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ABSTRACT 53 

Understanding how genetics influences obesity, brain activity, and eating behavior will 54 

add important insight for developing strategies for weight-loss treatment, as obesity may stem 55 

from different causes and as individual feeding behavior may depend on genetic differences.  56 

To this end, we examined how an obesity risk-allele for the FTO gene affects brain activity in 57 

response to food images of different caloric content via fMRI.  30 participants homozygous 58 

for the rs9939609 single nucleotide polymorphism were shown images of low- or high-calorie 59 

food while brain activity was measured via fMRI.  In a whole-brain analysis, we found that 60 

people with the FTO risk-allele genotype (AA) had increased activity than the non-risk (TT) 61 

genotype in the posterior cingulate, cuneus, precuneus, and putamen.  Moreover, higher BMI 62 

in the AA genotype was associated with reduced activity to food images in areas important for 63 

emotion (cingulate cortex), but also in areas important for impulse control (frontal gyri and 64 

lentiform nucleus).  Lastly, we corroborate our findings with behavioral scales for the 65 

behavioral inhibition and activation systems (BIS/BAS).  Our results suggest that the two 66 

genotypes are associated with differential neural processing of food images, which may 67 

influence weight status through diminished impulse control and reward processing. 68 

 69 

Keywords: 70 

 fMRI, FTO, SNP, BMI, food images, obesity  71 
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INTRODUCTION 72 

 73 

Genetic differences may influence satiety and metabolism via effects in the brain 74 

(Singh, 2014; Yeo, 2014).  One such example is the influence of the fat mass and obesity 75 

associated (FTO) gene on brain activity governing feeding behavior.  Several different FTO 76 

single nucleotide polymorphisms (SNPs) are associated with a higher body mass index (BMI) 77 

(Sällman Almén et al., 2013; Scuteri et al., 2007a), and higher energy intake (Speakman, 78 

2013).  Current theory suspects that risk alleles of these SNPs may increase obesity via effects 79 

in the brain to modulate feeding behavior and metabolism (Singh, 2014; Yeo, 2014).  80 

Moreover, experiments in rodents show that changes in FTO expression levels in the 81 

hypothalamus affect feeding behavior (Frederiksen, Skakkebaek, & Andersson, 2007; 82 

Olszewski et al., 2009; Tung et al., 2010).  However, whether the hyperphagia and subsequent 83 

obesity induced in these experiments is due solely to metabolic changes or to manipulations 84 

of the reward response to food is still controversial.  Indeed, obesity may depend on 85 

psychological characteristics, specifically those related to reward or self-control (Gerlach, 86 

Herpertz, & Loeber, 2015).  Personality scales for the Behavioral Inhibition System (BIS) and 87 

Behavioral Activation System (BAS), which measure punishment and reward sensitivity 88 

respectively, are two such tools which correlate with inactivity and poor diet (Carver & 89 

White, 1994; Dietrich, Federbusch, Grellmann, Villringer, & Horstmann, 2014; Meule, 2013; 90 

Voigt et al., 2009).  Furthermore, some suggest obesity could be given a differential diagnosis 91 

and treatment regimen based on this distinction between obesity caused by physiological 92 

factors or by psychological effects (Yu et al., 2015).  Thus, FTO could promote obesity 93 

through metabolic effects, augmented reward signaling, or a combination of both. 94 
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Obesity is increasingly considered an addiction-type disorder with disruptions of the 95 

reward pathway, and several fMRI studies have explored this topic (Batterink, Yokum, & 96 

Stice, 2010; Brooks, Cedernaes, & Schiöth, 2013; Gearhardt AN et al., 2011; Goldstone et al., 97 

2009; Tomasi et al., 2015; Volkow, Wang, Tomasi, & Baler, 2013; Zhang et al., 2015).  To 98 

date, however, few fMRI studies have examined how genetic profile is associated with brain 99 

responses to food in obesity.  A recent study found that people with the FTO risk allele for 100 

rs8050136 had reduced activity in the right prefrontal cortex while viewing food images in a 101 

postprandial state, but not while fasting (Heni et al., 2014).  Another study found that fasted 102 

participants with the risk allele for rs9939609 had lower activations in areas important for 103 

both reward and metabolism when shown food images, such as the hypothalamus, ventral 104 

tegmental area and substantia nigra, posterior insula, globus pallidus, thalamus, and 105 

hippocampus.  They also showed that circulating ghrelin may affect brain areas important for 106 

both metabolism and reward signaling depending on genotype (Karra et al., 2013).  Notably, 107 

their cohort of participants had a normal BMI with no obese participants.  Thus, possible 108 

interactions between genotype and BMI on brain activity remain unstudied. 109 

Against this background, we explore for the first time the association between FTO 110 

genotype, BMI, and neural responses to food images of either low- or high-calorie content.   111 

