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Abstract 15 

The action of storms, and associated large waves and inundation depths, can strongly 16 

alter horizontal and vertical salt marsh dynamics in the immediate after-storm period, as well 17 

as in the longer term. This manuscript reviews the progresses made in the understanding of the 18 

dynamic interactions between coastal storms and salt marshes, including the dissipation of 19 

extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms 20 

on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary 21 

records, and the importance of storms for the long term survival of salt marshes to sea level 22 

rise. Salt marshes are effective in dissipating wave energy, and storm surges, especially when 23 
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the marsh is highly elevated, continuous, and more than 10km wide. This buffering action, is 24 

very effective during moderate storms, but less efficient for long storms lasting more than one 25 

day; for this reason the use of hybrid approaches, combining continuous marshes with 26 

engineered defence structures is recommended for coastal protection. From a morphological 27 

point of view, our considerations highlight the necessity to focus on the indirect long term 28 

impact that large storms exerts on the whole marsh complex rather than on sole after-storm 29 

periods. Storms can cause tidal flats deepening which in turn promotes wave energy 30 

propagation, and exerts a long term detrimental effect for marsh boundaries even during calm 31 

weather. On the other hand, when a violent storm causes substantial erosion but sediments are 32 

redistributed across nearby areas, the long term impact might not be as severe as if sediments 33 

were permanently lost from the system, and the salt marsh could easily recover.  34 

 35 

1. Introduction 36 

 37 

1.1 Changing storm activity  38 

Many areas are experiencing a change in both extreme and mean storm conditions as a 39 

consequence of a changing climate (e.g. Zhang et al., 2000; Webster et al., 2005; Bacmeister 40 

et al., 2016). For example, according to the Intergovernmental Panel on Climate Change (IPCC, 41 

e.g. Solom et al., 2007; Pachauri et al., 2014) it is virtually certain (99-100% probability) that 42 

the intensity of cyclone activity has increased in the North Atlantic since 1970, even if there is 43 

low confidence that the long term changes are robust. In terms of extremes, it is likely (66-44 

100% probability) that extreme sea levels such as the ones experienced during storm surges 45 

have increased since 1970 on a global average. The latter trend has been mainly attributed to 46 

an increase in mean sea level even if more studies are necessary to fully separate the effect of 47 

global mean sea level rise from the effects of more local modifications to the coastal systems 48 



(e.g. Pachauri et al., 2014). Finally, it is also likely that there are more land regions where the 49 

number of heavy precipitation events has increased than where it has decreased.  50 

Evaluations of future increases in storms and hurricanes activity are complex, and with 51 

large uncertainties. For example, a statistical correlation has been found between the power 52 

dissipation index of hurricanes (i.e. an index combining intensity, frequency and duration of 53 

hurricanes) and Atlantic Sea Surface Temperature (SST) (e.g. Vecchi et al., 2008). Based on 54 

this relationship and taking into account hurricanes activity since 1950, as well as future SST 55 

projection, there should be a 300% increase in hurricanes activity by the late 21st century. 56 

However, a statistical correlation has been also found between the power dissipation index and 57 

the Atlantic sea surface temperature relative to the Tropical mean sea temperature; if the latter 58 

relationship is considered, the projected change in hurricane activity by 2100 would be around 59 

25%, which is modest with respect to the estimation above (Vecchi et al., 2008). Projections 60 

about the future of hurricanes activity might get even more complicated when looking at the 61 

longer term. Mean air temperature, Atlantic SST and the unadjusted hurricanes count all show 62 

a marked increase since the late 1800; however, when the raw hurricane count is adjusted for 63 

the storms which were not counted during the pre-satellite era due to technology, and ship track 64 

density limitations, no significant increase is observed (e.g. Vecchi et al., 2008).  65 

Figure 1 illustrates model results in relation to the 21st century changes in Emmanuel’s 66 

(1995) wind maximum potential intensity (MPIV), the increase of which is generally associated 67 

with an increase in storms activity and intensity (Vecchi and Sobel, 2007). Results refer to the 68 

IPCC-AR4 Scenario A1B for the period from June-November. The MPIv index increases over 69 

most of the northern hemisphere and tropical zone of the southern hemisphere, but there are 70 

also large areas particularly in the southern hemisphere indicating decreases. The regions where 71 

the MPIV decreases are associated with a relative minimum in SST (e.g. Sobel et al., 2002).  72 



On a regional scale, for instance, by using a barotropic type surge model and global 73 

conditions representative of the IPCC A2 SRES scenarios between 1961-1990 and 2071-2100, 74 

it was shown that storm surge extremes may also significantly increase along most of the North 75 

Sea coast toward the end of this century (Woth et al., 2006). Recent results from ensemble 76 

simulation runs using Regional Climate Models for various locations in the United States (Jiang 77 

et al., 2016) also support the hypothesis of variations in future storm pattern; specifically, they 78 

predict shorter storm durations, longer inter-storms periods, and higher storms intensities. 79 

In spite of the abundance of studies in relation to climatic projections and past trends, 80 

many challenges are still present, especially for the monitoring of coastal zones, due to 81 

limitations of some current modelling and field practice frameworks. For instance, the retrieval 82 

of waves and winds in the coastal areas is not yet as mature as sea level measurements, and the 83 

development of a wider applicability of altimetry techniques could be relevant for the 84 

simultaneous monitoring of wave height, wind speed and sea levels. In this context, Liu et al. 85 

(2012) showed the potential usefulness of the 1-Hz along-track altimetry data for the 86 

description of shelf areas, and Passaro et al., 2015 showed that estimations of wave height form 87 

ALES (Adaptive Leading Edge Sub-waveform retracker) were better correlated to buoy data 88 

than processed products. Such techniques could be coupled to standard modelling, and field 89 

data approach to build a more comprehensive and homogeneous database for the study of these 90 

coastal ecosystems 91 

1.2. Pressures on salt marsh ecosystems 92 

Salt marshes are important coastal ecosystems frequently fringing the interior of 93 

estuaries and bays, and establishing in low-energy inter-tidal zones. Due to their location and 94 

vegetated surfaces, salt marshes offer several ecosystem services. For example, their value for 95 

buffering against the impact of storms has been estimated up to 5 million USD per km2 in the 96 

United States (e.g., Costanza et al., 2008), and 786 million GBP per year for UK marshes (UK 97 



National Ecosystem assessment, 2011; Foster et al., 2013; Moller et al., 2014). Indeed, in recent 98 

years, salt marsh conservation and restoration projects are increasingly adopted as part of 99 

coastal and estuarine flood defence programs, based on the concept of “living shorelines” or 100 

“nature-based solutions” for flood defence (e.g., Temmerman et al., 2013; Fagherazzi, 2014).  101 

Apart from flood protection, other salt marsh services include the storage of sediments, 102 

pollutants, nutrients, as well as of large amounts of carbon at a geological time scale (e.g. 103 

Mudd, et al., 2009; Kirwan and Mudd, 2012; Pendleton et al., 2012). They are also the natural 104 

habitat of many plants and animal communities, and offer a place for recreational and touristic 105 

activities (e.g. Barbier et al., 2011). 106 

The long-term persistence of salt marshes appears related to the maintenance of a 107 

delicate balance between sediment and nutrient inputs, and external agents such as wave 108 

energy, storm surges, tidal inundation, and sea level rise (e.g. Spencer et al., 1998; Plater et al., 109 

1999; van de Koppel et al., 2005; Deegan et al., 2012; Fagherazzi et al., 2012; Kirwan et al., 110 

2016; Leonardi et al., 2016). Figure 2 represents a sketch of some of the main physical and 111 

ecological processes acting on a salt marsh. This includes, for instance, the exchange of 112 

sediments between the tidal flat and the marsh platform, biomass production and sediment 113 

deposition on the marsh platform promoting vertical accretion, and possible erosion/ 114 

progradation of the marsh edge. Ultimately, the survival of salt marshes has been related to a 115 

sediment budget problem (Ganju et al., 2017).  116 

Salt marshes have been found to be extremely vulnerable, and large salt marsh losses 117 

have been documented worldwide. For instance, for areas in the south west of the Netherlands 118 

and the Wadden Sea, marsh edge erosion rates up to 4 m/yr have been observed, in spite of 119 

vertical accretion rates in balance with sea level rise (e.g., Bakker et al., 1993). In England and 120 

Wales salt marsh areal loss has been estimated to be around 83 ha yr-1 (Environment Agency, 121 

2011; Foster et al., 2013), 105 ha yr-1 for the period in between 1993 and 2013 (Pye and French, 122 



1993), and is projected to be 349 ha yr-1 for the period between 1998 and 2048 (Lee, 2001). In 123 

the Greater Thames area, the erosion was estimated to be around 25% of the total area present 124 

in 1973 (Cooper et al., 2009), while in the Solent (UK) 40% of the total salt marsh area present 125 

in 1971 was eroded between 1971 and 2001 (Cope et al., 2008). Erosion up to 80 cm/yr has 126 

been recently measured in the northern part of the Venice Lagoon (e.g., Bendoni et al., 2016). 127 

For the East Coast of the United States, in Plum Sound and the Virginia Coast Reserve, salt 128 

marsh boundary erosion rates ranged from a couple of cm up to 3 m/yr  over a 7-year measuring 129 

period (Leonardi and Fagherazzi, 2014, 2015). In Barnegat Bay, New Jersey, USA, erosion 130 

rates from 1930 to 2007, and from 2007 to 2013, were similar, with around half of the marsh 131 

area that fringes the interior of the bay eroding less than 0.5 m/yr, the other half displaying 132 

erosion rates up to 2 m/yr, and only a 3 percent eroding faster than 2 m/yr (Leonardi et al., 133 

2016b). A recent global analysis on salt marsh erosion and wave measurements by Leonardi et 134 

al., 2016a revealed that most of salt marsh deterioration is caused by moderate storms of a 135 

monthly frequency while intense hurricanes contribute to less than 1% to long term salt marsh 136 

erosion rates.  137 

The action of storms and associated wind waves and storm surges can strongly alter 138 

both horizontal and vertical salt marsh dynamics in the immediate after-storm period, as well 139 

as in the long term, by affecting erosion/ deposition, and sediment import/ export in salt 140 

marshes and surrounding areas. Furthermore, storms generate serious flood risks in low-lying 141 

and highly populated coastal zones. For these reasons, and especially under a climate change 142 

perspective, it is important to understand the reciprocal interaction between storms and salt 143 

marshes. This manuscript aims to review progresses made in the understanding of salt marsh-144 

storms interactions, and is organized as follows: we first review storm surges (section 2), and 145 

wind waves (section 3) attenuation across salt marshes. In section 4 we focus on the impact of 146 

storms on salt marshes morphology, and on the preservation of hurricanes signals into the 147 



sedimentary records. Section 5 focuses on the impact of storms on the marsh sediment budget. 148 

Section 7 discusses how the interplay between storms occurrence and sea level rise influences 149 

salt marsh survival. A set of discussions and conclusions is finally presented.  150 

2. Storm surge attenuation by salt marsh  151 

Vegetated coastal ecosystems, in particular salt marshes and mangroves, are 152 

increasingly valued for their protective function against storm surge flood risks. This is 153 

illustrated by the rapidly increasing number of scientific studies on storm surge attenuation by 154 

salt marshes and mangroves, and growing societal interest in so-called ecosystem-based or 155 

nature-based flood defence programs, i.e. marsh and mangrove restoration projects aiming to 156 

mitigate storm surge flood risks (e.g. Cheong et al., 2013; Sutton-Grier et al., 2015; 157 

Temmerman et al., 2013). The effectiveness of storm surge height reduction behind marshes is 158 

commonly quantified as the attenuation rate in cm of surge height reduction per km distance 159 

that the storm surge has propagated over marshes (e.g. Wamsley et al., 2010). However, 160 

mechanistic insights in the various factors that control this attenuation rate are rather 161 

fragmentary presented in recent literature, which may be one reason why real life 162 

implementations of nature-based flood defence are relatively scarce so far (Temmerman et al., 163 

2013). Here in this section, we review the most recent scientific insights. 164 

Although anecdotal evidence of storm surge protection behind large marshes is 165 

presented in early reports (e.g. Lovelace, 1994; USACE, 1963), systematic evidence and 166 

mechanistic studies only started to accumulate over the past 10 years. In particular major 167 

coastal flood disasters caused by the Indian Ocean tsunami in 2004 and hurricane Katrina along 168 

the US Gulf coast in 2005 boosted worldwide scientific and public awareness of the potentially 169 

important protective role of mangroves (Danielsen et al., 2005) and salt marshes (Day et al., 170 

2007). A first important source of empirical evidence comes from studies that analysed the 171 



reduction of damage or human deaths as a function of marsh or mangrove width between 172 

coastal settlements and the open sea. For example, Costanza et al., 2008, performed an 173 

extensive analysis of 34 major hurricanes that hit the US Atlantic and Gulf coasts since 1980, 174 

demonstrating that damage to properties was significantly reduced behind marshes, and that a 175 

loss of 1 ha of marshes would increase average storm damages by 33000 USD. For mangroves, 176 

Das and Vincent, 2009, showed that villages that were hit by a tropical cyclone surge in India 177 

experienced significantly lower numbers of deaths when they had wider mangroves between 178 

them and the coast. 179 

A second source of empirical evidence, are direct measurements of storm surge height 180 

reduction within and behind large marshes. Data reported in the literature are especially from 181 

the US Gulf coast (e.g. Lovelace, 1994; McGee et al., 2006; USACE, 1963), which is regularly 182 

hit by hurricane storm surges and where huge marshlands of several tens of kilometres wide 183 

exist in the Mississippi delta and in back-barrier tidal lagoons. A rule of thumb, derived from 184 

these reports, is that peak surge levels are reduced by on average 1 m for every 14.5 km that 185 

the surge has propagated over marshes (i.e. ~6.9 cm/km), with large variations between 186 

individual hurricane events as much as from 1 m surge reduction per 4 km of marshland (i.e. 187 

