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Abstract: Accurate estimation of above ground biomass (AGB) is required to better understand the
variability and dynamics of tropical peat swamp forest (PSF) ecosystem function and resilience to
disturbance events. The objective of this work is to examine the relationship between tropical PSF
AGB and small-footprint airborne Light Detection and Ranging (LiDAR) discrete return (DR) and
full waveform (FW) derived metrics, with a view to establishing the optimal use of this technology
in this environment. The study was undertaken in North Selangor peat swamp forest (NSPSF)
reserve, Peninsular Malaysia. Plot-based multiple regression analysis was performed to established
the strongest predictive models of PSF AGB using DR metrics (only), FW metrics (only), and a
combination of DR and FW metrics. Overall, the results demonstrate that a Combination-model,
coupling the benefits derived from both DR and FW metrics, had the best performance in modelling
AGB for tropical PSF (R2 = 0.77, RMSE = 36.4, rRMSE = 10.8%); however, no statistical difference
was found between the rRMSE of this model and the best models using only DR and FW metrics.
We conclude that the optimal approach to using airborne LiDAR for the estimation of PSF AGB
is to use LiDAR metrics that relate to the description of the mid-canopy. This should inform the
use of remote sensing in this ecosystem and how innovation in LiDAR-based technology could be
usefully deployed.

Keywords: tropical peat swamp; LiDAR; discrete return LiDAR; full waveform LiDAR; above
ground biomass

1. Introduction

Tropical Peat Swamp Forests (PSF) are unique ecosystems; their health and functionality are
dependent on the interactions between forest, peat and hydrology. Any unbalance in this sensitive
environment from change in one can amplify across the ecosystem and impact the multitude of services
they provide, creating positive feedback loops [1,2]. Tropical PSF are thus particularly vulnerable to
human disturbances (as well as natural change). This is especially the case in South East Asia where
there has been a long history of tropical PSF degradation [3,4]. At an estimated 88.6 Gt, tropical
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PSF are one of the largest pools of terrestrial carbon [5,6], however, high volumes of deforestation
and land conversion rates have transformed South East Asian PSF into one of the largest emitters
of carbon globally [7–9]. Forest clearance and conversion not only decreases carbon stores directly
due to reduction in above ground biomass (AGB), but also indirectly increases carbon emissions as
a result of peat exposure [10,11]. Fire susceptibility in the landscape also increases [12–14], further
compounding carbon losses. This, coupled with the need to understand the variability and dynamics
of tropical ecosystems in general with respect to their role in the global carbon cycle [5,15], means
there is an urgent need to track change in PSF via estimation of AGB over space and time. Not only
will this afford understanding of carbon losses, this will also help guide tropical PSF restoration and
sustainable management activities [16,17].

The structurally complex nature of tropical PSF, supporting high (50–70 m) to low (15–25 m) dense
canopy forest vegetation, typically with buttresses and thick root mat floors [18], presents a challenging
landscape for monitoring purposes. This is further complicated by degraded (and/or recovering) PSF
generating even greater variation in forest structure, in response to disturbance events and changes in
peat characteristics. Traditionally, forest AGB estimates have been based on field plot inventories, where
plot measurements are used to infer AGB estimates through allometric equations [19]. This manual
approach provides the most accurate AGB estimates [20], however it is labour intensive, time
consuming and expensive [21]. Additionally, the extent and inaccessibility of PSF, coupled with
the difficult logistics of field work posed by often waterlogged, swampy conditions, has restricted
forest inventory data collection.

Development in remote sensing technology over the last two decades, specifically in Light
Detection and Ranging (LiDAR) [22,23], has revolutionised the retrieval and accuracy of forest
structural attributes, including AGB, across landscapes scales [24]. LiDAR data has been widely
adopted in forest structural applications, both at the stand and individual tree level [25], due to its
ability to characterise both vertical and horizontal structures. A common theme for many studies
is the development of LiDAR-derived metrics related to height distribution, density, and intensity
of returns [26–28]. Typically, in LiDAR AGB studies, models are developed from the relationships
between field plot estimated AGB, calculated from tree allometry, and LiDAR-derived metrics [29–31].
Establishing these relationships between metrics and forest attributes are complex, in particular for
dense, multi-layered forest canopies associated with the tropics. The majority of work conducted
in this area has employed discrete return (DR) derived metrics [32], with focus on the utility of DR
data for carbon accounting and environmental modelling [33,34]. Asner et al. [35] examined the
effectiveness of DR LiDAR derived mean canopy height to estimate AGB in four tropical regions
(Panama, Peru, Madagascar, and Hawaii). The results highlighted the value of DR LiDAR in generating
high-resolution carbon maps across the tropics. However, the application of DR LiDAR is restricted by
the number of returns which can penetrate through dense canopies down to the forest floor, and by
the limited point measurements from the canopy and the understory vertical structure [36,37].

Full Waveform (FW) LiDAR data has the potential to provide a more detailed and comprehensive
3D view of forest canopy structure in comparison to DR sensors [38,39]. Consequently, a growing body
of research has focused on developing FW metrics for forest assessment. Drake et al. [40,41] are early
examples of the development of FW metrics, using large-footprint FW data (laser vegetation imaging
sensor) to generate a list of metrics for AGB estimations. Height of medium energy (HOME) was
demonstrated to correlate strongly with mean stem diameter, basal area and AGB. For small-footprint
FW LiDAR, Wu et al. [38] explored the potential of a list of structural and statistics-based AGB predictor
metrics. The results produced a high correlation between FW-derived metrics with individual tree
height, foliar and biomass for a savanna environment. Pirotti et al. [42] also explored the potential for
estimating AGB from small-footprint FW data, finding the median height of echo count (HOMTC)
performed best at estimating AGB at plot level for a complex tropical forest.

Recently, several studies have evaluated the fusion of DR and FW metrics in forest AGB
estimation [43–46]. Cao et al. [47,48] assessed the potential of DR and FW metrics, individually and in
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combination, as predictors of total living biomass and its components (AGB, root, foliage, branch and
trunk) for sub-tropical forests. The study found metrics related to canopy height to be the strongest
predictors for AGB; additionally, the combination of DR and FW metrics, by multivariate linear
regression, improved AGB estimation.

The benefits of LiDAR data for monitoring tropical environments has been well established,
however with the structural complexity and unique interactions between forest and peat swamp,
general tropical forest models may not be transferable. Limited research has been published on
the application of LiDAR in tropical PSF [49,50]. Jubanski et al. [51] and Kronseder et al. [52]
examined the use of LiDAR point cloud data in AGB estimation for varied levels of degraded lowland
dipterocarp PSF in Central Kalimantan, Indonesia. Both studies concluded that AGB could be estimated
successfully, though with varying levels of accuracy.

According to our knowledge, no previous study has examined the use of both DR and FW
metrics or the fusion of DR and FW metrics in AGB estimation for tropical PSF. This paper will
examine the relationship between the AGB of a tropical PSF in North Selangor, Peninsular Malaysia,
and small-footprint airborne LiDAR (DR and FW) derived metrics. This forest is of particular
importance since it is one of the few large areas of PSF remaining in peninsular Malaysia [53].
Three LiDAR-based approaches are investigated for modelling AGB: (1) DR-derived metrics (only);
(2) FW-derived metrics (only); (3) and a combination of DR- and FW-derived metrics. The accuracy of
the models is evaluated by comparing LiDAR-based AGB estimates with field (in situ plots) measured
AGB, with a view to establishing the optimal model for estimating AGB of the North Selangor PSF.

