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Abstract— Resistive switching memory devices can be 
categorized into either filamentary or non-filamentary ones 
depending on the switching mechanisms. Both types have 
been investigated as novel synaptic devices in hardware 
neural networks, but there is a lack of comparative study 
between them, especially in random telegraph noise (RTN) 
which could induce large resistance fluctuations. In this 
work, we analyze the amplitude and occurrence rate of RTN 
in both Ta2O5 filamentary and TiO2/a-Si (a-VMCO) 
non-filamentary RRAM devices and evaluate its impact on 
the pattern recognition accuracy of neural networks. It is 
revealed that the non-filamentary RRAM has a tighter RTN 
amplitude distribution and much lower RTN occurrence 
rate than its filamentary counterpart which leads to 
negligible RTN impact on recognition accuracy, making it a 
promising candidate in synaptic application. 

 
Index Terms—random telegraph noise, RRAM, pattern 

recognition, neural network, filamentary, Si, TiO2, Ta2O5, RTN 

INTRODUCTION 

xide based resistive switching (RS) memory device 

(RRAM) has emerged as an attractive candidate for 

synapses in large-scale artificial neural networks (ANNs) due 

to its natural synaptic response, simple structure, low energy 

consumption, and CMOS-compatible 3D integration potential 

[1]. RRAM can be categorized into either filamentary or non- 

filamentary, for the RS caused by the restore/rupture of a 

conductive filament (CF) or the areal modulation of defect 

distribution inside the oxide, respectively. Both types have 

been intensively studied for novel synaptic applications [2-6], 

but there is a lack of comparative analysis between them. 

Random Telegraph Noise (RTN) is the current fluctuation 

between discrete levels caused by electron trapping and de- 

trapping in defects. RTN has become a critical issue in 

nanoscale semiconductor devices where the impact of a single 

defect becomes significant [7]. As RRAM devices can be 

scaled down below 10 nm [8], RTN could significantly reduce 

its memory window and cause read errors. It is therefore 

essential to evaluate the impact of RTN disturbance on the 

performance of RRAM-based synaptic arrays. On the other 

hand, RTN provides useful information on the responsible 

defect [9, 10]. The impact of RTN has been analyzed for CF 

RRAM [11], but there is a lack of comparative studies on the 

non-CF (NCF) RRAM whose synaptic application has also 

drawn extensive interests [4, 12]. 

In this work, we analyze the amplitude distributions and 

occurrence rate of RTN in both Ta2O5 CF RRAM and TiO2/a-Si 

(a-VMCO) NCF RRAM devices. Based on the experimental 

results, a novel RTN disturbance model is developed to 

simulate its impact on the synapse arrays in a trained artificial 

neural network. It is revealed that the NCF RRAM has a tighter 

RTN amplitude distribution and much lower RTN occurrence 

rate than its filamentary counterpart, leading to negligible RTN 

impact on recognition accuracy. It proves to be a promising 

candidate as synapse in neural network applications. 

DEVICES AND EXPERIMENTS 

 Both types of RRAM devices were fabricated in a cross- 

point structure with the size of 75 nm × 75 nm and show bipolar 

switching characteristics (Fig. 1(a) and (b)). The Ta2O5 device 

consists of a TiN/4nm stoichiometric Ta2O5/20nm nonstoi- 

chiometric TaOx/10nm TaN/TiN stack (inset of Fig. 1 (a)). The 

a-VMCO device has a stack of TiN/8nm amorphous-Si/8nm 

anatase TiO2/TiN structure (inset of Fig. 1(b)). The detailed 

process parameters can be found in refs. [13-14]. All electrical 

tests were done with a Keysight B1500A analyzer. Eight 

uniformly distributed resistance levels are obtained in both 

devices, between 25 kΩ and 200 kΩ for Ta2O5, and between 1 

MΩ and 7.5 MΩ for aVMCO, by incrementing the reset 

voltages [18]. The read-out is at 0.1V and 3V for Ta2O5 and 

aVMCO devices, respectively, averaged by five consecutive 

20-ms read-out tests, followed by a 400-ms delay period. RTN 

measurement is then carried out at each R level at the read-out 

voltage, with a sampling time of 2 ms/point and 10,000 

sampling point per resistance level for a RTN measurement 

period of 20 s. A 3-layer ANN was simulated using Matlab [15, 

16]. The neural network was trained and tested with the MNIST 

handwritten digit database [17]. Out of the total 60,000 images, 

50,000 were used for training and the remaining 10,000 images 

unseen during training were used for testing. 
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Fig. 1. I-V switching curves of Ta2O5 (a) and aVMCO (b) devices; The 
insets are the schematics of the corresponding structures and the 
switching mechanism: the restore/rupture of a conductive filament (CF) 
or the areal modulation of defect distribution inside the oxide (NCF). 
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RESULTS AND DISCUSSIONS 

As shown in Fig. 2(a) and (b), the maximum relative RTN 

amplitude, ΔI/Iread, can be as high as ~300% in Ta2O5 device, 

but only ~10% in the non-filamentary aVMCO.  Their CDF 

distribution plots measured at the 8 resistance levels are shown 

in Fig. 2 (c) and (d), respectively. RTN amplitude in Ta2O5 

device spreads widely from 0.1% to 300%, whilst it is only 

from 1% to 10% in aVMCO. For both devices, the RTN 

amplitude follows the lognormal distribution [19]. Moreover, 

RTN in Ta2O5 device has a much higher occurrence rate than in 

aVMCO device, as shown in Fig. 3(a).  

