treatment of

core mixing during the HB phase (see Cassisi et al., 2003, for a thorough discussion).

We also computed the pulsation period of synthetic stars inside the IS and compared

them with the observed period distribution. We employed both the IS boundaries and

the pulsational equation from Di Criscienzo et al. (2004), assuming a mixing length

ml = 1.5Hp. This choice reasonably matches the IS boundaries as inferred from

the RR Lyrae colour distribution. The first overtone periods (PFO) are related to the

fundamental (PF ) by the relation logPF = logPFO+0.13 (Di Criscienzo et al., 2004).

The stars in the so-called OR zone, in which a RR Lyrae can pulse F, FO, or double

mode, were treated as F pulsators. This is, in principle, a rough approximation, but

given the small fraction of FO pulsators in the observed RR Lyrae sample (∼ 14%),

we expect the number of FO pulsators in the OR zone to be very small.

2.3.1 Results with the reference simulation

As a starting point, we employed the mass loss law as determined by Salaris et al.

(2013) for the Sculptor dSph, which gives an increasing value for the integrated RGB

mass loss with increasing metallicity, as described in Table 2.1. Figure 2.4 shows the

HB of Carina as well as the synthetic model computed from the SFH. Different colours

mark different age ranges. For the sake of comparison, we show a synthetic HB with

approximately the same number of stars as observed in Carina’s HB.
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Figure 2.4: Upper panel: Observed CMD of the HB region of the Carina dSph from B10.
Red crosses mark the position of RR Lyrae stars. The red boxes are those chosen for detailed
comparison. The solid black line represents the ZAHB, extending up to a mass of 1.45M� for
a metallicity of Z=0.0001. Lower panel: The synthetic HB for Carina. The red, blue, and green
dots mark stars with ages t > 7Gyr, 4Gyr < t < 7Gyr, and t < 4Gyr respectively.

Table 2.1: The integrated RGB mass loss (∆MRGB) prescription as originally determined for
the Sculptor dSph and used for the older Carina population, together with the one used for the
intermediate age population in § 2.4.

Metallicity range ∆MRGB
Sculptor ∆MRGB

t<7Gyr

M� M�

[M/H] < −1.8 0.095 0.048
−1.8 < [M/H] < −1.3 0.14 0.07
−1.3 < [M/H] 0.16 0.08
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We can see two major differences between synthetic and observed HB. First, what is

manifestly poorly reproduced is the morphology of the RC, which is more disperse

than the observed one, and with a “blue cloud” of stars that blend with the red end of

the old HB. Some problems are not completely unexpected since Sculptor, for which

the mass loss was determined to be dependent only on the metallicity, hosts only an

old stellar population. Given the mass range of the stars on the RC, their lifetime on

the RGB is considerably shorter with respect to the old population. We can, therefore,

naively expect the total mass loss to be different, plausibly lower for this population.

We, thus, tried to modify the mass loss for the younger population, to reproduce the

observations. However, in this way, the problem could only be mitigated but not totally

solved.

This can be explained as follows: the RC blue cloud above the HB is primarily com-

posed of stars with Z ≤ 0.0002. The black solid line in Fig. 2.4 shows the zero age

horizontal branch (ZAHB), extending to a mass of 1.45M�, for Z = 0.0001, which is

typical of the bulk of the metal-poor population in Carina. The position on the ZAHB

becomes redder as the mass increases until, over a certain mass threshold, the ZAHB

turns toward bluer colours without merging with the RC, which means that stars of

that metallicity will always be bluer than the observed RC colour regardless of the

mass loss.

Given that the synthetic HB is uniquely determined by the mass loss law and the in-

put SFH, this problem is an indication that the properties of Carina stellar population

recovered by the dB14 SFH model do not match exactly the true SFH.

Considering now the HB within boxes B and R (the old HB that comprises synthetic

stars with age t ≥ 7Gyr, displayed as red dots in Fig. 2.4), we can see that the total

colour extension is nicely reproduced. This implies that, given the input SFH, the

true mass loss for the old population cannot be drastically different from that inferred

for the Sculptor dSph. Figure 2.5 compares the colour and magnitude distributions

of observed and synthetic HBs. As previously stated, the Sculptor-like mass loss law

nicely reproduces the colour extension of the HB. Furthermore, the relative star counts

inside the two boxes are reproduced within one sigma.
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Figure 2.5: Upper panel: Observed (red) and synthetic (blue) star counts as a function of
(B − V ) colour in boxes B and R (left and right, respectively). The bin size is 0.015 mag.
Poisson errors on the observed star counts are also displayed. Lower panel: As in the upper
panel, but for the V magnitude.

The fit of the mean colour and magnitude is not perfect. In box B, the computed

mean colour differs by about 0.01 mag from the observed one, while the difference in

magnitudes is of the order of 0.03 mag. It should be said that, in this region of the

CMD star counts are low and a few stars can significantly alter the mean colour and

magnitude. The synthetic distributions look very consistent within the observed error

bars, suggesting that the difference in the means might be due to stochasticity.

In box R the V magnitude mean value and the overall distribution are remarkably well

reproduced. The difference between observed and synthetic mean V is of the order

of the photometric uncertainty. What are strikingly different are the star counts as a

function of colour. The mean (B − V ) colour of our synthetic stars differs by more

than 0.05 mag from the observed one. This can be explained by looking at the colour

distribution of the two populations. The observed star counts drop for colours bluer

than 0.4 and tend to increase again toward the blue HB. This gap around (B−V ) = 0.3

is missing in the synthetic HB, which is uniformly populated.

We note here that the procedure followed by B10 to select Carina member stars is less
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Figure 2.6: Observed (black) and synthetic (red) period distribution for RR Lyrae stars. The
bin size is 0.05 day. Poisson errors on the observed counts are also displayed.

efficient for intermediate colour objects (0.4 < (B − V ) < 0.6) and a residual amount

of field stars is left in the CMD, as can be seen in Fig. 2.3. It is interesting to note that

this contamination affects the star counts in box R and may be partly responsible for

some of the observed stars at the red side of the gap, with (B − V ) > 0.4. A reliable

way to deal with this effect is hard to find, but we estimated the effect on the colour

distribution to be of the order of 15-20% of the typical star count. We conclude that,

despite the contamination, the observed gap feature exists.

The discrepancy in the distributions between model and data in the red box, which

includes the IS, can also be seen in Fig. 2.6, which shows the period distributions for

the RR Lyrae pulsators. The observed RR Lyrae population has a period distribution

strongly peaked around P ∼ 0.6 d and is mainly composed of F pulsators, whereas

the synthetic population has a much broader F period distribution and tends to strongly

overestimate the FO population.

This can be understood by looking at the relation employed for computing the periods.

The driver of the pulsational period is the effective temperature. The periods and the

colour distribution are thus closely related. Both the lack of FO pulsators and of F



2.4. Implications for the star formation history 30

short periods is explained by the observed gap in the stellar distribution at the level of

the IS. Our synthetic, more homogeneously populated HB naturally covers a broader

range of periods and predicts too many stars in the FO zone of the IS.

To overcome this problem we tried to change the mass loss law. An analysis of age

and metallicity distributions along the HB revealed that our synthetic IS is populated

by a broad range of ages and metal contents. Consequently, changing the amount of

mass loss for a single value or a small range of metallicities (or ages) cannot create

such a well-defined gap. On the other hand, changing the whole mass loss law will

considerably affect the colour extension of the blue HB, which is extremely sensitive

to small mass changes. The conclusion is that the observed gap in the HB cannot be

reproduced by varying the mass loss law, except by adopting a very fine-tuned ad hoc

dependence on both age and metallicity, which we see as physically hard to justify.

We have therefore investigated the SFH as a possible cause of the discrepancies en-

countered, to assess the additional constraints that can be made on the Carina dSph

SFH using the HB modelling.

2.4 Implications for the star formation history

A complete characterization of the SFH based on the HB is not feasible because of

the uncertainty on the RGB mass loss. Nonetheless, as seen in the previous section,

there are problems in our modelling, i.e. the RC blue cloud present in our synthetic

CMD and the missing HB gap around (B − V ) ∼ 0.3, that cannot be overcome by

simply changing the mass loss. The only other option for solving this problem should

therefore be connected to the SFH solution we are employing.

We next investigated which component of the SFH could be responsible for these prob-

lems. The lower panel of Fig. 2.7 shows the distribution of our synthetic HB stars in

the age-metallicity plane. The region of our synthetic HB which corresponds to the

observed gap has been found to be mainly populated by two components which are en-

closed within the two blue solid boxes: a group of metal-poor stars with ages between
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Figure 2.7: Distribution of our HB synthetic stars in the age-metallicity plane. Upper panel:
Synthetic generated employing our toy model SFH. Lower panel: Synthetic generated employ-
ing the dB14 SFH.

Table 2.2: Age, metallicity, and normalized star formation rate of the toy SFH (see text for
details).

tmin tmax < [M/H] > SFR
Gyr Gyr

Burst 1 3.0 4.0 −1.69 0.12
Burst 2 4.0 6.0 −1.71 0.39
Burst 3 8.0 10.3 −1.77 0.29
Burst 4 10.5 12.5 −2.23 0.2

9 and 10 Gyr and a group of very old, more metal-rich stars, with [M/H] ∼ −1.6.

In particular, we note that the presence of a population of old metal-rich stars is also

principally responsible for the broad synthetic RGB observed in Fig. 2.4 because these

stars populate its reddest part. On the other hand, the RC blue cloud feature is caused,

as noted in the previous section, by stars belonging to the intermediate population and

with [M/H] . −1.9 (red dashed box in the figure).

This finding highlights how the HB morphology can point out forbidden ranges of age

and metal content that would result in unobserved features. It also suggests that the

input SFH has too wide a distribution in age and metallicity, whereas Carina’s true
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Figure 2.8: Observed CMD of Carina (black dots) superimposed on the synthetic CMD com-
puted from our toy SFH. Colour coding is the same as Fig. 2.4.

SFH is more confined to specific regions of the age-metallicity plane. To verify this

hypothesis we built a “toy” bursty SFH. We tried to reproduce a synthetic HB as similar

as possible to the observed one, trying at the same time to reproduce qualitatively the

RGB and the TO region. The best fit model is composed of four separate bursts whose

properties are summarized in Table 2.2. We employed a flat probability distribution

for the ages in the intervals given in the table, and a Gaussian [M/H] distribution with

the listed average values and σ=0.1 dex. We adopted the Sculptor-like mass loss law

for the old population. For the intermediate population, we assumed the RGB mass

loss rate to be half that of the older population, to roughly take into account the shorter

RGB lifetime (for example, a 0.8M� red giant, typical of a 12-13 Gyr old population,

takes ∼ 1.4 Gyr at Z = 0.0001 and ∼ 2.3 Gyr at Z = 0.001 to reach the RGB Tip

from the TO. In contrast, the time taken by a 1M�, typical of 5-6 Gyr old populations,

is ∼ 0.7 Gyr and ∼ 1.3 Gyr, respectively).

Figure 2.8 shows the resulting synthetic CMD superimposed on the observed one.

Our toy model roughly reproduces the morphology of the TOs and the SGBs, as well

as the RGB colour and the morphology of the HB. Figure 2.9 shows the colour and
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Figure 2.9: Same plot as Fig. 2.5 except for our toy SFH. The rightmost panel represents the
RC box. The scale on the ordinate axis is set to 2, 2, and 10 counts per tickmark for the three
upper panels (from left to right) and 1, 2, and 5 counts per tickmark for the lower panels.

magnitude distributions inside the B, R, and RC boxes in Fig. 2.4. The relative numbers

inside each box are reproduced within one sigma, and the mean values of colour and

magnitude differ by at most 0.01 mag from the observed ones. Even the detailed

distribution looks consistent, although still with a few minor mismatches .

As an additional test, we looked at the RR Lyrae period distributions, as shown in

Fig. 2.10. The F period distribution is very peaked and looks similar to the observed

one. The ratio between F and FO pulsators is qualitatively reproduced as well.

It should be noted that this toy model is not intended to be the exact SFH solution,

since we still lack strong constraints on the mass loss and we do not try to match the

precise number density distribution across the whole CMD. Our purpose is to show

how a more bursty SFH, in terms of age and metal content, is able to explain at the

same time the morphology of the CMD and the detailed structure of the HB, and to

suggest the age and duration of these bursts.

The age-metallicity distribution of HB stars simulated with this model is shown in the

upper panel of Fig. 2.7. The comparison with the distribution in the lower panel derived
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Figure 2.10: Same as Fig. 2.6 but for our toy SFH.

from the dB14 SFH allows us to identify differences and similarities between the two

SFHs. The locations in the age-metallicity plane of all the star formation events of

the toy model are roughly matched by those predicted by the dB14 solution, although

the latter has a greater age spread, especially at old ages. Unsurprisingly, the major

difference is the lack of metal-poor stars for ages younger than 10 Gyr and of very old

stars with [M/H] ∼ −1.6.

In view of this comparison, we conclude that the discrepancies between the observed

HB and the synthetic helium burning population computed using the dB14 SFH are

caused by two factors. First, the age resolution of the SFH naturally leads to a smooth

HB, erasing any sharp substructure in the true SFH. de Boer et al. (2014) test the age

resolution of their method with a series of synthetic populations generated by a 10

Myr burst centred at different ages. Even in the best case, the recovered burst duration

would have been 500 Myr, which is the width of a bin element at old ages. It can be

seen from their Fig. 6 that in the old age regime the recovered SFH is a Gaussian with

a dispersion of the order of 1 Gyr. This effect is due to the strong degeneracy in the

age-metallicity space of TO and RGB, coupled with the non-negligible photometric

error at that magnitude level for a system as distant as a dwarf galaxy.
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As a second point, the presence of spurious components in the dB14 SFH causes a

fraction of the synthetic HB population to reside in regions of the CMD that are ob-

served to be devoid of stars. The origin of these spurious components is not clear.

A possible explanation is that any difference between the spectroscopically measured

MDF, which is used as a strong constraint in the SFH characterization, and the true

MDF may force the SFH determination algorithm to assign the wrong age to a fraction

of stars in order to match the density distribution across the TO and the SGB regions.

For the Carina dSph, the problem of metallicity is particularly thorny; the photometric

and spectroscopic estimates, both high and mid resolution, do not always agree with

each other (Smecker-Hane et al., 1996; Rizzi et al., 2003; Tolstoy et al., 2003; Bono

et al., 2010; Koch et al., 2006; Lemasle et al., 2012).

To investigate this point, we adopted the [α/Fe] vs. [M/H] relation, recovered from the

dB14 SFH, to compute the [Fe/H] values of our model. We computed our MDF from

RGB stars, down to 3 magnitudes below the RGB tip, which is the typical selection

criterion for DG spectroscopic measurements. Inferring the metallicity distribution

from the same region of the CMD is crucial; owing to the varying evolutionary lifetime

with metallicity, stars end up on the upper RGB with a different MDF with respect to

the original one on the MS.

The left panel of Fig. 2.11 shows our synthetic MDF compared with the measurements

from Helmi et al. (2006), which have been employed in the dB14 analysis. In contrast

with our sharply bimodal distribution, the measured MDF has a much broader distribu-

tion, which is unsurprising, given that the measurement errors naturally tend to smooth

the underlying distribution.

