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Abstract 

Sleep is a universal behavior in vertebrate and invertebrate animals, suggesting it originated 

in the very first life forms. Given the vital function of sleep, sleeping patterns and sleep 

architecture follow dynamic and adaptive processes reflecting trade-offs to different 

selective pressures.   

Here, we review responses in sleep and sleep-related behavior to environmental constraints 

across primate species, focusing on the role of great ape nest building in hominid evolution. 

We summarize and synthesize major hypotheses explaining the proximate and ultimate 

functions of great ape nest building across all species and subspecies; we draw on 46 

original studies published between 2000 and 2017. In addition, we integrate the most 

recent data brought together by researchers from a complementary range of disciplines in 

the frame of the symposium “Burning the midnight oil” held at the 26
th

 Congress of the 

International Primatological Society, Chicago, August 2016, as well as some additional 

contributors, each of which is included as a “stand-alone” paper in this “Primate Sleep” 

symposium set. In doing so, we present crucial factors to be considered in describing 

scenarios of human sleep evolution: a) the implications of nest construction for sleep quality 

and cognition; b) the tree-to-ground transition in early hominids; c) the peculiarities of 

human sleep.  

We propose bridging disciplines such as neurobiology, endocrinology, medicine and 

evolutionary ecology, so that future research may disentangle the major functions of sleep 

in human and non-human primates, namely its role in energy allocation, health, and 

cognition. 
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Introduction 

Sleep, or sleep-like states, have been investigated for centuries, beginning with observations 

of the day and night rhythm of Mimosaceae plants (De Mairan 1729; Du Monceau 1758), 

which revealed endogenous pacemakers of activity. Sleep is a universal behavior in 

vertebrate and invertebrate animals, suggesting it originated with the first organisms 

(Hartse 2011; Lesku et al. 2006; Rattenborg and Amlaner 2002). In their comprehensive 

review on the role of sleep in memory, Rasch and Born (2013, p.681) define sleep “as a 

natural and reversible state of reduced responsiveness to external stimuli and relative 

inactivity, accompanied by a loss of consciousness.” Reduced responsiveness is risky, 

however, as animals must respond to life threatening cues such as predators. In addition, 

this inactivity implies missing out on feeding, caring for young, or socializing; in short, a 

reduced investment in activities necessary for an individual’s fitness. Why has evolution not 

eradicated sleep?  

The increasing body of evidence accumulating from investigations of the many, and often 

mutually non-exclusive, hypotheses on the functions of sleep provides answers to this 

question. Scientists have provided evidence for physiological functions of sleep such as 

energy saving (Siegel 2005), tissue repairing (Oswald 1980), thermoregulation (Parmeggiani 

1986), metabolic regulation (Sharma and Kavuru 2010), immunological enhancement 

(Besedovsky et al. 2012), and memory formation (Rasch and Born 2013).  

Behavioral ecology research has looked within and across species to better understand how 

natural selection has shaped sleep and sleep-related behavior, particularly in the context of 

predation where vigilance should supplant states of unconsciousness (Lima et al. 2005). 

Such research has covered a wide range of topics including “species-specific” choices of 

shelter, circadian rhythms affected by the threat of predation, food competitors or food 
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availability, and variations in “sleep architecture.” “Sleep architecture” refers to the 

structural organization of normal sleep, dividing it into non-rapid eye movement (NREM) 

and rapid eye movement (REM) sleep, which occur in cycles.  