25 cm/km) to only 1 m per 60 km (i.e. ~1.7 cm/km) (based on  data compilation by Wamsley 188 

et al., 2010). This large variation in empirical data indicates that storm surge propagation and 189 

attenuation over marshes is complex and that the effectiveness of surge height reduction largely 190 

varies depending on specific storm characteristics, marsh ecosystem properties and larger-scale 191 

coastal landscape settings. For a macro-tidal estuarine marsh in the SW Netherlands, Stark et 192 

al., 2015, presented a large dataset ranging from regular tides to storm surges, showing that the 193 

magnitude of tidal and storm tide attenuation strongly depends on the marsh inundation depth 194 

and the dimensions of channels that dissect the marsh landscape. Maximum attenuation rates 195 

of up to 5 cm/km were measured over marsh transects with smaller channels and for marsh 196 



inundation depths of 0.5-1 m, while attenuation rates decreased for shallower and deeper 197 

inundation events, including storm surges. For mangroves in Southern Florida, hurricane surge 198 

attenuation rates of 9.4 cm/km have been measured over relatively continuous mangrove 199 

forests, and slightly lower rates for mangroves along a river corridor (Krauss et al., 2009). 200 

Hydrodynamic modelling studies are a third line of evidence and important research 201 

tools to disentangle the various factors controlling the effectiveness of storm surge height 202 

reduction by wetlands. Comparing the rapidly growing number of publications in the past few 203 

years (see below), we can generally make a distinction between two main mechanisms that 204 

depend on the larger-scale landscape setting: (1) storm surge attenuation within and behind 205 

continuous marshes is basically due to friction exerted by the marsh vegetation and soil on the 206 

landward propagating storm surge (e.g. Sheng et al., 2012); and (2) storm surges propagating 207 

through an estuarine or deltaic channel or embayment can be attenuated due to lateral flooding 208 

and water storage on marshes adjacent to that channel (e.g. Smolders et al., 2015). The 209 

frictional effect (1) is called here within-marsh attenuation and the water storage effect (2) 210 

along-channel attenuation. Ultimately both take place in most real cases, as marshes and 211 

mangroves are typically dissected by networks of tidal channels, implying that surge 212 

propagation along these channels is affected by both frictional and lateral water storage effects 213 

(e.g. Stark et al., 2016). 214 

Modelling studies, either for idealized marsh geometries (e.g. Loder et al., 2009; Sheng 215 

et al., 2012; Temmerman et al., 2012) or for specific more realistic landscape settings (e.g Resio 216 

and Westerink, 2008; Wamsley et al., 2010; Wamsley et al., 2009; Zhang et al., 2012), 217 

demonstrate that the effectiveness of storm surge attenuation depends on specific properties of 218 

(1) the storm forcing (such as storm intensity, duration, forward moving speed, storm track), 219 

(2) the marsh ecosystem (such as marsh size and soil elevation, vegetation density and 220 

continuity, within-marsh channel dimensions), and (3) larger-scale coastal landscape settings 221 



(such as off-shore bathymetry, shoreline shape, open coast, back-barrier, estuarine or deltaic 222 

setting, levees or dikes behind marshes, etc.).  223 

In terms of effects of storm characteristics, attenuation rates are generally higher for 224 

shallow to moderate storm surge levels and decrease for more extreme storm surges that deeply 225 

submerge the marshes, as within-marsh frictional effects on the storm surge attenuation 226 

relatively decrease with increasing water depth on the marsh (Lawler et al., 2016; Resio and 227 

Westerink, 2008; Sheng et al., 2012; Wamsley et al., 2010). Similarly, marshes with a higher 228 

soil elevation are more effective in attenuating higher storm surges (Loder et al., 2009; 229 

Smolders et al., 2015; Stark et al., 2016), implying that marshes with a sediment accretion 230 

deficit and consequently decreasing surface elevation relative to rising sea level, lose their 231 

effectiveness for storm surge protection (Temmerman et al., 2012; Wamsley et al., 2009). The 232 

protective function also decreases for storms with a longer duration, as the surge has more time 233 

to propagate landward and to fill up the whole marsh area (Resio and Westerink, 2008; 234 

Wamsley et al., 2010). Similarly, storm surge attenuation behind wetlands is more effective for 235 

storms with a faster forward moving speed (Hu et al., 2015; Liu et al., 2013; Sheng et al., 2012; 236 

Zhang et al., 2012).  237 

In terms of marsh ecosystem properties, obviously wider marshes, of at least 10 or more 238 

kilometres wide, are more effective, as well as marshes with a higher soil elevation, as 239 

explained above. Effectiveness of storm surge attenuation also markedly increases when marsh 240 

vegetation is simulated that exerts more friction (Hu et al., 2015; Loder et al., 2009; Sheng et 241 

al., 2012), and with higher ratios of marsh vegetation to open water (Temmerman et al., 2012; 242 

Zhang et al., 2012), implying that patchy patterns of gradual marsh degradation, which are 243 

observed in several marshes around the world (e.g. Schepers et al., 2017), lead to loss of their 244 

storm protection function (Temmerman et al., 2012). The dimensions of channels, which 245 

typically cut into marshes, play a major role: simulations with deeper or wider channels, show 246 



that landward flood propagation through the channels is facilitated leading to less storm surge 247 

height reduction (Stark et al., 2016; Temmerman et al., 2012). (Stark et al., 2016) showed for 248 

a marsh in the SW Netherlands that the effects of within-marsh channel dimensions, marsh 249 

platform elevation and storm surge height can be combined into one parameter predicting 250 

variations in attenuation rate from 0 to nearly 25 cm/km, i.e. as a function of the ratio between 251 

the water volume that is present at high tide above the marsh platform and the total water 252 

volume above the platform and in the channels (Figure 3).       253 

Finally, the precise rates of storm surge attenuation by marshes depend on case-specific 254 

larger-scale landscape settings. For example, significant storm surge attenuation by wetlands 255 

is simulated for the several tens of kilometres wide marshes in the Mississippi deltaic area 256 

(Barbier et al., 2013; Hu et al., 2015; Resio and Westerink, 2008; Wamsley et al., 2010; 257 

Wamsley et al., 2009) and wide mangrove systems in Southern Florida (Liu et al., 2013; Zhang 258 

et al., 2012), while more moderate to limited contribution of marshes to storm surge protection 259 

are simulated for marshes along the Chesapeake Bay (Haddad et al., 2016), and back-barrier 260 

lagoon systems of Jamaica Bay, New York (Marsooli et al., 2016) and the Delmarva coast 261 

(Lawler et al., 2016). For the case of marshes occurring along the funnel shaped Scheldt estuary 262 

in the Netherlands and Belgium, simulations show that marshes of the same size but located 263 

more upstream are more effective in attenuating storm surges propagating upstream along the 264 

estuarine channel (Smolders et al., 2015). Man-made structures, in particular coastal defence 265 

structures such as levees and dikes behind marshes, may cause the setup of water levels against 266 

these structures and hence limit the storm surge attenuating effect of marshes in front of such 267 

structures, as shown for example in simulations for the 2005 hurricanes Katrina and Rita in the 268 

Mississippi delta (Wamsley et al., 2009). Similarly, for a marsh in the SW Netherlands, (Stark 269 

et al., 2016) showed blockage effects and setup of peak surge levels against dikes behind the 270 



marsh, and that the marsh width needs to be at least 6-10 km to avoid such blockage effects 271 

and to maximize the rate of storm surge attenuation.         272 

Summarizing, we may say that empirical data and modelling studies demonstrate 273 

effective storm surge height reduction behind large (at least 10 km wide), high-elevated and 274 

continuous marshes with few or small channels, and by marshes located more inland along 275 

funnel-shaped estuarine and deltaic channels, especially during moderate storm surges, but less 276 

effectively during extreme storms that continue for more than a day. The latter implies that 277 

solely relying on nature-based flood defence in populated low-lying coastal and estuarine areas 278 

is commonly not advised. Instead so-called hybrid approaches, combining conservation and 279 

restoration of continuous marshes with engineered defence structures, are increasingly 280 

developed and implemented worldwide (Sutton-Grier et al., 2015; Temmerman and Kirwan, 281 

2015; Van Wesenbeeck et al., 2014), e.g. on large scales in the Mississippi delta (CPRA, 2012) 282 

and Scheldt estuary in Belgium (Meire et al., 2014). An important argument for such hybrid 283 

approaches, is that they are more cost-effective as they do not only provide flood risk mitigation 284 

but also other valuable ecosystem services, and marshes and mangroves build up land with 285 

rising sea levels, making them self-adaptive defences in face of global change (Temmerman et 286 

al., 2013).      287 

3. Wave energy dissipation by salt marsh 288 

Salt marshes are natural wave energy dampers (e.g. Moeller, 2006; Moeller et al., 2014; 289 

Spencer et al., 2016). For shallow water, the dissipation of wave energy is related to the viscous 290 

boundary layer friction, permeability, and viscous layer of the seabed (e.g. Le Hir et al., 2000). 291 

Over a salt marsh the bed-roughness might be considered as the result of two contributions, 292 

i.e., vegetation induced friction, and topographic variations over the marsh surface (Hartnall, 293 

1984; Dijkema, 1987; Pethick, 1992). It is also recognized that wave attenuation is affected by 294 



plant characteristics such as geometry, stem density, spatial coverage, and stiffness, and that 295 

hydrodynamic conditions such as water depth, wave period, and wave height are relevant.  296 

The pioneer work conducted in relation to the interaction between wave oscillatory 297 

motion and vegetation has been mainly aimed at quantifying wave attenuation within 298 

vegetation (e.g. Fonseca and Cahalan, 1992; Kobayashi et al., 1993).  Standard approaches for 299 

the prediction of wave energy attenuation by vegetation, are based on the equation for the 300 

conservation of energy where the local flow field is estimated using linear wave theory. This 301 

approach, while reasonable, might be compromised if the vegetation substantially modifies the 302 

flow field. An alternative approach was proposed by Kobayashi et al., 1993, for the submerged 303 

vegetation case, for which the problem was formulated by using the continuity and linearized 304 

momentum equations for the regions over and within the vegetation canopy. By considering 305 

the effect of vegetation in terms of drag coefficient, introducing an unknown damping 306 

coefficient, and linearizing the friction term, they obtained an analytical solution for small 307 

monochromatic waves whose amplitude has been found to decay exponentially in the 308 

propagation direction. Koch and Gust, 1999, suggested that the periodic motion of seagrass 309 

blades also promotes mass transfer between the meadow, and the overlying water column. 310 

Luhar et al., 2010, demonstrated that even when the motion is driven by a purely oscillatory 311 

flow, a mean current in the direction of wave propagation is generated within the meadow. This 312 

current is forced by non-zero wave stress similar to the streaming observed in wave boundary 313 

layers, and the current is approximately four times the one predicted by the laminar boundary 314 

layer theory. 315 

Among others, the dissipation of wind waves has been found to increase with increasing 316 

relative wave height, i.e. the ratio between wave height and water depth (e.g. Le Hir et al., 317 

2000). Field measurements in England support this relationship, and show that for the analyzed 318 

field sites the relationship was mainly valid for relative wave height ratios above a critical 319 



lower limit and below 0.55; when the ratio is below the lower limit, waves become too small 320 

(or water depth to high) to have an effective vegetation-wave interaction; however, when the 321 

relative wave height is > 0.55, the relationship between wave dissipation and relative wave 322 

height becomes invalid because the maximum dissipation capacity of vegetation has been 323 

reached (Moeller, 2006).  324 

Field measurements of wind waves over sand flat to salt marsh cross-shore transects, 325 

also suggest that wave energy dissipation over salt marshes is significantly higher (up to 82% 326 

of the energy is dissipated) then on sand flats (29% dissipation) (Moeller, 1999, Figure 4).  327 

While part of the wave damping effect is attributable to the reduction in water depth on the 328 

higher elevated marsh platform (relative to the lower elevated tidal flat), the energy dissipation 329 

over salt marshes is up to 50 % stronger even under similar water depth conditions, which 330 

proves the important role of vegetation in the dissipation process.  331 

Another parameter controlling the rate of energy dissipation is the ratio between water 332 

depth and plants height (submergence ratio, i.e. Yang et al., 2012): the smaller this ratio, the 333 

larger the wave attenuation rate (Augustin et al., 2009; Paul et al., 2012). Wave damping is also 334 

strictly related to the relative motion between fluid and plants, which depends on plants stems 335 

flexibility, stems diameter, and stems length. Stems with relatively high stiffness tend to follow 336 

an oscillatory swaying movement throughout the wave cycle, while more flexible stems tend 337 

to bend in the dominant direction of the orbital flow with a high angle which results in canopy 338 

flattening, and loss of flow resistance (whip-like movement) (i.e. Luhar and Nepf, 2016; 339 

Mullarney and Henderson, 2010; Paul et al., 2016). The movement can switch from swaying 340 

to whip-like as the wave energy increases (for example during storm periods) (e.g. Luhar and 341 

Nepf, 2016). Increasing plant flexibility reduces the damping of waves as stems tend to move 342 

with the surrounding water (Bouma et al., 2005; Elwany et al., 1995; Riffe et al., 2011), 343 

however stiff plants can break if hydrodynamic loads are higher than a critical value (Heuner 344 



et al., 2015; Puijalon et al., 2011; Silinski et al., 2015). The dissipative contribution given by 345 

flexible plants is low, but their deformed configuration (flattening) under high orbital velocities 346 

(≥ 74 cm s-1) helps to stabilize surface sediments (Neumeier and Ciavola, 2004; Peralta et al., 347 

2008). In contrast, more rigid plants can reach breakage (from medium orbital velocities), 348 

increase turbulence and sediment scouring around the stems (reference) and cause more erosion 349 

due to increased shear stress values (Spencer et al., 2016).   350 

During extreme storms and associated storm surges, waves and water levels are the 351 

highest, and hence it can be questioned whether, under these conditions, salt marshes still play 352 

a considerable role in wave attenuation. Large scale laboratory experiments (Moeller et al., 353 