To check whether the two MDFs are consistent within the uncertainties, we convolved

our MDF with a Gaussian error of 0.1 dex, which is the typical uncertainty of the

Helmi et al. (2006) measurements. As can be seen in the middle panel of Fig. 2.11,

the bimodality of our MDF is still clearly noticeable and we conclude that the intrinsic

measurement errors are not big enough to reproduce the observed MDF width which,

in addition, is fairly asymmetric.
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Figure 2.11: Left panel: Normalized MDF from red giant stars. The black histogram shows
the MDF inferred from our toy model. The red shaded histogram represents the empirical
distribution determined by Helmi et al. (2006) and employed by dB14. Central panel: as for
the right panel, but with the inclusion of intrinsic measurement errors in our MDF. Right panel:
as for the central panel, but also taking into account the observed spread in the [Ca/Fe] values
of Carina stars (see text for details).

It is important to notice, however, that this medium-resolution metallicity distribution

has been inferred from the CaII triplet (CaT). As Battaglia et al. (2008) showed, the

equivalent width (EW) of this feature is sensitive not only to the iron abundance, but

also to the [Ca/H] value (as is expected). Furthermore, the variation of other α-element

abundances, especially the [Mg/H] ratio, modifies the free electron density and, thus,

the continuum opacity, indirectly affecting the measured EW. This effect has been

already observed in globular clusters (Mucciarelli et al., 2012).

The MDF adopted for the dB14 SFH has been evaluated using the CaT-[Fe/H] calibra-

tion by Starkenburg et al. (2010). This relation was determined assuming a fixed metal

mixture with [α/Fe]=0.4 and [Ca/Fe]=0.25. As noted in the same work, at fixed iron

abundance, a decrease of the [Ca/Fe] value of 0.25 dex causes a smaller EW of the

CaT feature, mimicking a value of [Fe/H] lower by ∼ 0.2 dex

Several high-resolution spectroscopic investigations of Carina have found a large spread
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in the abundance of elements like Ca and Mg, which has been explained as evidence of

inhomogeneous mixing of the gas phase (Shetrone et al., 2003; Lemasle et al., 2012;

Venn et al., 2012; Fabrizio et al., 2015). In particular, the bulk of the [Ca/Fe] mea-

surements range from ∼ +0.3 to slightly subsolar values. Using the CaT calibration

without considering the variation in calcium abundance will then tend to underestimate

the iron abundance. This has been already noticed by Venn et al. (2012).

A precise quantitative evaluation of this uncertainty is very difficult, since it requires

detailed knowledge of several quantities, like the trend of the mean [Ca/Fe] value and

of its spread at varying metallicity, and the accurate EW dependence on the electron

donor elements’ abundance. Nevertheless, as a first approximation we took this effect

into account by perturbing our MDF with an asymmetric uncertainty: we assumed that

half of the stars had their [Fe/H] overestimated, with a dispersion of 0.1 dex, and the

other half had it underestimated, with a dispersion of 0.25 dex. This roughly takes into

account the Carina observed distribution of [Ca/Fe] around the fiducial [Ca/Fe]=0.25

employed in Starkenburg et al. (2010) CaT-[Fe/H] calibration.

The resulting distribution is shown in the right panel of Fig. 2.11. The two distributions

are in good agreement, suggesting that, at least qualitatively, an uncertainty of the

order of 0.2-0.3 dex toward lower metallicities is able to produce the broad MDF we

observe. Assuming this to be the case, this could likely lead to spurious components

in the best fit SFH, as the estimated high fraction of metal-poor stars is included in

the solution, with the algorithm accordingly distributing them in age to preserve the

relative numbers between the two populations.

2.5 Conclusions

We have performed a detailed simulation of the HB of the Carina dSph using recent

and detailed SFH estimates by dB14. We found that the overall colour extension of

the old HB is reproduced well with an integrated RGB mass loss that ranges from 0.1

to 0.14 M� as a function of [M/H] in complete agreement with was has been found
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for the Sculptor dSph. This concordance hints that the mass loss law derived for the

Sculptor dSph may also reproduce the HB morphology in other dSphs with similar

metallicity.

On the other hand, we found some discrepancies with the detailed colour distribution

along the old HB and RC that required a modification of the input SFH by dB14. We

then built a toy bursty SFH that reproduces well the observed HB star counts in both

V and (B − V ), and also matches qualitatively the RGB and the TO region, as well as

the pulsational properties of RR Lyrae stars.

The comparison between the MDF of our bursty SFH and the one measured from the

infrared CaT feature using the CaT-[Fe/H] calibration by Starkenburg et al. (2010)

shows a qualitative agreement, once the range of [Ca/Fe] abundances measured in a

sample of Carina stars has been taken into account, which induces a bias of the derived

[Fe/H] distribution toward values that are too low. Although we emphasize that Carina

is one of the few Local Group galaxies where this bias can be so severe, extra caution

should be taken when using the CaT to estimate [Fe/H] in systems with poor or no

constraints on the detailed metal mixture.

In conclusion, the work we have presented shows how the information contained

within the HB can, in principle, be extracted and interpreted to make predictions about

the properties of the stellar population in DGs. The results on the Carina dSph illustrate

that the inclusion of the detailed HB morphology in the CMD analysis is able to refine

the SFH determination of resolved stellar systems. Owing to the strong sensitivity of

its morphology and luminosity to the age and metallicity of the parent population, the

HB is a powerful benchmark to rule out forbidden ranges of age and metal content that

would result in unobserved features on the CMD. This capability grants us additional

resolution when pinpointing the SFH details of DGs, especially at early times.

We aim to consolidate the synthetic HB modelling technique, with the goal of making

quantitative predictions on the properties of resolved stellar populations, consequently

enhancing the power of CMD analysis, especially in distant systems where the old

MS-TO information is hard to access.



Chapter 3

A self consistent method to model the

horizontal branch in star formation

history measurements

This Chapter has been submitted for publication in MNRAS.

Determining detailed star formation histories (defined as the star formation rate as a

function of age and metallicity – SFHs) for a variety of different types of galaxies

is important to the understanding of galaxy formation and evolution. The SFH of

galaxies in the local Universe, going back to the earliest times, allows a comparison

with predictions, over the same time frame, from cosmological and galaxy evolution

models (see, e.g., Lanfranchi & Matteucci, 2004; Salvadori et al., 2008; Romano &

Starkenburg, 2013; Starkenburg et al., 2013; Garrison-Kimmel et al., 2014; Fattahi

et al., 2016; Sorce et al., 2016, for models of Local Volume galaxy properties). In this

way we can constrain the conditions in the local Universe when the Milky Way and its

satellites were forming.

Resolving individual stars, in a stellar population, down to the main sequence turn-

off (MSTO), allows a detailed and accurate SFH to be determined. Unfortunately,

with current observational capabilities we are only able to resolve a small sample of

39



40

galaxies, primarily dwarf galaxies in the Local Group (e.g., Tolstoy et al., 2009; Weisz

et al., 2011). Even so, the information that we can extract from these few nearby

dwarf galaxies is very valuable and complements what we can learn from the study

of unresolved, more distant galaxies (e.g., Gallazzi et al., 2008; Boylan-Kolchin et al.,

2016; Goddard et al., 2017). Moving beyond the satellites of the Milky Way, detecting

the main sequence of the old population becomes challenging, and photometric data is

often only able to reach down to the upper red giant branch (RGB) and the horizontal

branch (HB) of galaxies (e.g., Martin et al., 2016, 2017).

To determine the SFH of a resolved galaxy, a common approach is to build synthetic

colour-magnitude diagrams (CMDs) to compare observed and predicted stellar distri-

butions (e.g., Tosi et al., 1991; Tolstoy & Saha, 1996; Aparicio et al., 1997; Dolphin,

1997; Harris & Zaritsky, 2001; Cignoni & Tosi, 2010). An important contribution to-

wards quantitative and reliable SFH determinations came with the work of Dolphin

(2002), who formalized many of the numerical challenges in SFH recovery, and per-

formed detailed modelling of an homogeneous Hubble Space Telescope (HST) dataset

of nearby galaxies. This framework was further developed with a thorough characteri-

zation of the typical uncertainties in SFH determinations by Dolphin (2012) and Dol-

phin (2013). The SFH determinations for nearby galaxies, using synthetic techniques,

are extensive, thanks especially to the exquisite sensitivity and resolving power pro-

vided by the advent of HST (e.g., Aloisi et al., 1999; Cole et al., 2007; Monelli et al.,

2010; Weisz et al., 2011, 2014; Sacchi et al., 2016).

One of the limitations of current SFH determinations of old stellar populations in the

Local Group is that synthetic diagrams are typically only generated up to the tip of

the RGB. Therefore, they neglect the later stages of stellar evolution, most importantly

the HB phase. The main reason for this has been that RGB mass loss plays a strong

role in shaping the morphology of the HB. As the mass loss phenomenon has proven

difficult to characterize, this dependence has made predicting the HB of a given stellar

population challenging (e.g., Gratton et al., 2010, and references therein).

Accurately modelling the HB, taking into account the uncertain value of RGB mass

loss, is a promising way forward to improve the SFH for nearby and distant galaxies.
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HB stars are much brighter than their MSTO counterparts, making them less affected

by photometric uncertainties. This means that the HB morphology can be accurately

characterized out to the edge of the Local Group and beyond. Theoretical calculation

shows that the photometric properties of HB stars depend mostly on the metallicity

and the stellar mass (e.g., Iben & Rood, 1970). For a fixed chemical composition, the

mass of HB stars is determined by the age of the stellar population and the amount of

mass lost during the previous RGB phase. Thus, at fixed mass loss the HB morphology

depends only on the SFH of the system. Furthermore, when the MSTO morphology is

included, then the modelling of the HB has the potential to dramatically mitigate the

age-metallicity degeneracy, as two stellar populations with different age-metallicity

combination and the same MSTO luminosity will look quite different on the HB. For

these reasons, the information contained in the HB can be used to significantly improve

the recovered SFH, provided that we can accurately model the mass loss (Savino et al.,

2015).

Previous studies have used the HB to constrain SFHs both in the Milky Way (Preston

et al., 1991; Santucci et al., 2015) and in external galaxies (Schulte-Ladbeck et al.,

2002; Rejkuba et al., 2011; Grocholski et al., 2012). In particular, the analysis of the

HB has been crucial to constrain the stellar population properties of galaxies beyond

our nearest Galactic companions. However, determining an accurate star formation

rate, comparable to measurements from the MSTO, from the HB has been difficult

to achieve. This is because these previous analyses necessarily employed theoretical

isochrones for the HB modelling. These are built assuming a specific, only loosely

constrained, mass loss efficiency. Not allowing this parameter to vary has a big impact

on the measured SFH from the HB.

In this paper we present a new SFH determination technique that flexibly and consis-

tently takes into account the HB morphology when analysing the CMD of a galaxy,

allowing a variation in the RGB mass loss. This approach provides precise SFHs

and accurate measurements of the RGB mass loss. The starting point of MORGOTH

(Modelling Of Resolved Galaxies with Optimized Turn-off and HB synthesis), was

the routine TALOS (de Boer et al., 2012), which has been modified to include synthetic
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HBs, to handle the effect of mass loss and to recover a more detailed SFH, using the

information of all the evolutionary phases up to the end of the early asymptotic giant

branch.

In §3.1 we give a brief description of how TALOS works, in §3.2 we describe MOR-

GOTH, in §3.3 we present several performance tests using mock observations and in

§3.4 we model the stellar population of the Sculptor dwarf spheroidal galaxy (dSph).

In §3.5 we summarize our work.

3.1 Talos, modelling the MSTO region

TALOS is a SFH determination routine presented and verified in de Boer et al. (2012).

The algorithm of this code has been developed according to the prescriptions laid out

in Dolphin (2002). For a complete description, see de Boer et al. (2012). Here we

briefly describe the main features.

TALOS determines a galaxy SFH by comparing an observed CMD to a set of syn-

thetic simple stellar population models, which are generated on a fine grid of age and

metallicity (in this paper the term metallicity always refers to [Fe/H]). Parameters like

the binary fraction, the [α/Fe] vs [Fe/H] relation and the initial mass function (IMF)

are taken into account. If available, spectroscopic metallicites can also be added as

an additional constraint. The synthetic metallicity distribution functions (MDFs) are

generated, sampling the model CMDs as the spectroscopic measurements. In order

to accurately compare models and observations, observational effects are added to the

synthetic CMDs to match the observations. Such effects include distance, reddening,

photometric uncertainties and completeness fractions across the CMD. Measurement

errors and completeness levels are determined from artificial star tests.

After transforming the CMDs into Hess diagrams (defined as the density map of stars

across the CMD, given a specific CMD binning scheme), TALOS searches for the lin-

ear combination of models that minimize the Poisson analogue of the unreduced χ2
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function:

χ2
P = 2

∑
i

(mi − ni + ni ln
ni
mi

) (3.1)

Where mi is the number of stars in a synthetic Hess bin, and ni is the observed star

count in the same bin. The spectroscopic MDF comparison can be included in the

χ2
P evaluation. The MDFs are rescaled, to compensate for the CMD having many

more stars and consequently dominating the final χ2
P . Given the regularity of the χ2

P

surface built in this way, the minimum can be located through the Fletcher-Reeves-

Polak-Ribiere (FRPR) algorithm (Press et al., 1992), which makes use of a conjugate

gradient technique. This method is very fast, as it makes use of the function derivatives

to find the minimum.

The uncertainties are evaluated by fitting the SFH for a range of different CMD sam-

pling and parameter space sampling combinations (the former relates to the CMD bin-

ning choice while the latter relates to the binning of the age-metallicity grid). For each

combination of CMD and parameter space sampling, a solution is evaluated and is

used to estimate the uncertainties related to data sampling. These arise because the

observed stellar population is finite in size and is just a random realization of the un-

derlying statistical population. For this reason, the best fit solution is used to replace

20 per cent of the observed stars and to create several alternative CMDs from which

the SFH is recovered again. In this way, the final SFH solution is the average of at

least 100 different solutions, from which the standard deviation is used to estimate the

uncertainties on the star formation rates.

3.2 MORGOTH, including the horizontal branch

The main complication of including the HB morphology (when modelling the SFH

of a galaxy) is that the amount of mass lost by RGB stars during their evolution is

uncertain.Thus, in principle, exploring the effects of different mass loss assumptions

requires to generate a complete synthetic CMD for each mass loss prescription, as

done, for instance, in Salaris et al. (2013). Such an approach has a high computational
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cost and makes an extensive exploration of the mass loss parameter space challenging.

Fortunately, another approach is possible, because the helium core mass in low mass

stars (M . 1.5M�) at the start of the helium burning phase is very weakly dependent

on the progenitor mass (see, e.g., Salaris & Cassisi, 2005). In addition, the progenitor

RGB evolution is essentially insensitive to mass loss, unless extremely high values

are considered. These properties imply that a theoretical HB evolutionary track, of

a given stellar mass and chemical composition, is independent of the combination of

progenitor mass (i.e., age of the stellar population) and total RGB mass loss. This

property of HB stars is commonly exploited in synthetic stellar population generations

(e.g., Salaris et al., 2013; Savino et al., 2015; Tailo et al., 2016).