In contrast to an earlier classification system by Rechtschaffen and Kales (1968), where 

slow-wave sleep (SWS) was divided into stage 3 and stage 4 sleep, a more recent 

nomenclature classifies NREM sleep into three stages, with SWS corresponding to N3, and 

two lighter sleep stages N1 and N2 (Iber et al. 2007; Rasch and Born 2013). A typical eight-

hour sleeping bout usually starts with a short and light stage N1, followed by stage N2 which 

is similarly light, but accounts for about 50% of a sleeping bout and is distributed rather 

evenly throughout. Waking up during stage N1 or N2 is easy, and on doing so people report 

thoughts, ideas, and dreams, but with no particular coherence. In contrast, stage N3 sleep, 

or SWS, is far deeper, having acquired its name because of its slow wave frequency. Here, 

respiration, heart rate, and blood pressure decrease, rendering waking less likely. SWS 

usually dominates the first third of a human’s sleeping bout. In contrast, REM sleep is 

characterized by two modes, tonic REM sleep (without actual rapid eye movements) and 

phasic REM sleep (with acute eye movements but muscle atonia). Human sleepers, when 

awakened during REM, are able to report coherent dreams with active participation of the 

dreamer. REM sleep occurs towards the end of a typical sleeping bout (Coolidge and Wynn 

2006; Lima et al. 2005; Samson and Nunn 2015). “Sleep architecture” seems to be of 

particular importance when investigating adaptation to potentially lethal environmental 

constraints, such as predation. Therefore, current research focuses on the role and 

sequence of each specific phase within sleeping bouts, which show considerable variability 

within and across species.  
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Given the vital functions that sleep provides, we should consider it as a constraint 

influencing life history and resulting in trade-offs similar to those we assess within the 

framework of optimal foraging theory. Just as for energy intake, individual- and species-

specific sleeping patterns and sleep architecture follow dynamic and adaptive processes in 

response to environmental constraints.  

Here, we review the responses in sleep and sleep-related behavior to environmental 

constraints across primate species, investigating both proximate and ultimate benefits. We 

integrate the most recent data brought together by researchers from a complementary 

range of disciplines, such as primatology, behavioral ecology, and evolutionary 

anthropology; many of whom contribute their findings in this compilation of papers from 

the symposium “Burning the midnight oil: Great ape nocturnal activity and the implications 

for the understanding of human evolution”, comprising orangutan (Pongo pygmaeus) 

(Mackinnon 1974), gorilla (Gorilla gorilla) (Casimir 1979), chimpanzee (Pan troglodytes) (van 

Lawick-Goodall 1968) and bonobo (Pan paniscus) (Kano 1992). Special attention is given to 

great ape nest-building behavior by updating our knowledge presented in an earlier review 

by Fruth and Hohmann (1996). We update our understanding of the implications of nest 

construction and the role it may have played in hominin evolution, and investigate the 

relevance of the tree-to-ground transition, as well as some peculiarities of human sleep, to 

human evolution.  

 

Historical aspects of sleep research 

The origin of Chronobiology dates back to the 17
th

 century (Barrera-Mera and Barrera-Calva 

1998). Since then, the discipline has influenced sleep research in both animal and human 

studies (Aschoff and Wever 1981; Dunlap et al. 2004; Kleitman 1963). 
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Research subsequently expanded from the study of sleep distribution across a 24-hr period 

into describing the distribution of stages of sleep within sleeping bouts. In 1924, Hans 

Berger, a German psychiatrist, was the first to record a human electroencephalogram (EEG) 

and succeeded in identifying different brain wave patterns that reflect states of sleep and 

wakefulness (Millett 2001). This led the way to a better understanding of the different 

qualities of sleep and the specific roles of different sleep states. 

Primates exhibit a vast array of different sleeping behaviors. Timing of sleeping patterns 

varies quite markedly; some species are considered nocturnal, such as the African and Asian 

strepsirrhine prosimians (Reinhardt and Nekaris 2016) and the South American genus, Aotus 

