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Abstract

This paper models and solves a new transportation problem of practical im-
portance; the Consistent Vehicle Routing Problem with Profits. There are
two sets of customers, the frequent customers that are mandatory to ser-
vice and the non-frequent potential customers with known and estimated
profits respectively, both having known demands and service requirements
over a planning horizon of multiple days. The objective is to determine
the vehicle routes that maximize the net profit, while satisfying vehicle ca-
pacity, route duration and consistency constraints. A new mathematical
model is proposed that captures the profit collecting nature, as well as other
features of the problem. For addressing this computationally challenging
problem, an Adaptive Tabu Search has been developed, utilizing both short-
and long-term memory structures to guide the search process. The proposed
metaheuristic algorithm is evaluated on existing, as well as newly generated
benchmark problem instances. Our computational experiments demonstrate
the effectiveness of our algorithm, as it matches the optimal solutions ob-
tained for small-scale instances and performs well on large-scale instances.
Lastly, the trade-off between the acquired profits and consistent customer
service is examined and various managerial insights are derived.
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1. Introduction

Customer services offered by numerous companies require that employ-
ees, such as drivers, sales representatives, technicians and medical personnel,
visit customers on a regular basis. Consistent patterns with respect to the
time of visit and the visiting service provider can enhance brand loyalty and
customer satisfaction by allowing the company’s employees to develop rela-
tions and create bonds with the customers. Consistency in customer service
can act as an order winner, being a key characteristic of high quality service
and, hence, of high customer satisfaction. As a consequence, in recent years,
more and more companies have focused on and invested in customer relation-
ship management, resulting in a heightened interest in providing consistent
customer-oriented services. What complicates matters further is how to de-
sign vehicle routes for serving a mix of regular and on the spot customers,
while ensuring that consistent service is provided to the regular customers.
To that end, this paper addresses a combined orienteering and multi-period
vehicle routing problem that aims to maximize the overall profits when a
mixed set of customers is served with consistent service constraints.

The literature in recent years has flourished with customer-oriented rout-
ing problems. A seminal work in the field is that of Groër et al. (2009) in-
troducing the so-called Consistent Vehicle Routing Problem (ConVRP). The
ConVRP involves designing minimum cost routes to service a set of frequent
and non-frequent customers with known demands over multiple days via a
homogeneous fleet of depot-returning capacitated vehicles, while satisfying
vehicle capacity, route duration and consistency constraints. The single-
vehicle version of the problem, the Consistent Traveling Salesman Problem
(ConTSP), has been recently introduced, and focuses on the time consistency
constraints (Subramanyam and Gounaris, 2016). It is also worth mentioning
that variants of the problem that allow the introduction of waiting times at
the depot or customer locations are presented in the works of Kovacs et al.
(2014b) and Subramanyam and Gounaris (2017) for the ConVRP and the
ConTSP, respectively. Different types of consistency have been defined and
discussed in the literature, i.e. time consistency, person consistency and de-
livered quantity consistency, along with a number of practical applications,
such as courier services (Groër et al., 2009), in-home care and nursing ser-
vices, the transportation of handicapped (Feillet et al., 2014) and elderly
people (Braekers and Kovacs, 2016), pharmaceutical distribution (Campelo
et al., 2018), home meal delivery (Hewitt et al., 2015), aircraft fleet schedul-
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ing (Ioachim et al., 1999) as well as cleaning services (Tarantilis et al., 2012b).
A detailed literature review on VRPs in which consistency is important can
be found in Kovacs et al. (2014a).

As far as person consistency is concerned, it is desirable by both employees
and customers as it brings about several advantages. Employees can familiar-
ize themselves with customers’ regions and feel more competent in handling
unexpected situations, such as an unpredicted detour due to a blocked road
or congestion. Additionally, they become familiar with customer needs and
requirements and are able to provide a better customized service, creating
bonds with the customers (Janssens et al., 2015; Rodŕıguez-Mart́ın et al.,
2018). In a similar manner, person consistency helps customers to become
more comfortable with the visiting employee, especially in home-care services
when physical contact is required, and may also help in applying security
or administrative procedures (Feillet et al., 2014; Spliet and Dekker, 2016).
Time consistency is important as well, as it facilitates the visited customers’
planning and organising (Maya Duque et al., 2015). Consistency in the deliv-
ered quantity is also desirable, especially in the context of vendor-managed
inventory systems, as reduced variations in the delivery quantity facilitate
customers’ warehouse management operations (Coelho et al., 2012).