Using this technique in MORGOTH, we treat the HB modelling in a straightforward

way. We compute a grid of synthetic simple stellar populations, using the same proce-

dure of TALOS, which are generated up to the tip of the RGB. This grid covers a range

of stellar population ages and metallicities. These simple stellar population models are

then complemented by a grid of synthetic HB models, which are calculated for dif-

ferent metallicities and HB stellar masses (see § 3.2.1 for details). These HB models

contain stars between the onset of quiescent helium burning and the first thermal pulse

on the asymptotic giant branch. For any arbitrary mass loss prescription, we can map

the HB grid onto the simple stellar population grid. After appropriately rescaling the

stellar density, the two synthetic models are combined to create a self-consistent Hess

diagram that includes the helium burning phase. In this way we greatly reduce the

number of the required synthetic CMD computations.

In the rest of this section we will provide a general description of the MORGOTH

approach, which is also schematized in Figure 3.1.

3.2.1 HB model computation

The stellar evolution library we use to compute all the synthetic models is the BaSTI

stellar library (Pietrinferni et al., 2004, 2006). These models have been successfully
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Figure 3.1: Flow chart representing the main procedural steps of MORGOTH.
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tested and used to reproduce the HB properties of globular clusters and resolved galax-

ies (e.g., Cassisi et al., 2003; Dalessandro et al., 2011, 2013; Salaris et al., 2013). To

increase our method’s versatility, we extended the HB track grid, computing additional

tracks, reaching a mass of 1.5M� at the beginning of the He-burning phase (A. Pietrin-

ferni, private communication). With this extended grid we can create synthetic CMDs

of intermediate age stellar populations (as young as ∼ 2Gyr), that typically present a

red clump instead of an HB. In the following we describe how we calculate our grid of

synthetic HB models.

For any given simple stellar population, we assume that RGB stars lose a total amount

of mass ∆M , which has a Gaussian distribution with standard deviation σ∆M . The ex-

tent of this Gaussian spread is a chosen parameter. Recent studies of globular clusters

and dwarf galaxies suggest that the dispersion is of the order of a few thousandths of

solar mass, at fixed metallicity (Caloi & D’Antona, 2008; Salaris et al., 2013; Tailo

et al., 2016). In all the synthetic CMDs shown in this paper, we keep this value fixed

at σ∆M = 0.005M�. Thus the resultant HB stars will have a Gaussian distribution of

mass on the zero age horizontal branch (ZAHB), with an average value MZAHB. We

generate a set of synthetic HB models, covering a grid of [Fe/H] and MZAHB values.

To populate a synthetic HB model, we need to calculate a distribution of stellar masses

and a distribution of ages since the start of the helium burning. Aside from the obvious

constraint that the average mass on the ZAHB should be equal toMZAHB, the synthetic

HB model has to satisfy two more conditions. The first one is that stars in later phases

of the helium burning should be, on average, more massive than stars on earlier phases.

This is because, at fixed mass loss, stars near the end of the helium burning come from

more massive progenitors. The second constraint is that, when the synthetic HB is

matched to a simple stellar population CMD, the number of stars on the HB and the

stellar mass distribution have to be consistent with the adopted IMF.

These constraints are satisfied by adopting the following procedure. For each value of

[Fe/H] and MZAHB we assume a realistic mass loss value (we adopt the prescription

from Origlia et al., 2014, but the choice is not particularly critical) to calculate the

progenitor mass that produces MZAHB . We call this value M prog
ZAHB. We then consider
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an age range ∆t = 200Myr (the exact value is not important, as long as it is larger than

the maximum HB lifetime) and determine the range of initial masses whose age at the

tip of the RGB is in the range between the age of M prog
ZAHB, denoted as t0, and t0 −∆t.

We extract a mass distribution for this range of progenitors according to the chosen

IMF, and assign to them the corresponding HB mass by adding the selected value of

the RGB mass loss (with a Gaussian distribution). For each HB mass we calculate

its location along the HB phase considering that its age from the ZAHB is equal to

the age difference at the tip of the RGB between its progenitor and the progenitor of

MZAHB. HB masses whose age would be larger than their HB lifetime are considered

to be evolved off the HB.

When the mass loss is changed, we calculate a correction factor, for each HB model,

that takes into account the change in the progenitor masses. This factor is the ratio,

coming from the IMF, of the new progenitor number abundance to the original pro-

genitor number abundance. We use this factor to scale the HB density distribution so

that our models are always consistent with the adopted IMF. However, due to the short

lifetime of HB stars, this correction is very small.

3.2.2 HB matching to the rest of the CMD

Given the two grids of models we generate (one for the HBs and one for the rest of the

CMDs), we are able create synthetic CMDs that include the HB and the early asymp-

totic giant branch. Our method is able to create synthetic CMDs for any arbitrary mass

loss prescription, as the only requirement is to calculate MZAHB for a given popula-

tion, to chose the appropriate HB model and to rescale its Hess diagram consistently

with the IMF. The simple stellar population model and its corresponding HB are then

merged into a single Hess diagram. As the HB grid is discrete, there might be small

differences between the MZAHB of a given population and the closest HB model. For

this reason, a very fine mass sampling of the HB grid is preferred. We find a com-

promise between mass sampling and computation speed with a mass sampling step of

0.005M�
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In practice, we need a functional form for the integrated RGB mass loss. Recent stud-

ies of globular clusters, have suggested a linear relationship between the total amount

of mass lost on the RGB and the cluster metallicity (Gratton et al., 2010; Origlia et al.,

2014). Within the error bars, the two results agree and are also compatible with the

mass loss inferred by Salaris et al. (2013) for the Sculptor dSph. For this reason, we

parametrise the integrated RGB mass loss as a linear function of the stellar popula-

tion metallicity, and hence describe it with two parameters. It is possible that this

parametrisation may be inappropriate when modelling younger stellar populations, as

they have not been considered by these observational studies and for which the RGB

evolutionary timescale (likely related to the total mass loss) is significantly affected by

the stellar mass or, in other words, age.

It should be noted that assumptions about the mass loss functional form only affect the

link between the global CMD models and their related HB models.

3.2.3 Solving for the SFH

With the set of models and the matching procedure described above, we can estimate

the SFH of a resolved stellar population using all the evolutionary phases that are

typically observed in old and intermediate age stellar populations.

The main difference with previous CMD modelling approaches is the RGB mass loss

and how it is treated. One way to proceed is to make an assumption about the mass

loss parameters and to keep them fixed. The adopted mass loss is then used to match

the HB models with the rest of the CMDs and the SFH computation proceeds as in

TALOS.

Another approach is to leave the mass loss parameters free and explore them in de-

termining the best fit SFH solution. On the HB, the age of the stellar population and

the RGB mass loss are degenerate, as different combinations of these two variables

can lead to the same mass on the HB. If an independent age indicator is available (for

example the MSTOs), then this degeneracy can be broken and both the age and the
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mass loss can be determined. The HB models and the rest of the CMDs are rematched

every time the mass loss is changed. This process continues until the combination of

SFH and mass loss parameters that minimises χ2
P is found.

The simplest approach would be to solve for the mass loss parameters and the SFH

at the same time. Unfortunately, this creates local minima, meaning that analytical

optimisation techniques, such as the conjugate gradient descent used in TALOS, do

not converge. Alternatively, heuristic methods, such as Markov-Chain Monte Carlo

or genetic algorithms, are very slow, given the high dimensionality of the problem,

introduced by the many CMD models.

As explained in Dolphin (2013), if one or more parameters affects our CMD models,

we assume that the likelihood of a given parameter combination is proportional to the

maximum SFH likelihood (hence the minimum χ2
P ) that is obtained with that combi-

nation. We, thus, explore the mass loss parameter space using an amoeba minimiser

(Nelder & Mead, 1965) until we find the mass loss prescription that produces the min-

imum χ2
P . We chose the amoeba minimisation because of its speed, compared to other

heuristic methods. The topology of our χ2
P surface is such that this method efficiently

converges without getting trapped in the local minima, because the scale and the depth

of these minima, which arise because of our discrete HB grid, are much smaller than

the large scale structure of the χ2
P surface. This means that the minimiser is insensi-

tive to the presence of these features until it is very close to the global minimum (on a

scale of the order of the HB mass sampling). This hybrid analytical-heuristic approach

allows us to overcome the local minima introduced by the mass loss while exploiting

the speed of the SFH optimisation.

3.2.4 Uncertainty estimation

Once the preferred SFH solution has been found, we estimate the uncertainties on

our solution. New solutions are calculated for different CMD and parameter space

samplings, as described in §3.1. For each of these, we generate additional CMDs

using the Poisson statistics criterion, described in Aparicio & Hidalgo (2009). For
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each bin i of the observed CMD, we replace the measured stellar count ni with a new

value, drawn from a Poisson distribution with expectation value λ = ni. This way of

treating data sampling uncertainties is preferred to the one used in TALOS because it

does not depend on the best-fit SFH, which in some cases can be quite different from

the true SFH of the galaxy.

The way mass loss is incorporated into the uncertainty estimation depends on whether

the mass loss parameters were fixed. If the mass loss is left as a free parameter, a

separate measurement is made for each SFH solution. Similarly to the SFH analysis,

the final mass loss is the average of all the individual solutions and the uncertainties

on the parameters are taken from the standard deviation of the solutions. To prevent

solutions that produce a bad CMD fit to contaminate our final measurement, we apply

a median absolute deviation cut on the mass loss parameter distribution, eliminating

strong outliers.

If the mass loss parameters are fixed, the uncertainties on these parameters are taken

into account when computing uncertainties on the SFH. The entire process of SFH

evaluation and the uncertainty estimation is repeated several times. Each time the

mass loss parameters are extracted from a gaussian distribution, according to their

uncertainties. The final SFH will be the one corresponding to the mass loss that gives

us the minimum χ2
P , whereas the scatter of the entire set of solutions will provide the

confidence interval for our SFH.

The uncertainties on the individual star formation rates are highly correlated. For this

reason, MORGOTH also estimates the covariance between each pair of star formation

rates. This information is needed to treat the SFH uncertainties properly, as varying the

star formation rates independently could lead to unphysical solutions that, for example,

do not match the mass of the galaxy.
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3.3 Testing the method

It is necessary, with a new analysis procedure, to benchmark it on science cases for

which the expected solution is known. The standard approach is to use synthetic CMDs

with known SFH to emulate typical observed examples. Of course, these tests on mock

observations represent an idealised situation and, while they are very useful to assess

the validity of the adopted methodology, they are free from many of the systematics

that affect real data. These include uncertainties in the modelling parameters (such as

distance, reddening and alpha enhancement), mismatch with theoretical models and

poor characterisation of the observational effects. Thus we also apply the method to

a well studied object with a previous analysis, including the HB modelling. This has

the advantage of working with “real” data, testing that the method is robust against

the typical uncertainties of observations. However, in this case, we can only make a

relative comparison with previous studies.

In this section and in the next, we are going to present tests on synthetic datasets of

different complexity, and on the well studied Local Group galaxy Sculptor.

3.3.1 Synthetic tests on simple stellar populations

The performance of a SFH modelling technique should pass the basic test applied to

simple stellar populations (Hidalgo et al., 2011; de Boer et al., 2012). A simple stellar

population is defined to have a single age and metallicity (or an age and metallicity

spread negligible compared to the resolution of either). SFH determinations are typi-

cally broader than the input, due to a combination of observational effects and method-

ological limitations (Hidalgo et al., 2011; Aparicio et al., 2016). Measuring this effect

for a simple stellar population gives an estimate of the intrinsic time resolution of the

method.

Globular clusters are typically characterized by very small spreads in age and metal-

licity, and could be interesting targets to test MORGOTH on real simple stellar popula-

tions. However, globular clusters are also known to have substantial spreads in certain
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Figure 3.2: a): the (B - V) vs V Hess diagram of our old and metal poor mock SSP (t = 12.5
Gyr, [Fe/H] = -2.5 dex). b): The best fit Hess diagram recovered with MORGOTH.

light element abundances, including helium (see, e.g., Gratton et al., 2012, and refer-

ences therein). These spreads have a strong influence on the morphology of the HB,

which thus cannot be straightforwardly linked to the SFH of the system. The field stel-

lar populations of nearby resolved galaxies show no sign of these abundance patterns

(Shetrone et al., 2003; Geisler et al., 2007; Fabrizio et al., 2015), but they are char-

acterised by an extended SFH. For this reasons, we can only perform simple tests on

synthetic data.

We created a synthetic CMD for two simple stellar populations. One with an age of

12.5 Gyr and a metalicity, [Fe/H] = -2.5 dex, and the other with an age of 8 Gyr old

and [Fe/H] = -1.0 dex. We chose these values to span the range of age and metallicity

typically observed in Local Group dSphs, such as Sculptor. This is also the region of

the age-metallicity parameter space where stellar populations exhibit extended HBs.

We emulated realistic observational effects for a dust free stellar system at a distance

of 100 kpc, using the photometric errors and the artificial star tests of the Sculptor

dSph CTIO observations, presented in § 3.4. We made these tests for a fixed mass loss

law, taken from Origlia et al. (2014). The resultant CMDs are shown, as Hess maps, in

Fig. 3.2 and Fig. 3.3, and the recovered SFHs are shown in Fig. 3.4
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Figure 3.3: Same as Fig. 3.2 but for our younger and metal richer SSP (t = 8 Gyr, [Fe/H] = -1.0
dex.)

We first determined the SFH without the HB, as done by TALOS and similar methods.

The recovered SFHs are well fit by a Gaussian function with standard deviation of 700

Myr, for the young population, and 1.3 Gyr, for the old population. These values are in

line with what found by other studies (e.g., Hidalgo et al., 2011; de Boer et al., 2012).

When adding the HB to the SFH care has to be taken to balance the HB and the MSTO

contributions in the final likelihood function to determine the best overall solution. If

this is not done then the high number of MSTO stars tends to dominate the Poisso-

nian likelihood determination, which can weaken the impact of the HB. Namely, when

there is a difference between the SFH that best fits the MSTO and the one that best

fits the HB then, without any intervention in the process, small improvements in the

quality of the MSTO fit will be preferred to big improvements in the quality of the HB

fit. Such differences can easily arise because of numerous observational or numerical

effects, such as the imperfect characterisation of the photometric uncertainties, the dis-

crete binning of the CMD and of the parameter space, uncertainties in the modelling

parameters, statistical effects linked to the finite number of stars modelled in the stellar

population or uncertainties in the stellar evolution models. To compensate for this, we
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(a) (b)

Figure 3.4: The comparison between the SFHs recovered with and without the HB modelling.
The red solid lines are the Gaussian functions that best fit the SFHs. The blue dashed lines mark
the true age of the stellar populations. a) Solutions for the young metal rich SSP. b) Solutions
for the old metal poor SSP.

apply a scaling factor to the likelihood in the HB region. The relatively few stars here

add important constraints on the age and metallicity of the stellar populations at the

oldest times. For this reason, we scale the likelihood coming from the Hess bins of

the HB region by the ratio of HB stars to non-HB stars, in a similar fashion to what is

done with the spectroscopic MDFs by TALOS. This weighting gives a more balanced

importance to both the HB and MSTO regions.