(Wright 1989). Most primates, however, are diurnal, although a few species, such as the owl 

monkey, Aotus azarai, and several Malagasy strepsirrhines, (e.g. Eulemur spp., Hapalemur 

sp., Lemur catta) exhibit cathemerality (Curtis and Rasmussen 2006). It is difficult to tease 

apart the multiple influences on variation in sleeping patterns; for example, the activity 

patterns of some lemurs could be attributed to phylogeny and niche differentiation of 

different genera (Dammhahn and Kappeler 2014), whilst certain African lorisiformes show 

variable sleep patterns even within species (Svensson et al. (in review). New technologies, 

such as remote-operated camera traps and acoustic sensors, have recently revealed 

previously undocumented nocturnal wakefulness and activity in wild great apes; a 

phenomenon that is now hypothesized to occur in many primates (Piel in review; Tagg et al. 

in review). Increasing evidence reveals cathemeral and fragmented sleeping patterns in 

many species to be a response to factors such as light, food, predator or human imposed 

constraints (Colquhoun 2007; Engqvist and Richard 1991; Eppley et al. 2015; Kümpel et al. 

2008). 
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Temperature is another environmental factor that has been shown to influence pattern and 

quality of sleep in lemurs (Samson in review-b), and chimpanzees (Pruetz in review). While 

the external drivers mentioned above may trigger nocturnal activity in diurnal great apes, 

internal factors, such as the need to defecate (Koichiro Zamma, pers.comm.), may 

contribute as well. This taxon-wide behavioral flexibility in the amount and timing of sleep 

raises numerous questions, and shows how species may adapt their sleep patterns to cope 

with the challenges of environmental and anthropogenic stressors.  

  

Primate sleeping sites  

With a total of around 410 primate species predominantly inhabiting the tropical belt of our 

planet (Mittermeier et al. 2013), it is natural that we find a fascinating array of niche 

differentiation in the distribution of activity patterns and sleeping site locations across 

species. Arboreal sites are common; some small monkeys sleep solitarily or in small groups 

utilizing tree holes (Kappeler 1998), while many larger primates sleep on bare branches, 

even when predominantly terrestrial at times of activity (Anderson 2000; Fruth and McGrew 

1998). In addition, some large-bodied primates sleep terrestrially on bare ground or on 

cliffs, such as group-sleeping baboons (Papio spp.), (Hamilton 1982), or individually-sleeping 

great apes (Fruth and Hohmann 1996; Tagg et al. 2013). Of particular interest in the study of 

primate sleep is nest-building behavior, which has evolved independently six to eight times 

in primates (Kappeler 1998). Great apes universally build nests in which to sleep at night and 

sometimes during day. Nest building is a habitual behavior in great apes, constructions are 

built for short periods only and never serve as a shelter for caching young. Structures are 

commonly built within trees, although ground nests built with terrestrial vegetation are 

common in gorilla and ground-nesting is likely present at low rates across all species and 
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subspecies (Tagg et al. 2013). These structures attracted the attention of early explorers 

such as Du Chaillu (1861), Hornaday (1879) and Savage and Wyman (1843–1844). When 

these structures came to scientific attention about 100 years later, they were named 

“sleeping platform”, “nest’’, or ‘‘bed’’.  

Nest building in great apes is a phylogenetically conservative behavior likely to have evolved 

in the Miocene (Fruth and Hohmann 1996), somewhere between 18–14 mya (Duda and 

Zrzavý 2013). Nest building may have been an evolutionary response to cope with the 

allometric effect of the increasing body size of apes, which would “have benefited from 

more resilient and stable sleeping substrates to reduce both physical stress on the body and 

the probability of lethal falls” (Samson and Nunn 2015, p.231). 