2014) confirm that, even under extreme conditions, wave energy dissipation by salt marshes is 354 

very high, and up to 60% of this wave energy reduction is attributed to the presence of 355 

vegetation. As the storm progresses, vegetation stems are gradually flattened and the wave 356 

dissipation decreases, but as suggested by previous work (e.g. Neumeier and Ciavola, 2004; 357 

Peralta et al., 2008), the flattening of vegetation promotes the stability of the substrate. Paul et 358 

al., 2016 tested different artificial vegetation elements to measure drag forces on vegetation 359 

under different wave loading. They found that stiffness and dynamic frontal areas (e.g. frontal 360 

area resulting from bending) are the main factors determining drag forces, while the still frontal 361 

area of plants dominate the force-velocity relationship only for low orbital velocities. 362 

Rupprecht et al., 2015 presented biophysical properties of species commonly found in NW 363 

European salt marshes, and compared the performance of two methods for the non-destructive 364 

assessment of aboveground biomass during storms, i.e. measurements of light availability 365 

within vegetation canopy, and side-on photography vegetation, with the latter being found 366 

more accurate. In the same experiments as reported by Moeller et al. 2014, Rupprecht et al., 367 

2017, tested the effectiveness of two typical NW European salt marsh grasses (Puccinellia 368 

maritima, and Elymus athericus) under simulated storms an no-storms conditions. They found 369 



that under high water levels and long wave periods, within the flexible Puccinellia canopy the 370 

orbital velocity was reduced by 35%, while for the more rigid stems of Elymus, no significant 371 

changes in orbital velocity were found. Differently, under low water levels, and short wave 372 

periods, Elymus reduced near bed velocity more than Puccinellia. As expected, more flexible 373 

stems of Puccinellia were able to more easily survive the more severe conditions, while the 374 

more stiff Elymus plants were subject to structural damage.  375 

 376 

4. Storms impact on salt marsh morphology 377 

In comparison to other wetlands, and from a morphological point of view, salt marshes 378 

have been found to be more resistant to the impact of storms; this has been mainly attributed 379 

to the increased shear strength conferred to the soil by the presence of root systems which are 380 

deeper than in other coastal areas such as freshwater wetlands, and floating marshes (e.g. 381 

Morton and Barras, 2011). Nevertheless, the impact of storms on salt marshes can significantly 382 

vary depending on both storms and ecosystem properties, and can translate into various 383 

geomorphic signatures. Some of these signatures have contrasting effects in relation to the long 384 

term resilience of the ecosystem.  Apart from erosion and deposition processes, affecting marsh 385 

platform, marsh shoreline, as well as surrounding tidal flats, storms can also deform the marsh 386 

surface trough subsurface processes, and incision (e.g. Morton and Barras, 2011). This section 387 

presents a summary of some of the main geomorphic impacts of storms on salt marsh 388 

ecosystems (Figure 5).  389 

4.1 Incision 390 

For salt marshes, ponds generated during storms are generally much smaller and less 391 

frequent with respect to brackish and freshwater marsh ponds; they also maintain a more 392 

amorphous shape (with no preferential direction) in comparison to the more elongated ponds 393 

frequently found in freshwater marshes (e.g. Barras, 2011). These ponds are more easily 394 



formed where the terrain is already lower, and strong wind driven currents can erode surface 395 

sediments (e.g. Morton et al., 2011). Ponds can then enlarge in time due to subsequent storms, 396 

and can also deepen leading to a loss of sediments from the marsh (e.g. Mariotti, 2016). In fact, 397 

once the ponds are formed, these can expand even if the rest of the marsh platform is able to 398 

keep pace with sea level, and wave action; enlarged ponds can eventually connect to tidal 399 

channels (e.g. Mariotti and Fagherazzi, 2013; Schepers et al., 2017).  400 

When a pond is connected to channels, it can recover if its bed is higher than the limit 401 

for vegetation growth, or if the deposition rate is larger than the rate of sea level rise. When 402 

these conditions are not satisfied, the pond enlarges, becomes susceptible to edge erosion due 403 

to internally generated wind waves, and the eroded sediments can get lost through tidal 404 

channels (Mariotti and Fagherazzi, 2013). Therefore, depending on the action of biological 405 

processes, and sedimentation rates, the formation and enlargement of ponds can be irreversible, 406 

or reversible with ponds eventually recovering back to the surrounding marsh platform 407 

elevation (e.g. Mariotti and Carr, 2014; Mariotti, 2016).  408 

Plucked marsh features (e.g. Barras et al., 2007) are erosional signatures consisting of 409 

irregular scours ranging from around 2 to 20 m which can be found in saline as well as 410 

intermediate or freshwater marshes when the mineral matter represents a high percentage of 411 

the substrate. Plucked marsh features can occur independently from the elevation with respect 412 

to mean sea level, as long as the shear stress is sufficient to incise the areas (e.g. Barras et al., 413 

2007).  414 

4.2 Erosion – surface erosion, and lateral erosion 415 

The denudation of the marsh from the vegetation cover (also referred to as root scalping, 416 

e.g. Priestas et al., 2015) can affect areas of the order of kilometres, and occurs when currents 417 

and waves induced shear stress strip vegetated surfaces. The depth of denudation determines 418 



the chances and the rate of recovery of the affected areas. If the eroded areas remain above the 419 

permanent submerged location, and the root system is not completely destroyed, the denudated 420 

zones can recover during the following growing seasons, otherwise the denuded areas might 421 

convert to pond or bare tidal flats (e.g. Hendrickson, 1997). The erosion depth of the marsh 422 

platform can range from a few to several centimetres. For instance, Hendrickson, 1997, 423 

reported erosion rates of 6 cm after the occurrence of Hurricane Erin, and Opal, 1995 for salt 424 

marshes in St. Marks River, Florida. However, the erosion of the marsh surface doesn’t 425 

necessarily correspond to an elevation change as the deformation of the marsh platform trough 426 

subsurface processes, like compaction or soil swelling, can play an important role as well.  427 

As a consequence of waves generated shear stress, the tidal flats in front of the marsh 428 

can deepen which indirectly impacts salt marsh survival, because of an increased depth in front 429 

of the marsh can increase wave energy and promote lateral erosion (e.g. Fagherazzi et al., 430 

2006).  431 

The lateral erosion of marsh shorelines has been found to be mainly dictated by the 432 

action of wind waves (e.g. Schwimmer, 2001; Marani et al., 2011; Leonardi et al., 2016a, b). 433 

For freshwater marshes, the lateral erosion during hurricanes can be up to 100s m; for salt 434 

marshes, while wave-induced lateral erosion is in the long term one of the main causes of 435 

deterioration, the lateral retreat occurring during hurricanes is relatively low due to the short, 436 

and impulsive nature of these events (e.g. Leonardi et al 2016a, b; Figure 6a). Based on a global 437 

dataset of salt marsh lateral erosion, and wave data it was found that the yearly retreat rate of 438 

marsh shorelines linearly increases with wave energy and a critical threshold in wave energy 439 

above which salt marsh erosion drastically accelerates is absent. Such critical threshold is 440 

instead more commonly found in sandy environments where erosion drastically increases once 441 

the sand dunes are over-washed. While the impact of hurricanes on salt marshes can be very 442 

strong, their low frequency and short duration lead to a relatively small effect and they 443 



contribute to only 1% of the erosion in the long term. On the contrary, moderate and frequently 444 

occurring storms with a monthly reoccurrence are the most dangerous for salt marsh survival 445 

(Leonardi et al., 2016a). It is then reasonable to assume that a storm impacting a stretch of 446 

shoreline at 90 degrees has a potential to erode salt marshes which is higher than a storm whose 447 

waves are parallel to the shore (e.g. Tonelli et al., 2010).  448 

Finally, in regard to lateral shorelines dynamics, the intensity of wind waves has been 449 

found to also modify the shape of marsh boundaries; Leonardi and Fagherazzi, 2014, 2015 450 

showed that the interplay between waves intensity and the spatial variability in marsh resistance 451 

determines the shape of marsh shorelines, as well as erosion rates predictability. The variability 452 

in erosional resistance is due to the presence of natural heterogeneities caused by different soil 453 

resistance and by the variety of ecological, and biological processes interesting different marsh 454 

portions. In case of low wave energy conditions, the presence of a variability in erosional 455 

resistance might lead to the unpredictable failure of large marsh portions with respect to 456 

average erosion rates, and to rough, and jagged marsh boundary profiles displaying high 457 

sinuosity values (e.g. Figure 6b, top panel). High-wave-energy conditions, while overall 458 

leading to a faster marsh deterioration, cause a constant and predictable erosion, and a smooth 459 

marsh boundary profile. A high occurrence of extreme events significantly smooths the marsh 460 

boundary, even if it doesn’t strongly alter average erosion rates (Figure 6b). Finally, salt 461 

marshes subject to weak wave energy conditions are the most susceptible to variations in the 462 

frequency of extreme events (Leonardi et al., 2014, 2015).  463 

4.3 Deposition 464 

The occurrence of storms and hurricanes can be accompanied by the deposition of large 465 

amount of sediments.  As an example, Hurricane Rita generated 4-5 m of storm surge, which 466 

resulted in a deposit 0.5m thick, and extending 500 m inland (e.g. Williams, 2009). Cahoon, 467 



2003, 2006 presented a comprehensive set of measurements in regard to elevation changes 468 

following the impact of hurricanes at ten sites in the United States; he found deposition rates 469 

ranging from a few cm (e.g. 3 cm after Hurricane Emily, 1993, and Gordon, 1994 for salt 470 

marshes in North Carolina), up to around 30 cm (e.g. 28, and 20 cm after Hurricane Andrew, 471 

1992, for salt marshes in Bayou Chitigue, and Old Oyster, Louisiana).  472 

Depending on the net direction of sediment transport, deposits may be laid down over 473 

the salt marsh surface or translated seaward.  Storms may not, therefore, necessarily leave 474 

behind distinct depositional units but instead increase the increment of tidal deposition through 475 

elevated suspended sediment concentrations and/or flow velocities (Stumpf, 1983), thus 476 

enhancing the usual mechanisms of settling during inundations or over-bank spilling in close 477 

proximity to creeks or the point of tidal ingress. Indeed, Turner et al. (2006) suggest that large 478 

storms increase the supply of mineral matter from offshore via tidal creeks, and have shown 479 

that, for Mississippi River salt marshes, the density of minerogenic sediments in salt marsh 480 

cores increases in concert with the occurrence of major hurricanes (Turner et al., 2007).  481 

Deposition during storms is readily evidenced where breaching and flooding of the 482 

supratidal coastline occurs, e.g. washover deposits or fans.  For example, Scileppi and Donnelly 483 

(2007) found that washover deposits on the Long Island coast correlate with landfalls of the 484 

most intense documented hurricanes, and that periods of increased and decreased landfall 485 

incidence can be evidenced in the back-barrier sediment record (cf. Liu and Fearn, 2000; 486 

Donnelly et al., 2001; 2004).  Barrier overwashing during storms can also deposit lobes of sand 487 

and intermixed shells over back-barrier salt marshes, where shell beds may then be preserved 488 

in the sediment record as an archive of storm washover (Ehlers et al., 1993). Extensive 489 

washover deposits resulting from storms have also been found in a back-barrier setting along 490 

the Chenier Plain of Louisiana where the intensity of recent hurricanes influences the extent 491 

and grain size of the deposits (Williams, 2011). 492 



It is less common for salt marshes to preserve depositional evidence of storms, or at 493 

least deposits that can readily be distinguished from the usual background of regular tidal 494 

deposition or, indeed, other extreme events such as tsunami (cf. Goff et al., 2004; Morton et 495 

al., 2007).  Goodbred and Hine (1993) recorded the deposition of a tan to grey unit of clays, 496 

silt to very fine sand, and marine biogenic matter across Waccasassa Bay salt marshes in 497 

Florida following a 3 m storm surge. The deposit was made up of sedimentary material similar 498 

to that of the underlying marsh sediments, indicating a local origin. Proximity to tidal ingress 499 

had a significant influence on the thickness of the deposit, increasing from a few cm on the salt 500 

marsh surface to as much as 12 cm along creek margins. Generally, severe storms have the 501 

potential to deposit distinctive sand units that thin and fine in a landward direction over 100s 502 

of meters, that have a sharp basal contact with the underlying salt marsh deposits, and that 503 

contain marine microfossils (e.g. Morton and Sallenger, 2003; Turner et al., 2006; Williams, 504 

2009). Such anomalous deposits are characterized using several criteria such as the extent of 505 

inundation, landward-thinning and/or landward-fining of the deposit, single or multiple particle 506 

size grading, and contained microfossil assemblage (Hawkes and Horton, 2012).   507 

Similar, unconformable sand deposits can be found within the salt marsh sediment 508 

record of back-barrier estuaries along the Central Coast of California (e.g. Clarke et al., 2014) 509 

where their incidence is connected to barrier breaching and inundation during storms.  In this 510 

case, high frequency variability in the particle size of such deposits in the back-barrier 511 

stratigraphy can be associated with ENSO-driven storms, but where the barrier breaching is 512 

most likely due to high river flow as opposed to coastal erosion during storms (Clarke et al., 513 