This significant difference in RTN amplitude distribution 

and occurrence rate can be attributed to the different switching 

mechanisms, as shown in the insets in Fig.1: in the CF Ta2O5 

device, the resistance switching is caused by the rupture and 

restoration of a conductive filament. After the reset, there are 

only a few defects in the constriction of the CF, and each of 

them is critical in current conduction, so that its trapping/ 

detrapping leads to large RTN, and hence the higher the 

resistance level, the larger the RTN amplitude [20]. In the NCF 

aVMCO device, RS is caused by the uniform modulation of 

defect distribution [14]. Resistance becomes higher when the 

“defect-less” region is uniformly widened. A single defect has 

limited contribution in conduction, hence the much smaller 

RTN amplitude and much smaller occurrence rate, and the 

amplitude is also only slightly larger at higher resistance levels.  

 
The probability and cumulative distribution functions (PDF 

and CDF) of lognormal distribution are described as  

 
𝑦 = 𝑓(𝑥|𝜇, 𝜎) =

1

𝑥𝜎√2𝜋
2 𝑒

−(𝑙𝑛𝑥−𝜇)2

2𝜎2  Eq.(1) 

 

𝑝 = 𝐹(𝑥|𝜇, 𝜎) =
1

𝜎√2𝜋
2 ∫

𝑒
−(𝑙𝑛𝑥−𝜇)2

2𝜎2

𝑡
𝑑𝑡

𝑥

0

 Eq.(2) 

respectively. The mean, µ, and standard deviation, σ, at eight 

resistance levels for both devices are extracted from the 

experimental data shown in Fig. 2 (c) and (d) and their values in 

log scale are plotted in Figs. 3(a-b). The RTN time constants are 

extracted with the Hidden Markov Model for both devices, and 

their CDF distribution are shown in Fig. 3(c) and (d), 

respectively. The distributions of time constants in both devices 

are very similar, at least within the sampling rate and time used 

in this work. For the purpose to carry out comparative analysis, 

we consider that the impact of time constant is similar between 

the two types of devices, therefore.  

 
The comparative analysis of RTN’s impact on the pattern 

recognition accuracy of RRAM based synaptic neural network 

is divided into three steps: First, the neural network is trained 

with the mini-batch gradient descent backpropagation 

algorithm for demonstration purpose. As an example, the 

neural network consists of 3 layers with 30 neurons in the 

hidden layer, as shown in Fig. 4(a). The trained network is 

firstly tested for the ideal accuracy without considering the 

RTN induced disturbance. The recognition accuracy after 

training reaches ~95%, which is satisfactory [21]. Secondly, 

RTN induced disturbance is then added to the synaptic array in 

the simulation. For each synapse, a random RTN amplitude 

variation is generated using the CDF distributions in Fig. 2(c-d) 

and the model in Eqs. (1) and (2). Next, the RTN amplitude 

variations are applied to the synaptic network according to the 

occurrence rate at its corresponding R level. The µ, σ and 

occurrence rate are obtained by linear fitting and interpolating 

the experimental data in Fig.3 (a-b) and mapping the disturbed 

R value to the trained weights. Thirdly, the trained network 

consisting of the RTN induced disturbance is tested for both 

types of devices and the resultant accuracy is compared.   

It should be noted that the weights in the simulation can be 

both positive and negative. To implement this feature in 

synaptic hardware array, the synaptic weights are separated into 

two matrices, one containing all the positive weights and the 

other containing all the negative weights, and two RRAM 

crossbar arrays are implemented in parallel and then an analog 

subtraction circuit is used to process the results of the two cross 

bar arrays [22-25]. To obtain a statistically reliable result, the 

training-disturbance procedure is repeated for 50 times and the 

accuracy after training without and with both CF disturbance 
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Fig. 2. (a-b) Examples of largest RTN signal in (a) Ta2O5 and (b) 
a-VMCO devices. The relative RTN amplitude can be as high as 
~300% for Ta2O5 device, but only ~10% for a-VMCO. (c-d) CDF of 
relative RTN amplitude in Ta2O5 (c) and a-VMCO (d) devices, 
respectively, both following the lognormal distribution.  
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Fig. 3. (a-b) Occurrence rate of RTN signal at 8 resistance levels, in 
Ta2O5 (a) and a-VMCO (b) devices respectively, obtained by dividing 
the number of RTN occurrence by the total number of RTN tests. (c-d) 
Extracted parameters of lognormal RTN amplitude distribution in both 
devices. (e-f) CDF of RTN time constants in Ta2O5 (e) and aVMCO (f). 
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and NCF disturbance are statistically shown in Fig. 4(b). The 

change of weights in one of these procedures is visualized in 

Fig. 4(c), in which the weights are shown in (1) without 

disturbance, (2) after the CF disturbance, and (3) after the NCF 

disturbance. The weight differences are shown in (4) after CF 

disturbance and (5) after NCF disturbance. 