Nest building was originally thought to be innate until Bernstein (1962), and later Videan 

(2006), showed that captive-reared chimpanzees did not know how to build good nests, 

even when their mothers were wild born. Nest-building behavior is now known to be 

acquired throughout the ape’s ontogeny, starting with attempts by infants to construct day 

nests. Early on, nest building was discussed in the context of the cognitive modification of 

the physical environment or tool use. While nest building was considered separately from 

tool use by some authors (Beck 1980; Tuttle 1986), others tended to subsume it under this 

category (Galdikas 1982; McGrew 1992). Recently, Shumaker et al. (2011) redefined tool use 

in such a way as to incorporate nest use and argued it is the most pervasive form of material 

culture in great apes. Nest construction reflects the great apes’ ability for environmental 

problem solving; an ability that forms the basis of skilled object manipulation of which all 

apes are capable, and is considered to have been crucial for hominization (McGrew 1992). 
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Great ape nesting behavior and proximate functions of great ape nests 

Goodall (1962) provided the first detailed description of chimpanzee nest-building behavior. 

Nests of all great apes are similarly constructed, despite inter-species differences in habitat 

and social organization. When in trees, nest-builders usually select horizontal side branches 

for the foundation, over which they bend and break adjacent branches. The rim of these 

platforms is formed by bending, breaking and occasionally interweaving additional smaller 

branches from the outer to the inner surfaces, resulting in a circular or oval, bowl-shaped 

structure. The center of this ‘bowl’ is often lined with detached leafy twigs. When nests are 

built on the ground, non-woody vegetation is often used. Average arboreal nest heights 

range from 10–20 m, and construction types range from sturdy nests on side branches or in 

single treetops to nests integrating several adjacent trees, sometimes so flexible that the 

‘bowl’ resembles a hammock. 

An ape will usually build a new nest each evening and, despite lack of systematic 

investigation, is assumed to use it for rest from dusk until dawn. Occasionally, nests are also 

built during the day, usually for rest, but have also been observed to serve functions of 

grooming, play, sex, nursing, and giving birth. Nests are usually not constructed in isolation 

from each other but in groups, reflecting differences in the social organization and social 

structure of the species (Fruth 1995; Schaller 1963; van Lawick-Goodall 1968). For species 

living in a fission-fusion social organization, aggregation at night has been suggested to 

allow information transfer on the quality of food patches visited during day (Fruth and 

Hohmann 1994a).  

Nests are built by each weaned individual great ape independent of sex and age, and take 

between one and seven minutes to construct. Time of construction depends on season, 

weather and light conditions, and social opportunities or requests. Tree choice is highly 
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selective and may be influenced by seasonal availability of building material, quality, 

flexibility, and strength of wood, as well as leaf size and phytochemical properties (Samson 

and Hunt 2014; van Casteren et al. 2012). Nest reuse has been reported for all studied 

populations and, although frequencies differ, it likely depends on the availability of nesting 

locations and material for construction. Sex differences are reported for all species and 

concern nest height and frequency, with females on average constructing their nests higher 

and more often producing day nests than males. 

In an extensive review, Fruth and Hohmann (1996) compiled data on nest building in all 

great ape species and most subspecies, investigating 31 published studies and 

complementing these with the answers to 21 questionnaires through which field 

primatologists contributed their unpublished data. Overall, there was considerable variation 

in physical parameters such as nest height, not only across, but also within great ape 

species. Variation is influenced by environmental parameters (e.g. rainfall, temperature, 

habitat structure, availability of material, predator presence), demographic (e.g. sex or age 

class) and social factors (e.g. socially transferred habits). Variation within species exceeded 

variation across species. 

For the current review, we consulted 46 original studies published between 2000 and 2017 

investigating great ape nest construction in all species and subspecies (Table 1). Our main 

focus was on studies conducted in the wild, and we did not consider those using nests as a 

tool for calculating density estimations. Overall, the picture that emerged in the original 

review still persists. In addition, an increasing number of studies systematically investigate 

hypotheses concerning nest function. Table 1 shows these studies and their foci.  