2. Materials and Methods

2.1. Study Site

The North Selangor Peat Swamp Forest (NSPSF) is located on the flat coastal plains of northwest
Selangor, Peninsular Malaysia (Figure 1). With a combined total of 81,304 hectares, NSPSF is one of the
largest remaining PSF in the region; however, over 30 years of intensive timber harvesting has left the
once pristine NSPSF degraded and vulnerable to further environmental threat [18,54]. Repeated cycles
of logging activities have created a complex, multi-layered canopy structure, indicated by mixed stand
density and height (Figure 1). Additionally, the extraction of timber from the forest has led to the
formation of a 500 km network of canals [55], scarring the forest and accelerating the drainage and
erosion of valuable peat soil stores (and the carbon they hold) [53].
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Figure 1. (a) The location of the North Selangor Peat Swamp Forest in Peninsular Malaysia; (b) 
Magnified study area map at bottom left corner shows forest type (forest height (high, medium, low) 
and forest density (high, medium, low)) results from a forest management inventory undertaken in 
2000 [56]. 

In response to the damaging impact of past logging activities on tropical PSF ecosystem health 
and the services they provide, the Selangor State Government agreed on a 25-year moratorium on 
timber harvesting for the State of Selangor, with all logging activities ceased in 2007 [55]. Despite this 
halt in logging activities, the reserve remains exposed to disturbance from the surrounding land uses, 
in particular accelerated drainage from Tanjong Karang Irrigation Scheme and land conversion to oil 
palm agriculture [57]. 

2.2. Field Data 

To obtain field estimates of AGB, thirty circular field plots with a radius of 15 m were established 
within the reserve during 2017. This relatively small sample size, albeit statistically relevant, was 
determined by the challenging logistics of tropical PSF fieldwork, as previously mentioned. The 
forests plots were established to be representative of a secondary PSF ecosystem, where no obvious 
structural disturbances were observed since the LiDAR survey (2014)—for example major tree fall, 
logging activities or fire events—based on an existing forestry management plan [55], multispectral 
imagery and expert knowledge and experience from NSPSF Rangers. The location of the central tree, 
and thus the centre point of the plot, was recorded by a field GPS (Garmin GPSMAP 64), with an 
average horizontal error of <5 m when measurements were averaged over ten minutes. The positions 
of all further trees within the plot were noted relative to the centre (distance and angle) (Figure 2). 
For each plot, all live trees with a diameter at breast height (DBH) of >5 cm were measured and tree 
species recorded. Additionally, dependent on the top of tree visibility, selected trees of varying height 
classes were measured by a laser height meter. 

Figure 1. (a) The location of the North Selangor Peat Swamp Forest in Peninsular Malaysia;
(b) Magnified study area map at bottom left corner shows forest type (forest height (high, medium,
low) and forest density (high, medium, low)) results from a forest management inventory undertaken
in 2000 [56].

In response to the damaging impact of past logging activities on tropical PSF ecosystem health
and the services they provide, the Selangor State Government agreed on a 25-year moratorium on
timber harvesting for the State of Selangor, with all logging activities ceased in 2007 [55]. Despite this
halt in logging activities, the reserve remains exposed to disturbance from the surrounding land uses,
in particular accelerated drainage from Tanjong Karang Irrigation Scheme and land conversion to oil
palm agriculture [57].

2.2. Field Data

To obtain field estimates of AGB, thirty circular field plots with a radius of 15 m were established
within the reserve during 2017. This relatively small sample size, albeit statistically relevant,
was determined by the challenging logistics of tropical PSF fieldwork, as previously mentioned.
The forests plots were established to be representative of a secondary PSF ecosystem, where no obvious
structural disturbances were observed since the LiDAR survey (2014)—for example major tree fall,
logging activities or fire events—based on an existing forestry management plan [55], multispectral
imagery and expert knowledge and experience from NSPSF Rangers. The location of the central tree,
and thus the centre point of the plot, was recorded by a field GPS (Garmin GPSMAP 64), with an
average horizontal error of <5 m when measurements were averaged over ten minutes. The positions
of all further trees within the plot were noted relative to the centre (distance and angle) (Figure 2).
For each plot, all live trees with a diameter at breast height (DBH) of >5 cm were measured and tree
species recorded. Additionally, dependent on the top of tree visibility, selected trees of varying height
classes were measured by a laser height meter.
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collection (2017). This may introduce error into the AGB models, however as previously mentioned, 
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and assessment. The dataset has an average point density of 2.03 m2 and a point spacing of 0.70 m. 
The LiDAR data, DR and FW, was pre-processed by NERC’s Data Analysis Node and delivered in 
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Figure 2. Example field inventory plot design.

An allometric equation developed by Chave et al. [19] was used to calculate AGB from field
measured DBH, species (to estimate wood density), and additionally tree height when available
(missing height was inferred from pantropical model). The AGB allometric equation used was:

AGB = 0.0673 × ($D2H)0.976

where $ = wood density (g/cm3), D = DBH (cm) and H = height (m).
The ‘BIOMASS’ package in R software (version 2.10.0) [58] was used to run AGB estimation.

AGB values were calculated for individual trees within each 15 m radius field plot, and then summed
to obtain a total AGB value for each plot.

2.3. LiDAR Data Acquisition

Airborne LiDAR data was flown by the UK’s Natural Environment Research Council (NERC)
Airborne Research Facility (ARF) as part of its 2014 Malaysia Campaign. It is important to note the
three-year time delay between the airborne LiDAR data collection (2014) and field plot inventory
collection (2017). This may introduce error into the AGB models, however as previously mentioned,
all field plots were established to be free from logging and fire, with no obvious disturbance within the
three-year period. The data was captured in November 2014 from a Leica ALS50-II LiDAR system,
a small footprint LiDAR sensor with the capacity to record both DR and FW LiDAR simultaneously.
The Leica ALS50-II LiDAR system was on board a Dornier 228-201, flying at 132–136 knots at an
altitude of 2145–2181 m. The sensor emits the laser beam at 1064 nm, additionally providing an
intensity digital image from the return signal intensity data. The accuracy report that accompanied
the LiDAR data estimated the vertical accuracy to be 0.023 m RMSE, where LiDAR elevation was
assessed against ground control points. In total 29 flightlines were flown, surveying an area covering
690 km2 of the reserve and surrounding area. However, given the constraints of fieldwork and to
ensure representation, a subset of the LiDAR flightlines (161.73 km2), focused on the north-west of
the NSPSF reserve (Figure 3), was extracted for optimal LiDAR-derived AGB model development
and assessment. The dataset has an average point density of 2.03 m2 and a point spacing of 0.70 m.
The LiDAR data, DR and FW, was pre-processed by NERC’s Data Analysis Node and delivered in
LAS 1.3 format.
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2.4. DR-Derived Metrics

A number of descriptive structural plot-level metrics were calculated from a DR height normalised
point cloud. All data processing was carried out in LAStools software [59]—a complimentary full
academic LAStools licence was generously supplied through the LASmoons programme. Outliers,
or noisy data, were first eliminated from the DR LAS. files supplied, and the data was then filtered to
identify laser ground and non-ground (unclassified) hits. The normalised above ground heights were
calculated by subtracting the ground points, interpolated into a surface using the adaptive triangulated
irregular network (TIN) filtering algorithm, from the non-ground (unclassified) points. Above ground
height DR metrics were then calculated. DR plot metrics included: minimum height (min), maximum
height (max), average height (avg), standard deviation (std), skewness (skw), kurtosis (kur), average
square height (qav), height percentile (p01, p05, p10, p25, p50, p75, p90, P9, P99), height bincentiles
(b10, b20, b30, b40, b50, b60, b70, b80, b90).