Different ConVRP variants adopt different types of constraints. Harder
consistency constraints impose driver and arrival time consistency at the
same time (Groër et al., 2009), whereas softer versions of consistency con-
straints are concerned with time consistency alone (arrival times belonging
to the same time-class) (Feillet et al., 2014) or with the objective of limiting
the number of drivers/personnel that visit a customer (Kovacs et al., 2015a;
Luo et al., 2015; Braekers and Kovacs, 2016). Furthermore, in a number of
papers consistency is not addressed in the form of constraints but is included
in the objective function, either in an aggregated form (Kovacs et al., 2015a;
Sungur et al., 2010) or as multiple objective functions (Kovacs et al., 2015b;
Lian et al., 2016). In this paper, we follow the same rationale as Groër et
al. (2009), imposing driver and arrival time consistency constraints at the
same time. All the aforementioned existing ConVRP variants make the as-
sumption that the company’s resources are adequate to cover all customer
requirements. However, this is not the case in a number of applications.

There are real-life cases in which the company’s employees have to reg-
ularly and consistently visit customers with long-term relations, i.e. existing
customers, to advertise their new products or receive feedback on current
products. On the other hand, in an effort to attract new customers and ex-
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pand the existing customer base, potential customers, usually located close
to the existing ones, need to be added to the current routes (Tricoire et al.,
2010). However, resources are limited and often inadequate to accommodate
both existing and potential customers; thus it is critical to determine the
subset of the potential customers that will be included in the routing plans.

A similar setting is also faced by small package shipping companies. Com-
mercial customers need to be visited multiple times during the planning hori-
zon, while residential customers need to be visited only once on an ad hoc
basis (Groër et al., 2009). While demand (requested quantity and service
frequency) is quite stable and repetitive for commercial customers, this is
not the case for residential customers and, as a result, demand can fluctuate
considerably. For example, an unpredictably high volume of requests may
be received and, due to vehicle capacity and working hours restrictions, it
may not be possible to fulfill all customer requests. Thus, managers need to
make decisions on a tactical and operational level as to which customers are
going to be serviced. The aforementioned problems pose the same challenge;
designing a set of profitable routes with the aim of visiting a set of manda-
tory customers consistently and, at the same time, deciding which additional
customers will be serviced.

Whenever the available resources are insufficient to service all customers,
the problem can be modeled as a Vehicle Routing Problem with profits (VRP
with profits) (Aksen and Aras, 2006; Archetti et al., 2014b). Given a set of
potential customers with known profits, the aim is to determine the subset
of customers to be serviced and to construct vehicle routes that optimize the
given objective function and satisfy all operational constraints. There are
two conflicting objectives; the first is to maximize the total acquired profit,
while the second is to minimize the total traveling cost. As a result, three
alternative objective functions appear in the literature: a) the maximization
of the total acquired profit while constraining the total traveled distance;
called Team Orienteering Problem, shortened to TOP, b) the maximization
of the net profit, i.e. the difference between the total profit and the total trav-
eling cost; called Capacitated Profitable Tour Problem, shortened to CPTP
and c) the minimization of the total traveled distance ensuring that a mini-
mum total profit is gained; called Prize Collecting Vehicle Routing Problem,
shortened to PCVRP (Tarantilis et al., 2013).

VRPs with profits have been studied to a great extent and can be used to
model a wide variety of applications including home fuel delivery, tourist trip
design, mobile crowdsourcing, athlete recruitment, routing of technicians,
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aerial reconnaissance, under-way replenishment, fisheries patrol, collection
of used products and freight transportation (Feillet et al., 2005; Archetti
et al., 2014b; Gunawan et al., 2016). A number of papers present variants
that involve additional features such as capacity constraints (Archetti et al.,
2009), time windows (Tricoire et al., 2010), multiple depots (Stenger et al.,
2013), split deliveries (Archetti et al., 2014a), incomplete service (Archetti
et al., 2013), non-linear cost functions (Stenger et al., 2013) and constraints
appearing in tourist trip design such as multiple time windows and budget
constraints (Souffriau et al., 2013; Kotiloglu et al., 2017). It is also worth
highlighting the work of Gendreau et al. (1998), the so-called Undirected
Selective Traveling Salesman Problem. The objective is to construct a single
maximal profit Hamiltonian cycle, while constraints of visiting compulsory
and optional vertices are imposed. Detailed surveys regarding node routing
problems with profits can be found in Feillet et al. (2005), Vansteenwegen et
al. (2011), Archetti et al. (2014b) and Gunawan et al. (2016).