 

< Table 1 about here> 
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In the following sections, we outline these hypotheses, incorporating recent results from 

published literature, including this symposium set: 

 

Comfort. The comfort hypothesis assumes that increased body size in primates may have 

constrained relaxed sleep. Comfort, defined as “things that contribute to physical ease and 

well-being” (Oxford Living Dictionaries 2017), here translates into the construction of 

platforms that evolved, not for reasons of survival, but simply because freshly built, soft and 

warm nests allow for a more comfortable sleep (Baldwin et al. 1981; Nissen 1931). This 

hypothesis found support by Stewart et al. (2007), who showed that chimpanzee nests at 

Fongoli, Senegal, vary in complexity and comfort, with more highly complex nests being 

more comfortable. This is in line with findings from Sumatran orangutans (Pongo abelii) (van 

Casteren et al. 2012). In a recent study, Cheyne et al. (2013) investigated nests of Southern 

Bornean orangutans (P. pygmaeus wurmbii), showing that they sought protection from wind 

and rain rather than protection from predators. In line with the climatic drivers of the use of 

nests, Samson and Hunt (2012) investigated the physical comfort levels of chimpanzee tree 

versus ground nests, and reported various advantages of ground nests, such as reduced 

energy expenditure and homeostatic microclimate. All authors agreed that additional 

functions may be of major importance.  

 

Antipredation. Animals are vulnerable when asleep, as their ability to detect predators is 

reduced. Sleeping in trees is a solution; however, large-bodied apes need a surface that 

allows both loss of muscle tone and maintained security when asleep (Samson and Hunt 

2012). Comparing nest height and density between Fongoli and Mt Assirik, Senegal, two 

chimpanzee sites with different predation pressures, Pruetz et al. (2008) supported the 
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antipredation hypothesis by demonstrating that nests were built higher and in closer 

proximity to each other at Mt Assirik, the site with higher predation pressure. Similarly, 

Stewart and Pruetz (2013) compared physical characteristics of nesting trees between Issa, 

Tanzania, and Fongoli, Senegal; here, Issa is the relatively predator-rich site. As expected, 

chimpanzees in Issa were observed to select taller trees with higher lowest branches over 

other suitable trees (Hernandez-Aguilar 2006), and nested higher and more at the distal 

branch extremities than did chimpanzees in Fongoli (Stewart and Pruetz 2013). Data from 

Koops et al. (2012), who investigated chimpanzee nesting at Seringbara, Nimba Mountains, 

Guinea, where predators are thought to be absent, are in line with those from Fongoli. In 

summary, the construction of platforms allowing safe and comfortable sleep can be 

considered to offer a two-fold benefit through improving sleep and avoiding predation 

(Koops et al. 2012; Stewart and Pruetz 2013). 

 

Thermoregulation. When temperature is low, particularly during the night, the costs of 

physiological thermoregulation increase. In savanna-woodland habitats like Fongoli, where 

temperature extremes may range between highs of 45°C during the day and lows of 7°C at 

night , nests provide considerable insulation (Stewart 2011). Nest use can thus be 

considered a form of behavioral thermoregulation. In addition, vertical nest site choice may 

be driven by microclimatic patterns, such as relative humidity (Samson and Hunt 2012). At 

Seringbara, Koops et al. (2012) found chimpanzee nest height increased with increasing 

humidity. Temperature during the day can also affect great ape sleeping patterns at night, 

as shown in Fongoli by Pruetz (in review), whereby increased nocturnal activity appeared to 

be the result of compensating for thermal stress experienced during the day. Evidence 
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provided in this issue suggests that chimpanzees adjust nest shape and architecture in 

response to local weather conditions (Stewart in review).  

 

Antipathogen. Disease vectors, such as mosquitoes, have a vertical distribution and may 

therefore influence nest site choice. While avoidance of annoyance by biting insects could 

be a proximate influence on nest site choice, avoidance of disease vectors may ultimately 

offer an evolutionary advantage over exposed conspecifics (Koops et al. 2012; Samson et al. 