2.5. FW-Derived Metrics

Informed from the success in previous studies-based in the sub-tropics [47,48], three plot-level FW
metrics were derived from the recorded waveform. All data processing was carried out in the Sorted
Pulse Software Library (SPDlib) [60], benefiting from the recent additions made to the metric library.
Gaussian decomposition [61] was applied to each waveform to derive point information (x, y, z).
Points were classified into ground or non-ground using a combination of progressive morphology
filtering [62] and maximum curvature classification (MCC) [63] algorithms to produce a Digital Terrain
Model (DTM), to which heights were normalised. The FW plot metrics included: height of median
energy (HOME), waveform distance (WD) and roughness of the outermost canopy (ROUGH) (Figure 4).
FW metrics were summarized as the mean and standard deviation for each plot.
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2.6. Statistical Modelling and Analyses

Simple linear regression analysis on field measured plot AGB values against LiDAR derived DR
and FW metrics was conducted. Multiple linear regression models were developed independently
from the DR metrics, FW metrics and DR and FW metrics in combination for estimating AGB. To ensure
model variables were not highly correlated, a ‘data mining’ approach, outlined by Langton et al. [64],
was first adopted to identify the key predictor variables for multiple regression analyses. This stage
was required to avoid model over-fitting given the relatively small sample size (n = 30) and potential
high collinearity of a number of LiDAR metrics with one another. The ‘MuMIn’ package for R software
(version 1.9.5) [65] was used to run a modified Akaike Information Criterion (AIC), termed AICc [66],
this comparing the quality of predictive multiple regression model inputs. An automated stepwise
AICc was performed to select input variables for the final models. The delta-AIC value was assessed
for each candidate model, a threshold value for delta-AIC was set to <2, models which met this
requirement were determined to be within range of plausible models that best fit the observed
values [66]. The top ranked AICc regression models were assessed based on a number of diagnostics
tests (ANOVA, students t-test and variance inflation factor (≤1)) to produce final predictive models
for DR metrics (only), FW metrics (only), and a combination of DR and FW metrics. The final
predictive modes—DR-model, FW-model, and Combination-model—were fitted and assessed based
on a combination of: R-square (R2), adjusted R-square (Adj-R2), Root Mean Square Error (RMSE),
and the relative Root Mean Square Error (rRMSE).

To judge the reliability of the models, leave-one-out-cross validation (LOOCV) was performed.
The LOOCV method for model evaluation was selected due to its proven effectiveness for models
with a small sample size [67]. The Root Mean Square Error from the cross-validation analysis
(RMSEcv) and bias (BIAScv) was calculated and presented as indicators of the three models’ predictive
power. Finally, to investigate the significance of the addition of FW metrics in PSF AGB estimation,
the Kruskal-Wallis H test (or one-way ANOVA on ranks) was used to determine if there were
statistically significant differences between the three final models’ AGB plot predictions.

3. Results

Plot-based AGB values were calculated from field measured DBH, species and height data
(when available). For the 30 plots, AGB ranged from 126.96 Mg/ha to 443.27 Mg/ha, with a mean
value of 319.52 Mg/ha, with a standard deviation of 76.34 Mg/ha (Table 1).
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Table 1. Plot measured forest parameters.

Plot Measurements
Values: Mean (Std Dev)

Min/Max

Tree number
89.33 (21.09)

39/128

DBH (cm)
46.39 (37.16)

17/375

AGB (Mg/ha) 319.52 (76.34)
126.96/443.27

The results from simple linear regression analysis between field-based AGB estimates and
31 LiDAR derived DR and FW metrics are presented in Tables 2 and 3. For DR metrics, the 50th
height percentile (‘p50’) showed the highest correlation with field-based AGB (R2 = 0.68, RMSE = 42.1),
followed by average height (‘avg’) (R2 = 0.64, RMSE = 45.2). Both minimum height (‘min’) and standard
deviation (‘std’) displayed no significant relationship or sensitivity to field-based AGB. For FW metrics,
the mean HOME (‘H_mean’) provided the highest correlation with field-based AGB (R2 = 0.72,
RMSE = 39.4) (Figure 5). The mean input variables calculated for all FW metrics displayed a moderate
correlation and significant relationship with field-based AGB, however, the standard deviation
input variables calculated for all FW metrics showed very low correlation, with standard deviation
HOME (‘H_sd’) and standard deviation ROUGH (‘R_sd’) presenting no significant relationship to
field-based AGB estimates. It is evident from the linear regression results that metrics representing
mid-canopy levels, for example ‘p50’ and ‘H_mean’, are important predictors for AGB estimation in
PSF. The variation in mid-canopy structure captured by these metrics can be seen in Figure 6. Where a
waveform has been extracted from the centre point (1 m buffer) for each of the 30 field plots
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Table 2. Results from simple linear regression using DR metrics. Values underlined represent metrics
of non-significance p > 0.05.

DR Metric R2 Adj-R2 RMSE (Mg/ha) rRMSE (%)

Min 0.04 0.01 73.4 23
Max 0.21 0.18 66.6 20.8
Avg 0.64 0.62 45.2 14.2
Qav 0.59 0.58 48 15
Std 0.1 0.07 71.2 22.3
Ske 0.61 0.6 46.7 14.6
Kur 0.23 0.21 65.7 20.6
P01 0.29 0.26 63.4 19.8
P05 0.29 0.26 63.4 19.8
P10 0.30 0.28 62.7 19.6
P25 0.58 0.57 48.5 15.2
P50 0.68 0.67 42.1 13.2
P75 0.58 0.56 48.9 15.3
P90 0.39 0.36 58.8 18.4
P95 0.30 0.28 62.7 19.6
P99 0.25 0.22 65 20.3
B10 0.25 0.22 65 20.3
B20 0.35 0.33 60.6 19
B30 0.49 0.48 53.4 16.7
B40 0.59 0.57 48.1 15.1
B50 0.62 0.61 46.3 14.5
B60 0.52 0.51 51.8 16.2
B70 0.39 0.37 58.6 18.4
B80 0.25 0.23 64.9 20.3
B90 0.16 0.13 68.9 21.5

Table 3. Results from simple linear regression using FW metrics. Values underlined represent metrics
of non-significance p > 0.05.

FW Metric R2 Adj-R2 RMSE (Mg/ha) rRMSE (%)

H_mean 0.72 0.71 39.4 12.3
H_sd 0.00 −0.03 75 23.5

W_mean 0.57 0.55 49.3 15.4
W_sd 0.17 0.14 68.5 21.4

R_mean 0.61 0.59 47.1 14.7
R_sd 0.00 −0.04 75.1 23.5

The results of the best models for predicting PSF AGB (DR, FW and Combination) (Table 4 are
summarised in Table 5 and visualized in Figure 7. The Combination-model, H_mean/B50, displayed
the best agreement with field-based AGB values (R2 = 0.77; RMSE = 36.4; rRMSE = 10.8%). Figure 8
displays an example of AGB (Mg/ha) estimates calculated from the Combination-model for a subset
of the LiDAR flightlines in the northwest of the NSPSF reserve at a 5 m (0.0025 ha) spatial resolution.

Table 4. Model equations.

Model Equations

DR =81.786 + 8.940 × P75 − 78.063 × Ske
FW =101.457 + 19.579 × H_mean − 12.555 × W_sd

Combination =171.3731 + 14.7802 × H_mean − 1.5752 × B50
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Table 5. Results from the best preforming models for predicting AGB.

Model Variables R2 Adj-R2 RMSE (Mg/ha) RMSEcv (Mg/ha) BIAScv (Mg/ha) rRMSE (%)

DR P75 Ske 0.73 0.71 39.2 42.9 −0.83 12.3
FW H_mean W_sd 0.76 0.74 36.9 40.9 −0.17 11.6

Combination H_mean B50 0.77 0.75 36.4 39.8 0.38 10.8
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Figure 8. (a) LiDAR flightline subset; (b) estimation of AGB (Mg/ha) within the NSPSF boundary
calculated from the Combination-model, at a 5 m (0.0025 ha) spatial resolution, overlaid on
Sentinel-2 multispectral image.