In whole-brain analysis of BOLD responses to food images, we test whether the genotype 112 

homozygous for the at-risk allele for rs9939609 (which is A) (Dina et al., 2007; Frayling et 113 

al., 2007; Scuteri et al., 2007b) affects brain activity differently from the homozygous 114 

genotype with the non-risk allele (T).  We also examine within-group regressions between 115 

BMI and BOLD responses to food images within each genotype and behavioral 116 

characteristics of each genotype.    117 
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METHODS 118 

 119 

Participants 120 

Prior to any experimental procedures, all participants gave written informed consent to 121 

the study which conformed to the Declaration of Helsinki and approved by the local ethics 122 

committee.  Participants were 30 right-handed, northern-European males, with a mean age of 123 

26 ± 1 years, recruited locally in Uppsala, Sweden by advertisement.  Genotyping of the FTO 124 

single nucleotide polymorphism (SNP) rs9939609 was performed with a pre-designed 125 

Taqman single-nucleotide polymorphism genotyping assay (Applied Biosystems, Foster City, 126 

USA) and an ABI7900 genetic analyzer with SDS 2.2 software at the Uppsala Genome Center 127 

(http://www.genpat.uu.se/node462).  The genotype call rate was 97.8%.  Only homozygous 128 

participants were included in the study.  There was a similar distribution of body mass index 129 

(BMI) for each genotype of the rs9939609 SNP: 26.8 ± 1.2, with a range of 13.1 kg/m2 in the 130 

AA genotype (n = 13), and 24.1 ± 0.7, with a range of 9.7 kg/m2 in the TT genotype (n = 17). 131 

Hunger ratings were also assessed on a 1-10 scale with higher numbers indicating greater 132 

feelings of hunger. 133 

 134 

 135 

Behavioral Questionnaires 136 

Clinical measures for punishment sensitivity and reward-seeking behavior were 137 

acquired using the Behavioral Inhibition System (BIS) and Behavioral Activation System 138 

(BAS) questionnaires (Carver & White, 1994).  Both consisted of 24 items.  Each item was 139 

represented by a statement, where the participant indicated how much s/he agreed or 140 
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disagreed on a four-point scale.  The BIS included only one scale, evaluating the reactions to 141 

the anticipation of punishment and anxiety, while the BAS included three subscales: Drive, 142 

which represents the pursuit of desired goals; Fun Seeking, which evaluates the desire for new 143 

rewards and impulsivity; and Reward Responsiveness, which focuses on positive reactions 144 

anticipating rewards.   145 

 146 

fMRI Paradigm and Image Acquistion 147 

Images of food were presented in the scanner using MRI-compatible goggles 148 

(NordicNeuroLab, Bergen, Norway) attached to the headcoil.  The food images were shown 149 

at 3 second intervals and no images were repeated.  Participants were instructed to imagine 150 

what it felt like to eat the food presented.  Blood oxygen-level dependent (BOLD) signals in 151 

response to food stimuli were measured as participants were shown images of low-calorie 152 

(LC) food, high-calorie (HC) food, or control (C) images in five cycles of the following block 153 

design pattern: C, LC, C, HC.  Each block contained 6 images.  In total, the number of 154 

measurements collected for each group was 54 for control, 30 for LC, and 30 for HC.  Low 155 

and high calorie food images were determined by caloric content and selected for familiarity 156 

according to local palate, and were controlled for visual features (color, size, etc.).  Caloric 157 

content of the HC and LC images was confirmed by their perceived caloric content in focus 158 

groups representative of the population to be studied.  Example HC images were cakes, pies, 159 

ice cream, candy, fried foods, and hamburgers.  Example LC images were vegetables, fruits, 160 

and salads without high-calorie dressing.  Control images were a grey screen with a crosshair 161 

in the center. 162 

Participants were scanned at 08:00 following an overnight fast of at least 8 hours, i.e., 163 

were in a fasted state during testing.  Structural and functional brain images were acquired 164 
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with a Philips 3-Tesla (Achieva, Philips Healthcare, Best, Netherlands) using a standard head 165 

coil. 125 volumes were registered during the T2*-weighted echo-planar imaging (EPI) 166 

sequence with whole brain coverage of 30 slices (slice thickness = 3 mm; 1 mm gap, 167 

interleaved scan order, in-plane resolution: (3 mm x 3 mm), repetition time (TR) = 3 s; echo 168 

time (TE) = 35 ms, flip angle = 90°).   169 

 170 

Preprocessing of fMRI data 171 

All preprocessing steps were performed using software package Statistical Parametric 172 