2017). 514 

Drawing on examples from the longer Holocene sediment record, Haggart (1988) 515 

examined the stratigraphic and sedimentary evidence of a tidal surge deposit in two open 516 

estuary settings in north-eastern Scotland.  This micaceous, silty sand was deposited across 517 



pre-existing inter-tidal to perimarine environments, which then returned immediately following 518 

its deposition.  The stratigraphic evidence is therefore indicative of a high energy environment 519 

affecting a wide range of coastal environments simultaneously, with a vertical range of 3.5-5.0 520 

m.  Detailed dating, particle size, and paleoecological data reveal this deposit to be marine in 521 

origin and virtually instantaneous in its deposition.  Similar deposits of this kind are found in 522 

a number of estuarine and back-barrier settings in north-east Scotland (Smith et al., 2004) for 523 

which the timing, rarity, and run-up (as much as 25 m) are indicative of a tsunami rather than 524 

a storm surge. Information on storm-related sediment redistribution across the salt marsh 525 

surface can equally come from evidence other than stratigraphic, grain size or palaeoecological 526 

data.  For example, Rahman et al. (2013) explored down-core trends in radioactive pollution to 527 

determine patterns of sedimentation in north-west England.  A secondary increase in both 528 

241Am and 137Cs activity in the upper 5-10 cm of salt marsh cores from the Dee was interpreted 529 

as the re-deposition of sediments eroded from the salt marsh edge, linked to a severe storm in 530 

1990.  In principle, the erosion and redistribution of historical pollutants in industrialized 531 

estuaries can also be revealed by the analysis of heavy metals or persistent organic pollutants.  532 

In summary, storm deposits are more readily apparent in back-barrier salt marshes 533 

where coastal breaching and overwashing enable the landward penetration of coarse sediment 534 

lobes that then appear anomalous against the background of tidal mud deposition.  Such 535 

deposits also have the potential to be found in more open estuary settings where the storm surge 536 

results in the landward transport of coarse marine sediment or increases the potential for the 537 

redistribution of eroded material onto the salt marsh surface.  Identifying such deposits requires 538 

a multi-proxy approach to evidence not only the nature and dynamics of the depositional 539 

environment but also the age and origin of the sediments, particularly for reconstructing periods 540 

of increased and decreased storminess. 541 

4.4 Deformation 542 



Apart from surface processes of erosion, deposition, and incision, subsurface processes 543 

induced by soil compaction or groundwater flow are also an important consequence of storms 544 

and storm surges occurrence, and can lead to substantial deformation or changes in marsh 545 

elevation.  546 

Soil compaction due to storm surge water is quite common; for instance, after hurricane 547 

Andrew, 1992, and for salt marshes in Bayou Chitigue, Louisiana, in spite of a 28 cm thick 548 

deposit, the total change in elevation was -5cm due to soil compaction (Cahoon, 2006). 549 

Similarly, for salt marshes in Cedar Island, North Carolina, the surface erosion due to Hurricane 550 

Felix, and Jerry was only -1cm, but the change in elevation due to soil compaction reached -551 

18cm (Cahoon et al., 1999; Cahoon, 2006). Soil shrinkage or swell can be also caused by an 552 

alteration of water fluxes mainly induced by storm surge events. According to Hendrickson, 553 

1997, soil shrinkage caused a 13 cm, and 8 cm lowering of the marsh platform for salt marshes 554 

in Florida after Hurricane Opal, 1995 and Erin, 1995 respectively. On the contrary, during 555 

Hurricane Alberto, 1994, soil swelling caused by the storm surge increase in water content, 556 

caused an increase in elevation of 13 cm for the salt marshes in Florida, (Cahoon, 2006).  557 

 558 

5. Storms impact on salt marsh sediment budget 559 

A salt marsh is defined not only through the vegetated marsh plain, but by the entire 560 

geomorphic complex. This complex includes the adjacent estuarine/marine seabed, tidal marsh 561 

channels, intertidal flats, marsh scarps, the marsh plain, and pools within the marsh plain. 562 

Though the salt marsh plain can accrete vertically through organic and inorganic sediment 563 

accretion, the geomorphic evolution of the other components is influenced by the inorganic 564 

sediment budget (e.g. Ganju et al., 2017).  565 



Sources of sediment for coastal salt marshes are diverse, but can broadly be categorized 566 

into external sources, from the erosion of neighbouring coasts or seafloor and from riverine 567 

sediment discharge, as well as internal sources from sediment resuspension on intertidal 568 

mudflats adjacent to the salt marshes or erosion of the marsh edges and tidal channels 569 

(Schuerch et al., 2014). All sources can be highly variable in time and space and are often 570 

driven by highly energetic events, such as storms causing severe precipitation, storm surges 571 

and/or wave setup (Ma et al., 2014; Schuerch et al., 2016).  572 

The transport of sediments to the salt marsh occurs on multiple timescales. Wind-573 

waves, due to diurnal or stronger episodic winds, can mobilize estuarine and intertidal flat 574 

sediments, erode marsh scarps, and increase sediment concentrations in the water column 575 

(Fagherazzi and Priestas, 2010; Ganju et al. 2013).  576 

Over large and small spatio-temporal scales, the net sediment budget will govern 577 

whether the complex is trending towards expansion or contraction. For example, a sediment 578 

transport deficit that results in a deepening of the estuary will allow for greater propagation of 579 

wave energy towards the marsh scarp, leading to increased thrust and erosion of the scarp. The 580 

sediment liberated from the marsh scarp may then deposit elsewhere in the complex, or it may 581 

be exported from the entire system through hydrodynamic processes. Inorganic sediment 582 

supply is also important for vertical accretion on marsh plains (Reed 1989), though in some 583 

environments marshes can subsist entirely on organic production (Turner et al. 2002). 584 

Furthermore, where the marsh plain meets the marsh scarp, there is a more delicate balance 585 

that is dependent on sediment supply, and morphological features as well; for instance, 586 

Redfield (1972) identifies the tendency for slumped blocks of peat to trap sediment, and 587 

reconstitute marsh plain through recolonization by vegetation, thereby leading to no net loss of 588 

marsh plain.  589 



 Storms can have varying effects on sediment supply: in some cases they lead to massive 590 

sediment export from the system (Ganju et al. 2013), substantial sediment import (Rosencranz 591 

et al. 2016), significant marsh plain deposition (Goodbred and Hine, 1995), or negligible marsh 592 

plain deposition (Elsey-Quirk 2106).  593 

Ganju et al. (2013) identified disparate sediment sources and transport mechanisms at 594 

two Chesapeake Bay marsh complexes (one stable, one degraded), i.e., tidal processes 595 

delivered sediment to the stable marsh while fall and winter storms exported sediment from the 596 

degraded marsh. Conversely, Rosencranz et al. (2016) found that a single 3 day storm delivered 597 

enough sediment to counteract two months of tidally driven sediment export within a Pacific 598 

coast marsh complex.  599 

For a degraded marsh complex in Blackwater, MD, USA, tidal resuspension and 600 

advection did not provide sediments, while sustained northwest wind events with a 2-wk return 601 

interval were able to both mobilize sediment from open-water areas and export sediments 602 

(Ganju et al., 2013, Figure 7b); the orientation of the open-water area was aligned along the 603 

northwest-southeast axis, thereby allowing for greater fetch and wind-wave exposure during 604 

northwest winds. The ensuing wind-waves both mobilized subaqueous sediments and eroded 605 

marsh edges; export was then caused by a regional hydrodynamic response which led to net 606 

water export. However, a nearby stable complex (Fishing Bay, MD, USA, Figure 7a) imported 607 

sediment due to tidal resuspension/advection and proximity to an estuarine sediment source. 608 

There was minimal sediment export during the same aforementioned wind-wave events, due 609 

to a lack of open-water area.  610 

In Barnegat Bay, New Jersey (USA) a strong south-to-north gradient in shoreline type 611 

and sediment availability leads to a variable response to storm events. Dinner Creek, in the 612 

southern portion of the bay, is bordered by undeveloped marsh shoreline and shoals consisting 613 

of fine sediment (Miselis et al. 2016; Ganju et al. 2014), while Reedy Creek is surrounded by 614 



hardened shorelines and coarse-sediment dominated shoals. Ganju et al. (2017) reported a net 615 

sediment import for Dinner Creek and negligible sediment transport in Reedy Creek; 616 

cumulative fluxes in response to wind events indicate a direction-dependent response (Figure 617 

7c, d). Both sites export sediment during periods with northwest winds and import sediment 618 

during southerly winds, but Dinner Creek imports sediment during easterly winds while Reedy 619 

Creek remains neutral (Figure 7c, d). This differential response is likely due to the availability 620 

of sediment in the estuary. These results show that the location of a salt marsh plays a strong 621 

role in the sediment dynamics during storm events, with varied directional responses. Tidal 622 

asymmetry affects the net import/ export of sediments as well. The distortion of the tidal wave 623 

may significantly change under storm conditions, hence converting a system which would 624 

normally import sediments into a system which export sediments (Schuerch et al., 2014). 625 

Finally, Ganju et al. (2017) synthesized sediment budgets of eight microtidal salt marsh 626 

complexes, and demonstrated a relationship between the sediment budget and the unvegetated-627 

vegetated marsh ratio, indicating that sediment deficits are linked to conversion of vegetated 628 

marsh portions to open water. Both observational and modelling efforts provide insight into 629 

the influence of storms and extreme events on sediment transport to and from salt marshes.  630 

  631 

Storms impact on sea level rise resilience 632 

Accelerated sea level rise is challenging the survival of coastal salt marshes, which may 633 

decrease in elevation within the tidal frame and eventually be inundated too frequently to 634 

support the growth of salt marsh vegetation (Kearney et al., 1988; Day et al., 2000; Schepers 635 

et al., 2017). With increasing rates of sea level rise, coastal salt marshes rely on a higher 636 

sediment supply in order to vertically adapt to the rising sea level (French, 1993; Kirwan et al., 637 

2010a; D’Alpaos et al., 2011). Ma et al. (2014), for example, show a decrease in marsh 638 

sedimentation rates in the Oosterschelde estuary (NL) after the construction of a storm surge 639 



barrier, which markedly reduced the (external) marine sediment delivery, but also show that 640 

sedimentation rates are still keeping up with sea level rise due to sediment resuspension on the 641 

adjacent intertidal mudflat during storm events.  642 

Although estimates of critical rates of sea level rise for coastal salt marshes around the 643 

world indicate a relatively high resilience for many salt marsh sites (Kirwan et al., 2016), all 644 

assessments also highlight that the available sediment supply is a key factor for marsh 645 

resilience to sea level rise (French, 2006; Kirwan et al., 2010a; D’Alpaos et al., 2011; Schuerch 646 

et al., 2013). Furthermore, salt marshes in microtidal regimes were identified as particularly 647 

sensitive to a drop in sediment supply under increasing rates of sea level rise, whereas salt 648 

marshes in macrotidal regimes are more resilient to high rates of sea level rise and/or reduced 649 

sediment supply (Spencer et al., 2016; Kirwan et al., 2010b). While being more susceptible to 650 

drowning as a consequence of sea level rise, sedimentation rates on microtidal marshes were 651 

also shown to be more responsive to changes in storm activity due to an increase in sediment 652 

supply through intertidal sediment resuspension with respect to macrotidal marshes. Kolker et 653 

al. (2009), for example, found clear storm signals in the sedimentation records of their 654 

microtidal and wave exposed study sites within the Long Island Sound (USA), but a much 655 

reduced signal in the neighbouring macrotidal sites. 656 

In this context, elongated periods (decades) of increased storm activity appear as the 657 

main driver for sedimentation in excess of local sea level rise rates as shown for a mesotidal 658 

salt marsh in the German North Sea (Figure 8; Schuerch et al., 2012). This excess 659 

sedimentation significantly contributes to the resilience of the marsh with respect to its vertical 660 

performance and its ability to adapt the future SLR (Schuerch et al., 2013). In the Mississippi 661 

Delta, extreme events such as the hurricanes Katrina and Rita in 2005 were reported to 662 

contribute sediment layers of 9-13 and 7 cm, respectively, which is a manifold of the regular 663 

annual sedimentation (Horton et al., 2009). Meanwhile, Tweel and Turner (2014) argue that 664 



the strongest 2% of extreme events contribute 15% of the sedimentation to the marshes of the 665 

Mississippi Delta, whereas the majority of the sedimentation (78%) can be attributed to 666 

moderate hurricanes with a landfall barometric pressure between 930 and 960 mb (Tweel and 667 

Turner, 2014). In addition to sediment deposition, subsurface processes may, however, 668 

dominate the elevation response to storm events in many marshes of the Mississippi Delta 669 

(Cahoon, 2006; McKee and Cherry, 2009). Subsurface processes are primarily related to soil 670 

organic matter, hence are most relevant in organogenic marshes and less so in minerognic 671 

marshes.  672 

Moderate storm events also appear to be responsible for the majority of marsh 673 

sedimentation on the Danish peninsula of Skallingen (Bartholdy et al., 2004), where extreme 674 

storm events were shown to increase suspended sediment concentrations within the adjacent 675 

tidal basin by a factor of up to 20 due to sediment resuspension on the intertidal mudflats. 676 

There, a single extreme event could contribute 7.5% to the annual sediment deposition, whereas 677 

a single regularly occurring gale already contributes 71% of this (Bartholdy and Aagard, 2001). 678 

The high importance of frequently inundating gale events is in accordance with the modelling 679 

study of Schuerch et al. (2013), who suggest that the frequency of storm events is more 680 

important for inorganic marsh accretion than their intensity. The explanation for this behaviour 681 

is that the frequency distribution of high and extreme water levels decreases exponentially with 682 

increasing high water levels (Bartholdy et al., 2004; Schuerch et al., 2013), whereas the 683 

sediment resuspension on the intertidal mudflat appears to follow a linear relationship with 684 

increasing high water level (Temmerman et al., 2003) or significant wave heights (Fagherazzi 685 

and Pristas, 2010). Therefore extreme sediment resuspension events are too rare to make a 686 

significant impact. Furthermore, the impact of wave-induced sediment resuspension decreases 687 

with increasing water depths during high inundation events (Fagherazzi and Wiberg, 2009; 688 

Christiansen et al., 2006).  689 



However, sediment resuspension within the intertidal zone is a highly variable process 690 

(Carniello et al., 2016), as it also relies on the sediment composition of the seabed and the 691 

presence of benthic biology determining the erosion thresholds and the stability of the seabed 692 