As shown in Fig. 4(b), after the CF RTN disturbance, the 

average accuracy drops to ~75% with a wide repeatability 

distribution and its lowest is less than 50%, while after the NCF 

disturbance the accuracy drops negligibly only to 94% with a 

similar repeatability to that without disturbance, as can also be 

clearly seen in the weight differences shown in Fig. 4(c). This 

proves that the non-filamentary RRAM device has a strong 

advantage compared to the conventional filamentary devices in 

the synaptic application, due to its small RTN amplitude and 

low RTN occurrence rate. Furthermore, as shown in Fig.4(d), 

the synaptic network with NCF devices maintains a high 

accuracy of ~90% even when only 10 neurons are used in the 

hidden layer, whilst the accuracy drops sharply with the CF 

devices. NCF synaptic devices allows the ANN to use much 

less number of neurons and synapses to achieve better accuracy 

due to its robust RTN resilience, therefore.  

 
    One concern is that the impact of RTN may diminish for 

neurons with a larger number of inputs, as the "averaging" 

effect of independent variation sources scales following 

1/sqrt(N). To examine this possibility, we investigate the 

impact of RTN on NN with different number of inputs. As 

shown in Fig. 5, the accuracy and error rates improved, but only 

slightly when the input number increase from 28x28 to 56x56, 

instead of following the 1/sqrt(N) rule. This is probably due to 

that some synapses play a more critical role in pattern 

recognition and their weight fluctuation affects the accuracy 

more than other synapses, making the averaging effect weaker. 

RTN may remain an issue for larger neural networks, therefore. 

   

    It should be noted that noise in RRAM has been shown to 

have complicated structures, including RTN, 1/f noise [26], and 

random walk (RW) [27]. We found that the 1/f noise and RW in 

both of our CF and NCF devices has much lower occurrence 

and/or smaller amplitude when compared with RTN, and has 

limited impact on the pattern recognition accuracy investigated 

in this work, therefore. In order to focus on analyzing the 

impact of RTN signals in this work, we have carefully 

examined the RTN signals used in this work to exclude any 

significant interference from time-dependent RTN variations 

and other noise sources. Moreover, in this work, the RTN is 

only considered during the testing after the neural network has 

been well-trained. The impact of RTN during the training 

process is an interesting issue for RRAM-based neural 

networks, especially for unsupervised learning. It is a more 

complex issue involving RRAM reliability such as retention 

and endurance, which is out of the scope of this letter. 

CONCLUSIONS 

In this letter, we analyzed the amplitude and occurrence rate 

of RTN signals at multiple resistance levels in both Ta2O5–

based CF and TiO2/a-Si (a-VMCO) based NCF RRAM 

devices. Based on the statistical experimental results, an 

RTN-based disturbance model is developed and applied to the 

trained synapses arrays to simulate its impact on the accuracy 

of neural networks. It is revealed that the NCF RRAM devices 

show smaller RTN amplitude, tighter RTN distribution, and 

lower RTN occurrence rate compared with its filamentary 

counterpart. The neural network with NCF synapses has much 

better pattern recognition accuracy due to negligible impact of 

its RTN induced disturbance, and the ANN using NCF devices 

needs fewer neurons and synapses to achieve better accuracy. 

The non-filamentary RRAM device has significant advantage 

as synaptic devices over the filamentary RRAM thanks to its 

better RTN resilience, making it a promising candidate in 

nanoscale neuromorphic synaptic applications. 

 
 

Fig. 4. (a)  Schematic of the pattern recognition ANN. (b) Statistical 
accuracy in 50 training-disturbance procedures: Accuracy is hardly 
affected with the NCF disturbance, while with the CF disturbance the 
accuracy is severely deteriorated. (c) Visualization of weights: (1) 
directly after training; (2) with CF RTN disturbance; (3) with NCF RTN 
disturbance; (4-5) their differences to case (1), respectively. (d) 
Accuracy of ANN with different neuron number without and with CF and 
NCF RTN disturbance. ANN with NCF devices needs fewer 
neurons/synapse and have better accuracy. 
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Fig. 5 Pattern recognition accuracy with MNIST images of different 

resolutions. (a-c) Example of the rescaled MNIST image, with (a) 

14x14-pixel, (b) original 28x28-pixel and (c) 56x56-pixel. (d) Pattern 

recognition accuracy after training, with CF-type RTN and with 

NCF-type RTN, respectively. (e-f) log-log plot of relative error rate 

(Accuracywell-trained – AccuracyCF- or NCF-RTN) against square root of the 

total number of input neurons. The straight dash lines are guide to the 

eye for the scaling rule of 1/sqrt(Number of inputs). 
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