Mapping (SPM, version 8, http://www.fil.ion.ucl.ac.uk/spm/), implemented in MATLAB 173 

(version R2014a, 11 FEB 2014, 8.3.0.532, 64-bit).  The images were realigned and estimated 174 

to remove movement artefacts in the data.  EPI images were further matched with the 175 

structural image using coregistration. The anatomical image was segmented to strip away 176 

unnecessary tissue in the images.  Tissue probability maps were introduced in the 177 

segmentation step to differentiate between gray matter, white matter and cerebrospinal fluid in 178 

each individual.  Volume was calculated based on the extracted tissue maps of each subject.  179 

The gray matter and white matter volumes were added together to find the total brain volume 180 

(TBV), to serve as a nuisance covariate in the analyses.  Then, functional images were 181 

normalized to fit the segmented anatomical image.  Finally, images were smoothed using a 182 

Gaussian function (8 mm full-width, half-maximum (FWHM)) to minimize noise and bias. 183 

 184 

Statistical Analysis 185 

All fMRI statistical analysis was performed using the same versions of SPM and 186 

MATLAB listed in preprocessing steps.  For all whole-brain results, a family wise error 187 
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(FWE) corrected significance level was set at p < 0.05 to correct for multiple testing.  For the 188 

main analysis of the imaging data, we tested a contrast between the neural responses to 189 

images of high calorie (HC) foods to the neural response of images from low calorie (LC) 190 

foods.  This contrast was then tested using a between-groups t-test followed by directional 191 

post-hoc comparisons as well as with a multiple regression analysis testing for interactions 192 

between genotype and BMI, BIS, or BAS individually.   The t-test used both BMI and total 193 

brain volume (TBV, grey matter + white matter) as covariates of no interest, while the 194 

multiple regression analysis used only TBV as a covariate of no interest. 195 

Region of interest (ROI) analysis was performed by preparing masks of brain areas 196 

based on previous MRI studies on FTO (de Groot et al., 2015; Karra et al., 2013).  Bilateral 197 

masks of such areas were produced using the Wake Forest University Pickatlas toolbox 198 

(Maldjian, Laurienti, Kraft, & Burdette, 2003) within SPM.  Small volume corrections were 199 

performed on clusters trending towards significance using a 6 mm radius sphere over the 200 

greatest FWE-corrected suprathreshold voxel. 201 

For the within-group regression analyses, the same contrast of HC versus LC was used 202 

and TBV served as a covariate of no interest.  For both genotypes, positive or negative 203 

correlations between BMI and BOLD signal were tested. 204 

Other statistical tests, as well as the principle component analysis (PCA) were 205 

performed with R statistical software (version 3.2.1, 64-bit) using the FactoMineR package 206 

(Lê et al., 2008).  Results for the PCA were considered significant if the percentage of inertia 207 

summing from the two largest eigenvalues exceeded values listed in a significance table based 208 

on 10,000 analyses with similar numbers of individuals and independent variables (Lê et al., 209 

2008).  210 
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RESULTS 211 

 212 

The obesity-associated FTO SNP rs9939609, is associated with increased activity in 213 

response to food images. 214 

First, we tested for a difference in the processing of food stimuli as measured by fMRI 215 

depending on genotype and/or body-mass index (BMI).  We tested 30 participants (13 AA 216 

and 17 TT) in a fasted state.  BMI for the AA genotype was significantly higher than the non-217 

risk TT genotype (Student’s t-test, p < 0.05), as expected from previous reports (Fredriksson 218 

et al., 2008; Sällman Almén et al., 2013).  There was no significant difference in age between 219 

groups of differing genotype (Student’s t-test, p = 0.7; Table 1).  BOLD signals were 220 

measured as participants were shown images of low-calorie (LC) food, high-calorie (HC) 221 

food, or control images in a block design format.  Patients were instructed to imagine the 222 

feeling of eating the food presented.  We compared one contrast in our analysis: HC versus 223 