(Le Hir et al., 2007; Grabowski et al., 2011). In particular the benthic biological activity (e.g. 693 

vegetated seabeds, diatom biofilms, and benthic macrofauna) has the potential to introduce 694 

significant spatial and temporal variations in sediment resuspension (Andersen et al., 2001). 695 

Locally, and depending on biological activity, the impact of storm events on the sediment 696 

supply of coastal salt marshes may therefore be subject to considerable seasonal variations, 697 

often with a stronger impact of storm events on sediment supply during the winter months 698 

(Temmerman et al., 2003).  699 

During elongated periods of increased storm activity, which appear to be most effective 700 

in increasing sedimentation rates on salt marshes (Figure 8; Schuerch et al., 2012), intertidal 701 

sediment resuspension may cause a lowering of the mudflat elevation and potentially 702 

conversion to a subtidal flat. In combination with an enhanced vertical growth of the vegetated 703 

marsh platform this may lead to an increased mudflat-salt marsh elevation gradient (Le Hir et 704 

al., 2007; Mariotti and Fagherazzi, 2010). Incoming waves, therefore, have an increased 705 

erosive impact on the steeper marsh edge, hence increasing the marsh’s vulnerability to lateral 706 

erosion (e.g. Van de Koppel et al., 2005)).  A reduction of the intertidal mudflat area due to 707 

storm erosion also reduces the sediment resuspension and therefore the sediment supply for the 708 

vertical growth of the salt marsh. Both marsh edge erosion and the vertical performance of 709 

coastal salt marshes are therefore critically dependent on external sediment supply, which in 710 

fact is often enhanced by storm events as well (Mariotti and Carr, 2014).  711 

The sediment import into the tidal basins of the Wadden Sea (South-eastern North Sea), 712 

for example, increases during storm events and the sediment composition shifts into the coarser 713 

spectrum as increased erosion takes place along the beaches of the adjacent barrier islands and 714 



the ebb-tidal delta (Schuerch et al., 2014). Similarly, increased suspended sediment 715 

concentrations are observed along the UK East coast as a consequence of the erosion of soft 716 

cliffs, particularly during the winter season and intensified storm periods (McCave, 1987; 717 

Nicholls et al., 2000; Dyer and Moffat, 1998). Storm events are also often associated with 718 

increased precipitation in the catchments of the rivers draining into the coastal zone. The 719 

increased river runoff often increases the sediment delivery into the coastal zone and hence the 720 

“external” sediment supply for coastal salt marshes (Schuerch et al., 2016). The relationship 721 

between river runoff and sediment delivery is, however, not necessarily a straightforward one 722 

as it is subject to intense anthropogenic modifications, such as river damming or land use 723 

change in the river catchment (Syvitski et al., 2005).  724 

Despite the abundant field evidence and the well-developed knowledge on the 725 

importance of sediment supply for coastal salt marshes, current estimations of future salt marsh 726 

development largely neglects the processes and feedbacks involved in storm-related 727 

sedimentation by neglecting the temporal variations in sediment supply and assuming a 728 

constant sediment supply throughout the coming century (e.g. Kirwan et al., 2010; D’Alpaos 729 

et al., 2011; Mariotti and Carr, 2014). Accounting for the storm-induced variability in sediment 730 

supply for coastal salt marshes in future models is particularly important as storm activity is 731 

known to be subject to significant decadal variability (e.g. driven by the North-Atlantic 732 

Oscillation) and may prevent or facilitate the collapse of coastal salt marshes, when 733 

conventional modelling under the assumption of constant sediment supply and storm activity 734 

would predict differently. 735 

Discussion and Conclusions 736 

In face of climate change, the continued delivery of salt marsh ecosystem services, such 737 

as mitigation of flood risks and shoreline erosion risks, and carbon sequestration, is 738 

increasingly important.  739 



Under storm conditions salt marshes are able to effectively dissipate both high water 740 

levels and wave energy even under extreme water level conditions such as during storm surges, 741 

and even if the wave-bottom interaction, and energy dissipation decreases with increasing 742 

water level. Empirical data and modelling studies demonstrate effective storm surge height 743 

reduction behind large (at least 10 km wide) and continuous marshes during moderate storm 744 

surges, but also point at limitations in the storm surge protection value, when marshes are 745 

smaller, intersected by large channels or open water areas, and during extreme storm surges. 746 

This implies that storm surge protection schemes should ideally rely on a combination of 747 

conservation and restoration of large continuous marsh areas, where space is available, and 748 

engineered flood defences, where necessary (Temmerman et al. 2013).   749 

Under storm surge conditions, up to 60% of the wave attenuation is attributable to the 750 

sole presence of vegetation, rather than to the decrease in water depth on the marsh platform 751 

relative to the surrounding tidal flat (e.g. Moeller et al., 2014). Vegetation properties largely 752 

influence this dissipation process; while the more flexible stems tend to flatten during powerful 753 

storms (with a reduction in dissipation potential), they are also the more resilient to structural 754 

damage, and their flattening helps to protect the marsh substrate against erosion. On the other 755 

hand, with increasing wave energy, high vegetation stiffness can enhance the turbulence and 756 

surface erosion around plant stems (Silinski et al., 2016; Rupprecht et al., 2017).    757 

Storm action can have various impacts on the geomorphological evolution of salt 758 

marshes, and different implications for their long term survival to sea level rise, and climate 759 

change in general. Storms impact potentially causes erosion of marsh boundaries, marsh 760 

platforms, and surrounding tidal flats, but it might also deliver substantial amount of sediments 761 

to the marsh platform.  762 



Under the assumption of an increase in magnitude, and reduced frequency of extreme 763 

events it can be argued that the after-storm impact on marsh boundaries is expected to be only 764 

slightly affected by such changes; this is because it has been shown that the lateral erosion of 765 

salt marshes is mostly dictated by average weather conditions rather than by extreme events. 766 

The biggest impact that storms could have in relation to lateral salt marsh dynamics could 767 

instead be connected to the deepening of tidal flats which promote higher wave energy at the 768 

marsh boundary, and reduces wave energy dissipation by bottom friction, causing therefore an 769 

increase in the erosion potential during inter-storms period, i.e. under normal weather 770 

conditions.  771 

The impact on the vertical salt marsh dynamic is complicated because, even if more 772 

intense storms have the potential to deposit more sediments, there are evidences about the fact 773 

that storms frequency is more important than intensity for the long term inorganic accretion of 774 

salt marshes. The explanation for this behaviour is that the frequency distribution of high and 775 

extreme water levels decreases exponentially with increasing high water levels (Schuerch et 776 

al., 2013, 2014). 777 

The occurrence of storms might then directly or indirectly impact the sediment budget 778 

of the coastline. In particular, the direction of storm events can determine whether there is a 779 

direct import or export from a coastal embayment. Furthermore, the occurrence of storms is 780 

generally connected to precipitation events and surface runoff which might increase the 781 

transport of sediments from the catchment to the coastline (e.g. Ganju et al., 2013)  782 

The latter considerations highlight the necessity to focus on the indirect impact that 783 

large storms might exert on salt marshes not only in the immediate after storm period, but also 784 

in the longer term, and on how their morphological consequences influence the response of the 785 

system to normal weather conditions during inter-storm periods. Some of the challenges 786 



highlighted from the complexity of the problem also include the necessity to consider salt 787 

marsh systems as a whole by adopting an integrated approach, taking into account the marsh 788 

tidal flat continuum and by accounting for various sediment sources.  789 

 790 

 791 

 792 

Figures  793 

 794 

Figure 1  795 

Percentage changes in Emmanuel’s (1995) wind maximum potential intensity (MPIV) per 796 

degree increase in global surface air temperature. Large values of MPIv values are generally 797 

associate to enhanced tropical storms activity, and intensity (adapted from Vecchi and Soden, 798 

2007).  799 

 800 

Figure 2 801 

Sketch of mechanisms and sediment fluxes possibly responsible for salt marsh vertical and 802 

horizontal dynamics. Black dashed box represents an hypothetical control volume for the 803 

evaluation of the sediment budget.  804 

 805 

Figure 3 806 

Relationship between the attenuation rate of High Water Levels (dHWL/dx) at least 0.4m 807 

above the marsh platform, and 𝛼𝛼𝑉𝑉, i.e. ratio between the over-marsh water volume (Vpl) and 808 



the total water volume (Vpl+Vc, i.e. over-marsh water volume + water volume within 809 

channels) (adapted from Stark et al., 2016).  810 

 811 

Figure 4 812 

Reduction of total Energy [J m-2] between sand flat, marsh edge and marsh interior for ten 813 

representative measurements ‘bursts’ (adapted from Moeller, 1999). 814 

 815 

Figure 5  816 

Diagram representative for some of the major morphologic impacts of storms on salt marshes, 817 

their spatial scale, and useful literature references. Morton and Barras, 2011; b) Mariotti and 818 

Carr, 2014; c) Mariotti, 2016; d) Fan et al., 2006; e) Scileppi and Donnelly, 2007; f) Williams, 819 

2009; g) Leonardi et al., 2016a,b; h) Leonardi et al., 2014, 2015; i) Barras, 2007, l) Cahoon, 820 

2006; m) Cahoon, 2003; These impact are mainly categorized into the following: Deformation, 821 

Erosion, Deposition, and Incision.  822 

 823 

Figure 6  824 

A) Contribution of different wind categories to salt marsh erosion (from Leonardi et al., 825 

2016). B) Impact of increasing extreme events frequency on the shape of marsh shorelines 826 

(adapted from Leonardi et al., 2014, 2015). Increasing the occurrence of extreme events 827 

smooths the marsh shoreline.  828 

 829 

Figure 7 830 



Sediment flux response to wind forcing at four wetland complexes, as a function of wind 831 

direction (radial position) and speed (outward position). The wind direction indicates 832 

direction the wind is coming from.  Fishing Bay and Blackwater (Maryland, USA), are 833 

adjacent to Chesapeake Bay, but their respective locations relative to sediment sources and 834 

external forcing result in disparate sediment transport responses to wind events. Northwest 835 

winds export sediment from both sites, but southerly winds allow for sediment import at 836 

Fishing Bay due to proximity to a southern sediment source (Ganju et al., 2013). Dinner and 837 

Reedy Creeks, in southern and northern Barnegat Bay (New Jersey, USA), respectively, both 838 

export sediment during westerly winds, but Dinner Creek imports sediment during strong 839 

easterly winds. This is likely due to increased fine sediment availability and undeveloped 840 

shoreline in the southern portion of Barnegat Bay, as opposed to coarser sediments and 841 

hardened shoreline in northern Barnegat Bay. 842 

 843 

Figure 8 844 

(a) Historic marsh elevations in comparison to the development of the mean high water level 845 

(MHW) and the mean sea level (MSL) for three cores (S1: high marsh; S2: low marsh; S3: 846 

pioneer marsh) from a salt marsh on the German island of Sylt  (in the South-eastern North 847 

Sea). Deposition dates were derived from 210Pb and 137 Cs data (open diamonds). The green 848 

shaded area indicates the periods of excess sedimentation during periods of increased storm 849 

activity. (b) Comparison of sedimentation rates (stars) at core location S2 with storm frequency 850 

(open circles), defined as the number of water levels exceeding 2.4 m above the long-term 851 

mean sea level (NN: German ordnance datum). Modified after Schuerch et al. (2012). 852 

Acknowledgments  853 



The following funding are acknowledged: USGS Federal award No G16AC00455; NERC 854 

NE/N015614/1.   855 

References 856 

Andersen, T.J., 2001. Seasonal Variation in Erodibility of Two Temperate, Microtidal 857 

Mudflats. Estuarine, Coastal and Shelf Science, 53(1), 1-12. 858 

Augustin, L.N., Irish, J.L., Lynett, P., 2009. Laboratory and numerical studies of wave damping 859 

by  emergent and near-emergent wetland vegetation. Coastal Engineering 56, 332–860 

340. 861 

Bacmeister, J.T., Reed, K.A., Hannay, C., Lawrence, P., Bates, S., Truesdale, J.E., 862 

Rosenbloom, N. and Levy, M., 2016. Projected changes in tropical cyclone activity 863 

under future warming scenarios using a high-resolution climate model. Climatic 864 

Change, pp.1-14. 865 

Barbier, E. B., Georgiou, I. Y., Enchelmeyer, B., and Reed, D. J., 2013, The Value of Wetlands 866 

in Protecting Southeast Louisiana from Hurricane Storm Surges Plos One, v. 8, p. 867 

e58715. 868 

Barras, J.A., 2007. Satellite images and aerial photographs of the effects of Hurricanes Katrina 869 

and Rita on coastal Louisiana (No. 281). Geological Survey (US). 870 

Bartholdy, J. and Aagaard, T., 2001. Storm surge effects on a back-barrier tidal flat of the 871 

Danish Wadden Sea. Geo-Marine Letters, 20(3), 133-141. 872 

Bartholdy, J., Christiansen, C. and Kunzendorf, H., 2004. Long term variations in backbarrier 873 

salt marsh deposition on the Skallingen peninsula - the Danish Wadden Sea. Marine 874 

Geology, 203(1-2), 1-21. 875 

Bouma, T. J., De Vries, M. B., Low, E., Peralta, G., Tanczos, I., Van de Koppel, J., and 876 

Herman, P. M. J., 2005, Trade-offs related to ecosystem-engineering: a case study on 877 

stiffness of emerging macrophytes: Ecology, v. 86, p. 2187-2199. 878 



Cahoon, D.R., Day Jr, J.W. and Reed, D.J., 1999. The influence of surface and shallow 879 

subsurface soil processes on wetland elevation: A synthesis. Current topics in wetland 880 

biogeochemistry, 3, pp.72-88. 881 

Cahoon, D. R. 2003. Storms as agents of wetland elevation change: their impact on surface and 882 

subsurface sediment processes, Proceedings of the International Conference on Coastal 883 