2013). So far, pathogenicity of transmitted parasite infections, such as malaria, are 

unknown, although Plasmodium spp. have been detected in great apes (Krief et al. 2010; Liu 

et al. 2010; 2014). Koops et al. (2012) found no difference in densities of potential disease 

vectors at different heights of the forest canopy, concluding that mosquito densities at their 

site could not be identified as a significant selection pressure influencing nest building. 

However, tree choice at other sites does hint at insect avoidance as an influencing factor; 

for example, in Semliki, another savanna site, experimental mosquito capture was lower in 

proximity to a highly preferred tree species (Samson et al. 2013), and at Tuanan in Central 

Kalimantan, Indonesia, orangutans (Pongo pygmaeus wurmbii) selected naturally mosquito-

repellent tree species when mosquito density was high (Largo et al. 2009).  

 

Evolution of great ape nest construction and use and implications for sleep 

Traces of nests within trees remain visible over generations, with broken branches 

recovering and continuing to grow into their altered direction. They are living artefacts 

allowing investigation of distribution and reuse, accumulation, and enabling an enhanced 

understanding of their associated patterns. In paleoanthropology, artefacts are used to 

reconstruct early hominin ranging behavior and the formation of hominin archeological 
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sites. Nest sites therefore contribute to a better understanding of the evolution of human 

shelter; these primitive ape platforms provide analogues to the earliest home-bases of 

hominins (Fruth and Hohmann 1994b; Hernandez-Aguilar 2009; McGrew 1992; 2004; Sept 

1998; Sept et al. 1992). 

Furthermore, great ape nesting and its implications for sleep are relevant to understanding 

the evolution of human sleep patterns. Due to the presence of this behavior in all extant 

great ape species, it was likely present in their last common ancestor (LCA) living around 14 

million years ago (MYA), and in the Pan-Homo LCA living around 7 MYA.  Fruth and 

Hohmann (1996) framed a scenario whereby in the mid- to late-Miocene, nest building 

began as a by-product of great ape feeding behavior and represented a selective advantage 

over quickly radiating and better-adapted monkeys. Fruth and Hohmann (1996) 

hypothesized that nests had their origins in feeding competition rather than the need for 

rest. These “proto-nests” may have led to the “feeding nests” that can be regularly observed 

in great apes (Basabose and Yamagiwa 2002; Fruth and Hohmann 1993). Feeding nests may 

then have turned into resting platforms, providing support for the increasing body weight of 

apes. According to Fruth and Hohmann (1996), these originally proximate functions of early 

nests may have brought about an improvement in the quality of sleep. This improved sleep 

quality is hypothesized to have resulted in a sleep architecture that allows not only the 

essential metabolic processes, such as the release of growth hormones and physiological 

recuperation, but above all, enhanced cognition.     

Samson and Nunn (2015) formalized this evolutionary scenario by postulating a positive 

feedback loop that merges two previously exclusive hypotheses: namely the “sleep quality 

hypothesis,” which assumes that improved sleep led to an increase in cognitive abilities, and 

the alternative “engineering hypothesis,” which assumes that the increasing cognitive 
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performance of great apes enabled them to build nests. In addition, they supported this 

scenario through developing and subsequently testing the “sleep intensity hypothesis.” 

They showed that early humans “experienced selective pressure to fulfill sleep needs in the 

shortest time possible” (p.225). In this volume, Nunn and Samson (in review) extend their 

previous analyses of Samson and Nunn (2015) by including more relevant ecological 

variables and additional primate species, and investigate how human sleep differs from 

other primate species, thus proposing a certain uniqueness of human sleep. 

 

Tree-to-ground sleep transition and its implications for human evolution 

Whilst nest construction likely contributed to the “great leap forward” in the evolution of 

great ape cognition, the tree-to-ground transition may have resulted in a similar leap in 

hominins (Coolidge and Wynn 2006). Despite habitually exhibiting sleep, ingestion of food, 

and locomotion as arboreal behaviors, all great apes are terrestrial to varying degrees 

during the day (Doran 1996; Loken et al. 2013). However, the proportion of nests at lower 

heights and on the ground increases in areas with lower or absent predation pressure. Tagg 

et al. (2013) showed that all subspecies of chimpanzee sometimes build night nests on the 

ground. To what extent these findings allow reconsideration of the advantages and 

disadvantages of a tree-to-ground transition, however, needs careful evaluation. 