However, all three predictive models displayed a strong positive correlation and a significant
relationship to field-based AGB estimates (DR-model—R2 = 0.73; RMSE = 39.2; rRMSE = 12.3%) and
(FW-model—R2 =0.76; RMSE = 36.9; rRMSE = 11.6%). Figure 9 displays the frequency distribution for
model generated AGB (Mg/ha) values for the 30 plots, presented with model AGB (Mg/ha) summary
statistics. The Kruskal-Wallis test showed that there was no statistically significant difference between
the three models for PSF AGB prediction (H(2) = 0.0038095; p = 0.99). In summary, the synergistic
use of DR- and FW-derived metrics displayed a stronger correlation with field-based AGB estimates
in comparison to individual and multiple DR- and FW-models, however, there was no significant
difference in tropical PSF AGB prediction between the three best multiple regression models (DR, FW
and Combination).
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4. Discussion

Quantification of tropical PSF AGB cover is required to better understand and safeguard tropical
peatlands’ ecosystem function and resilience to disturbance, both natural and anthropogenic [68].
AGB products provide accurate baseline estimates to support international climate change policies and
programs such as the UN REDD+ (United Nations Reducing Emissions from Deforestation and Forest
Degradation), as well as the development of sustainable management strategies for local stakeholders.
Additionally, knowledge gained from the precise assessment of PSF AGB distribution will assist in
Malaysia’s work towards meeting their Sustainable Development Goals (SDGs), specifically relating to
SDG-13 ‘Climate action’. Using a remote sensing approach to acquiring AGB estimates is attractive in
that large spatial extents are covered and monitoring can be frequent, particularly once a calibrated
model has been established between forest inventory and remotely sensed data. In this case, the LiDAR
campaign covered 53% of the NSPSF reserve. This is the first time such data had been captured for
NSPSF and used in this way. The study demonstrates the utility of both DR and FW LiDAR data
for tropical PSF AGB estimation and thus illustrates the real potential for a monitoring approach
underpinned by laser scanning technologies.

The AGB range presented in the in-situ plots was 126.96–443.27 Mg/ha. AGB plot values are
consistent with PSF estimates from the literature [52] and therefore considered reliable and reflective
of a secondary tropical PSF, with a diverse structure and density (Figure 1). The investigation is
limited by the relatively small sample size (n = 30) used for model development and validation [69].
However, the training plots were identified as being representative of the PSF conditions found in
NSPSF; all field plots had good correspondence with LiDAR data providing detailed information on
both forest canopy and ground (mean ground-classified hits = 8.3% per plot) relative to a densely
closed and partially open canopy structure (Figure 6). The study recognises that a larger sample size is
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advisable in future work for model validation. Nevertheless, the plots sampled in this study cover a
wide range of forest types found across NSPSF, with plots positioned in high, medium, and low forest
height stands with varying densities (Figure 1).

From the numerous DR and FW LiDAR metrics tested against this range in AGB measured in
the in situ plots, three AGB prediction models were determined to have a high accuracy with an
rRMSE <15%: one model using discrete return data only (DR-model = 12.3%), one model using full
waveform data only (FW-model = 11.6%) and one model using a combination of DR and FW data
(Combination-model = 10.8%). Overall, the Combination-model was best for explaining AGB, with an
R2 of 0.77 (RMSE = 36.4, rRMSE = 10.8%). There was no statistically significant difference between
these three best models for PSF AGB prediction.

Simple linear regression revealed LiDAR-derived metrics relating to mid-story canopy levels—for
example average height, 50th height percentile, 50th height bincentile and HOME—to be the strongest
predictors of AGB in tropical PSF. In this study, models which included FW metrics were dominated by
the strong predictive capabilities of the mean HOME metric. Waveform derived HOME is the distance
from the waveform centroid to the ‘ground’ (i.e., the ground position of the pseudo-waveform), HOME
has previously been found to be sensitive to canopy openness (including tree density) and the vertical
arrangement of a forest stand [40,41]. This suggests that for complex tropical PSF the often unobserved
structural and compositional diversity in the lower portions of the forest canopy is crucial for accurate
AGB model prediction. This observation is crucial for understanding how LiDAR technologies should
be employed for optimal AGB estimation in these environments.

Focusing on the FW LiDAR data it can be seen that the mean values of all FW metrics
displayed moderate to high correlations and significant relationships with in situ plot AGB values.
These findings are consistent with past research in the use of FW LiDAR in forestry applications [70,71].
Reitberger et al. [72] found FW metrics to improve the detection of under and mid-story trees compared
to first/last DR LiDAR by 10–15%, though the study was unable to detect 65% of mid-story trees,
and 74% of understory trees in leaf on conditions. Indeed, FW LiDAR is still limited by the lack of
significant transmission through dense forest leaves and stems, however its potential to improve
our knowledge and understanding of multi-layered forest structures has been widely recognised
by the remote sensing community [73]. Although in this study we found no statically significant
enhancement (at 95% level of confidence) with the addition of FW metrics in the predictive models
for AGB estimation, the full waveforms per plot do show discernible differences. Our focus here
was on the use of FW LiDAR metrics common in related literature [41,42,47]. There may exist
alternative FW metrics not tested here which could be implemented in future research. This could
improve the already strong predictive AGB models, and also describe other structural variables in the
forest. These include crown bulk density, canopy fuel weight and for larger dominant trees, crown
width [74,75]. Thus, the continued development and application of FW LiDAR in future tropical
PSF AGB research is recommended, with a focus on capturing and describing FW. Recent initiatives,
such as the Global Ecosystems Dynamics Investigation (GEDI) LiDAR due to be deployed on the
International Space Station, respond to the recognised need for vertical structure measurements of the
Earth’s surface, as put forward by the host country’s (USA) National Academy of Sciences and NASA’s
Science Mission Directorate [76]. The GEDI is just one example of the progress and development in
LiDAR systems and platforms that should encourage the continued application of LiDAR data in
future PSF applications. Other examples include advancements in small-scale sensor technology which
has permitted the use of Unmanned Aerial Vehicles (UAVs) as a LiDAR sensor platform [77,78] thus
profiting from potentially higher resolution data capture at a considerably lower surveying cost at
local scales. Integration with hyperspectral systems could also be advantageous [79].

Of those alternative metrics which should be implemented in future tropical PSF AGB research,
those relating to LiDAR intensity [80–82] are worth considering. Small-footprint LiDAR intensity
data (amount of energy reflected back to the sensor) has been increasingly adopted in forestry
applications [80,83]. Top of canopy intensity metrics, in combination with LiDAR derived height
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values, have been proven to contribute significantly to improved forest AGB estimations [84] and have
been linked with tree species number at mid-story canopy level [85]. For this particular investigation,
LiDAR intensity metrics were not included in AGB forest estimation because of uneven atmospheric
conditions during the flight, therefore the resulting intensity data could not be reliably corrected for or
compared between flightlines. This represents a challenge to be tackled in the future.

The results in this study demonstrate the advantage of using both DR and FW LiDAR data in
tropical PSF AGB inventory programmes, which in turn provide a more detailed and accurate account
of PSF structural cover and above ground carbon allocation across landscape scales. Apart from
discerning the role for LiDAR in estimating AGB of these PSFs, this study has also provided in situ
plot AGB data for the NSPSF, providing new PSF AGB plot data for an ecosystem underrepresented
by global forest inventory databases [86,87]. This is important for subsequent research on how these
forests function. As stated earlier the airborne LiDAR data does not fully cover the whole of the NSPSF
reserve, in such cases satellite data (i.e., Sentinel-2 or very high-resolution systems) may be used to
scale up AGB estimates across larger landscape scales [88,89]. Indeed, given how well the LiDAR
estimates AGB in this environment, forward monitoring could be based on the passive satellite systems
with LiDAR technologies used in a sampling capacity to provide calibration and validation data [24].

5. Conclusions

This study examined the relationship between tropical PSF AGB and small-footprint airborne
LiDAR DR- and FW-derived metrics with a view to establishing the optimal use of this technology
in this environment. Plot-based multiple regression analysis was performed to establish the best
predictive models of PSF AGB using DR metrics (only), FW metrics (only), and a combination of DR
and FW metrics. All three final models presented a high correlation with AGB estimates, with an
R2 ≥ 0.73 and no statistical difference between the rRMSE of these models.