LC, which tests the neural response discriminating food images of different caloric contents.   224 

Between-group comparisons found three clusters with greater activity in the AA 225 

genotype compared to the TT genotype. (Figure 1A).  Areas included the posterior cingulate 226 

cortex (PCC), cingulate gyrus, cuneus, and precuneus (Table 2).  A multiple regression 227 

analysis found an interaction between genotype and BMI, post-hoc comparisons found 228 

significant clusters for the AA genotype while BMI was decreasing in the PCC, cingulate 229 

gyrus, middle occipital gyrus, and precuneus (Supplementary Table 1). 230 

Based on results from previous studies (de Groot et al., 2015; Karra et al., 2013), we 231 

performed a region-of-interest (ROI) analysis on areas putatively associated with FTO 232 

genotype: such as the insula, putamen, and nucleus accumbens.  Within the t-test comparison 233 

between genotypes, a significant cluster showing greater activity in the AA genotype was 234 
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found in the putamen (Figure 1B) after performing a small-volumes correction using a 6 mm-235 

radius sphere over the lowest FWE-corrected p-value in the cluster (Table 2). 236 

 237 

Differential patterns of neural activation in each FTO genotype depending on body-mass 238 

index. 239 

We then tested regressions of BMI and whole brain activity within each genotype.  We 240 

tested both positive and negative regressions in the HC versus LC contrast.  Two regressions 241 

yielded results which survived corrections for multiple testing.  In addition, there was almost 242 

no overlap between the two patterns of activity, with only a small area on the motor cortex 243 

showing overlap of clusters from each genotype, neither of which survived corrections for 244 

multiple testing (Figure 3A).  In the AA genotype, there was a negative correlation between 245 

caloric discrimination (HC versus LC) and BMI (Figure 3B) in the following brain areas: 246 

frontal gyrus (medial and superior), lentiform nucleus, cerebellum (declive, uvula, and 247 

pyramis), and cingulate gyrus (Table 3); i.e., overweight AA participants had weaker 248 

responses to HC images than LC, while normal-weight AA participants had stronger 249 

responses to HC images compared to LC.  However, in the TT genotype, there was a positive 250 

relationship between caloric discrimination and BMI (Figure 3C), but only in a cluster 251 

containing the superior temporal gyrus (Table 4).  Thus, the two genotypes have a divergence 252 

in the neural processing of caloric discrimination to food based on BMI. 253 

 254 

Differential patterns of behavior for each FTO genotype depending on body-mass index. 255 

We next tested if behavioral questionaires corrobarated the findings from the imaging 256 

experiments.  We employed two questionaries: the Behavioral Inhibition System (BIS) and 257 
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Behavioral Activation System (BAS) questionnaires, which measure punishment and reward 258 

sensitivity, respecively (Carver & White, 1994).  We choose these questionaires as they 259 

represented the main elements of personality that we wished to explore in this study.  We then 260 

performed a principle component analysis within each genotype using the BIS and the three 261 

BAS subscales (Drive, Fun Seeking, and Reward Responsiveness) as variables of interest 262 

with BMI as a quantitative supplementary variable.  For both analyses, all the variables of 263 

interest were well projected and the first two dimensions accounted for ≈80% of the variablity 264 

(considered significant based on critera listed in methods under statistical analysis 265 

subheading, 81.4 > 80.0 for the AA group and 79.2 > 76.5 in the TT group).  Moreover, the 266 

variables of interest projected to the same quandrants except for the Drive and Fun Seeking 267 

subscales, which were switched between the two different genotypes.  Interestingly, the 268 

supplementary variable, BMI, was projected in opposite quadrants relative to the BIS 269 

depending on genotype.  In the AA genotype, BMI correlated positively with the BAS Drive 270 

subscale and negatively with BIS, while in the TT genotype, BMI correlated somewhat 271 

positively with BIS and negaively with the BAS Fun Seeking subscale.  Furthermore, we 272 

followed up the association between the BIS and BMI using a multiple regression analysis 273 

testing if BIS scores could be predicted by genotype, BMI, or their interaction.  This model 274 

found significance for the genotype (p < 0.01) and interaction terms (p < 0.01).  Thus, the two 275 

genotypes appear to have differing behavioral measures for impulsivivity, punishment, and 276 

reward depending on BMI.   277 
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DISCUSSION 278 