Fig. 3.4 shows that the inclusion of the HB leads to an improvement in the precision

of the recovered SFHs, which now have a standard deviation of 500 Myr, compared to

the modelling without the HB. This improvement is mild for the younger population

(Fig. 3.4a), where the bright MSTO stars allow a fairly precise SFH. However, for the

older population (Fig. 3.4b), the MSTO is fainter and characterized by a slower mor-

phology evolution with age. In this case, the inclusion of the HB, whose morphology is

very sensitive to stellar mass, significantly improves the age measurement, increasing

the precision by a factor of ∼ 2.5.

Obviously, these experiments with synthetic data represent an ideal situation and give

us the maximum theoretical precision that this approach can reach. In reality, any dis-

crepancy between the synthetic models and a real galaxy, such as distance, reddening

or stellar evolutionary track mismatches or uncertainties, will degrade our model-data
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comparison.

Among these systematics, a major role is played by mass loss, which was assumed to

be known in our modelling. Any mismatch between the predicted and true mass loss

will bias the age determination of the stellar population, because of the degeneracy of

these two parameters on the HB. The importance of this effect is given by the derivative

of the RGB tip mass over time, at a given age. For a 12.5 Gyr old population this

amounts to ∼ 0.02M�Gyr
−1, with a slight dependency on metallicity, while for a 8

Gyr old population it is ∼ 0.04M�Gyr
−1. This translates to an effect on the SFH of

500 Myr and 250 Myr, respectively, for each 0.01M� of difference in the mass loss.

3.3.2 Moving beyond single age synthetic models

The simple stellar population tests we performed confirm the potential of HB mor-

phology to add additional independent constraints to standard SFH analysis and sig-

nificantly improve age resolution at old times. A clear limitation of our simple stellar

population experiments is the assumption that the RGB mass loss is known. Another

shortcoming is the very simple SFH adopted. Real galaxies will typically have much

more complex SFHs, spanning a range of age and metallicity, reflected in the morphol-

ogy of their CMDs.

To address both these issues we carried out additional experiments with synthetic data

to simulate more realistic conditions. We created synthetic CMDs for two galaxies

with different SFHs. We used the same observational conditions as in § 3.3.1 (distance,

photometric uncertainties, completeness, etc.). We then run MORGOTH to recover the

SFH, as well as the RGB mass loss, for which no assumption was made, except a linear

dependence on [Fe/H].

In the first experiment we simulate a galaxy with two short bursts of star formation,

separated by ∼ 4 Gyr in age and ∼ 0.7 dex in metallicity. The mock CMD of this

galaxy is shown in Fig. 3.5a. Fig. 3.5b shows our best fit CMD. It can be seen that our

best fit is a realistic representation of the observed CMD, also for the HB morphology.
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Figure 3.5: a) the mock (B - V) vs V Hess diagram of our galaxy with a bursty SFH. b) The
best fit Hess diagram recovered with MORGOTH.

The four panels of Fig. 3.6, show the original inputs of our mock galaxy, along with

the recovered results. As a reference, we also fit the SFH in the classical way, i.e., ex-

cluding the HB. As for the CMD, the recovered SFH is similar to the original input. In

particular, the comparison with the reference solution demonstrates that the inclusion

of the HB modelling helps to improve separating and characterising these two bursts

of star formation, both in age and metallicity. Fig. 3.6b shows the mass loss relation

that we recover, compared to that used as input. The simultaneous modelling of the

HB and the MSTO region efficiently recovers the RGB mass loss prescription, within

one sigma of the original.

We perform the same experiment on a second mock CMD (Fig. 3.7a), built using a

constant star formation rate and a steady metallicity evolution (Fig. 3.8a). Again, the

solutions we recover with and without the HB modelling, shown in Fig 3.8, prove that

including the HB provides more realistic star formation rates, both as a function of age

and metallicity. The HB morphology is well reconstructed, as demonstrated by the

RGB mass loss inferred to be so closely matching the input.

These additional tests show that MORGOTH is able to efficiently reconstruct the HB
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(a) (b)

(c) (d)

Figure 3.6: The best fit solutions for our bursty galaxy, compared with the real values. a) The
SFH in the age-metallicity plane. The three panels are for our input SFH, the one recovered
with excluding the HB and the one recovered modelling also the HB (left, centre, right, respec-
tively). b) The recovered RGB mass loss as a function of metallicity (black solid line). The red
solid line is the input mass loss prescription. The dotted black lines delimit the 1-σ confidence
region of our solution. c) The star formation rate as a function of time, recovered with and
without the HB modelling. The red solid lines represent the input values. d) The star formation
rate as a function of metallicity, recovered with and without the HB modelling. The red solid
lines represent the input values.
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Figure 3.7: a) the mock (B - V) vs V Hess diagram of our galaxy with a continuous SFH. b)
The best fit Hess diagram recovered with MORGOTH.

morphology when modelling stellar systems with extended SFHs, even when the RGB

mass loss is an unknown and is included in the fitting. Furthermore, the improved

accuracy given by the HB constraints is also present in the fit of more complex SFHs.

This is clearly visible in the three panels of Fig. 3.6a and Fig. 3.8a, where the SFHs

recovered with the aid of the HB are obviously improved, compared to those recovered

without the HB.

3.4 The Sculptor dwarf spheroidal

Having successfully shown the effectiveness of our method on synthetic stellar pop-

ulations, we move to real data and model the resolved population of the well studied

Sculptor dSph. This is a close stellar system with a relatively simple SFH, as shown

by the detailed SFH from de Boer et al. (2012), using TALOS. The SFH from de Boer

et al. (2012) has also been used as a starting point by Salaris et al. (2013), to estimate

the RGB mass loss of Sculptor. This means that both the end products of our analysis,

the SFH and the RGB mass loss, have already been measured for this galaxy. As TA-
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(a) (b)

(c) (d)

Figure 3.8: The best fit solutions for our galaxy with continuous SFH, compared with the real
values. a) The SFH in the age-metallicity plane. The three panels are for our input SFH, the
one recovered with excluding the HB and the one recovered modelling also the HB (left, centre,
right, respectively). b) The recovered RGB mass loss as a function of metallicity (black solid
line). The red solid line is the input mass loss prescription. The dotted black lines delimit the 1-
σ confidence region of our solution. c) The star formation rate as a function of time, recovered
with and without the HB modelling. The red solid lines represent the input values. d) The star
formation rate as a function of metallicity, recovered with and without the HB modelling. The
red solid lines represent the input values.

LOS is the code from which we developed MORGOTH, this galaxy will provide a very

instructive comparison to evaluate the effect of adding constraints from the HB.

To model the CMD of Sculptor, we use the MOSAIC, CTIO 4m photometry from de

Boer et al. (2011). We limit the analysis to an elliptical area in the centre of the galaxy,

with an equivalent radius of 11 arcmin. This is the same region for which estimates

were made of the RGB mass loss by Salaris et al. (2013).

For our analysis, we also have to account for the presence of RR Lyrae variables. When

observed only in one or few epochs, these variable stars will have a wide distribution in

magnitude and colour, because they are in different phases of their pulsation cycle, thus
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Figure 3.9: a) V vs (B-I) Hess map of the Sculptor dSph. The photometric catalogue is taken
from de Boer et al. (2011) and it has been corrected for RR Lyrae variability. b) Best fit Hess
diagram obtained with MORGOTH. The red solid lines mark the punishment region for RGB
models.

changing the HB morphology. To model the HB of Sculptor, we need to know the mean

magnitude of its RR Lyrae, so that we can reconstruct the original HB morphology in

the instability strip.To do that, we cross-correlated our photometric catalogue with the

sample of variables from Martı́nez-Vázquez et al. (2016). In this way, we identify

most of the RR Lyrae and substitute their observed magnitudes with their intensity

averaged magnitudes. The final photometric sample we obtain is shown, as a Hess

map, in Fig. 3.9.

We model the V vs (B-I) CMD of Sculptor, with a fine bin size (0.05 mags) to take

advantage of the detailed structure of the HB. We chose this filter combination to max-

imize the colour extension on the HB. The model populations we use sample the age-

metallicity parameter space with a step of 0.5 Gyr and 0.2 dex. Our synthetic popu-

lations follow a Kroupa IMF (Kroupa, 2001) and [α/Fe] measured by high-resolution

spectroscopy (Battaglia et al., 2008; Tolstoy et al., 2009). We model the observational

effects using both photometric errors and artificial star tests from de Boer et al. (2011,

2012). Finally, we adopt a distance modulus of (m − M)0 = 19.67 and a value of

E(B − V ) = 0.018, as in de Boer et al. (2012).

As we are now modelling the whole CMD, in contrast to de Boer et al. (2012), we also
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include the full extent of the RGB. This evolutionary phase is very prominent in the

CMD of an old stellar population but it has a relatively low stellar density. This means

that it is inherently penalised in our Poisson statistics based modelling approach. A

simple way to exploit the information on the RGB would be to also apply a weight to

this part of the CMD, as we did with the HB. However, the detailed morphology of

the RGB, especially its colour, is quite sensitive to a number of uncertain stellar model

ingredients, such as the treatment of convection, the boundary conditions of the stellar

model and the bolometric corrections of the cool stellar atmospheres. This means that

applying a weight to the RGB would make our fit sensitive to these uncertainties. We

resolve the issue by creating a punishment region in our CMD, as shown in Fig. 3.9.

Every stellar model that falls on the red side of the line is heavily penalised in our fit.

In this way we take advantage of the general morphology of the RGB without being

strongly affected by the theoretical uncertainties of the RGB colour.

Our best fit CMD is shown in Fig. 3.9. The resemblance to the observations is, gener-

ally, satisfactory. There are, however, some differences in the details. We note that the

MSTO and the subgiant branch are wider in our model than in the observed CMD, the

model RGB has a slightly redder edge and there is a tail of blue HB stars in the model

CMD that is not in the observed CMD. The origin of these problems is likely to be in

the characterization of the faint CMD. Similar difficulties in reproducing the detailed

structure of the main sequence region were also present in the original analysis of de

Boer et al. (2012). The modelling of these faint stars is particularly sensitive to a reli-

able characterisation of observational conditions. As the available photometry reaches

only one magnitude below the MSTO, an accurate estimate of all the uncertainties in

this low signal-to-noise region can prove difficult. This problem highlights how crucial

it is to have deep and well characterized dataset when modelling the resolved stellar

populations in galaxies and how useful the information on the HB can be when such

deep photometry is not available. In spite of these difficulties, and of the inclusion of

additional constraints coming from the HB modelling, MORGOTH produced a best-fit

model that is in line with what we know about the Sculptor dSph.

Looking at the best fit SFH (Fig. 3.10), we find that Sculptor’s stellar population is
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(a) (b)

(c)
(d)

Figure 3.10: a) The age-metallicity distribution of star formation for Sculptor, recovered with
MORGOTH. b) The inferred RGB mass loss (black solid line). The dotted black lines mark the
1-σ uncertanties of our estimate. The red solid line shows the results from Salaris et al. (2013).
c) Star formation rate as a function of cosmic time. The red histogram shows the solution of de
Boer et al. (2012). d) Star formation rate as a function of metallicity.

predominantly old and metal poor, as found by de Boer et al. (2012) and others before

him. The star formation rates in the age-metallicity plane show a general evolution of

the metal content with time, increasing by approximately one order of magnitude over

the SFH of the galaxy. A closer look suggests the presence of two main subpopulations

in Sculptor. The first one spans a range in age and metallicity of 11Gyr < t < 14Gyr

and −2.0 < [Fe/H] < −1.5. The second subpopulations has 8Gyr < t < 11Gyr

and −1.5 < [Fe/H] < −1.0. The presence of these two components has already been

noted using the spatial distribution of the HB morphology, the metallicity and velocity

dispersion distributions on the RGB (Tolstoy et al., 2004; Zhu et al., 2016). Integrating

our SFH in age and metallicity (adopting a Kroupa IMF) results in a total stellar mass,

within an equivalent radius of 11 arcmin, of 4.67± 0.43 · 106M�.

The detailed comparison with de Boer et al. (2012) results is generally good, both in the
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age and metallicity distributions of the SFH. A further confirmation of the higher preci-

sion of our method is that, although our age bins are half the size of that used in de Boer

et al. (2012), our uncertainties are noticeably smaller. Note that the uncertainties are

expected to increase when reducing the parameter space bin size (Dolphin, 2002).Our

solution presents a more prominent tail of star formation at younger age. This is be-

cause de Boer et al. (2012) masked the blue plume of stars above the MSTO, assuming

them to be blue stragglers and thus unrelated to the SFH. Determining whether or not

these stars come from a genuine recent star formation event or are blue stragglers is

not easy and is beyond our analysis here.

A comparison with the previous RGB mass loss rate determination is also encouraging.

The amount of mass loss inferred from our analysis is, overall, a few hundreds of solar

mass higher than that measured by Salaris et al. (2013), but the two estimates are in

good agreement within their uncertainties. The only significant discrepancy emerges

at low metallicity, where we estimate a significantly higher mass loss. This high value

regards stars with [Fe/H] . −2.0, which cause the blue HB tail in the model CMD.

A possible explanation is that this difference comes from our imposition of a linear

relation between integrated mass loss and metallicity. The estimate from Salaris et al.

(2013) shows a clear drop in the efficiency of mass loss for metal poor stars, greater

than what would be expected by linearly extrapolating the values measured for more

metal rich stars.

This discrepancy may indicate that our mass loss parametrisation is too simplistic. A

higher order polynomial or a non-parametric representation (similar to Salaris et al.,

2013) could lead to a more accurate model. We stress, however, that increasing the

number of degrees of freedom in our HB models is also likely to make the analysis

more susceptible to degeneracies, and to lead to unrealistic solutions. Clearly, the

optimal strategy to treat mass loss needs to be evaluated with care. The precise choice

of mass loss parametrization, however, is not critical to the conceptual validity of our

method.
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3.5 Conclusions

We have presented and tested MORGOTH, to show it is capable of accurately determin-

ing the SFH of both simple and complex stellar populations by quantitatively taking

into account all the major luminous features of the CMD, including the HB. It takes

advantage of the internal structural similarities in evolved low mass stars, to model the

helium burning phase of old populations in a flexible and computationally affordable

manner. Simple tests with mock stellar populations reveal the benefit of having in-

dependent constraints on age and metallicity at the old ages, from the HB, increasing

the time resolution of classical SFH determinations. Even with no constraints on the

mass loss efficiency, our method is capable of a substantial improvement in the SFH

precision, at the same as time measuring the total mass lost by RGB stars.

We also tested our method on observations of the Sculptor dSph. The SFH and mass

loss estimates obtained are in good agreement with previous analyses (de Boer et al.,

2012; Salaris et al., 2013), confirming the reliability of our approach. Our SFH mea-

surements, including the HB, have smaller uncertainties compared with traditional,

MSTO only, analysis techniques, and allow us to distinguish the two stellar subpopu-

lations known to exist in Sculptor with greater accuracy than previous CMD analyses.

The detailed modelling of the HB of resolved stellar populations in galaxies opens

interesting prospects for more distant surveys. Aside from the obvious advantage of

having more accurate SFH measurements thanks to the additional age and metallic-

ity indicators, we now also have the means to measure the amount of mass lost by

RGB stars in external galaxies. Understanding RGB mass loss has been a stubborn

long-standing problem. In spite of decades of effort, a reliable characterization of this

phenomenon has been difficult, even in apparently simpler systems like the Galactic

globular clusters (e.g., Catelan, 2009). The origin of this challenge lies in the nature

of globular clusters, that are now known to contain a series of chemical peculiarities

also reflected in their HB morphology (e.g., Gratton et al., 2011). Dwarf galaxies, on

the other hand, seem to be free from these chemical anomalies (Geisler et al., 2007;

Fabrizio et al., 2015; Salaris et al., 2013; Savino et al., 2015), but the intrinsic spreads
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in the age and metallicity of their stellar populations has made the study of RGB mass

loss equally difficult. Developing a method to study this phenomenon in complex stel-

lar populations is, therefore, an important step towards a more complete understanding

of both stellar and galactic evolution.