Overall, the results demonstrate that a Combination-model, coupling the benefits derived from
both DR and FW metrics, had the best performance in modelling AGB for tropical PSF (R2 = 0.77,
RMSE = 36.4, rRMSE = 10.8%). The study found that perhaps of greater importance is metric selection,
as opposed to LiDAR data type (DR, FW, Combination) for assessing AGB prediction. In particular,
the top ranked metrics in the best performing models related to mid-canopy order height metrics, this
indicating the importance of suppressed tree crowns and forest structural diversity in the mid-level
portions of PSF for reliable AGB assessment.

Overall, the utility of LiDAR for tropical PSF AGB mapping and monitoring is enormous.
The ever-increasing role of LiDAR in supporting forestry applications is encouraged by the recent
development and expansion in sensor technology and platforms, with LiDAR data more accessible
and at a lower cost than ever before. Published studies on tropical PSF AGB are few, in particular for
Peninsular Malaysia, thus as a result this study contributes significantly to tropical PSF ecology.
The study underpins AGB estimation across the NSPSF reserve going forward and has direct
applications for sustainable tropical PSF management, supporting decision and policy makers in
the preservation and protection of South East Asia’s vulnerable tropical peatlands.

Author Contributions: C.B. is a PhD student and under the supervision of D.S.B. and S.S. conceived and executed
the research. C.B. was assisted in the field by S.L.E. and with data processing by D.C. C.B. undertook analyses and
C.B. and D.S.B. wrote the manuscripts with input from S.S. and P.A.

Acknowledgments: We would like to thank the Airborne Research Facility of the UK’s Natural Environment
Research Council for providing the airborne LiDAR datasets (to PA and DB). This work was supported by the
Natural Environment Research Council [NE/L002604/1], under the Envision DTP (to PA, SS, and DB). Additional
support from the University of Nottingham. We are very grateful to Martin Isenburg for generously granting
the project with a complimentary full academic LAStools licence, under the LASmoons programme. We would
like to thank Lahirus S. Wijedasa for his assistance and guidance with fieldwork at the pilot stage of the project.
Special thanks go to the Selangor State Forestry Department for granting reserve access and providing field ranger
support for data collection, and sharing their expert knowledge and experiences working in the reserve.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2018, 10, 671 17 of 21

References

1. Page, S.E.; Rieley, J.O.; Shotyk, Ø.W.; Weiss, D. Interdependence of peat and vegetation in a tropical peat
swamp forest. In Changes and Disturbance in Tropical Rainforest in South-East Asia; Royal Society: London, UK,
1999; pp. 161–173.

2. Wijedasa, L.S.; Jauhiainen, J.; Könönen, M.; Lampela, M.; Vasander, H.; Leblanc, M.C.; Evers, S.; Smith, T.E.;
Yule, C.M.; Varkkey, H.; et al. Denial of long-term issues with agriculture on tropical peatlands will have
devastating consequences. Glob. Chang. Biol. 2017, 23, 977–982. [CrossRef] [PubMed]

3. Miettinen, J.; Shi, C.; Liew, S.C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra
and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 2016, 6, 67–78. [CrossRef]

4. Miettinen, J.; Shi, C.; Liew, S.C. Two decades of destruction in Southeast Asia’s peat swamp forests.
Front. Ecol. Environ. 2012, 10, 124–128. [CrossRef]

5. Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool.
Glob. Chang. Biol. 2011, 17, 798–818. [CrossRef]

6. Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change
2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment; Solomon, S.,
Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Report of the
Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007.

7. Ballhorn, U.; Siegert, F.; Mason, M.; Limin, S. Derivation of burn scar depths and estimation of carbon
emissions with LIDAR in Indonesian peatlands. Proc. Natl. Acad. Sci. USA 2009, 106, 21213–21218.
[CrossRef] [PubMed]

8. Hooijer, A.; Page, S.; Canadell, J.G.; Silvius, M.; Kwadijk, J.; Wösten, H.; Jauhiainen, J. Current and future
CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 2010, 7, 1505–1514. [CrossRef]

9. Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.D.; Jaya, A.; Limin, S. The amount of carbon released from peat
and forest fires in Indonesia during 1997. Nature 2002, 420, 61–65. [CrossRef] [PubMed]

10. Page, S.E.; Banks, C.J.; Rieley, J.O. Tropical peatlands: Distribution, extent and carbon storage-uncertainties
and knowledge gaps. Peatl. Int. 2007, 2, 26–27.

11. Jauhiainen, J.; Takahashi, H.; Heikkinen, J.E.; Martikainen, P.J.; Vasander, H. Carbon fluxes from a tropical
peat swamp forest floor. Glob. Chang. Biol. 2005, 11, 1788–1797. [CrossRef]

12. Langner, A.; Miettinen, J.; Siegert, F. Land cover change 2002–2005 in Borneo and the role of fire derived
from MODIS imagery. Glob. Chang. Biol. 2007, 13, 2329–2340. [CrossRef]

13. Gaveau, D.L.; Salim, M.A.; Hergoualc’h, K.; Locatelli, B.; Sloan, S.; Wooster, M.; Marlier, M.E.; Molidena, E.;
Yaen, H.; DeFries, R.; et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought
years: Evidence from the 2013 Sumatran fires. Sci. Rep. 2014, 4, 6112. [CrossRef] [PubMed]

14. Van der Werf, G.R.; Dempewolf, J.; Trigg, S.N.; Randerson, J.T.; Kasibhatla, P.S.; Giglio, L.; Murdiyarso, D.;
Peters, W.; Morton, D.C.; Collatz, G.J.; et al. Climate regulation of fire emissions and deforestation in
equatorial Asia. Proc. Natl. Acad. Sci. USA 2008, 105, 20350–20355. [CrossRef] [PubMed]

15. Murdiyarso, D.; Hergoualc’h, K.; Verchot, L.V. Opportunities for reducing greenhouse gas emissions in
tropical peatlands. Proc. Natl. Acad. Sci. USA 2010, 107, 19655–19660. [CrossRef] [PubMed]

16. Asner, G.P.; Brodrick, P.G.; Philipson, C.; Vaughn, N.R.; Martin, R.E.; Knapp, D.E.; Heckler, J.; Evans, L.J.;
Jucker, T.; Goossens, B.; et al. Mapped aboveground carbon stocks to advance forest conservation and
recovery in Malaysian Borneo. Biol. Conserv. 2018, 217, 289–310. [CrossRef]

17. Sullivan, M.J.; Talbot, J.; Lewis, S.L.; Phillips, O.L.; Qie, L.; Begne, S.K.; Chave, J.; Cuni-Sanchez, A.; Hubau, W.;
Lopez-Gonzalez, G.; et al. Diversity and carbon storage across the tropical forest biome. Sci. Rep. 2017, 7,
39102. [CrossRef] [PubMed]

18. Yule, C.M.; Gomez, L.N. Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia.
Wetl. Ecol. Manag. 2009, 17, 231–241. [CrossRef]

19. Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.;
Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of
tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [CrossRef] [PubMed]

20. Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E. Quantifying forest canopy traits: Imaging spectroscopy
versus field survey. Remote Sens. Environ. 2015, 158, 15–27. [CrossRef]