 279 

We examined whether an obesity-associated genotype affects the neural processing of 280 

food images with different caloric content and to what extent body-mass index (BMI) is an 281 

important factor.  We tested 30 male participants homozygous for either the risk (A)- or non-282 

risk (T) allele of the fat mass and obesity associated (FTO) SNP rs9939609 (13 in the AA 283 

group and 17 in the TT group).  Participants were shown images of low-calorie (LC) food, 284 

high-calorie (HC) food, or control images while blood-oxygen-level dependent (BOLD) 285 

signals were obtained via fMRI.  We found the AA genotype had increased brain activity 286 

compared to the TT genotype when viewing food images with different caloric contents, 287 

specifically in areas important for emotion (cingulate gyrus), memory, and self-image (cuneus 288 

and precuneus) and reward (putamen).  Moreover, while both genotypes had a similar 289 

distribution of BMI, ranging between normal-weight to obese in each genotype, we found that 290 

BMI was associated with differential activity within each genotype – with comparatively 291 

more brain regions associated with BMI in the AA genotype than in the TT genotype.  Thus, 292 

discrimination between HC and LC foods may be handled differently for each genotype 293 

depending on BMI.  Next, we corroborate our findings in the imaging study with personality 294 

questionnaires examining behavioral characteristics related to impulsivity and reward-295 

processing: namely the Behavioral Inhibition System (BIS) and Behavioral Activation System 296 

(BAS) scales.  We found that the BIS as well as subscales of the BAS correlated with BMI 297 

oppositely in each genotype.  Thus, obesity within each genotype may stem from different 298 

behavioral characteristics.  Our results suggest that this polymorphism of the FTO gene 299 

affects the processing of visual food stimuli differently, possibly involving emotion, self-300 

image, and reward processing.   301 



FTO Associated Brain Activity 14 

In between-groups comparisons, as well as multiple regression analysis, we found 302 

significant clusters of brain activity when testing a contrast for caloric discrimination (HC 303 

food images opposed to LC food images).  Specifically, we found increased neural activation 304 

in the AA genotype compared to the TT genotype within the posterior cingulate cortex (PCC), 305 

cingulate gyrus, cuneus and precuneus.  The PCC is a well-connected and multifunctional 306 

brain area associated with emotional processing, and a central node in the default mode 307 

network (DMN): involved in arousal/awareness, balancing external and internal thought, and 308 

emotion (Leech & Sharp, 2014).  Decreased activity in the PCC is associated with low levels 309 

of arousal (Fiset et al., 1999).  The cuneus and precuneus are also implicated in obesity, as a 310 

previous study showed that obese adolescents had less activation in the cuneus and precuneus 311 

when viewing food versus non-food commercials (Gearhardt, Yokum, Stice, Harris, & 312 

Brownell, 2014).  Thus, there may be a difference in the salience of food images depending 313 

on FTO genotype, and perhaps an increased salience of HC food images for people with the 314 

AA genotype leads to an increase in food intake.   315 

Participants with the AA genotype also had increased activity in the putamen compared 316 

to TT participants in a region-of-interest analysis.  The putamen has an important functional 317 

role in reward processing (Delgado, 2007), and several imaging studies have shown increased 318 

activity for this structure in obese participants (Boutelle et al., 2015; Jastreboff et al., 2014; 319 

Zhang et al., 2015).  Thus, in our study, finding increased activity in the putamen for the risk 320 

allele (AA) is a supportive finding, as both are associated with obesity.  This also further 321 

implicates the involvement of the reward system in obesity with the FTO risk allele. 322 

Other studies have examined participants of different genetic background for the FTO 323 

gene using MRI techniques (de Groot et al., 2015; Heni et al., 2014; Karra et al., 2013), but no 324 

study has yet included obesity as a factor.  However, we only partially replicated previous 325 

findings (Karra et al., 2013).  For example, for their cohort in a fasted state, they reported 326 
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reduced activity in the AA versus TT genotype in the hypothalamus, globus pallidus, 327 

thalamus, ventral tegmental area, and substantia nigra (Karra et al., 2013).  This difference in 328 

results is perhaps because the BMI in our cohort was much more variable, whereas 329 

overweight and obese participants in their previous study were excluded.   Furthermore, 330 

others suggest that BMI should be regarded as a confounding factor (Cole et al., 2013).  331 