Additionally, a deeper knowledge of mass loss will allow us to obtain detailed SFHs,

back to the earliest times, for a much larger number of galaxies.With current analysis

techniques, accurate SFHs for the earliest stages of galaxy formation can only be mea-

sured if the faintest MSTOs are detected. This limits the maximum distance for this

kind of study to the edge of the Local Group. If motivated assumptions can be made

about the RGB mass loss, our method has the potential to measure the SFH from the

HB alone, which is brighter than equivalent age MSTOs. Deep Hubble Space Tele-

scope observations can already resolve the HB in galaxies outside the Local Group

(e.g., Da Costa et al., 2010; Lianou et al., 2013). Next generation facilities, such as the

Jame Webb Space Telescope, the European Extremely Large Telescope and the Thirty

Meter Telescope, will be able to resolve HB stars for hundreds of galaxies within sev-

eral Mpc from the Milky Way (Brown et al., 2008; Greggio et al., 2012; Fiorentino

et al., 2017), thus allowing accurate SFHs, back to the earliest times, for a large and

diverse sample of resolved stellar systems, covering a range of environments, and over

a cosmologically representative volume.



Chapter 4

Revisiting the multiple events of star

formation of the Tucana dSph

This Chapter is ready to be submitted.

4.1 Introduction

The formation and evolution of dwarf galaxies represents one of the central testing

grounds for many branches of extragalactic astronomy. Given the hierarchical mass

assembly predicted by cold dark matter paradigms (e.g., White & Rees, 1978), un-

derstanding the processes that shape these low mass objects, not only is important to

validate cosmological models, but has broad implications for the evolution of larger

galaxies as well.

Resolved stellar populations provide a valuable tool to peer into the past of stellar sys-

tems. The colour-magnitude diagrams (CMDs), combined with spectroscopy, gives

us the opportunity to reconstruct very detailed star formation histories (SFHs) for our

closest neighbours, as well as to probe their chemical enrichment and internal dynam-

ics (see Tolstoy et al., 2009, and references therein). While the Local Group is home

to only three massive galaxies, smaller systems are much more numerous, allowing

66
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comparative studies for a substantial sample of galaxies.

One of the discoveries coming from the observations of Local Group dwarfs is that

even very simple systems such as the dwarf spheroidal galaxies (dSphs) host complex

populations of stars, that differ in metallicity, kinematics and spatial distribution. Aside

from the very complex stellar populations of galaxies like Carina and Fornax (e.g.,

Smecker-Hane et al., 1994; Beauchamp et al., 1995; Stetson et al., 1998), this feature

has been detected also in simpler dSpshs, such as Sculptor and Sextans (e.g., Majewski

et al., 1999; Bellazzini et al., 2001; Tolstoy et al., 2004) and seems to be common

in low mass galaxies. While several explanations have been put forward to explain

this phenomenon (e.g., Salvadori et al., 2008; Revaz et al., 2009; Pasetto et al., 2011;

Amorisco & Evans, 2012a; del Pino et al., 2015), the origin of these complexities

is still debated. Clearly, an understanding of the processes that leave this imprint in

the stellar population of dwarf galaxies would be a significant step forward to explain

galactic formation and evolution.

Among the many ancient stellar systems that are part of the Local Group, of particular

interest is the Tucana dSph. Similarly to other nearby dSphs, Tucana has been found

to host distinct stellar components (e.g., Bernard et al., 2008; Monelli et al., 2010).

Unlike most of the Local Group dSphs, which are satellites of M31 and the Milky

Way, Tucana currently resides at the periphery of the Local Group and it is much more

isolated (Tucana’s distance from the Milky Way is ∼ 890 kpc, Bernard et al., 2009).

This means that this galaxy has spent at least several Gyrs away from the enviromental

disturbance of a large galaxy, potentially preserving a much more pristine imprint of

the conditions in which this galaxy formed.

However, the distance to this galaxy is also a complication when it comes to the obser-

vational characterisation. With current observing facilities, medium-resolution spec-

troscopy is only feasible for the few brightest giants of Tucana, and high-resolution

studies, fundamental to study the abundance of different chemical species, are pro-

hibitive. Photometric studies, while more viable, require depth achievable only with

cutting-edge facilities, in order to reach the faintest stars. Such observations have been

obtained for Tucana using the Hubble Space Telescope (HST) as part of the LCID
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project (Monelli et al., 2010). Nonetheless, the information that can be extracted with

photometry alone is limited, and it is often sensitive to strong degeneracies.

In this study, we take advantage of a new modelling method (Savino et al., submitted),

to model the CMD of Tucana with higher precision. This approach makes use of the

simultaneous modelling of all the CMD features observed in the CMD, to measure the

SFH with improved resolution. Making quantitative models of the HB, we obtain a

detailed measurement of the early star formation in this galaxy. In § 4.2 we describe

the dataset and the modelling approach, in § 4.3 we present and discuss the SFH, while

in § 4.4 we summarise our results.

4.2 Modelling the colour-magnitude diagram

The photometric data we use in this analysis have been acquired with the ACS camera,

on board of the HST, as part of the LCID project 1 and have been presented in Monelli

et al. (2010). The dataset consists of deep exposures in the F475W and F814W

passbands, covering a field of view of ∼ 3′.4× ∼ 3′.4 (for reference, the tidal radius

of Tucana is ∼ 3′.7). We complement these data with the catalogue of RR Lyrae

from Bernard et al. (2009), derived from the same observations. We cross-matched

the positions of the detected RR Lyrae with the photometric catalogue, substituting to

their observed magnitudes their intensity-averaged magnitudes. As this quantity is very

close to the “static” magnitude that these stars would have if they were not pulsating

(Bono et al., 1995), we are able to reconstruct the original morphology of the HB.

The resultant (F475W − F814W ) vs F814W CMD is shown in Fig. 4.1, where the

superb quality of HST photometry can be appreciated. Despite the distance of this

galaxy, stars are resolved to ∼ 1.5 magnitudes below the oldest MSTO. Among the

features that can easily be identified, we note a prominent HB and a plume of blue,

bright stars emerging from the MSTO. The HB has a complex structure. This was noted

already by Harbeck et al. (2001), but it can be better appreciated with the increased

1http://www.iac.es/project/LCID/
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Figure 4.1: The HST CMD of the Tucana dSph, from Monelli et al. (2010). The morphology
of the HB is corrected for RR Lyrae variability. The major CMD features are indicated. The
arrows mark the position of the HB gaps.

photometric precision of this dataset. The distribution of stars across the HB is not

uniform, but has three distinct clumps of stars. These are separated by lower stellar

density gaps, at (F475W − F814W ) ∼ 0.5 and (F475W − F814W ) ∼ 0.9.

We model the CMD using MORGOTH (Savino et al., submitted). MORGOTH is a SFH

recovery method that models all the evolutionary phases up to the beginning of the

thermally pulsing asymptotic giant branch. As the morphology of the HB is strongly

dependent on the RGB mass loss, this quantity is left as a free parameter and is mea-

sured along with the SFH. The total amount of mass lost on the RGB is assumed to

have a linear dependence on the metallicity only. The procedure MORGOTH uses to

treat the HB model generation ensures that the SFH and the mass loss measurements

are always physically self-consistent. See Savino et al. (submitted, chapter 3) for more

details about the method.

To generate synthetic CMD models we need several ingredients. To model the CMD



4.2. Modelling the colour-magnitude diagram 70

up to the tip of the RGB we use BaSTI isochrones (Pietrinferni et al., 2004, 2006).

These are complemented by a grid of theoretical HB tracks, from the same group,

covering a mass range of 0.5 − 1.5M�. This ensures that we are able to model even

the reddest and most massive HB stars of Tucana, as well as the progeny of the blue

straggler population. We generate the synthetic models using a Kroupa initial mass

function (Kroupa, 2001) and a binary fraction of 0.4, as done in Monelli et al. (2010).

The models are calculated covering ages from 1 to 14 Gyr, with a bins size of 0.5

Gyr, and values of [Fe/H] from –2.6 to –0.6, with a bin size of 0.2 dex. The CMD

are transformed into Hess diagrams with a bin size of 0.05 mags in both colour and

magnitude. We exclude the faintest 0.5 magnitudes from the fit, to avoid problems

related to the lowest stellar mass in our models (0.5M�). We adopt a distance modulus

(m−M)0 = 24.74 and an extinction AV = 0.094 (Bernard et al., 2009).

Due to the distance of Tucana, no direct measurements have been possible to deter-

mine the detailed chemical chemical properties of its stars. For old populations, stars

with the same global abundance [M/H], but different values of [α/Fe], will have very

similar stellar structures (Salaris et al., 1993). However, the opacity of the stellar atmo-

sphere is much more sensitive to the chemical pattern (Cassisi et al., 2004), especially

in the blue region of the spectrum, thus affecting the observed magnitudes and colours.

It is thus important to make a realistic assumption about the alpha enhancement profile

of Tucana.We assume the oldest stars to be alpha enhanced, as observed in the Milky

Way halo and in many old stellar systems. However, younger and more metal rich stars,

are likely to have a scaled-solar mixture or even be alpha depleted (Tolstoy et al., 2009).

The metallicity at which [α/Fe] starts to decrease and the slope depend on the chemical

enrichment history of the galaxy, and they are difficult to predict. For our modelling we

assume the [α/Fe] vs [Fe/H] profile of the Sculptor dSph, which has similar proper-

ties to Tucana and reliable spectroscopic measurements (Battaglia et al., 2008; Tolstoy

et al., 2009). We assume all stars with [Fe/H] < −1.84 to have [α/Fe] = 0.4. For

higher [Fe/H], the alpha enhancement decreases with d[α/Fe]
d[Fe/H]

= −0.64. In section 4.3

we discuss the impact of adopting a different alpha enhancement profile.

Finally, we need to model photometric uncertainties and incompleteness. This is done
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Figure 4.2: Observed (left) and best-fit (centre) Hess diagrams for Tucana, colour coded by
stellar density. The right panel shows the stellar count residuals, expressed in terms of the
Poisson error.

by means of artificial star tests. These tests tell us the photometric error distribution and

the completeness level as a function of position in the CMD. We use this information to

include observational effects in the synthetic CMDs. For this task, we use the artificial

star results from Monelli et al. (2010).

4.3 Results and discussion

The best fit CMD of Tucana is showed in Fig. 4.2. The agreement with the observed

CMD, also shown, is very good. The morphology of all the major stellar evolution-

ary phases are reproduced. The colour extension of the model HB matches what is

observed. We note that, although our model HB is not uniformly populated, it is not

as clumpy as the observed HB. This creates strong residuals on the position of the ob-

served HB gaps. The other major difference is that we seem to slightly underpredict

the stellar counts in the reddest part of the HB. We will come back to this issue later in

this section.
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(a) (b)

Figure 4.3: Total RGB mass loss as a function of metallicity, as measured from our modelling.
The black solid line shows our measurements and the dashed black lines mark the one sigma
confidence interval. a) Comparison with measurements obtained, on globular clusters, by Grat-
ton et al. (2010) (blue) and Origlia et al. (2014) (green). b) Comparison with measurements
obtained, on the Sculptor dSph, by Salaris et al. (2013) (red) and Savino et al. (submitted)
(magenta).

From the CMD modelling, we find that RGB stars lose mass following the relation:

∆MRGB = [Fe/H]× (0.089± 0.014) + (0.300± 0.025)M� (4.1)

with a correlation between the slope and zero-point of the relation of 0.995. The RGB

mass loss of our model is shown in Fig. 4.3, along with other measurements from

the literature, derived from Galactic globular clusters and from the Sculptor dSph. In

agreement with other studies, we find that stars of increasing metallicity lose more

mass. Quantitatively, our measurement lies in between the results of Gratton et al.

(2010) and Origlia et al. (2014), obtained from Galactic globular clusters, and it is

compatible with the measurement of Salaris et al. (2013) and Savino et al. (submitted)

for the Sculptor dSph. In spite of the sizeable uncertainties on the slope and zero-

point of the mass loss relation, then correlation between this two quantities makes the

uncertainties on the integrated RGB mass loss small. The nominal uncertainty on the

total mass loss is less than 0.003M� for [Fe/H] between –1.9 and –1.6, where most of

Tucana’s stars are. However, the mass sampling of our HB model grid is 0.005M�, so

this number is a more realistic lower limit for the measurement uncertainty. For stars

outside this metallicity range, where we have less constraining power, the measurement
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(a) (b)

Figure 4.4: a) Best-fit SFH in the age-metallicity plane, colour coded by star formation rate. b)
Corresponding star formation rate as a function of cosmic look-back time.

error is smaller than 0.015M�.

Fig. 4.4 shows the SFH corresponding to our best fit CMD, in the age-metallicity

plane (Fig. 4.4a), and the star formation rate as a function of cosmic look-back time

(Fig. 4.4b). The majority of Tucana’s stars formed more then 11 Gyr ago, in line with

previous measurements (Monelli et al., 2010). However, our model contains an ex-

tended tail of star formation, persisting until 5-6 Gyr ago. We stress that this younger

and more metal rich population is not caused by the blue plume above the MSTO,

which is likely to have a strong blue straggler contamination, and which is found in the

sparse very young and metal poor bins of our SFH. Integrating the SFH, with a Kroupa

initial mass function (Kroupa, 2001), results in a stellar mass of 3.13 ± 0.14 · 106M�

within the observed field of view.

The SFH is clearly not unimodal, but rather it is composed by three distinct star forma-

tion events. The two stronger bursts occurred very early and are separated by ∼ 1Gyr,

with the second being 0.6 dex more metal rich than the first one. The last star forma-

tion event, of lower intensity, started about 10 Gyr ago and lasted for several Gyr, with

metallicities as high as [Fe/H] = −1.0.

The presence of three distinct events of star formation in the SFH of Tucana is corre-

lated with the clumps observed in the stellar distribution of the HB. Fig. 4.5, shows a

comparison between the observed HB of Tucana and the synthetic HB coming from

our model. In the synthetic CMD we identify the stars that belong to the three distinct
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Figure 4.5: Upper panel: the observed HB of Tucana. Lower panel: the synthetic HB from our
model. Stars belonging to the oldest star formation event are coloured in blue, those belonging
to the intermediate event are coloured in green and stars belonging to the most recent event are
coloured in red. The dashed lines mark the approximate position of the instability strip.

episodes of star formation, and colour code them accordingly. It is not surprising that

there is a trend along the extension of the HB. Old and metal poor stars tend to reside

on the blue end of the HB. Decreasing age and increasing the metallicity cause HB

stars to have much redder colours. The age distribution of the SFH matches the posi-

tion of the HB clumps. We do not fully reproduce the clear gap between the old and

the intermediate clump. This happens because we are limited by resolution effects,

and it means that the two older bursts of star formation have a narrower distribution

in age and metallicity than predicted by our model. This limitation of our resolution

is determined in part by the photometric errors. The other major discrepancy between

our model HB and the observed one is that our redder HB clump is less populated than

observed (Fig. 4.2). Since, the redder clump is associated with the latest star formation

event, this may imply that the third star formation episode experienced by Tucana was

stronger than we measure, possibly comparable with previous two.