21. Aplin, P. Remote sensing: Ecology. Prog. Phys. Geogr. 2005, 29, 104–113. [CrossRef]

http://dx.doi.org/10.1111/gcb.13516
http://www.ncbi.nlm.nih.gov/pubmed/27670948
http://dx.doi.org/10.1016/j.gecco.2016.02.004
http://dx.doi.org/10.1890/100236
http://dx.doi.org/10.1111/j.1365-2486.2010.02279.x
http://dx.doi.org/10.1073/pnas.0906457106
http://www.ncbi.nlm.nih.gov/pubmed/19940252
http://dx.doi.org/10.5194/bg-7-1505-2010
http://dx.doi.org/10.1038/nature01131
http://www.ncbi.nlm.nih.gov/pubmed/12422213
http://dx.doi.org/10.1111/j.1365-2486.2005.001031.x
http://dx.doi.org/10.1111/j.1365-2486.2007.01442.x
http://dx.doi.org/10.1038/srep06112
http://www.ncbi.nlm.nih.gov/pubmed/25135165
http://dx.doi.org/10.1073/pnas.0803375105
http://www.ncbi.nlm.nih.gov/pubmed/19075224
http://dx.doi.org/10.1073/pnas.0911966107
http://www.ncbi.nlm.nih.gov/pubmed/21081702
http://dx.doi.org/10.1016/j.biocon.2017.10.020
http://dx.doi.org/10.1038/srep39102
http://www.ncbi.nlm.nih.gov/pubmed/28094794
http://dx.doi.org/10.1007/s11273-008-9103-9
http://dx.doi.org/10.1111/gcb.12629
http://www.ncbi.nlm.nih.gov/pubmed/24817483
http://dx.doi.org/10.1016/j.rse.2014.11.011
http://dx.doi.org/10.1191/030913305pp437pr


Remote Sens. 2018, 10, 671 18 of 21

22. Dubayah, R.O.; Drake, J.B. Lidar remote sensing for forestry. J. For. 2000, 98, 44–46.
23. Lim, K.; Treitz, P.; Wulder, M.; St-Onge, B.; Flood, M. LiDAR remote sensing of forest structure.

Prog. Phys. Geogr. 2003, 27, 88–106. [CrossRef]
24. Wulder, M.A.; White, J.C.; Bater, C.W.; Coops, N.C.; Hopkinson, C.; Chen, G. Lidar plots—A new large-area

data collection option: Context, concepts, and case study. Can. J. Remote Sens. 2012, 38, 600–618. [CrossRef]
25. Coomes, D.A.; Dalponte, M.; Jucker, T.; Asner, G.P.; Banin, L.F.; Burslem, D.F.; Lewis, S.L.; Nilus, R.;

Phillips, O.L.; Phua, M.H.; et al. Area-based vs. tree-centric approaches to mapping forest carbon in
Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 2017, 194, 77–88. [CrossRef]

26. Ni-Meister, W.; Lee, S.; Strahler, A.H.; Woodcock, C.E.; Schaaf, C.; Yao, T.; Ranson, K.J.; Sun, G.; Blair, J.B.
Assessing general relationships between aboveground biomass and vegetation structure parameters for
improved carbon estimate from lidar remote sensing. J. Geophys. Res. Biogeosci. 2010, 115. [CrossRef]

27. Thapa, R.B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; Shimada, M. Calibration of aboveground forest carbon
stock models for major tropical forests in central Sumatra using airborne LiDAR and field measurement
data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 661–673. [CrossRef]

28. Dubayah, R.O.; Sheldon, S.L.; Clark, D.B.; Hofton, M.A.; Blair, J.B.; Hurtt, G.C.; Chazdon, R.L. Estimation of
tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J. Geophys.
Res. Biogeosci. 2010, 115. [CrossRef]

29. He, Q.; Chen, E.; An, R.; Li, Y. Above-ground biomass and biomass components estimation using LiDAR
data in a coniferous forest. Forests 2013, 4, 984–1002. [CrossRef]

30. Ni-Meister, W.; Lee, S. Allometric Relationship between Full Waveform LiDAR measurements and
Above-ground Biomass. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA,
21–26 February 2016.

31. Sullivan, F.B.; Ducey, M.J.; Orwig, D.A.; Cook, B.; Palace, M.W. Comparison of lidar-and allometry-derived
canopy height models in an eastern deciduous forest. For. Ecol. Manag. 2017, 406, 83–94. [CrossRef]

32. Palace, M.W.; Sullivan, F.B.; Ducey, M.J.; Treuhaft, R.N.; Herrick, C.; Shimbo, J.Z.; Mota-E-Silva, J.
Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete
return lidar data. Remote Sens. Environ. 2015, 161, 1–11. [CrossRef]

33. Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.; Salas, W.; Zutta, B.R.; Buermann, W.;
Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three
continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [CrossRef] [PubMed]

34. Asner, G.P.; Powell, G.V.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.;
Paez-Acosta, G.; Victoria, E.; et al. High-resolution forest carbon stocks and emissions in the Amazon.
Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742. [CrossRef] [PubMed]

35. Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.;
Van Breugel, M. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 2012,
168, 1147–1160. [CrossRef] [PubMed]

36. Wang, C.; Menenti, M.; Stoll, M.P.; Feola, A.; Belluco, E.; Marani, M. Separation of ground and low vegetation
signatures in LiDAR measurements of salt-marsh environments. IEEE Trans. Geosci. Remote Sens. 2009, 47,
2014–2023. [CrossRef]

37. Hopkinson, C.; Chasmer, L.E.; Sass, G.; Creed, I.F.; Sitar, M.; Kalbfleisch, W.; Treitz, P. Vegetation class
dependent errors in lidar ground elevation and canopy height estimates in a boreal wetland environment.
Can. J. Remote Sens. 2005, 31, 191–206. [CrossRef]

38. Wu, J.; Van Aardt, J.A.; Asner, G.P.; Kennedy-Bowdoin, T.; Knapp, D.; Erasmus, B.F.; Mathieu, R.;
Wessels, K.; Smit, I.P. Lidar Waveform-Based Woody and Foliar Biomass Estimation in Savanna
Environments; Rochester Institute of Technology: Rochester, NY, USA, 2009. Available online:
https://www.researchgate.net/profile/Jan_Van_Aardt/publication/216859169_LiDAR_Waveform-based_
Woody_and_Foliar_Biomass_Estimation_in_Savanna_Environments/links/00b7d515c456a3afb9000000.pdfb
(accessed on 4 December 2017).

39. Hancock, S.; Armston, J.; Li, Z.; Gaulton, R.; Lewis, P.; Disney, M.; Danson, F.M.; Strahler, A.; Schaaf, C.;
Anderson, K.; et al. Waveform lidar over vegetation: An evaluation of inversion methods for estimating
return energy. Remote Sens. Environ. 2015, 164, 208–224. [CrossRef]

http://dx.doi.org/10.1191/0309133303pp360ra
http://dx.doi.org/10.5589/m12-049
http://dx.doi.org/10.1016/j.rse.2017.03.017
http://dx.doi.org/10.1029/2009JG000936
http://dx.doi.org/10.1109/JSTARS.2014.2328656
http://dx.doi.org/10.1029/2009JG000933
http://dx.doi.org/10.3390/f4040984
http://dx.doi.org/10.1016/j.foreco.2017.10.005
http://dx.doi.org/10.1016/j.rse.2015.01.020
http://dx.doi.org/10.1073/pnas.1019576108
http://www.ncbi.nlm.nih.gov/pubmed/21628575
http://dx.doi.org/10.1073/pnas.1004875107
http://www.ncbi.nlm.nih.gov/pubmed/20823233
http://dx.doi.org/10.1007/s00442-011-2165-z
http://www.ncbi.nlm.nih.gov/pubmed/22033763
http://dx.doi.org/10.1109/TGRS.2008.2010490
http://dx.doi.org/10.5589/m05-007
https://www.researchgate.net/profile/Jan_Van_Aardt/publication/216859169_LiDAR_Waveform-based_Woody_and_Foliar_Biomass_Estimation_in_Savanna_Environments/links/00b7d515c456a3afb9000000.pdfb
https://www.researchgate.net/profile/Jan_Van_Aardt/publication/216859169_LiDAR_Waveform-based_Woody_and_Foliar_Biomass_Estimation_in_Savanna_Environments/links/00b7d515c456a3afb9000000.pdfb
http://dx.doi.org/10.1016/j.rse.2015.04.013


Remote Sens. 2018, 10, 671 19 of 21

40. Drake, J.B.; Knox, R.G.; Dubayah, R.O.; Clark, D.B.; Condit, R.; Blair, J.B.; Hofton, M. Above-ground biomass
estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality
of relationships. Glob. Ecol. Biogeogr. 2003, 12, 147–159. [CrossRef]