However, the variability of BMI in our cohort allowed us to perform an analysis with 332 

regressions between BMI and BOLD responses.  BMI appears to be an important factor in 333 

studies of this type, and our results suggest that the neural processing of food images between 334 

genotypes may be differentially affected as BMI increases.   335 

Next, we further explored the neural response to caloric discrimination of food images 336 

based on BMI.  We find that BMI augments the neural response to food images differently 337 

within each genotype.  As BMI decreased in the AA genotype, neural activity increased in the 338 

superior and medial frontal gyrus, lentiform nucleus, cingulate gyrus, middle temporal gyrus, 339 

and cerebellar areas: declive, uvula, and pyramis.  Thus, the overweight AA participants have 340 

less activity in these areas.  And, in line with our results, a previous fMRI study also showed 341 

reduced activation in the superior and middle frontal gyri as BMI increased (Batterink et al., 342 

2010).  Thus, the AA genotype again corresponds with previously-established brain activity in 343 

the obese/overweight.  Our findings of altered activity among AA participants in cerebellar 344 

areas are also pertinent, given the relatively recent association with the cerebellum to emotion 345 

(Schienle & Scharmüller, 2013) and appetitive processes (Zhu & Wang, 2007).  As for the TT 346 

genotype, we found two areas where neural activity positively correlated with BMI: the 347 

superior and middle temporal gyri.  These affected areas are perhaps due to functional 348 

relationships within the default mode network and the temporal lobe network, where 349 

functional connectivity is augmented in the obese (Kullmann et al., 2012).  From the above, 350 

and similar to (Karra et al., 2013), we find a divergence in the processing of food images 351 
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between the two genotypes, and our results highlight the importance of BMI as a factor 352 

mediating the effect of genotype on neural responses to images of food.  Thus, obese as well 353 

as normal-weight individuals may be expected to process food images differently depending 354 

on their genotype.   355 

Lastly, we corroborate our findings in the imaging study with personality measures 356 

from the BIS and BAS scales, as obesity is associated with anomalies in both (Carver & 357 

White, 1994; Dietrich et al., 2014; Meule, 2013; Voigt et al., 2009).  Higher scores of the BIS 358 

are indicative of increased sensitivity to punishment, and correlate positively with such 359 

personality measures as harm avoidance, reward dependence, susceptibility to punishment, 360 

negative affect, and anxiety, and correlate negatively with optimism and socialization.  361 

Whereas higher scores of the BAS and its subscales, are indicative of greater reward 362 

sensitivity, and correlate positively with extraversion, novelty seeking, and positive affect, 363 

and correlate negatively with harm avoidance, and susceptibility to punishment (Carver & 364 

White, 1994).  The two genotypes had opposing relationships with BMI and the BIS score.  365 

Specifically, BMI in the AA genotype correlated negatively with BIS, while BMI in the TT 366 

genotype correlated positively with BIS.  This suggests that the overweight/obese people with 367 

the AA genotype have less inhibitory personality characteristics than the overweight/obese 368 

with the TT genotype.  Thus, the AA genotype in our cohort confirms previous reports 369 

equating impulsivity with obesity/overeating (Meule, 2013) specifically in one study which 370 

also found a negative correlation between BIS and BMI in males (Dietrich et al., 2014).  371 

Subscales of the BAS also had different correlations with BMI in each genotype: the Drive 372 

subscale correlated positively with BMI in the AA genotype, while the Fun Seeking subscale 373 

correlated negatively in the TT genotype.  The correlation between the Drive subscale and 374 

BMI in the AA genotype corroborates with previous associations with BAS, arousal, and 375 

overeating (Voigt et al., 2009) and also a previous fMRI report associating the Drive subscale 376 
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with neural activity in response to appetitive food images (Beaver et al., 2006).  Thus, people 377 

in the TT genotype may possess a reward processing that is optimal for maintaining or 378 

decreasing weight, while the AA genotype has a more impulsive attitude and matches 379 

traditional descriptions of obesity and unhealthy eating behavior. Indeed, the same FTO 380 

variant modulated reward processing and avoidance learning (Sevgi et al., 2015).  However, 381 

we were unable to establish effects of BIS or BAS or interactions with genotype using the 382 

brain-imaging data.  Thus, while this finding is intriguing, we caution that it requires further 383 