Our modelling is not the first detection of distinct stellar populations in Tucana. Exam-

ining the luminosity function of the RGB, Monelli et al. (2010) reported the presence

of two distinct RGB bumps. This was associated with the presence of two distinct

stellar components, differing in metallicity. Another independent detection has been

made, by the same group, looking at pulsational properties of the RR Lyrae (Bernard
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et al., 2008). That study divided the RR Lyrae into a “bright” and a “faint” sample,

depending on their intensity averaged magnitude, finding that the two groups defined

different sequences in the pulsation period-amplitude diagram and suggesting a differ-

ence in metallicity between the two groups. The authors of these studies concluded

that Tucana experienced two distinct events of star formation, very early on during its

formation and separated by a short amount of time. Such explanation is confirmed

by our synthetic HB. From Fig 4.5, it can be seen that stars belonging to the inter-

mediate event enter the instability strip already on the ZAHB. Because of this, they

are predominantly detected as low luminosity RR Lyrae. In contrast, stars belonging

to the oldest and most metal poor event spend most of their life on the blue HB, and

they cross the instability strip only when evolving towards the asymptotic giant branch.

This difference in metallicity and evolutionary stage explains the higher luminosity of

these stars.

The stars that formed during the final star formation event are confined in the reddest

clump of the HB. These stars never cross the instability strip, and hence never become

RR Lyrae. This is why no claims for a third burst of star formation in Tucana could

be made by previous studies. However, the presence of stars much younger and more

metal rich than previously thought is required to explain the HB morphology. Fig. 4.6

shows again the observed HB of Tucana, superimposed to a BaSTI isochrone with

age of 8 Gyr and [Fe/H] = −1.27 and to a ZAHB of the same metallicity. The

ZAHB marks the start of the helium burning phase for stars of the same metallicity but

different mass, with mass increasing towards redder colours. This stellar population we

chose corresponds to the youngest and most metal rich location in the age-metallicity

plane, where significant star formation was thought to have happened, according to

previous SFH measurements (Monelli et al., 2010). If the RGB stars of this population

lose 0.19M�, as predicted by our model, they will start quiescent helium burning on the

location marked by the blue dot. Since most of the stars on the HB clump are redder

than this position, they must have higher stellar mass, i.e., they either experience a

much lower amount of RGB mass loss or they come from a younger and/or more

metal rich population. The most massive HB stars that can be produced by the stellar
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Figure 4.6: Observed HB and RGB of Tucana. A theoretical isochrone for t= 8 Gyr and [Fe/H]
= -1.27, and the corresponding ZAHB locus, are superimposed. The blue point marks the
ZAHB position of HB stars experiencing the RGB mass loss as measured in this study. The
green point marks the ZAHB location corresponding to no RGB mass loss, i.e., the maximum
HB mass obtainable from this stellar population.

population displayed in Fig. 4.6, start quiescent helium burning on the location marked

by the green dot. This position corresponds to no RGB mass loss. Although this

location on the ZAHB is near the red end of Tucana’s HB, there are still a few redder

stars, that are not compatible with assumed age and metallicity. More importantly, a

null RGB mass loss is strongly unrealistic. Assuming a more reasonable mass loss

value implies that most of the stars on the red HB have formed at more recent times or

with higher metal content, in accordance with our measurement.

Our modelling relies on a number of measurements and assumptions to create the syn-

thetic stellar population models. For this reason it is important to do a sanity check and

verify the robustness of our results. For this reason, we repeated the SFH measurement

many times, varying parameters such as distance, reddening or binary fraction. We also

used different [α/Fe] vs [Fe/H] relations, varying the knee position and the slope of

the relation. We also repeated the measurement assuming all stars to have either alpha-

enhanced ([α/Fe] = 0.4) or scaled solar composition. Although these tests changed

slightly the details of the SFH and of the RGB mass loss law, none of the assumed

set-ups significantly altered the main result. The strongest effect on the SFH, espe-

cially when changing the [α/Fe] values, is the ability to resolve the two oldest bursts

of star formation, which can become slightly blended together. However, the previ-
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(a) (b)

Figure 4.7: Our selection criterion to isolate the three HB clumps of Tucana. The red and
green box are designed to minimize contamination from less massive stars evolving towards
the AGB. b) Cumulative radial distribution of the HB stars in the three clumps.

ous detections using the RGB bump and the RR Lyrae properties, coupled with the

peculiar structure of Tucana’s HB, make us confident of the existence of two different

events of star formation in the early history of this galaxy. We also stress that the tail

of more recent and metal rich star formation is the most resilient to systematics in the

modelling parameters, and it is always present in our SFH.

As an additional piece of information, we can use the structure of the HB to trace the

spatial distribution of star formation during the three events of Tucana’s SFH. The gra-

dient in the HB morphology of Tucana was first reported by Harbeck et al. (2001) who

concluded it was sign of a metallicity gradient. However, the quality of the data avail-

able at the time allowed only to a comparison between red and blue HB, with the first

one sensitive to contamination from the RGB. With the high photometric precision of

the dataset at our disposal, we can perform a much more precise selection, measuring

the spatial distribution of HB in the three different clumps. This is shown in Fig. 4.7.

The coloured boxes in Fig. 4.7a represent our selection for the old, intermediate and

young age clumps. Care has to be taken when selecting stars in the intermediate and

red HB clumps, as these regions are contaminated by lower mass stars that are evolv-

ing towards the asymptotic giant branch. These stars create the bifurcation seen at

(F475W − F814W ) > 0.8, and if they are not removed properly, they will soften

the true radial gradient. For this reason we selected stars in the intermediate and red

HB clump to minimise this contamination. Our final selection consists of 367 stars in
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the blue clump, 206 in the intermediate clump and 308 stars in the red one.The radial

distribution of the three clumps is shown in Fig. 4.7b. As expected, we find a spatial

gradient in the distribution of HB stars, which reflects a different spatial distribution

of the different events of star formation. The older the population, the more diffuse is

its spatial distribution. The younger stellar population, corresponding to the red HB

clump is the most centrally concentrated. Such radial segregation is statistically signif-

icant. A two-sample Kolmogorov-Smirnov test shows that the young population has a

probability of 1.69 · 10−6 to be drawn from the spatial distribution of the intermediate

population, and a probability of 1.89 · 10−13 to have the same distribution of the old

population. On the other hand, the old and the intermediate stellar populations have a

4% probability to have the same radial distribution. Given the non collisional nature

of stellar populations in dSphs and the isolated nature of Tucana, it is likely that these

distributions reflect the original conditions in which these populations formed (or were

accreted) in Tucana.

4.4 Conclusions

In this paper we carried out an accurate CMD modelling of the dwarf galaxy Tucana,

that provided precise measurements for the SFH of this galaxy and for the RGB mass

loss experienced by its stars.

The increased precision on the determination of the RGB mass loss provides useful

constraints to theoretical models that aim to reproduce and characterise the mecha-

nism beyond this poorly understood phenomenon. A comparison with previous mea-

surements on the Sculptor dSph (Fig. 4.3b), shows good agreement within the uncer-

tainties, suggesting that stars in different galaxies might experience similar amount

of mass loss. Clearly, the modelling of deep CMDs from other external galaxies is

required to ascertain whether a universal “mass loss law” exists for dwarf spheroidal

galaxies.

The simultaneous modelling of the HB and of the MSTO revealed that the SFH of
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Tucana is composed of three independent star formation events. The radial distribution

of Tucana’s HB stars reveals a different concentration for the different star formation

events, with younger stars preferentially found in the central regions of the galaxy.

The complexity of stellar populations in dSphs, and their spatial gradients, have been

long known (e.g., Harbeck et al., 2001; Bellazzini et al., 2001; Tolstoy et al., 2004).

However, whether these galaxies host distinct stellar populations or a smooth gradient

in age or metallicity it is still debated. Our result suggests that dSphs are composed by

discrete stellar subpopulations.

The origin of these complex stellar populations is also debated. Scenarios for the for-

mation of these galaxies include galaxy mergers (Amorisco & Evans, 2012a; del Pino

et al., 2015), in situ star formation modulated by supernova feedback (Salvadori et al.,

2008; Revaz et al., 2009) or tidal interaction with larger galaxies (Pasetto et al., 2011).

At present, observational evidence is still unable to provide a definitive answer. Thanks

to the high age resolution that our approach provides, we have, for the first time, been

able to assign a precise formation time to the subpopulations of a dSph. This infor-

mation complements the existing picture provided by the kinematic measurements and

the chemical composition analysis of dwarf galaxies in the Local Group, representing

a step forward to the solution of this problem.



Chapter 5

A Strömgren photometric analysis of

the globular cluster M13.

This Chapter has been published as Savino et al. (2018).

5.1 Introduction

Once thought to be the quintessential simple stellar populations (Renzini & Buzzoni,

1986), globular clusters (GCs) have revealed a degree of complexity in their properties

that is now challenging our understanding of these celestial objects.

Over the past few decades, a growing body of spectroscopic and photometric evidence

has shown the presence of multiple stellar populations in nearly all the Galactic GCs

(e.g. Carretta et al., 2010; Piotto et al., 2015), and also in those of nearby galaxies (e.g.

Letarte et al., 2006; Mucciarelli et al., 2009; Larsen et al., 2014; Dalessandro et al.,

2016). Such stellar populations are characterized by marked differences in the chemi-

cal abundance of light elemental species. A fraction of stars in GCs present a chemical

abundance pattern that is compatible with that of halo stars of the same metallicity.

This group of stars is called first, or primordial, population. However, a significant

fraction of GC stars show enhancement or depletion of certain light elements (like C,

80
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N, O, Na, Mg, Al), in the form of very clear correlations and anticorrelations. These

stars, even when belonging to several subgroups, are collectively known as the sec-

ond, or enriched, population. These light element abundance ‘anomalies’ appear to be

linked to an enhancement of the helium content in the chemical mixture from which

these stars originated (reviews for photometry and spectroscopy can be found in Piotto,

2009; Gratton et al., 2012).

Many theoretical models have been put forward to try to explain the multiple popu-

lation phenomenon (e.g., Ventura et al., 2001; Decressin et al., 2007; de Mink et al.,

2009; Bastian et al., 2013; Denissenkov & Hartwick, 2014). Most of them require the

material of second population stars to be first processed by a class of objects called pol-

luters, that are capable of sustaining high temperature CNO cycle reactions. Multiple

episodes of star formation are required by some of these scenarios. The precise nature

of these polluters is scenario-dependent and it remains a matter of debate. While each

model is able to reproduce some of the globular cluster observed properties, each one

of them has its own specific limitations (e.g., Gratton et al., 2012; Bastian et al., 2015;

Renzini et al., 2015).

A crucial piece of information is thought to reside in the spatial distribution of mul-

tiple populations within a cluster. Differences in their radial distribution are expected

for most scenarios where multiple star formation events are present. This prediction

is complicated by the collisional nature of GCs. Over time, dynamical evolution natu-

rally erases any difference in the initial conditions of the two populations. This effect is

faster in the central regions of a cluster, where dynamical timescales are shorter. How-

ever, it has been shown by means of numerical simulations (Vesperini et al., 2013)

that GCs can retain some memory of their primordial configuration, in particular in the

external regions.

An ideal dataset to assess this problem would consist of chemical information for a

large sample of stars over a wide field of view. While modern multi-object spec-

trographs have substantially increased the number of spectra, the stellar samples for

which we have high-resolution elemental abundances are still too small to trace radial

distributions in a reliable way.



5.1. Introduction 82

Photometric studies, on the other hand, have the advantage to efficiently include a

much higher number of stars, provided that there is a way to distinguish the differ-

ent populations. Since the work of Marino et al. (2008) and Yong et al. (2008) it has

become clear that appropriate combination of ultra-violet and optical photometric fil-

ters can reveal light element abundance spreads on the RGB. The most powerful tool

to perform this kind of analysis is probably represented by the WFC3/UVIS camera,

because it offers a filter combination covering features of C, N and O (the last not

accessible from the ground – Milone et al., 2012), on board of the Hubble Space Tele-

scope (hereafter HST). Unfortunately, the size of the HST field of view is small and

rarely covers more than one half-light radius for nearby GCs. Fortunately, there are

other filter combinations, involving the ultraviolet, which can be efficiently used, in

particular narrow and medium-band filters (see, e.g., Lee, 2017, for a thorough study

of M5 using a very effective choice of photometric filters).

In this paper we present the analysis of the multiple populations in the cluster NGC6205

(M13). M13 is a northern GC with a metallicity of [Fe/H] ' −1.55 dex (Sneden et al.,

2004; Carretta et al., 2009) that exhibits strong light element variations (Sneden et al.,

2004; Cohen & Meléndez, 2005; Johnson & Pilachowski, 2012). In addition, Da-

lessandro et al. (2013), by means of synthetic horizontal branch modeling, derived a

helium spread of ∆Y ' 0.05.

To study multiple populations of M13 we make use of Strömgren photometry, prob-

ing the cluster out to a distance of 6.5 half-light radii. The power of medium band

Strömgren filters to identify globular cluster multiple populations has been firstly rec-

ognized by Yong et al. (2008). As demonstrated by Carretta et al. (2011) and Massari

et al. (2016), in this analysis we exploit the efficiency of the cy index in maximizing

the effect of carbon and nitrogen abundance variations, to identify the cluster multiple

populations and to investigate their spatial distribution. In § 5.2 we describe the dataset

employed for this analysis, in § 5.3 we present our final photometric catalogue, while

§ 5.4 shows the multiple population identification and characterization. We discuss our

results and conclusions in § 5.5.
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Figure 5.1: Archival image of M13 from Sloan Digital Sky Survey. The solid red box is the
field of view of our dataset for WFC chip four. The solid green box is the field of view of NOT
observations from Grundahl et al. (1998). The dashed blue circle marks M13 half-light radius.

5.2 Data reduction

Our primary dataset consists of archival images, acquired with the Isaac Newton Tele-

scope - Wide Field Camera (INT-WFC). The INT-WFC has four chips, each covering

a field of view of 12.1×23.1 arcmin, with a pixel scale of 0.33 arcsec. The data for this

analysis come only from chip four. Using a single chip prevents any problem related to

relative calibration between different detectors, allowing for more precise photometry.

This choice is possible as chip four covers most of the extent of M13 (∼ 6.5 half-light

radii), which is sufficient for our goal. The analysed field of view is shown in Fig. 5.1.

The images have been acquired using the Strömgren uvby filters, and they come from

different observational campaigns, covering different nights from 2004 June 19 to 2013

June 14. A summary of the employed exposures can be found in Table 5.1.

The image pre-reduction has been carried out using the IRAF package1. For each

night, we used ten biases and between five and ten flat-fields per filter. We computed

3σ clipped median biases and flat-fields using the zerocombine and flatcombine IRAF

1IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.



5.2. Data reduction 84

Table 5.1: Exposure times, number of frames and average seeing of our dataset.