41. Drake, J.B.; Dubayah, R.O.; Clark, D.B.; Knox, R.G.; Blair, J.B.; Hofton, M.A.; Chazdon, R.L.; Weishampel, J.F.;
Prince, S. Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens. Environ.
2002, 79, 305–319. [CrossRef]

42. Pirotti, F.; Laurin, G.V.; Vettore, A.; Masiero, A.; Valentini, R. Small footprint full-waveform metrics
contribution to the prediction of biomass in tropical forests. Remote Sens. 2014, 6, 9576–9599. [CrossRef]

43. Nie, S.; Wang, C.; Zeng, H.; Xi, X.; Li, G. Above-ground biomass estimation using airborne discrete-return
and full-waveform LiDAR data in a coniferous forest. Ecol. Indic. 2017, 78, 221–228. [CrossRef]

44. Sumnall, M.J.; Hill, R.A.; Hinsley, S.A. Comparison of small-footprint discrete return and full waveform
airborne LiDAR data for estimating multiple forest variables. Remote Sens. Environ. 2016, 173, 214–223.
[CrossRef]

45. Lindberg, E.; Olofsson, K.; Holmgren, J.; Olsson, H. Estimation of 3D vegetation structure from waveform
and discrete return airborne laser scanning data. Remote Sens. Environ. 2012, 118, 151–161. [CrossRef]

46. Neuenschwander, A.L.; Magruder, L.A.; Tyler, M. Landcover classification of small-footprint, full-waveform
lidar data. J. Appl. Remote Sens. 2009, 3, 033544. [CrossRef]

47. Cao, L.; Coops, N.C.; Hermosilla, T.; Innes, J.; Dai, J.; She, G. Using small-footprint discrete and full-waveform
airborne LiDAR metrics to estimate total biomass and biomass components in subtropical forests. Remote Sens.
2014, 6, 7110–7135. [CrossRef]

48. Cao, L.; Coops, N.C.; Innes, J.; Dai, J.; She, G. Mapping above-and below-ground biomass components in
subtropical forests using small-footprint LiDAR. Forests 2014, 5, 1356–1373. [CrossRef]

49. Wan-Mohd-Jaafar, W.S.; Woodhouse, I.H.; Silva, C.A.; Omar, H.; Hudak, A.T. Modelling individual tree
aboveground biomass using discrete return lidar in lowland dipterocarp forest of Malaysia. J. Trop. For. Sci.
2017, 29, 465–484.

50. Manuri, S.; Andersen, H.E.; McGaughey, R.J.; Brack, C. Assessing the influence of return density on
estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia.
International. J. Appl. Earth Obs. Geoinf. 2017, 56, 24–35. [CrossRef]

51. Jubanski, J.; Ballhorn, U.; Kronseder, K.; Franke, J.; Siegert, F. Detection of large above-ground biomass
variability in lowland forest ecosystems by airborne LiDAR. Biogeosciences 2013, 10, 3917–3930. [CrossRef]

52. Kronseder, K.; Ballhorn, U.; Böhm, V.; Siegert, F. Above ground biomass estimation across forest types at
different degradation levels in Central Kalimantan using LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18,
37–48. [CrossRef]

53. Ahmad, N. Guardians of the North Selangor Peat Swamp Forest. 2014. Available online:
https://peatlandsinternational.wordpress.com/2014/06/20/peatlands-international-2-2014/ (accessed on
20 June 2014).

54. Prentice, C.; Aikanathan, S. A Preliminary Faunal Survey of the North Selangor Peat Swamp Forest; World Wildlife
Fund Malaysia: Petaling Jaya, Malaysia, 1989.

55. Parish, F.; Dahalan, M.; Rahim, H. Integrated Management Plan for North Selangor Peat Swamp Forest 2014–2023
for Selangor State Forestry Department; Draft (30 June 2014) Revision 2.4; Global Environment Centre:
Petaling Jaya, Malaysia, 2014.

56. Regional Centre for Forest Management (RCFM) and Ecosystem Management Services (EMS). Report on The
Management Inventory of the North Selangor Peat Swamp Forest; Malaysian-DANCED Project on Sustainable
Managment of Peat Swamp Forest; Project Document Number 25; Malaysia Office: Petaling Jaya, Malaysia, 2000.

57. Tonks, A.J.; Aplin, P.; Beriro, D.J.; Cooper, H.; Evers, S.; Vane, C.H.; Sjögersten, S. Impacts of conversion of
tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon
stocks. Geoderma 2017, 289, 36–45. [CrossRef]

58. Rejou-Mechain, M.; Tanguy, A.; Piponiot, C.; Chave, J.; Herault, B. BIOMASS: Estimating Aboveground
Biomass and Its Uncertainty in Tropical Forests. 2017. R Package Version 1.1. Available online:
https://CRAN.R-project.org/package=BIOMASS (accessed on 2 October 2017).

59. LAStools, “Efficient LiDAR Processing Software” (Version 141017, Academic). Available online:
http://rapidlasso.com/LAStools (accessed on 2 October 2017).

http://dx.doi.org/10.1046/j.1466-822X.2003.00010.x
http://dx.doi.org/10.1016/S0034-4257(01)00281-4
http://dx.doi.org/10.3390/rs6109576
http://dx.doi.org/10.1016/j.ecolind.2017.02.045
http://dx.doi.org/10.1016/j.rse.2015.07.027
http://dx.doi.org/10.1016/j.rse.2011.11.015
http://dx.doi.org/10.1117/1.3229944
http://dx.doi.org/10.3390/rs6087110
http://dx.doi.org/10.3390/f5061356
http://dx.doi.org/10.1016/j.jag.2016.11.002
http://dx.doi.org/10.5194/bg-10-3917-2013
http://dx.doi.org/10.1016/j.jag.2012.01.010
https://peatlandsinternational.wordpress.com/2014/06/20/peatlands-international-2-2014/
http://dx.doi.org/10.1016/j.geoderma.2016.11.018
https://CRAN.R-project.org/package=BIOMASS
http://rapidlasso.com/LAStools


Remote Sens. 2018, 10, 671 20 of 21

60. Bunting, P.; Armston, J.; Clewley, D.; Lucas, R.M. Sorted pulse data (SPD) library—Part II: A processing
framework for LiDAR data from pulsed laser systems in terrestrial environments. Comput. Geosci. 2013, 56,
207–215. [CrossRef]

61. Wagner, W.; Ullrich, A.; Melzer, T.; Briese, C.; Kraus, K. From Single-Pulse to Full-Waveform Airborne
Laser Scanners: Potential and Practical Challenges. 2 July 2004. Available online: http://www.isprs.org/
proceedings/XXXV/congress/comm3/papers/267.pdf (accessed on 10 October 2017).

62. Zhang, K.; Chen, S.C.; Whitman, D.; Shyu, M.L.; Yan, J.; Zhang, C. A progressive morphological filter for
removing nonground measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41,
872–882. [CrossRef]

63. Evans, J.S.; Hudak, A.T. A multiscale curvature algorithm for classifying discrete return LiDAR in forested
environments. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1029–1038. [CrossRef]

64. Langton, S.D.; Briggs, P.A.; Haysom, K.A. Daubenton’s bat distribution along rivers–developing and testing
a predictive model. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20. [CrossRef]

65. Barton, K. MuMIn: Multi-Model Inference. 2017. R Package Version 1.40.0. Available online:
https://CRAN.R-project.org/package=MuMIn (accessed on 20 November 2017).

66. Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic
Approach; Springer: Berlin, Germany, 2003.