validation. 384 

In summary, we show that a genotype homozygous for an FTO risk allele for obesity is 385 

associated with increased neural response to HC versus LC food images in brain regions 386 

associated with emotion, impulsivity, and reward compared to the low-risk for obesity TT 387 

genotype, and that BMI is a mediating factor for each genotype.  Our results suggest that 388 

overweight/obese people with the AA genotype may be prone to unhealthy eating behavior 389 

due to food images being less salient at evoking normal appetitive responses compared to 390 

overweight/obese people with the TT genotype.  Some limitations of this study are the use of 391 

only males in the fMRI experiments, as well as the exclusion of the AT genotype.  We 392 

maintain that BMI is an important factor in fMRI research as well as in the relationship 393 

between brain activity and genotype.  In conclusion, our findings offer insight into the 394 

relationship between FTO, obesity, and brain activity; and suggest that overweight/obese 395 

populations have different attitudes and functional processing for food images depending on 396 

genetic background.  397 
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FIGURE LEGENDS 539 

 540 

Figure 1.  Participants homozygous for the FTO risk-allele (rs9939609) have increased 541 

brain activity in response to high- and low-calorie food images.  13 participants 542 

homozygous for the FTO risk allele (A) and 17 for the non-risk allele (T) were shown images 543 

of either low-calorie (LC), high-calorie (HC) food, or control while brain activations were 544 

measured via fMRI.  A whole-brain, between-groups comparison tested the neural response to 545 

foods of different caloric content (HC versus LC contrast) using total brain volume (TBV) 546 

and body-mass index (BMI) as covariates of no interest.  Greater activity was found in four 547 

clusters for participants homozygous for the risk allele (A) compared to the normal allele (T).  548 

A) Axial brain slices showing significant clusters.  Exact MNI z-coordinate given below 549 

slices in white numbers, and t-statistics indicated by color-coded scale bar (critical t = 3.5).  550 

B) A region of interest analysis found a significant cluster within the putamen after a small-551 

volumes correction. 552 

 553 

Figure 2.  Opposite patterns of activity in each FTO genotype depending on body-mass 554 

index.  For each genotype, the caloric discrimination to food was tested in a contrast between 555 

the BOLD response to high-calorie versus low-calorie food images in regressions with body-556 

mass index (BMI).  A negative relationship was found between brain activity and BMI in 557 

participants with the FTO risk genotype (AA), while a positive relationship was found in the 558 

non-risk genotype (TT).  Patterns of activity were mostly independent of each other, with only 559 

a small area in motor cortex overlapping between the two.  A) Color-coded activity for each 560 

genotype (AA in magenta and TT in cyan) imposed on a 3D rendering of the brain.  561 

Overlapped activity between genotypes shown as white.  B & C) Threshold images of brain 562 
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activity for AA and TT genotype respectively.  Axial brain images are shown with respective 563 

MNI z-coordinated displayed below and t-statistics indicated by color-coded scale bar (critical 564 

t = 4.1 for AA, and 3.8 for TT). 565 

 566 

Figure 3.  The AA genotype displays a different balance of behavioral inhibition and 567 

activation systems depending on body-mass index compared to the TT genotype.  568 

Participants completed the Behavioral Inhibition System (BIS) and Behavioral Activation 569 

System Questionnaires (BAS) questionnaires.  The BIS evaluates inhibitory behavior in the 570 

anticipation of punishment and anxiety, while the BAS included three subscales: Drive, which 571 

represents the pursuit of desired goals; Fun Seeking, which evaluates the desire for new 572 

rewards and impulsivity; and Reward Responsiveness, which focuses on positive reactions 573 

anticipating rewards.  Principle component analysis was used to compare the relationships of 574 

these variables along with BMI in the two different genotypes.  The behavioral variables were 575 

all well projected in each group.  Body-mass index (BMI) was used as a supplementary 576 

variable (not included in the analysis, but still plotted to evaluate which variables it correlated 577 

with).  Interestingly, for each genotype, BMI was projected in opposite quadrants relative to 578 

the BIS.  The subscales for the BAS were also differently projected relative to BMI for each 579 

genotype.  A) variables factor map for the AA genotype.  BMI was negatively correlated with 580 

BIS and positively correlated with the BAS Drive subscale.  B) variables factor map for the 581 

TT genotype.  BMI was positively correlated with BIS and negatively correlated with the 582 

BAS Fun Seeking subscale. 583 