Filter texp nexp seeing
s arcsec

60 3 1.0
u 120 4 1.2

45 2 1.1
v 60 3 1.2

120 2 1.2
30 2 1.2

b 60 3 1.1
80 2 1.4
30 2 1.2

y 60 3 1.1
80 2 1.3

tasks. These images have been used to correct the raw images by means of the ccdproc

IRAF task.

The photometric reduction of the scientific images has been carried out using DAOPHOT

and ALLSTAR (Stetson, 1987) to analyse individual exposures. For each of them,

we modelled the point spread function as a Moffat function (with β = 2.5; Moffat,

1969), using 80 bright, isolated and unsaturated stars. We allowed a linear variation

of the model parameters across the field of view. These models were used to build a

stellar catalogue for each image. The catalogues were combined using DAOMATCH-

DAOMASTER to estimate mean magnitudes and related uncertainties in each filter.

Any zero-point offset caused by different exposure times was corrected by the soft-

ware, which took into account every star detected in at least two exposures. This

choice accounts for pointing differences, maximizing our final field of view.

Among these catalogues, the u filter had the highest number of detections so we used it

as a reference to refine the analysis of all our images with ALLFRAME (Stetson, 1994).

We then used DAOMATCH-DAOMASTER to create our final multi-band photometric

catalogue. Since we want to analyse a combination of different filters, we included

only those stars that were detected in all filters.

Stellar positions were transformed onto the equatorial reference by using the 2MASS
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Figure 5.2: The magnitude difference as a function of magnitude for the bright stars in common
between our catalogue and Grundahl et al. (1998). The four panels show the photometric filters
used in this work. The red points are the stars used to calibrate the magnitudes of our dataset.
The dashed black lines are the zero-point corrections estimated for our photometry.

astrometric system (Skrutskie et al., 2006). In order to do so, and for every other

cross-match required by our analysis, we used the software CATAPACK2, developed by

P. Montegriffo. For each filter, the magnitudes have been calibrated onto the Strömgren

photometric system using the M13 catalogue from Grundahl et al. (1998), made pub-

lic at http://www.oa- roma.inaf.it/spress/gclusters.html (Calamida et al., 2007). The

observations had been obtained with the Nordic Optical Telescope (NOT) on a small

field of view of about 4× 4 arcmin (see Fig. 5.1), with median seeing and pixel size of

0.6 and 0.175 arcsec, respectively. The zero-points were estimated using bright stars

in common between the two datasets, adopting a 3σ-clipping procedure to exclude

outliers. We verified the absence of possible colour correction terms between the two

datasets. Figure 5.2 shows the stars used for the calibration, and the correspondent

estimated zero-points for each filter. The complete catalogue will be made available

through the CDS.

2www.bo.astro.it/∼paolo/Main/CataPack.html
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Figure 5.3: The photometric uncertainty as a function of magnitude for all stars with |sharp |<
0.3. The red points are the stars selected by our photometric error cut. The dashed vertical lines
mark the position of the main sequence turn-off.

5.3 Colour-magnitude diagram

Our goal is to characterize M13 multiple populations on a photometric basis, and thus

precise and reliable magnitudes are essential. For this reason, we applied a quality

selection to our catalogue, to exclude stars with bad magnitude estimates, as well as

non-stellar objects (background galaxies, cosmic rays, bad pixels, etc.) that were not

identified properly during the photometric reduction.

We first applied a selection on the basis of DAOPHOT sharp parameter. This parameter

is defined to be zero for point-like sources. A large positive sharp value typically means

that the source is extended. A large negative sharp value means that the object is much

smaller than the point spread function width, so it is likely to be an artifact. With that

in mind, we excluded all the sources with |sharp |≥ 0.3.

Figure 5.3 shows the photometric error distribution as a function of magnitude, after

the cut in sharp. We use this distribution to clean our sample further. We include

only those stars that, in all four filters, are within three standard deviation from the
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Figure 5.4: M13 (v − y) vs y CMD. Left panel: the entire photometric catalogue. Right
panel: only the stars selected by our cleaning criteria. Green diamonds are AGB stars with
spectroscopic measurements (see § 5.4.1 for details).

mean photometric uncertainty at a given magnitude. The stars that do not satisfy this

criterion are marked as black points in Fig. 5.3.

Figure 5.4 shows the resulting (v − y) vs y colour magnitude diagram (CMD) before

and after the selection. Our cleaning criteria are able to exclude most of stars scattered

across the CMD, eliminating most of the potential contaminants. The cleaned sample

makes each evolutionary phase more defined, as it can be seen by the thinness of the

RGB.

Despite the absence of exposures shorter than 30 seconds in our dataset, we are able to

recover the magnitude of bright giants up to y ∼ 12. On the faint end we are able to

detect stars ∼ 4 magnitudes fainter than the main sequence turn off.

5.4 M13 multiple populations

As it has been demonstrated by numerous studies (e.g., Yong et al., 2008; Carretta

et al., 2011; Sbordone et al., 2011; Roh et al., 2011; Massari et al., 2016), Strömgren
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Figure 5.5: M13 CMD in the cy index versus the y magnitude, extracted from our final cata-
logue. Average error bars in cy are plotted to permit an easy comparison with the width of the
RGB.

photometry is a powerful tool to characterize the chemical abundance of GC red giant

stars. The small width of Strömgren filters, together with their characteristic wave-

length, makes them sensitive to the strength of wide molecular features, such as the

CN, CH and NH bands (see e.g. fig. 12 in Carretta et al., 2011).

In particular, the cy index, defined by Yong et al. (2008) 3, has the advantage of being

less sensitive to temperature than the commonly used c1 index, and it strongly corre-

lates with the nitrogen abundance. Figure 5.5 shows the cy vs y CMD of M13. The

RGB clearly splits in two sequences, and the average spread is not compatible with the

photometric uncertainties.

5.4.1 Spectroscopic confirmation

Given the correlation between the cy index and the nitrogen abundance, we expect M13

multiple populations to reside in different regions of the RGB in Fig. 5.5. In particular,

we expect N-poor stars to be located on the left side of the cy vs y RGB, while the

3cy = c1 − (b− y), with c1 = (u− v)− (v − b)
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N-rich giants should occupy the right side. As M13 is a well studied globular cluster,

we can confirm this, extending the work done by Carretta et al. (2011) on the original

NOT data, and trace the cy boundary between different populations, by comparing the

results from our catalogue with other independent analyses.

We examine RGB stars for which light element abundances are available. We cross-

match our photometric catalogue with three different spectroscopic samples, taken

from Sneden et al. (2004), Cohen & Meléndez (2005) and Johnson & Pilachowski

(2012). Across our field of view, we detect 31, 22 and 106 stars, belonging respec-

tively to these datasets.

We use these elemental abundances to separate the different populations, with the

criterion introduced in Carretta et al. (2009). We classify our stars into primordial

(P), intermediate (I) and extreme (E) populations, based on their [O/Fe] and [Na/Fe]

abundances. We call P population those stars with a [Na/Fe] abundance between

the minimum measured value [Na/Fe]min (estimated excluding obvious outliers) and

[Na/Fe]min + 0.3. The I and E populations are defined as the non-P stars with [O/Na]

> -0.9 dex and [O/Na] < -0.9, respectively.

Given the intrinsic differences among the three spectroscopic analyses, such as the

spectral resolution and the choice of NLTE corrections, we prefer to apply this crite-

rion separately for each sample, rather than consider all the abundance determinations

together. In this way, we avoid the problem of possible zero-point offsets between the

different elemental abundance samples.

An additional advantage of treating the samples individually is the presence of stars

in common among them, that can be used to check the consistency of the different

abundance scales. We have a total of 29 stars with multiple elemental abundance de-

terminations. The catalogues from Sneden et al. (2004) and Johnson & Pilachowski

(2012) have 26 stars in common, of which four are also present in Cohen & Meléndez

(2005). The common targets between Cohen & Meléndez (2005) and Johnson & Pila-

chowski (2012) are seven.

The classification of these stars is in excellent agreement, with only three stars having
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Figure 5.6: M13 cy vs y CMD (black dots). The diamonds are the stars for which we have
spectroscopic data, divided into primordial (red), intermediate (blue) and extreme (green) pop-
ulations. The empty diamonds are stars that we identify as AGBs.

discordant classifications. Visual inspection reveals that these stars are located near the

boundaries, in the parameter space, used to define the different populations. Thus, in

principle, these different classifications are compatible with the spectroscopic errors.

Given this classification issue we removed these three stars from our sample.

Figure 5.6 shows the spectroscopic targets, colour coded by population, superimposed

to our cy vs y CMD. Unfortunately, most of the elemental abundances are available

only for very bright stars, where the pseudo-colour cy is unable to separate the popu-

lations. Nonetheless, we reach magnitudes as faint as that of the RGB bump, where

a clear separation is seen between the primordial and the enriched populations. It has

already been shown (Carretta et al., 2011), that the optimal separation in cy is obtained

for stars at the level of the RGB bump and below. The result shown in Fig. 5.6 confirms

our ability to use photometry to distinguish between primordial and enriched popula-

tions. The mostly clean segregation of the two populations in cyallows us to define a

photometric criterion to classify M13 stars based on their position on the RGB. As our

spectroscopic sample is only representative of stars with y < 15, the classification of

fainter RGB stars unavoidably requires an extrapolation of the trend we observe.
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It is interesting that the stars with extreme chemical enrichment are mainly found near

the tip of the RGB. This behaviour has already been mentioned by the authors of the

three spectroscopic studies (note that the different number of E stars between our work

and Johnson & Pilachowski, 2012, is due to different classification criteria). There is

only one E star that falls in the magnitude range where the cy spread is significant. As

this is not enough to distinguish I and E stars on a photometric basis, in the rest of the

analysis we will collectively refer to the I and E stars as the enriched population.

It should be noted that M13 has for long time been the prototype of a GC with very

high O depletion, before the analysis of more extreme clusters, in particular NGC2808

(Carretta et al., 2006). Such clusters, however, do not show an excess of extreme

stars near the RGB tip. In the case of NGC2808, this can be seen in the analysis

of Carretta (2015). In spite of tentative explanations (such as the presence of extra

mixing in bright stars, suggested by D’Antona & Ventura, 2007), the unique behaviour

of very O-depleted stars in M13 still has to be understood properly. In addition, the

presence of kinematic peculiarities in the extreme stars (Cordero et al., 2017), makes

this population a very interesting subject for further investigation.

As a final remark, we have elemental abundances for a large sample of asymptotic giant

branch (AGB) stars (empty symbols in Fig. 5.6). The AGB nature of these stars is more

easily seen in Fig. 5.4 (green diamonds), where they clearly separated from the RGB.

Many of the AGB show [O/Fe] and [Na/Fe] ratios typical of the enriched population.

In particular, we classify 15 AGB stars to be part of the enriched population while

only two AGB show elemental abundances compatible with the primordial population.

While the fraction of enriched stars on the AGB (88.2+4.7
−23.2 per cent) is somewhat higher

than that observed on the RGB (see § 5.4.2), the uncertainties coming from the small

sample size fully account for this difference.

This detection is interesting in the light of the recent controversy on the presence of

second population stars on the AGB of globular clusters (see, e.g., Campbell et al.,

2013; Lapenna et al., 2016; MacLean et al., 2016; Massari et al., 2016; Lardo et al.,

2017; Gruyters et al., 2017). Stellar evolution theory predicts a fraction of enriched

stars on the AGB of GCs, comparable or lower than what observed on the RGB de-
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Figure 5.7: M13 cy vs y CMD (black dots). The red and blue dots represent, respectively, the
primordial and enriched population as selected by our photometric criterion. The upper and
lower magnitude range for our selection have been obtained by comparison with HST data.
See the text for more details.

pending on the horizontal branch morphology. However, the presence of these stars

is currently debated, with different studies that yield contrasting results. It should be

noted, that a scenario where second population stars skip the AGB altogether is hard

to reconcile with standard stellar evolution, even when invoking extreme mass loss

(Cassisi et al., 2014). Our detection in M13 favours enriched stars to ascend the AGB

phase, as predicted by stellar population models.

5.4.2 Radial profiles

The photometric criterion we derived from our comparison with spectroscopy allows

us to assign a population membership to RGB stars based solely on their position in

the cy vs y CMD (Fig. 5.7), where we have already applied the refined classification

from a comparison with HST data (see below, Fig. 5.8). In order to avoid foreground

contamination we apply the procedure described in Frank et al. (2015), to select gen-

uine RGB stars on the basis of their position in the (b − y) vs c1 and (b − y) vs m1
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planes.

According to this distinction, the fraction of enriched stars in M13 is 74.5+1.9
−2.2 per cent.

For comparison, the fraction estimated from the spectroscopic sample is 79.8+3.2
−4.7 per

cent. Before we proceed to the spatial characterization of these populations, some

preliminary considerations need to be made regarding the completeness of our stellar

catalogue.

For dense stellar systems such as Galactic GCs, the completeness level of post main

sequence stars is driven mainly by crowding. Completeness varies with the radius of

the globular cluster, with stars preferentially lost in the centre of the cluster rather than

in the outskirts. The observed radial distribution is therefore less concentrated than the

intrinsic one. For completely mixed populations, this effect is irrelevant, as stars are

lost in the same way in the different populations. If one of the stellar populations is

more concentrated than the others, it is affected more by incompleteness, and the net

effect is a softening in the radial distribution difference.

This observational bias can be potentially important for INT observations. While the

large field of view makes this telescope a great tool to study the external regions of the

cluster, the typical seeing of our images makes it quite sensitive to the crowding of the

cluster core.

To assess this issue, we make use of HST observations from the ACS Globular Cluster

Survey (Sarajedini et al., 2007). We compare our catalogue with HST data in the inner

90 arcsec of the cluster to estimate the difference in the number of detected RGB stars.

Even though this comparison only permits us to derive only a relative completeness

fraction, the performance of HST in crowded fields is such that nearly all the bright

evolved stars are detected, even in the densest region of the cluster.

This instructive comparison allows us to determine that, over the central 90 arcsec

of the cluster, the level of completeness of our catalogue is approximately 35 per cent.

Such a low fraction of detected stars is mainly the consequence of our very conservative

selection criteria. The cuts in sharp and photometric error described in § 3, while

necessary to ensure an accurate characterization of the RGB in terms of cy index, reject
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a large number of stars with poorly determined magnitudes. This is verified by looking

at the completeness level of the catalogue prior to any cleaning selection, and this is

nearly 100 per cent.

The low completeness level in the cluster centre makes it very difficult to asses the

presence of different radial concentration with the INT observations of this region. For

this reason we decided to use our catalogue to study the external regions of M13, while

in the centre we make use of more accurate HST observations. As previously demon-

strated. (e.g., Milone et al., 2012), HST is a very powerful instrument to study the

multiple populations of globular clusters. We thus make use of data from the prelimi-

nary data release of the UV Legacy Survey of Galactic Globular Clusters (Piotto et al.,

2015; Soto et al., 2017). We follow the procedure described in Milone et al. (2017)

to distinguish primordial and enriched populations on the basis of M13 ‘chromosome

map’ (see fig. 5 of Milone et al., 2017). Chromosome mapping is a technique that

exploits the position of stars on the RGB, using different filter combinations, to dis-

tinguish between primordial and enriched populations. In particular, the two indices

used are sensitive to light element and helium variations respectively. The fraction of

enriched stars recovered with this method is 80.4+0.9
−1.0 per cent.