Can we date the tree-to-ground transition for sleep in hominin evolution? Fossil evidence 

shows many early hominins to have ape-like anatomical adaptations that likely allowed 

them to climb trees [Ardipithecus ramidus (White et al. 2009); Australopithecus afarensis 

(Alemseged et al. 2006); A. africanus (Berger and Tobias 1996); Homo habilis (Richmond et 

al. 2002; Ruff 2009)]. Despite a lack of the requisite morphological traits for tree climbing in 

the newly discovered Australopithecine, A. sediba (Berger et al. 2010), the more arboreal-
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adapted, less habitual bipeds such as Ardipithecus ramidus, Australopithecus afarensis, and 

A. africanus (cited above), suggest a transition to terrestriality occurred in the more 

committed bipeds, such as Homo erectus (Ruff 2009). Although Berger and colleagues 

(2010) postulated this transition to have occurred in a ‘mosaic fashion,’ it is possible that 

early hominins continued to sleep in trees, long after becoming terrestrial, perhaps until the 

controlled use of fire. Archaeological and ecological evidence support H. erectus as the 

earliest hominin to use fire, although the timing and emergence of when this happened 

remains controversial (Clark and Harris 1985; Goren-Inbar et al. 2004; Karkanas et al. 2007). 

Fire may have aided thermoregulation, vector and predator deterrence, in addition to 

increasing energy intake sensu Wrangham and Carmody (2010), and may therefore have 

favored survival of terrestrial-adapted hominins. This hypothesis finds support in studies 

investigating post-cranial remains, limb strength and locomotion of early hominins, allowing 

consideration of Homo habilis and H. rudolfensis as facultative arboreal species that were 

therefore very likely to have slept in nests. Whereas H. erectus has been identified, on the 

basis of anatomical features, as the first hominin to have fully engaged in terrestrial 

bipedalism and thus to have regularly slept on the ground (Coolidge and Wynn 2009; Reed 

1997; Ruff 2009; Wrangham and Carmody 2010). Provided there is relative security, perhaps 

from increased group size or fire, the transition from sleeping in trees to the ground may 

have favored the use of new (often treeless) habitats (Coolidge and Wynn 2006). 

Furthermore, longer bouts of wakefulness as societies became more social would have 

afforded more time for social interactions (Samson and Nunn 2015), resulting in increased 

opportunities for learning. Coolidge and Wynn (2006) emphasized the implications of the 

tree-to-ground sleep transition by framing three major benefits: (1) threat simulation, social 
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rehearsal and priming; (2) creativity and innovation; and (3) procedural memory 

consolidation and enhancement.  

Interestingly, contemporary proof of a long-lasting preference for tree-based sleeping sites 

at night is reflected in people, such as the Korowai from Indonesia, who exhibit above 

average arboreality without specialized morphological traits (Stasch 2011). Furthermore, 

modern humans show deeply-rooted architectural preferences that likely evolved in our 

distant past through natural selection; for example, preference for a good view is likely 

related to height and an avoidance of being discovered (Atzwanger and Schäfer 1999; Eibl-

Eibesfeldt et al. 1985; Owens 1988). 

 

Particularities of human sleep 

While the above scenarios remain hypothetical, a few recent studies have begun to 

experimentally investigate how nests and sleep enhance cognitive performance in great 

apes. First, Samson and Shumaker (2015) documented orangutan sleep architecture, 

showing how sleeping platform complexity increases sleep quality. They showed nest 

complexity to vary positively with reduced night-time motor activity, less fragmentation, 

and greater efficiency of sleep. Their data also have relevant implications for animal welfare; 

an aspect that finds elaboration in this volume by Anderson et al. (in review). 