Sediments 2003. May 18-23, 2003, Clearwater Beach, FL, USA. CD-ROM Published 884 

by World Scientific Publishing Corp. and East Meets West Productions, Corpus Christi, 885 

Texas, USA. ISBN 981-238-422-7. 886 

Cahoon, D.R., 2006. A review of major storm impacts on coastal wetland elevations. Estuaries 887 

and Coasts, 29(6), pp.889-898. 888 

Carniello, L., D'Alpaos, A., Botter, G. and Rinaldo, A.C.J.F., 2016. Statistical characterization 889 

of spatiotemporal sediment dynamics in the Venice lagoon. Journal of Geophysical 890 

Research: Earth Surface, 121(5), 1049-1064. 891 

Cheong, S. M., Silliman, B., Wong, P. P., van Wesenbeeck, B., Kim, C. K., and Guannel, G., 892 

2013, Coastal adaptation with ecological engineering: Nature Climate Change, v. 3, no. 893 

9, p. 787-791. 894 

Christiansen, T., Wiberg, P.L. and Milligan, T.G., 2000. Flow and sediment transport on a tidal 895 

salt marsh surface. Estuarine, Coastal and Shelf Science, 50(3), pp.315-331.  896 

Christiansen, C., Vølund, G., Lund-Hansen, L.C. and Bartholdy, J., 2006. Wind influence on 897 

tidal flat sediment dynamics: Field investigations in the Ho Bugt, Danish Wadden Sea. 898 

Marine Geology, 235(1-4), 75-86. 899 

Clarke, D. W., Boyle, J. F., Plater, A. J. (2017). Particle-size evidence of barrier estuary regime 900 

as a new proxy for ENSO climate variability. Earth Surface Processes and Landforms, 901 

in press. doi:10.1002/esp.4106 902 



Clarke, D. W., Boyle, J. F., Chiverrell, R. C., Lario, J., Plater, A. J. (2014). A sediment record 903 

of barrier estuary behaviour at the mesoscale: Interpreting high-resolution particle size 904 

analysis. Geomorphology 221, 51-68.  905 

Costanza, R., Perez-Maqueo, O., Martinez, M. L., Sutton, P., Anderson, S. J., and Mulder, K., 906 

2008, The value of coastal wetlands for hurricane protection: Ambio, v. 37, no. 4, p. 907 

241-248. 908 

CPRA, 2012, Louisiana’s Comprehensive Master Plan for a Sustainable Coast: Louisiana 909 

Coastal Protection and Restoration Authority. 910 

D'Alpaos, A., Mudd, S.M. and Carniello, L., 2011. Dynamic response of marshes to 911 

perturbations in suspended sediment concentrations and rates of relative sea level rise. 912 

Journal of Geophysical Research-Earth Surface, 116(F4), F04020. 913 

D’Alpaos, A. and Marani, M., 2016. Reading the signatures of biologic–geomorphic feedbacks 914 

in salt-marsh landscapes. Advances in Water Resources, 93, pp.265-275. 915 

 916 

Danielsen, F., Sorensen, K., Olwig, M. F., Selvam, V., Parish, F., Burgess, N. D., Hiraishi, T., 917 

Karunagaran, F. M., Rasmussen, M. S., Hansen, L. B., Quarto, A., and Suryadiputra, 918 

N., 2005, The Asian Tsunami: a protective role for coastal vegetation: Science, v. 310, 919 

p. 643-643. 920 

Day, J., Britsch, L., Hawes, S., Shaffer, G., Reed, D. and Cahoon, D., 2000. Pattern and process 921 

of land loss in the Mississippi Delta: A Spatial and temporal analysis of wetland habitat 922 

change. Estuaries and Coasts, 23(4), 425-438. 923 

Das, S., and Vincent, J. R., 2009, Mangroves protected villages and reduced death toll during 924 

Indian super cyclone: Proceedings of the National Academy of Scieces of the United 925 

States of America, v. 106, p. 7357-7360. 926 



Day, J. W., Boesch, D. F., Clairain, E. J., Kemp, G. P., Laska, S. B., Mitsch, W. J., Orth, K., 927 

Mashriqui, H., Reed, D. J., Shabman, L., Simenstad, C. A., Streever, B. J., Twilley, R. 928 

R., Watson, C. C., Wells, J. T., and Whigham, D. F., 2007, Restoration of the 929 

Mississippi delta: lessons from hurricanes Katrina and Rita: Science, v. 315, p. 1679-930 

1684. 931 

Deegan, L. A., Johnson, D. S., Warren, R. S., Peterson, B. J., Fleeger, J. W., Fagherazzi, S., 932 

and Wollheim, W. M., 2012, Coastal eutrophication as a driver of salt marsh loss: 933 

Nature, v. 490, p. 388-392. 934 

de Groot, A.V., Veeneklaas, R.M. and Bakker, J.P., 2011. Sand in the salt marsh: Contribution 935 

of high-energy conditions to salt-marsh accretion. Marine Geology, 282(3-4), 240-254. 936 

Dyer, K.R. and Moffat, T.J., 1998. Fluxes of suspended matter in the East Anglian plume 937 

Southern North Sea. Continental Shelf Research, 18(11), 1311-1331. 938 

Dijkema, K.S., 1987. Geography of salt marshes in Europe. Zeitschrift für  Geomorphologie 939 

N.F. 31  (4), 489-499. 940 

Donnelly, J. P., Roll, S., Wengren, M., Butler, J., Webb III, T. (2001) Sedimentary evidence 941 

of intense hurricane strikes from New Jersey. Geology 29, 615–618. 942 

Donnelly, J. P., Butler, J., Roll, S., Wengren, M., Webb III, T. (2004) A backbarrier overwash 943 

record of intense storms from Brigantine, New Jersey. Marine Geology 210, 107–121. 944 

Ehlers, J., Nagorny, K., Schmidt, P., Stieve, B., Zietlow, K. (1993) Storm Surge Deposits in 945 

North Sea Salt Marshes Dated by 134Cs and 137Cs Determination. Journal of Coastal 946 

Research 9(3), 698-701. 947 

Elsey-Quirk, T., 2016. Impact of Hurricane Sandy on salt marshes of New jersey. Estuarine, 948 

Coastal and Shelf Science, 183, pp.235-248. 949 

Elwany, M., W. O’Reilly, R. Guza, and R. Flick (1995), Effects of Southern California kelp 950 

beds on  waves, J. Waterw. Port Coastal Ocean Eng.,121(2), 143–150. 951 



Fan, D., Guo, Y., Wang, P. and Shi, J.Z., 2006. Cross-shore variations in morphodynamic 952 

processes of an open-coast mudflat in the Changjiang Delta, China: with an emphasis 953 

on storm impacts. Continental Shelf Research, 26(4), pp.517-538. 954 

Fagherazzi, S., Carniello, L., D'Alpaos, L. and Defina, A., 2006. Critical bifurcation of shallow 955 

microtidal landforms in tidal flats and salt marshes. Proceedings of the National 956 

Academy of Sciences, 103(22), pp.8337-8341. 957 

Fagherazzi, S. and Wiberg, P.L., 2009. Importance of wind conditions, fetch, and water levels 958 

on wave-generated shear stresses in shallow intertidal basins. Journal of Geophysical 959 

Research, 114(F3), F03022. 960 

Fagherazzi, S. and Priestas, A.M., 2010. Sediments and water fluxes in a muddy coastline: 961 

interplay between waves and tidal channel hydrodynamics. Earth Surface Processes and 962 

Landforms, 35(3), 284-293. 963 

Fagherazzi, S., 2013. The ephemeral life of a salt marsh. Geology, 41(8), pp.943-944. 964 

French, J.R., 1993. Numerical simulation of vertical marsh growth and adjustment to 965 

accelerated sea-level rise, North Norfolk, U.K. Earth Surface Processes and Landforms, 966 

18(1), 63-81. 967 

French, J., 2006. Tidal marsh sedimentation and resilience to environmental change: 968 

Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly 969 

allochthonous systems. Marine Geology, 235(1-4), 119-136. 970 

Ganju, N.K., Defne, Z., Kirwan, M.L., Fagherazzi, S., D'alpaos, A. and Carniello, L., 2017. 971 

Spatially integrative metrics reveal hidden vulnerability of microtidal salt 972 

marshes. Nature communications, 8. 973 

Ganju, N.K., Miselis, J.L. and Aretxabaleta, A.L., 2014. Physical and biogeochemical controls 974 

on light attenuation in a eutrophic, back-barrier estuary. Biogeosciences, 11, pp.7193-975 

7205. 976 



Ganju, N.K., Nidzieko, N.J. and Kirwan, M.L., 2013. Inferring tidal wetland stability from 977 

channel sediment fluxes: Observations and a conceptual model. Journal of Geophysical 978 

Research: Earth Surface, 118(4), pp.2045-2058. 979 

Ganju, N.K., Schoellhamer, D.H. and Bergamaschi, B.A., 2005. Suspended sediment fluxes in 980 

a tidal wetland: Measurement, controlling factors, and error analysis. Estuaries and 981 

Coasts, 28(6), pp.812-822. 982 

 983 

Goff, J., McFadgen, B.G., Chagué-Goff, C. (2004) Sedimentary differences between the 2002 984 

Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, 985 

New Zealand Marine Geology 204(1–2), 235-250. 986 

Goodbred, S.L. and Hine, A.C., 1995. Coastal storm deposition: Salt-marsh response to a 987 

severe extratropical storm, March 1993, west-central Florida. Geology, 23(8), pp.679-988 

682. 989 

Goodbred Jr, S.L., Wright, E.E. and Hine, A.C., 1998. Sea-level change and storm-surge 990 

deposition in a late Holocene Florida salt marsh. Journal of Sedimentary Research, 991 

68(2). 992 

Grabowski, R.C., Droppo, I.G. and Wharton, G., 2011. Erodibility of cohesive sediment: The 993 

importance of sediment properties. Earth-Science Reviews, 105(3-4), 101-120. 994 

Grinsted, A., Moore, J. C., and Jevrejeva, S., 2013, Projected Atlantic hurricane surge threat 995 

from rising temperatures: Proceedings of the National Academy of Sciences of the 996 

United States of America, v. 110, no. 14, p. 5369-5373. 997 

Haddad, J., Lawler, S., and Ferreira, C. M., 2016, Assessing the relevance of wetlands for storm 998 

surge protection: a coupled hydrodynamic and geospatial framework: Natural Hazards, 999 

v. 80, no. 2, p. 839-861. 1000 



Haggart, B.A. (1988) The stratigraphy, depositional environment and dating of a possible tidal 1001 

surge deposit in the Beauly Firth area, northeast Scotland. Palaeogeography, 1002 

Palaeoclimatology, Palaeoecology 66(3), 215-230. 1003 

Hawkes, A.D., Horton, B.P. (2012) Sedimentary record of storm deposits from Hurricane Ike, 1004 

Galveston and San Luis Islands, Texas, Geomorphology 1005 

doi:10.1016/j.geomorph.2012.05.017 1006 

Heuner, M., Silinski, A., Schoelynck, J., Bouma, T.J., Puijalon, S., Troch, P., Fuchs, E., 1007 

Schroder,  B., Schroder, U., Meire, P., Temmerman, S., 2015. Ecosystem 1008 

engineering by plants on  wave-exposed intertidal flats is governed by 1009 

relationships between effect and response traits.  PLoS One 10, e0138086, 1010 

http://dx.doi.org/10.1371/journal.pone.0138086http://dx.doi.org/10.1371/journal.pone1011 

.0138086. 1012 

Hartnall, T.J., 1984. Salt-marsh vegetation and micro-relief development on the New Marsh at 1013 

 Gibraltar Point, Lincolnshire. In: Clark, M.W. (Ed.), Coastal Research: UK 1014 

Perspectives.  Cambridge University Press, Cambridge, pp. 37-58, 131 pp. 1015 

Hendrickson, J.C., 1997. Coastal wetland response to rising sea-level: quantification of short-1016 

and long-term accretion and subsidence, northeastern Gulf of Mexico. 1017 

Horton, B.P., Rossi, V. and Hawkes, A.D., 2009. The sedimentary record of the 2005 hurricane 1018 

season from the Mississippi and Alabama coastlines. Quaternary International, 195(1-1019 

2), 15-30. 1020 

Hu, K. L., Chen, Q., and Wang, H. Q., 2015, A numerical study of vegetation impact on 1021 

reducing storm surge by wetlands in a semi-enclosed estuary: Coastal Engineering, v. 1022 

95, p. 66-76. 1023 

http://dx.doi.org/10.1371/journal.pone.0138086


Jiang, P., Yu, Z., Gautam, M.R., Yuan, F. and Acharya, K., 2016. Changes of storm properties 1024 

in the United States: observations and multimodel ensemble projections. Global and 1025 

Planetary Change, 142, pp.41-52. 1026 

Kearney, M.S., Grace, R.E. and Stevenson, J.C., 1988. Marsh Loss in Nanticoke Estuary, 1027 

Chesapeake Bay. Geographical Review, 78(2), 205-220. 1028 

Kirwan, M.L., Guntenspergen, G.R., D'Alpaos, A., Morris, J.T., Mudd, S.M. and Temmerman, 1029 

S., 2010a. Limits on the adaptability of coastal marshes to rising sea level. Geophysical 1030 

Research Letters, 37(23), L23401. 1031 

Kirwan, M.L. and Guntenspergen, G.R., 2010b. Influence of tidal range on the stability of 1032 

coastal marshland. Geophysical Research Letters, 115(F2), F02009. 1033 

Kirwan, M.L., Murray, A.B., Donnelly, J.P. and Corbett, D.R., 2011. Rapid wetland expansion 1034 

during European settlement and its implication for marsh survival under modern 1035 

sediment delivery rates. Geology, 39(5), pp.507-510. 1036 

Kirwan, M.L. and Mudd, S.M., 2012. Response of salt-marsh carbon accumulation to climate 1037 

change. Nature, 489(7417), p.550. 1038 

Kirwan, M.L., Temmerman, S., Skeehan, E.E., Guntenspergen, G.R. and Fagherazzi, S., 2016. 1039 