67. Peduzzi, A.; Wynne, R.H.; Fox, T.R.; Nelson, R.F.; Thomas, V.A. Estimating leaf area index in intensively
managed pine plantations using airborne laser scanner data. For. Ecol. Manag. 2012, 270, 54–65. [CrossRef]

68. Lawson, I.T.; Kelly, T.J.; Aplin, P.; Boom, A.; Dargie, G.; Draper, F.C.; Hassan, P.N.; Hoyos-Santillan, J.;
Kaduk, J.; Large, D.; et al. Improving estimates of tropical peatland area, carbon storage, and greenhouse gas
fluxes. Wetl. Ecol. Manag. 2015, 23, 327–346. [CrossRef]

69. Zhao, K.; Popescu, S.; Nelson, R. Lidar remote sensing of forest biomass: A scale-invariant estimation
approach using airborne lasers. Remote Sens. Environ. 2009, 113, 182–196. [CrossRef]

70. Hermosilla, T.; Ruiz, L.A.; Kazakova, A.N.; Coops, N.C.; Moskal, L.M. Estimation of forest structure and
canopy fuel parameters from small-footprint full-waveform LiDAR data. Int. J. Wildl. Fire 2014, 23, 224–233.
[CrossRef]

71. Richardson, J.J.; Moskal, L.M. Strengths and limitations of assessing forest density and spatial configuration
with aerial LiDAR. Remote Sens. Environ. 2011, 115, 2640–2651. [CrossRef]

72. Reitberger, J.; Schnörr, C.; Krzystek, P.; Stilla, U. 3D segmentation of single trees exploiting full waveform
LIDAR data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 561–574. [CrossRef]

73. Bye, I.J.; North, P.R.; Los, S.O.; Kljun, N.; Rosette, J.A.; Hopkinson, C.; Chasmer, L.; Mahoney, C.
Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT
three-dimensional radiative transfer model. Remote Sens. Environ. 2017, 188, 177–189. [CrossRef]

74. Unger, D.R.; Hung, I.K.; Brooks, R.; Williams, H. Estimating number of trees, tree height and crown width
using Lidar data. GISci. Remote Sens. 2014, 51, 227–238. [CrossRef]

75. Alexander, C.; Korstjens, A.H.; Hill, R.A. Influence of micro-topography and crown characteristics on tree
height estimations in tropical forests based on LiDAR canopy height models. Int. J. Appl. Earth Obs. Geoinf.
2018, 65, 105–113. [CrossRef]

76. Science Beta, NASA, National Academy of Sciences and NASA’s Science Mission Directorate 2016.
Available online: https://science.nasa.gov/missions/gedi (accessed on 13 February 2018).

77. Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating tree detection and segmentation routines on very high
resolution UAV LiDAR data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7619–7628. [CrossRef]

78. Shang, X.; Chazette, P. Interest of a full-waveform flown UV lidar to derive forest vertical structures and
aboveground carbon. Forests 2014, 5, 1454–1480. [CrossRef]

79. Pang, Y.; Li, Z.; Ju, H.; Lu, H.; Jia, W.; Si, L.; Guo, Y.; Liu, Q.; Li, S.; Liu, L.; et al. LiCHy: The CAF’s LiDAR,
CCD and hyperspectral integrated airborne observation system. Remote Sens. 2016, 8, 398. [CrossRef]

80. Kim, S.; McGaughey, R.J.; Andersen, H.E.; Schreuder, G. Tree species differentiation using intensity data
derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1575–1586.
[CrossRef]

81. Moffiet, T.; Mengersen, K.; Witte, C.; King, R.; Denham, R. Airborne laser scanning: Exploratory data analysis
indicates potential variables for classification of individual trees or forest stands according to species. ISPRS J.
Photogramm. Remote Sens. 2005, 59, 289–309. [CrossRef]

http://dx.doi.org/10.1016/j.cageo.2013.01.010
http://www.isprs.org/proceedings/XXXV/congress/comm3/papers/267.pdf
http://www.isprs.org/proceedings/XXXV/congress/comm3/papers/267.pdf
http://dx.doi.org/10.1109/TGRS.2003.810682
http://dx.doi.org/10.1109/TGRS.2006.890412
http://dx.doi.org/10.1002/aqc.1077
https://CRAN.R-project.org/package=MuMIn
http://dx.doi.org/10.1016/j.foreco.2011.12.048
http://dx.doi.org/10.1007/s11273-014-9402-2
http://dx.doi.org/10.1016/j.rse.2008.09.009
http://dx.doi.org/10.1071/WF13086
http://dx.doi.org/10.1016/j.rse.2011.05.020
http://dx.doi.org/10.1016/j.isprsjprs.2009.04.002
http://dx.doi.org/10.1016/j.rse.2016.10.048
http://dx.doi.org/10.1080/15481603.2014.909107
http://dx.doi.org/10.1016/j.jag.2017.10.009
https://science.nasa.gov/missions/gedi
http://dx.doi.org/10.1109/TGRS.2014.2315649
http://dx.doi.org/10.3390/f5061454
http://dx.doi.org/10.3390/rs8050398
http://dx.doi.org/10.1016/j.rse.2009.03.017
http://dx.doi.org/10.1016/j.isprsjprs.2005.05.002


Remote Sens. 2018, 10, 671 21 of 21

82. Reitberger, J.; Krzystek, P.; Stilla, U. Analysis of full waveform LIDAR data for the classification of deciduous
and coniferous trees. Int. J. Remote Sens. 2008, 29, 1407–1431. [CrossRef]

83. Sumnall, M.; Fox, T.R.; Wynne, R.H.; Thomas, V.A. Mapping the height and spatial cover of features
beneath the forest canopy at small-scales using airborne scanning discrete return Lidar. ISPRS J. Photogramm.
Remote Sens. 2017, 133, 186–200. [CrossRef]

84. Li, M.; Im, J.; Quackenbush, L.J.; Liu, T. Forest biomass and carbon stock quantification using airborne
LiDAR data: A case study over Huntington wildlife forest in the Adirondack Park. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2014, 7, 3143–3156. [CrossRef]

85. Brandtberg, T.; Warner, T.A.; Landenberger, R.E.; McGraw, J.B. Detection and analysis of individual leaf-off
tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North
America. Remote Sens. Environ. 2003, 85, 290–303. [CrossRef]

86. Yuen, J.Q.; Fung, T.; Ziegler, A.D. Review of allometric equations for major land covers in SE Asia: Uncertainty
and implications for above-and below-ground carbon estimates. For. Ecol. Manag. 2016, 360, 323–340.
[CrossRef]

87. Manuri, S.; Brack, C.; Nugroho, N.P.; Hergoualc’h, K.; Novita, N.; Dotzauer, H.; Verchot, L.; Putra, C.A.;
Widyasari, E. Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. For. Ecol. Manag.
2014, 334, 241–253. [CrossRef]

88. Mora, B.; Wulder, M.A.; Hobart, G.W.; White, J.C.; Bater, C.W.; Gougeon, F.A.; Varhola, A.; Coops, N.C.
Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with
lidar plots. Int. J. Remote Sens. 2013, 34, 4406–4424. [CrossRef]

89. Wilkes, P.; Jones, S.D.; Suarez, L.; Mellor, A.; Woodgate, W.; Soto-Berelov, M.; Haywood, A.; Skidmore, A.K.
Mapping forest canopy height across large areas by upscaling ALS estimates with freely available satellite
data. Remote Sens. 2015, 7, 12563–12587. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01431160701736448
http://dx.doi.org/10.1016/j.isprsjprs.2017.10.002
http://dx.doi.org/10.1109/JSTARS.2014.2304642
http://dx.doi.org/10.1016/S0034-4257(03)00008-7
http://dx.doi.org/10.1016/j.foreco.2015.09.016
http://dx.doi.org/10.1016/j.foreco.2014.08.031
http://dx.doi.org/10.1080/01431161.2013.779041
http://dx.doi.org/10.3390/rs70912563
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site 
	Field Data 
	LiDAR Data Acquisition 
	DR-Derived Metrics 
	FW-Derived Metrics 
	Statistical Modelling and Analyses 

	Results 
	Discussion 
	Conclusions 
	References