However, to what extent sleep architecture has continued to change as a direct result of the 

tree-to-ground sleep transition, remains unresolved. Likewise, whether increased risks of 

ground sleep led to modified sleep duration and architecture or whether modified sleep 

architecture allowed fulfilment of sleep needs even when sleep durations were necessarily 

reduced, remains unknown. Ground sleeping may have allowed a deeper and less disturbed 

sleep in the absence of predators or enemies, however the question remains whether or not 
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there has been safety from predators or enemies across human evolution. In this volume, 

Samson (in review-a) investigate to what extent security of sleeping sites favors increased 

sleep intensity (with reduced motor activity serving as a proxy) and demonstrate that 

humans exhibit a lower degree of motor activity at night than other primates. 

Interestingly, when sleep was measured in terms of sleep duration and the ratio of REM to 

NREM, it became evident that human sleep was shorter and more efficient than would be 

expected in comparison with other primates (Samson and Nunn 2015). This gives support to 

the new and intriguing “sleep intensity hypothesis” (discussed earlier). Nunn and Samson (in 

review) argue that the driver of shorter sleep may have been opportunity costs rather than 

the vulnerability to predation when ground sleeping. Most importantly, the increased awake 

time could then be spent learning and developing material culture, and therefore driving 

technological advances.  

The growing body of research investigating human and non-human primate sleep patterns 

(e.g. sleep architecture [REM/NREM], intensity, duration, and continuity [rate of waking]) 

reveals greater differences within than between individuals. This is shown nicely by Yetish 

and colleagues (in review) in an experimental approach to sleep among Tsimane hunter-

horticulturalists in Amazonian Bolivia. 

If we extrapolate these principles to modern humans, we see that the multitude of stressors 

such as light and noise pollution, extensive media use, professional requests (working 

shifts), or other unpredictable stressors during flight, political unrest or war, result in a 

remarkable variation of sleep architecture across and within populations. Sleep research 

focused on traditional (non-industrial) populations suggests that „flexibility" in sleep timing 

and duration are important characteristics in human sleep (Samson et al. 2017). 
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Future directions 

It will never be possible to determine extinct hominin sleep patterns, as such behavior is 

inaccessible via the fossil record. However, continued study of human and non-human 

primates, and application of the comparative method, allows insight into likely sleep 

patterns in hominins. Further investigation into human sleep in traditional and industrialized 

societies with electricity, and in a range of latitudes, is required. Study of sleep patterns, and 

potentially architecture, in wild-living primates may become feasible through application of 

non-invasive approaches such as actigraphy, infra-red observations, acoustic sensors, 

camera trapping, and thermal imaging. Comparative research is necessary to help frame 

human sleep patterns within the scale and patterns of primate sleep. Complementary 

studies on primates in captivity could reveal further insight into sleeping patterns. For 

example, by testing animals in various learning tasks with respect to the different sleep 

stages. However, ethical constraints have to be considered in such laboratory studies, and 

limit, for example, the search for neural mechanisms. As necessary data continue to be 

compiled, the considerable variation in sleep architecture will eventually require a 

multivariate approach whereby major variables, such as ecological drivers or individuals, are 

kept constant. A phylogenetic approach to investigate sleep characteristics across 

mammalian taxa could further address what traits may have been evolved in other primate 

species as a result of relaxed sleep. Overall, three pillars of research are of major interest for 

current and future investigations of sleep: (1) the role of sleep in an organism's energy 

budget, (2) its role in health, and (3) its role in memory consolidation. Multifold and 

thorough investigations are required to determine how much of an individual’s sleeping 
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time is allocated to each of these three ‘pillars’ and whether or not individual time 

allocations result in sleeping patterns that translate to successful strategies in the struggle 

of life. 
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