Overestimation of marsh vulnerability to sea level rise. Nature Clim. Change, 6(3), 253-1040 

260. 1041 

Kolker, A.S., Goodbred Jr, S.L., Hameed, S. and Cochran, J.K., 2009. High-resolution records 1042 

of the response of coastal wetland systems to long-term and short-term sea-level 1043 

variability. Estuarine, Coastal and Shelf Science, 84(4), 493-508. 1044 

Kobayashi, N., Raichle, A.W. and Asano, T., 1993. Wave attenuation by vegetation. Journal 1045 

of waterway, port, coastal, and ocean engineering, 119(1), pp.30-48. 1046 

Koch, E.W. and Gust, G., 1999. Water flow in tide-and wave-dominated beds of the seagrass 1047 

Thalassia testudinum. Marine Ecology Progress Series, 184, pp.63-72. 1048 



Krauss, K. W., Doyle, T. W., Doyle, T. J., Swarzenski, C. M., From, A. S., Day, R. H., and 1049 

Conner, W. H., 2009, Water level observations in mangrove swamps during two 1050 

hurricanes in Florida: Wetlands, v. 29, no. 1, p. 142-149. 1051 

Lawler, S., Haddad, J., and Ferreira, C. M., 2016, Sensitivity considerations and the impact of 1052 

spatial scaling for storm surge modeling in wetlands of the Mid-Atlantic region: Ocean 1053 

& Coastal Management, v. 134, p. 226-238. 1054 

Lee, M., 2001. Coastal defence and the Habitats Directive: predictions of habitat change in 1055 

England and Wales. The Geographical Journal, 167(1), pp.39-56. 1056 

Le Hir, P., Monbet, Y. and Orvain, F., 2007. Sediment erodability in sediment transport 1057 

modelling: Can we account for biota effects? Continental Shelf Research, 27(8), 1116-1058 

1142. 1059 

Leonard, L.A., Hine, A.C., Luther, M.E., Stumpf, R.P. and Wright, E.E., 1995. Sediment 1060 

transport processes in a west-central Florida open marine marsh tidal creek; the role of 1061 

tides and extra-tropical storms. Estuarine, Coastal and Shelf Science, 41(2), pp.225-1062 

248. 1063 

Le Hir, P., Roberts, W., Cazaillet, O., Christie, M., Bassoullet, P., Bacher, C., 2000.1064 

 Characterization of intertidal flat hydrodynamics. Continental Shelf Research 20,  1065 

1433-1459. 1066 

Leonardi, N. and Fagherazzi, S., 2014. How waves shape salt marshes. Geology, 42(10), 1067 

pp.887-890. 1068 

Leonardi, N. and Fagherazzi, S., 2015. Effect of local variability in erosional resistance on l1069 

 arge‐scale morphodynamic response of salt marshes to wind waves and extreme events. 1070 

Geophysical Research Letters, 42(14), pp.5872-5879. 1071 



Leonardi, N., Ganju, N.K. and Fagherazzi, S., 2016a. A linear relationship between wave 1072 

power and erosion determines salt-marsh resilience to violent storms and hurricanes. 1073 

Proceedings of the National Academy of Sciences, 113(1), pp.64-68. 1074 

Leonardi, N., Defne, Z., Ganju, N.K. and Fagherazzi, S., 2016b. Salt marsh erosion rates and 1075 

boundary features in a shallow Bay. Journal of Geophysical Research: Earth Surface, 1076 

121(10), pp.1861-1875. 1077 

Liu, K., Fearn, M.L. (2000) Reconstruction of prehistoric landfall frequencies of catastrophic 1078 

hurricanes in northwestern Florida from lake sediment records. Quaternary Research 1079 

54, 238–245. 1080 

Liu, H. Q., Zhang, K. Q., Li, Y. P., and Xie, L., 2013, Numerical study of the sensitivity of 1081 

mangroves in reducing storm surge and flooding to hurricane characteristics in southern 1082 

Florida: Continental Shelf Research, v. 64, p. 51-65. 1083 

Loder, N. M., Irish, J. L., Cialone, M. A., and Wamsley, T. V., 2009, Sensitivity of hurricane 1084 

surge to morphological parameters of coastal wetlands: Estuarine Coastal and Shelf 1085 

Science, v. 84, no. 4, p. 625-636. 1086 

Lovelace, J. K., 1994, Storm-tide elevations produced by Hurricane Andrew along the 1087 

Louisiana coast, August 25-27, 1992, Open File Report 94-371. 1088 

Luhar, M., Nepf, H.M., 2016. Wave-induced dynamics of flexible blades. J. Fluid Struct. 61, 1089 

20–41. 1090 

Luhar, M., Coutu, S., Infantes, E., Fox, S. and Nepf, H., 2010. Wave‐induced velocities 1091 

inside a model seagrass bed. Journal of Geophysical Research: Oceans, 115(C12). 1092 

 1093 

Ma, Z., Ysebaert, T., van der Wal, D., de Jong, D.J., Li, X. and Herman, P.M.J., 2014. Long-1094 

term salt marsh vertical accretion in a tidal bay with reduced sediment supply. 1095 

Estuarine, Coastal and Shelf Science, 146, 14-23. 1096 



Marani, M., d'Alpaos, A., Lanzoni, S. and Santalucia, M., 2011. Understanding and 1097 

predicting wave erosion of marsh edges. Geophysical Research Letters, 38(21). 1098 

 1099 

Mariotti, G. and Fagherazzi, S., 2010. A numerical model for the coupled long‐term evolution 1100 

of salt marshes and tidal flats. Journal of Geophysical Research: Earth 1101 

Surface, 115(F1). 1102 

Mariotti, G. and Fagherazzi, S., 2013. Critical width of tidal flats triggers marsh collapse in the 1103 

absence of sea-level rise. Proceedings of the national Academy of Sciences, 110(14), 1104 

pp.5353-5356. 1105 

Mariotti, G. and Carr, J., 2014. Dual role of salt marsh retreat: Long‐term loss and short‐term 1106 

resilience. Water Resources Research, 50(4), pp.2963-2974. 1107 

Mariotti, G., 2016. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for 1108 

permanent land loss?. Journal of Geophysical Research: Earth Surface, 121(7), 1109 

pp.1391-1407. 1110 

Marsooli, R., Orton, P. M., Georgas, N., and Blumberg, A. F., 2016, Three-dimensional 1111 

hydrodynamic modeling of coastal flood mitigation by wetlands: Coastal Engineering, 1112 

v. 111, p. 83-94. 1113 

McGee, B. D., Goree, B. B., Tollet, R. W., Woodward, B. K., and Kress, W. H., 2006, 1114 

Hurricane Rita surge data, Southwestern Louisiana and Southeastern Texas, 1115 

September-November 2005: US Geological Survey. 1116 

McCave, I.N., 1987. Fine sediment sources and sinks around the East Anglian Coast (UK). 1117 

Journal of the Geological Society, 144(1), 149-152. 1118 

McKee, K.L. and Cherry, J.A., 2009. Hurricane Katrina sediment slowed elevation loss in 1119 

subsiding brackish marshes of the Mississippi River delta. Wetlands, 29(1), 2-15. 1120 



Meire, P., Dauwe, W., Maris, T., Peeters, P., Coen, L., Deschamps, M., Rutten, J., and 1121 

Temmerman, S., 2014, Sigma plan proves efficiency: ECSA Bulletin, v. 62, p. 19-23. 1122 

Mendez, F. J., and I. J. Losada (2004), An empirical model to estimate the propagation of 1123 

random breaking and non‐breaking waves over vegetation fields, Coastal Eng. , 51, 1124 

103–118, doi:10.1016/j.coastaleng.2003.11.003. 1125 

Miselis, J.L., Andrews, B.D., Nicholson, R.S., Defne, Z., Ganju, N.K. and Navoy, A., 2016. 1126 

Evolution of mid-Atlantic coastal and back-barrier estuary environments in response to 1127 

a hurricane: Implications for barrier-estuary connectivity. Estuaries and Coasts, 39(4), 1128 

pp.916-934. 1129 

Möller, I., T. Spencer, J.R. French, D.J. Leggett, and M. Dixon (1999), Wave transformation 1130 

over  salt marshes: a field and numerical modelling study from North Norfolk, 1131 

England. Estuarine  Coastal Shelf Science 49: 411–426. 1132 

Moller I. 2006. Quantifying saltmarsh vegetation and its effect on wave height dissipation: 1133 

results  from a UK east coast saltmarsh. Estuar. Coast. Shelf Sci. 69:337–51. 1134 

Morton, R.A., Sallenger, A.H., 2003. Morphological impacts of extreme storms on sandy 1135 

beaches and barriers. Journal of Coastal Research 19, 560–573. 1136 

Morton, R.A., Gelfenbaum, G., Jaffe, B.E. (2007) Physical criteria for distinguishing sandy 1137 

tsunami and storm deposits using modern examples. Sedimentary Geology 200 (3–4), 1138 

184-207 1139 

Morton, R.A. and Barras, J.A., 2011. Hurricane impacts on coastal wetlands: A half-century 1140 

record of storm-generated features from southern Louisiana. Journal of Coastal 1141 

Research, 27(6A), pp.27-43. 1142 

Mudd, S.M., Howell, S.M. and Morris, J.T., 2009. Impact of dynamic feedbacks between 1143 

sedimentation, sea-level rise, and biomass production on near-surface marsh 1144 



stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science, 82(3), 1145 

pp.377-389. 1146 

 1147 

Mullarney, J.C., Henderson, S.M. (2010), Wave‐forced motion of submerged single‐stem 1148 

 vegetation, J. Geophys. Res., 115, C12061, doi:10.1029/2010JC006448. 1149 

Murray, A.L. and Spencer, T., 1997. On the wisdom of calculating annual material budgets in 1150 

tidal wetlands. Marine Ecology Progress Series, 150, pp.207-216. 1151 

Nicholls, R.J., Dredge, A. and Wilson, T., 2000. Shoreline change and fine-grained sediment 1152 

input: Isle of Sheppey Coast, Thames Estuary, UK. Geological Society, London, 1153 

Special Publications, 175(1), 305-315. 1154 

Neumeier, U., Ciavola, P., 2004. Flow resistance and associated sedimentary processes in a 1155 

Spartina  maritima salt-marsh. J. Coast. Res. 20, 435–447. 1156 

Paul, M., Bouma, T.J., Amos, C.L., 2012. Wave attenuation by submerged vegetation: 1157 

combining  the effect of organism traits and tidal current. Marine Ecology-Progress 1158 

Series 444, 31–41. 1159 

Paul, M., Rupprecht, F., Möller, I., Bouma, T.J., Spencer, T., Kudella, M., Wolters, G., van 1160 

 Wesenbeeck, B.K., Jensen, K., Miranda-Lange, M., Schimmels, S., 2016. Plant 1161 

stiffness and  biomass as drivers for drag forces under extreme wave loading: a flume 1162 

study on mimics.  Coast. Eng. 117, 70–78. 1163 

 1164 

Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., 1165 

Clarke, L., Dahe, Q., Dasgupta, P. and Dubash, N.K., 2014. Climate change 2014: 1166 

synthesis report. Contribution of Working Groups I, II and III to the fifth assessment 1167 

report of the Intergovernmental Panel on Climate Change (p. 151). IPCC. 1168 



Pendleton, L., Donato, D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet, S., Craft, C., 1169 

Fourqurean, J.W., Kauffman, J.B., Marbà, N. and Megonigal, P., 2012. Estimating 1170 

global “blue carbon” emissions from conversion and degradation of vegetated coastal 1171 

ecosystems. PloS one, 7(9), p.e43542. 1172 

Peralta, G., van Duren, L.A., Morris, E.P., Bouma, T.J., 2008. Consequences of shoot density 1173 

and  stiffness for ecosystem engineering by benthic macrophytes in flow dominated 1174 

areas: a  hydrodynamic flume study. Mar. Ecol.—Prog. Ser. 368, 103–115. 1175 

Pethick, J.S., 1992. Saltmarsh geomorphology. In: Allen, J.R.L., Pye, K. (Eds.), Saltmarshes. 1176 

 Morphodynamics, Conservation and Engineering Significance. Cambridge University 1177 

Press,  Cambridge, pp. 41-62. 1178 

Puijalon, S., Bouma, T.J., Douady, C.J., van Groenendael, J., Anten, N.P.R., Martel, E., 1179 

Bornette,  G., 2011. Plant resistance to mechanical stress: evidence of an 1180 

avoidance-tolerance trade-off.  New Phytolologist, 191, pp. 1141–1149. 1181 

Rahman, R., Plater, A. J., Nolan, P. J., Mauz, B., Appleby, P. G. (2013). Potential health risks 1182 

from radioactive contamination of saltmarshes in NW England. Journal of 1183 

Environmental Radioactivity 119, 55-62. 1184 

Redfield, A.C., 1972. Development of a New England salt marsh. Ecological 1185 

monographs, 42(2), pp.201-237. 1186 

Reed, D.J., 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne 1187 

Bay, Louisiana: the role of winter storms. Estuaries and Coasts, 12(4), pp.222-227. 1188 

Reed, D.J., 2002. Understanding tidal marsh sedimentation in the Sacramento-San Joaquin 1189 

Delta. California. Journal of Coastal Research Special, (36), pp.605-611. 1190 

Resio, D. T., and Westerink, J. J., 2008, Modelling the physics of storm surges: Physics Today, 1191 

v. 61, no. 9, p. 33-38. 1192 



Riffe, K. C., S. M. Henderson, and J. C. Mullarney (2011), Wave dissipation by flexible 1193 

vegetation,  Geophysical Research Letters, 38,p.  L18607, 1194 

doi:10.1029/2011GL048773. 1195 

Rosencranz, J.A., Ganju, N.K., Ambrose, R.F., Brosnahan, S.M., Dickhudt, P.J., 1196 