Before analysing the multiple population distribution in M13, it is important to asses

the consistency of the results obtained with different instruments. Because of the dif-

ferent photometric filters of INT and HST, as well as the different methodologies em-

ployed to separate the two populations, we need to verify that the primordial and en-

riched populations as recovered by HST are consistent with those in our INT data. We

cross-match the two catalogues and asses how the HST-defined multiple populations

distribute in the cy vs y CMD, and vice versa (Fig. 5.8). We found that stars labelled as

primordial or enriched on the basis of the HST chromosome map tend to separate in the

cy distribution. The agreement with the criterion we defined using spectroscopic data

is good, at least for the bright RGB, where INT photometric errors are small enough

to permit an accurate classification. We make use of this comparison for a further cal-

ibration of our photometric criterion and to avoid extrapolation for stars with y < 15.
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(a)

(b)

Figure 5.8: a) M13 cy vs y CMD from the INT catalogue (black dots). The diamonds are the
stars in common with the HST catalogue, divided into primordial (red) and enriched (blue) on
the basis of the HST chromosome map criterion. The solid green line shows the photomet-
ric criterion defined by equation 5.1. The dotted black lines mark the magnitude range that
we use for our analysis. b) Chromosome map built from the HST dataset (black dots). The
diamonds are the stars in common with the INT catalogue, divided into primordial (red) and
enriched (blue) on the basis of the INT photometric criterion. The solid green line shows the
criterion used to separate multiple populations, corresponding to the mean ridge line for the
lower sequence, shifted by three times the photometric uncertainty.
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Figure 5.9: Upper panel: the cumulative distributions for the primordial (red) and enriched
(blue) populations in the central regions of M13, obtained using HST data from the UV Legacy
Survey of Galactic Globular Clusters. Lower panel: the number ratio of enriched stars to
primordial stars in different radial bins.

In this way the division between primordial and enriched population is given by:

cy = 0.014 · y + 0.407 (5.1)

which is applied for 13.5 < y < 16 and−0.3 < cy < 0.07. The magnitude range is the

one for which the HST and INT multiple populations are in good agreement. We note

that there are stars for which the two classification criteria don’t match. In the colour

and magnitude range specified above, the fraction of these stars is around 15%.

The radial distribution of the two populations that we find with HST is shown in

Fig. 5.9. The two radial profiles are almost indistinguishable, suggesting a complete

spatial mixing of the two populations. A Kolgomorov-Smirnov (KS) test gives us a

probability of 94.9 per cent that the two distributions are drawn from the same parent

population. As mentioned before, the field of view of HST allows us to cover only

the inner 90 arcsec of the cluster, which correspond to slightly less than one half-light

radius. The complete mixing of the two populations is thus unsurprising, as the dy-
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Figure 5.10: As for Fig. 5.9 but for the outer regions of M13. These distributions have been
obtained using our INT catalogue.

namical timescales in this region are very short.

The occurrence of complete mixing in the cluster centre simplifies the study of outer

spatial distributions. By definition, the shape of a cumulative distribution is influenced

by the global properties of the sample. Making a separate cumulative distribution for

the outer regions could in principle have led to a biased comparison, as the central

properties were not taken into account. However, the high level of mixing in M13 core

reassures us that any difference in the global spatial distribution of M13 multiple pop-

ulations would be driven by the stars in the outer regions. In this context, a comparison

of the outer regions alone is relatively safe.

As it can be seen from Fig. 5.10, the trend observed in the centre seems to continue also

in the outskirts of cluster. The KS probability that the primordial and enriched radial

distributions are representations of the same parent population is 65.2 per cent. While

this test does not allow us to conclusively exclude the presence of some radial gradients

between the multiple populations of M13, it is fair to conclude that they should be only

minor and limited to the most external regions where we only have a small sample of

stars.
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5.5 Discussion and Conclusions

In this work, we analysed a photometric dataset in Strömgren ubvy filters to charac-

terize the multiple stellar populations of the Galactic GC NGC6205 (M13). The use

of the cy photometric index revealed the presence of a spread on the RGB, consistent

with the chemical inhomogeneity within the cluster.

The comparison with several spectroscopic studies, confirmed that the cy index is a

very efficient tracer of the light element abundance in RGB stars, and allows us to

distinguish enriched and primordial populations on the basis of their position on the

CMD.

Our analysis concluded that around 80 per cent of M13 giant stars belong to the en-

riched population. This high fraction is in line with the trend of enriched population

fraction versus cluster absolute magnitude found by Milone et al. (2017).

To study the radial distribution of M13 multiple populations we complemented our

dataset with HST observations from the UV Legacy Survey of Galactic Globular Clus-

ters. The analysis of the radial profiles over a wide field of view revealed no significant

evidence for spatial dishomogeneities between the primordial and the enriched popu-

lation, neither in the inner nor the outer regions of the cluster.

This result is at odds with what was found by Lardo et al. (2011), who detected a ra-

dial gradient in the multiple population distribution of many clusters, including M13.

The causes for these discordant results are difficult to asses. However, we note that

Strömgren filters have a significantly smaller bandwidth and are more sensitive to light

element abundances compared to the Sloan passbands used in Lardo et al. (2011). The

photometric accuracy of our dataset is also better. Finally, we stress that the classifica-

tion criteria of both studies have been defined empirically.

To date, only a few GCs have been observed to have fully spatially mixed multiple

populations (Dalessandro et al., 2014; Nardiello et al., 2015). In this light, such a

finding for M13 stars is very interesting, especially given that M13 is the most massive

cluster in which this phenomenon has been observed.
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An interesting comparison can be drawn with NGC5272 (M3). These two clusters are

very similar in terms of mass, age and metallicity, and are a classical horizontal branch

second parameter problem pair (e.g. Dalessandro et al., 2013). In contrast to M13, M3

multiple populations have been found to be mixed only out to ∼ 0.6 half-light radii,

while at larger distance from the cluster centre the enriched population is significantly

more concentrated (Massari et al., 2016).

We suggest that this difference can be understood when considering the dynamical

properties of the two clusters. M13’s relaxation time at the half-light radius is of the

order of 2 Gyrs, which is about three times shorter than that of M3 (Harris, 1996,

2010 version) and similar to that of the completely mixed NGC6362 (Dalessandro

et al., 2014). As the dynamical timescale increases in the less dense regions of a

stellar cluster, M3 has achieved a full spatial mixing only in its central part, while the

more efficient M13 has also managed to become mixed in its outskirts. Following this

argument, we expect that completely mixed stellar populations should be observed in

clusters with similar, or shorter, relaxation times (e.g., M71, M30 or NGC 6218).



Chapter 6

Concluding remarks and future

prospects

In this thesis I developed and validated tools to investigate the detailed properties of

ancient stellar populations in the Local Group. In chapter 2 I have shown that current

star formation history (SFH) analysis, based on the main sequence turn-off (MSTO),

becomes less accurate at old ages. This was shown by analysing the horizontal branch

(HB) of the Carina dSph, highlighting how star formation in certain regions of the age-

metallicity space is ruled out by the absence of specific features in the observed HB of

this galaxy. This demonstrated that the HB contains additional information that can be

used to refine the accuracy of our measurements of the SFH of galaxies, based on their

resolved populations.

This result motivated me to develop a new colour-magnitude diagram (CMD) mod-

elling tool, presented in chapter 3, that, for the first time, determines the SFH of a

galaxy combining detailed HB and MSTO modelling. The additional constraints com-

ing from the HB result in a noticeable increase in the age resolution. This new approach

also determines the amount of mass lost by stars on the RGB, providing precious in-

sights to this long-standing uncertainty. This new method was demonstrated on the

well studied Sculptor dwarf spheroidal galaxy (dSph), where the careful modelling of

the HB can clearly distinguish the two known events of star formation. These two

100
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events are more accurately measured that previous SFH analysis allowed, based only

on the MSTO.

An application of this method to the distant Tucana dSph, in chapter 4, further demon-

strated that, with high quality photometry, the modelling of the whole CMD, including

the HB, improves the accuracy of the early star formation history of resolved galax-

ies. I confirmed the presence of the two distinct stellar populations that were already

known and reported the presence of an additional third, younger, stellar population.

This new and more detailed SFH for Tucana clearly shows that a multimodal stellar

distribution along the HB is directly linked to a similarly complex star formation his-

tory. Not of minor importance, the modelling of the whole CMD resulted in a very

accurate measurement of the RGB mass loss.

The work I carried out on dSphs contributes to the study of complex ancient stellar

populations in low mass galaxies. The presence of distinct stellar components in these

galaxies has been established by many independent investigations. The origin of this

complexity is still unclear. Some of the proposed scenarios invoke mergers of different

stellar systems (Amorisco & Evans, 2012a; del Pino et al., 2015) or bursty in-situ star

formation (Salvadori et al., 2008; Revaz et al., 2009), potentially providing constraints

to the picture of hierarchical mass assembly and to the efficiency of supernova feed-

back in low mass haloes. To date, our observational characterisation of dSphs cannot

provide a clear picture of the early history of these systems. With the possibility to

accurately detect these distinct early stellar components in a SFH, we can add valuable

information. Reliable time scales are notoriously challenging to obtain for old stellar

populations.

The next logical step for the work presented in chapters 2, 3 and 4 will be to extend the

analysis of the HB to additional Local Group dSphs, to build a large sample of accurate

high-resolution SFHs. This will provide us with the ability to identify differences and

similarities in the very early history of Local Group galaxies. In a broader context,

the information of the detailed SFH of dSphs can be combined with the constraints

coming from chemical abundance and velocity measurements, to build a complete

picture of the chemo-dynamical mechanisms that shape low mass galaxies, with the
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Figure 6.1: The cumulative number of known galaxies as a function of distance from the Milky
Way, from the catalogue of Karachentsev et al. (2013). The dashed lines represent the detection
limits, for 10 hours of integration, with HST and JWST of either old turn-off and horizontal
branch stars in a 12.5 Gyr old stellar population with a metallicity of [Fe/H] = -2.0.

aim of disentangling the relative contributions of environmental and internal processes.

A second, equally important, benefit of modelling a larger sample of dSphs with MOR-

GOTH will be to obtain a large number of measurements of the RGB mass loss in

different extragalactic stellar systems. Such measurements will make it possible to

understand this poorly constrained process, which remains one of the biggest uncer-

tainties in stellar evolution theory. In addition, being able to determine the behaviour

of RGB mass loss in a range of stellar systems will make it possible to calibrate the

process, enabling us to measure detailed SFHs from the bright CMD alone. Detailed

SFH measurements have so far mostly been confined to the Local Group, due to the

necessity of detecting the old MSTOs. This not only limits the available sample of

galaxies for which we have access to the old record of star formation, but also raises

the possibility that the Local Group could somehow be a special environment, biasing

our view of galaxy formation.

Next generation observing facilities, such as the James Webb Space Telescope and the

30-m class observatories, will provide increased sensitivity and spatial resolution that

will allow us to resolve individual stars in more distant galaxies. Fig. 6.1 shows the

cumulative distribution of known galaxies as a function of distance from the Milky

Way. It can be seen how the improved observing capabilities of the James Webb Tele-
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scope will only slightly increase the number of galaxies that can be resolved down to

MSTO. This is due to the inhomogeneous distribution of galaxies on scales of a Mpc.

In contrast, HBs are much brighter than the equivalent MSTOs and will be detectable

for galaxies many Mpc away.

As demonstrated by Boylan-Kolchin et al. (2016), the study of nearby galaxies probes

a co-moving volume that extends much beyond the present size of the Local Group

neighbourhood. Thanks to the analysis of the HB with James Webb Space Telescope,

we will have access to the formation histories for a sample of galaxies that is roughly

five times larger than we have today. The co-moving volume spanned by the progen-

itors of these systems is expected to be of the order of 104Mpc3 at z ∼ 7, which is a

cosmologically representative sample of the early Universe and much larger than what

is probed by the HST Ultra Deep Field or any future deep JWST field.

Chapter 5 was devoted to the study of the massive globular cluster NGC6205 (M13).

Carrying on on the work of Carretta et al. (2011) and Massari et al. (2016), I confirmed

the effectiveness of Strömgren photometry to detect the multiple stellar populations in

a resolved globular cluster. I analysed the spatial distribution of the multiple stellar

populations out to 6.5 half-light radii and found no evidence for radial segregation

in any region of the cluster. The comparison of my results with the work done on

M3, which is similar to M13 in many regards and has a strong radial gradient in its

multiple population distribution, not only highlights how these clusters are different

in their multiple stellar population properties, but shows the importance of taking the

dynamical state into account when characterising distinct components in dense stellar

systems. In this regard, when complementary information on the stellar content comes

from, e.g., the HB modelling, the distributions of multiple stellar population within a

globular cluster can prove to be an independent clock for the dynamical evolutionary

state of the object.

As for dSphs, the next step forward would be to carry a large survey of the multi-

ple populations in globular clusters, employing Strömgren photometry to probe the

outer regions of these systems. In June 2018 I have carried out wide-field Strömgren

imaging, with the Wide-Field Camera on the Isaac Newton Telescope, for 17 globular
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Table 6.1: List of Galactic star clusters included in the Wide-Field Strömgren survey carried
out in June 2018. Metallicities, half light radii (rh, in arcminutes) and relaxation times at the
half light radius (th, in years) come from the 2010 version of Harris (1996). Estimates for the
mass come from Baumgardt (2017).

Name Alternative Name [Fe/H] log M
M�

rh log th

NGC 5024 M 53 -2.10 5.58 1.31 9.76
NGC 5634 -1.88 5.33 0.86 9.54
NGC 5904 M 5 -1.29 5.57 1.77 9.41
NGC 6093 M 80 -1.75 5.40 0.61 8.80
NGC 6171 -1.02 4.94 1.73 9.00
NGC 6218 M 12 -1.37 4.94 1.77 8.87
NGC 6229 -1.47 - 0.36 9.15
NGC 6254 M 10 -1.56 5.26 1.95 8.90
NGC 6341 M 92 -2.31 5.43 1.02 9.02
NGC 6535 -1.79 4.3 0.85 8.20
NGC 6712 -1.02 - 1.33 8.95
NGC 6791 M 107 0.41 - - -
NGC 6838 M 71 -0.78 4.69 1.67 8.43
NGC 7078 M 15 -2.37 5.66 1.00 9.32
NGC 7089 M 2 -1.65 5.76 1.06 9.40
Palomar 5 -1.41 - 2.73 9.82
Palomar 11 -0.40 - 1.46 9.34
Palomar 14 AvdB -1.62 - 1.22 10.02

clusters and one old open cluster (NGC6791), over a field of view of about 30× 30 ar-

cmin.

A list of the targets observed, along with some key properties, is reported in Table 6.1.

Some of these targets have never been searched for multiple populations before (NGC

6229 and Palomar 11), whereas only tentative evidence exists for others (NGC 6791

and Palomar 14). The data reduction strategy and the analysis will be developed from

the procedure outlined in chapter 5. The main goal of this survey will be to identify,

if present, and trace the multiple populations out to the most external regions of the

targets. Where sample overlap is present, this data will be a useful complement to

HST surveys, which are deep and precise but have limited spatial coverage, and high-

resolution spectroscopic investigations, which are limited by the sample size.
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