Guntenspergen, G.R., MacDonald, G.M., Takekawa, J.Y. and Thorne, K.M., 2016. 1197 

Balanced Sediment Fluxes in Southern California’s Mediterranean-Climate Zone Salt 1198 

Marshes. Estuaries and Coasts, 39(4), pp.1035-1049. 1199 

Rupprecht, F., Moller, I., Evans, B., Spencer, T., and Jensen, K., 2015, Biophysical properties 1200 

of salt marsh c anopies Quantifying plant stern flexibility and above ground biomass: 1201 

Coastal Engineering, v. 100, p. 48-57. 1202 

Rupprecht, F., Möller, I., Paul, M., Kudella, M., Spencer, T., van Wesenbeeck, B. K., ... &  1203 

 Schimmels, S. (2017). Vegetation-wave interactions in salt marshes under storm surge  1204 

 conditions. Ecological Engineering, 100, 301-315. 1205 

 1206 

Schepers, L., Kirwan, M. L., Guntenspergen, G. R., and Temmerman, S., 2017, Spatio-1207 

temporal development of vegetation die-off in a submerging coastal marsh: Limnology 1208 

and Oceanography, v. 62, p. 137-150. 1209 

Schuerch, M., Rapaglia, J., Liebetrau, V., Vafeidis, A. and Reise, K., 2012. Salt Marsh 1210 

Accretion and Storm Tide Variation: an Example from a Barrier Island in the North 1211 

Sea. Estuaries and Coasts, 35(2), 486-500. 1212 

Schuerch, M., Vafeidis, A., Slawig, T. and Temmerman, S., 2013. Modeling the influence of 1213 

changing storm patterns on the ability of a salt marsh to keep pace with sea level rise. 1214 

Journal of Geophysical Research: Earth Surface, 118(1), 84-96. 1215 



Schuerch, M., Dolch, T., Reise, K. and Vafeidis, A.T., 2014. Unravelling interactions between 1216 

salt marsh evolution and sedimentary processes in the Wadden Sea (southeastern North 1217 

Sea). Progress in Physical Geography, 38(6), 691-715. 1218 

Schuerch, M., Scholten, J., Carretero, S., García-Rodríguez, F., Kumbier, K., Baechtiger, M. 1219 

and Liebetrau, V., 2016. The effect of long-term and decadal climate and hydrology 1220 

variations on estuarine marsh dynamics: An identifying case study from the Río de la 1221 

Plata. Geomorphology, 269, 122-132. 1222 

Schwimmer, R.A., 2001. Rates and processes of marsh shoreline erosion in Rehoboth Bay, 1223 

Delaware, USA. Journal of Coastal Research, pp.672-683. 1224 

Scileppi, E. and Donnelly, J.P., 2007. Sedimentary evidence of hurricane strikes in western 1225 

Long Island, New York. Geochemistry, Geophysics, Geosystems, 8(6). 1226 

Scileppi, E., Donnelly, J.P. (2007) Sedimentary evidence of hurricane strikes in western Long 1227 

Island, New York. Geochemistry, Geophysics and Geosystems 8(6), Q06011, 1228 

doi:10.1029/2006GC001463 1229 

Sheng, Y. P., Lapetina, A., and Ma, G. F., 2012, The reduction of storm surge by vegetation 1230 

canopies: Three-dimensional simulations: Geophysical Research Letters, v. 39. 1231 

 1232 

 1233 

Silinski, A., Heuner, M., Schoelynck, J., Puijalon, S., Schroder, U., Fuchs, E., Troch, P., 1234 

Bouma,  T.J., Meire, P., Temmerman, S., 2015. Effects of wind waves versus ship 1235 

waves on tidal  marsh plants: a flume study on different life stages of Scirpus maritimus. 1236 

PLoS One 10,  e0118687, 1237 

http://dx.doi.org/10.1371/journal.ponehttp://dx.doi.org/10.1371/journal.pone. 1238 

0118687. 1239 

 1240 

http://dx.doi.org/10.1371/journal.pone


Smith, D.E., Shi, S., Cullingford, R.A., Dawson, A.G., Dawson, S., Firth, C.R., Foster, I.D.L., 1241 

Fretwell, P.T., Haggart, B.A. Holloway, L.K., Long, D. (2004) The Holocene Storegga 1242 

Slide tsunami in the United Kingdom Quaternary Science Reviews 23(23–24), 2291-1243 

2321. 1244 

Smolders, S., Plancke, Y., Ides, S., Meire, P., and Temmerman, S., 2015, Role of intertidal 1245 

wetlands for tidal and storm tide attenuation along a confined estuary: a model study: 1246 

Natural Hazards and Earth System Sciences, v. 15, p. 1659–1675. 1247 

Sobel, A.H., Held, I.M. and Bretherton, C.S., 2002. The ENSO signal in tropical tropospheric 1248 

temperature. Journal of Climate, 15(18), pp.2702-2706. 1249 

Solomon, S. ed., 2007. Climate change 2007-the physical science basis: Working group I 1250 

contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge 1251 

University Press. 1252 

Spencer, T., Brooks, S.M., Evans, B.R., Tempest, J.A. and Möller, I., 2015. Southern North 1253 

Sea storm surge event of 5 December 2013: water levels, waves and coastal impacts. 1254 

Earth-Science Reviews, 146, pp.120-145. 1255 

Spencer, T., Moller, I., Rupprecht, F., Bouma, T.J., van Wesenbeeck, B.K., Kudella, M., Paul, 1256 

M.,  Jensen, K., Wolters, G., Miranda-Lange, M., Schimmels, S., 2016. Salt marsh 1257 

surface  survives true-to-scale simulated storm surges. Earth Surface Processes 1258 

and Landforms.  DOI:10.1002/esp.3867. 1259 

Spencer, T., Schuerch, M., Nicholls, R.J., Hinkel, J., Lincke, D., Vafeidis, A.T., Reef, R., 1260 

McFadden, L. and Brown, S., 2016. Global coastal wetland change under sea-level rise 1261 

and related stresses: The DIVA Wetland Change Model. Global and Planetary Change, 1262 

139, 15-30. 1263 



Stark, J., Plancke, Y., Ides, S., Meire, P., and Temmerman, S., 2016, Coastal flood protection 1264 

by a combined nature-based and engineering approach: modeling the effects of marsh 1265 

geometry and surrounding dikes: Estuarine Coastal and Shelf Science, v. 175, p. 34-45. 1266 

Stark, J., Van Oyen, T., Meire, P., and Temmerman, S., 2015, Observations of tidal and storm 1267 

surge attenuation in a large tidal marsh: Limnology and Oceanography, v. 60, no. 4, p. 1268 

1371-1381. 1269 

Stevenson, J.C., Kearney, M.S. and Pendleton, E.C., 1985. Sedimentation and erosion in a 1270 

Chesapeake Bay brackish marsh system. Marine Geology, 67(3-4), pp.213-235. 1271 

Stumpf, R.P. (1983) The process of sedimentation on the surface of a salt marsh. Estuarine, 1272 

Coastal and Shelf Science 17(5), 495-508. 1273 

Sutton-Grier, A. E., Wowk, K., and Bamford, H., 2015, Future of our coasts: The potential for 1274 

natural and hybrid infrastructure to enhance the resilience of our coastal communities, 1275 

economies and ecosystems: Environmental Science & Policy, v. 51, p. 137-148. 1276 

Syvitski, J.P.M., Vörösmarty, C.J., Kettner, A.J. and Green, P., 2005. Impact of Humans on 1277 

the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science, 308(5720), 376-1278 

380. 1279 

Temmerman, S., Govers, G., Meire, P. and Wartel, S., 2003. Modelling long-term tidal marsh 1280 

growth under changing tidal conditions and suspended sediment concentrations, 1281 

Scheldt estuary, Belgium. Marine Geology, 193(1-2), 151-169. 1282 

Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 1283 

504,  79–83 (2013). 1284 

Temmerman, S., De Vries, M. B., and Bouma, T. J., 2012, Coastal marsh die-off and reduced 1285 

attenuation of coastal floods: a model analysis: Global and Planetary Change, v. 92-93, 1286 

p. 267-274. 1287 



Temmerman, S., and Kirwan, M. L., 2015, Building land with a rising sea: Science, v. 349, no. 1288 

6248, p. 588-589. 1289 

Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and De Vriend, H. J., 1290 

2013, Ecosystem-based coastal defence in the face of global change: Nature, v. 504, p. 1291 

79-83. 1292 

Tonelli, M., Fagherazzi, S. and Petti, M., 2010. Modeling wave impact on salt marsh 1293 

boundaries. Journal of Geophysical Research: Oceans, 115(C9). 1294 

Turner, R.E., Baustian, J.J., Swenson, E.M., Spicer, J.S. (2006) Wetland sedimentation from 1295 

hurricanes Katrina and Rita. Science 314, 449–452. 1296 

Turner, R.E., Swenson, E.M., Milan, C.S., Lee J.M. (2007) Hurricane signals in salt marsh 1297 

sediments: Inorganic sources and soil volume. Limnology and Oceanography 52(3), 1298 

1231–1238. 1299 

Tweel, A.W. and Turner, R.E., 2014. Contribution of tropical cyclones to the sediment budget 1300 

for coastal wetlands in Louisiana, USA. Landscape Ecology, 29(6), 1083-1094. 1301 

USACE, 1963, Interim survey report, Morgan city, Louisiana and vicinity, serial no. 63: US 1302 

Army Corps of Engineers, New Orleans. 1303 

Van de Koppel, J., Van der Wal, D., Bakker, J. P., and Herman, P. M. J., 2005, Self-1304 

organisation and vegetation collapse in salt marsh ecosystems: The American 1305 

Naturalist, v. 165, no. 1, p. E1-E12. 1306 

Van Wesenbeeck, B., Mulder, J. P. M., Marchand, M., Reed, D. J., De Vries, M. B., De Vriend, 1307 

H. J., and Herman, P. M. J., 2014, Damming deltas: a practice of the past? Towards 1308 

nature-based flood defenses: Estuarine Coastal and Shelf Science, v. 140, p. 1-6. 1309 

Vecchi, G.A. and Soden, B.J., 2007. Increased tropical Atlantic wind shear in model 1310 

projections of global warming. Geophysical Research Letters, 34(8). 1311 



Wamsley, T. V., Cialone, M. A., Smith, J. M., Atkinson, J. H., and Rosati, J. D., 2010, The 1312 

potential of wetlands in reducing storm surge: Ocean Engineering, v. 37, no. 1, p. 59-1313 

68. 1314 

Wamsley, T. V., Cialone, M. A., Smith, J. M., Ebersole, B. A., and Grzegorzewski, A. S., 2009, 1315 

Influence of landscape restoration and degradation on storm surge and waves in 1316 

southern Louisiana: Natural Hazards, v. 51, p. 207-224. 1317 

Webster, P.J., Holland, G.J., Curry, J.A. and Chang, H.R., 2005. Changes in tropical cyclone 1318 

number, duration, and intensity in a warming environment. Science, 309(5742), 1319 

pp.1844-1846. 1320 

Williams, H.F., 2009. Stratigraphy, sedimentology, and microfossil content of Hurricane Rita 1321 

storm surge deposits in southwest Louisiana. Journal of Coastal Research, pp.1041-1322 

1051. 1323 

Williams, H.F.L. (2011). Stratigraphic Record of Hurricanes Audrey, Rita and Ike in the 1324 

Chenier Plain of Southwest Louisiana. Journal of Coastal Research SI 64, 1921-1926. 1325 

Woodruff, J. D., Irish, J. L., and Camargo, S. J., 2013, Coastal flooding by tropical cyclones 1326 

and sea-level rise: Nature, v. 504, p. 44-52. 1327 

Woth, K., Weisse, R. and Von Storch, H., 2006. Climate change and North Sea storm surge 1328 

extremes: an ensemble study of storm surge extremes expected in a changed climate 1329 

projected by four different regional climate models. Ocean Dynamics, 56(1), pp.3-15. 1330 

Yang, S.L., Shi, B.W., Bouma, T.J., Ysebaert, T., Luo, X.X., 2012. Wave attenuation at a salt 1331 

marsh  margin: a case study of an exposed coast on the Yangtze Estuary. Estuaries 1332 

Coasts 35, 169– 182. 1333 

Zhang, K., Douglas, B.C. and Leatherman, S.P., 2000. Twentieth-century storm activity 1334 

along the US east coast. Journal of Climate, 13(10), pp.1748-1761. 1335 



Zhang, K. Q., Liu, H. Q., Li, Y. P., Xu, H. Z., Shen, J., Rhome, J., and Smith, T. J., 2012, The 1336 

role of mangroves in attenuating storm surges: Estuarine Coastal and Shelf Science, v. 1337 

102, p. 11-23. 1338 

 1339 

 1340 

 1341 





Salt marsh mean sea level

mean low tide

mean high tide

tidal flat

Sediment deposition on 

marsh platform  

Sediment resuspension due to 

waves and tidal currents

Sediment transport on 

marsh platform during 

high tide/ high water level

Marsh edge erosion

or progradation, 

sediments delivered to 

the tidal flat

wind waves

aboveground and  

belowground biomassriverine sediment

inputs

Sediment import/ export 

trough the control volume 

Sediment import/ export 

trough the control volume 





To
ta

l 
sp

e
ct

ra
l e

n
e

rg
y

 (
J 

m
-2

)

date

3
1

 %
8

9
 % 4
8

 %

8
9

 %

3
7

 %
7

0
 %

2
9

 %
5

6
 %

2
5

 %
8

0
 %

5/10/94      5/11/94      3/3/95      20/3/95      16/4/95

300

250

200

150

100

50

0

Sand flat

Marsh edge

Marsh interior



Impact storms on salt marsh morphology
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