The contribution of this paper is fourfold. First, a new problem is intro-
duced and modeled, the so-called Consistent Vehicle Problem with Profits
(ConVRP with Profits). This problem aims at routing a regular set of cus-
tomers in a consistent manner and at the same time attempts to decide from
a set of customers that appear on the spot which non-regular customers to
service additionally and include in the routing plans. The objective is to
maximize the net acquired profits (profit−cost). Second, a new three-index
formulation is proposed. Compared to existing four-index formulations pro-
posed recently for the ConVRP, our mathematical model is more compact,
as it uses less variables. Third, a novel Adaptive Tabu Search algorithm
has been designed and developed with relatively few user-defined parame-
ters. The proposed metaheuristic uses a multi-start mechanism to generate
a number of diversified initial solutions to allow a more thorough exploration
of the search space. A key element is the use of both short- and long-term
memory structures to guide the local search process. The short-term mem-
ory avoids revisiting the same solutions, while the long-term memory exploits
and reuses the “good” solution characteristics in an efficient way. Fourth,
an extensive set of computational experiments is reported. Our solution ap-
proach seems to perform well compared to state-of-the-art approaches for
the ConVRP and obtains new improved heuristic upper bounds. Further-
more, new benchmark problem datasets are generated. Initially small-scale
instances are solved to optimality and on return these solutions are used to
evaluate the effectiveness of the proposed algorithm. In most cases the opti-
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mal solutions were matched (worst case performance is 3.28%). Lastly, the
trade-off between the acquired profits and consistent customer service is ex-
amined, taking into consideration both variable and fixed costs, i.e. routing
cost and fleet size, and various managerial implications are discussed.

The remainder of the paper is organized as follows. Section 2 provides
the necessary notation and proposes a formal mathematical formulation for
the ConVRP with Profits. Section 3 presents the proposed solution method
and describes in detail all algorithmic components and mechanisms. Com-
putational experiments on existing and newly generated small, medium and
large-scale instances are presented, discussed and analyzed in Section 4. Fi-
nally, conclusions are drawn in Section 5.

2. Problem Formulation

The ConVRP with Profits can be defined on a complete undirected graph
G = (N,E), where N = {0, 1, 2, . . . , n} is the node set and E = {(i, j) :
i, j ∈ N, i 6= j} is the edge set. The depot is located at node 0 and the set of
customers is denoted by Nc = N \ {0}. A non-negative cost cij is associated
with each edge (i, j) ∈ E, while the corresponding travel cost matrix [cij] is
symmetric, i.e. cij = cji, and satisfies the triangle inequality. A homogeneous
fleet of K depot-returning vehicles with maximum carrying capacity Q that
operate for no more than T time units is available. Furthermore, there is a
set of periods P = {1, ..., h}, i.e. the planning horizon, with specific service
requirements rip for each customer i ∈ Nc on period p ∈ P , i.e. rip = 1 if
customer i requires service on period p and 0 otherwise. Additionally, each
customer i ∈ Nc has a predefined profit gip, a service time sip and a non-zero
demand qip,(0 < qip ≤ Q). For notational convenience, Ep denotes a reduced
set of edges, Ep = {(i, j) ∈ E : riprjp = 1} and Vp a reduced set of customers,
Vp = {i ∈ Vc : rip = 1} for each period p ∈ P .

The customer set Nc can be divided into two disjoint subsets based on the
customers’ service requirements. The set of frequent customers Nf contains
all the customers that require at least two visits during the planning horizon,
while the set of non-frequent customersNnf contains the remaining customers
that require service only once during the planning horizon. Due to route
duration and vehicle capacity restrictions, it is not possible to service all
customers but it is obligatory to service all frequent customers i ∈ Nf . Thus,
the set Nnf is split into two disjoint subsets; the set of serviced customers
Ns and the set of non-serviced customers Nu. The objective is to determine
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the subset of customers that will be serviced, along with the corresponding
visiting sequences such that the difference of the total collected profit minus
the total traveling cost is maximized, satisfying the following constraints:

• each vehicle route starts and ends at the depot

• the accumulated quantity carried by each vehicle k ∈ K does not exceed
the total carrying capacity Q

• each vehicle route lasts at most T time units

• each frequent customer i ∈ Nf must be visited only once (or alterna-
tively each profit gip of customer i ∈ Nf is collected only once) by the
same vehicle k ∈ K on each period p ∈ P they require service

• each non-frequent customer i ∈ Nnf can be visited at most once (or
alternatively each profit gip of customer i ∈ Ns is collected at most
once) by one vehicle k ∈ K on the period p ∈ P they require service

• the maximum difference between the earliest and latest vehicle arrival
times to a frequent customer i ∈ Nf over the planning horizon does
not exceed L time units

In this paper, a new three-index formulation is introduced. In particular,
three groups of variables associated with the customer visiting sequence,
the customers’ assignment to vehicle routes and the vehicle arrival time to
serviced customers are utilized. Let binary variables xijp count the number
of times edge (i, j) ∈ E is traversed on period p, binary variables yik indicate
if customer i is serviced by vehicle k and continuous variables aip depict
the arrival time to customer i on period p in the optimal solution. Given
the above representation, the ConVRP with Profits can be mathematically
depicted as follows:

max
∑
i∈Nc

∑
k∈K

∑
p∈P

yikgip − (
∑
p∈P

∑
(i,j)∈E

xijpcij +
∑
p∈P

∑
k∈K

∑
i∈Nc

yiksip) (1)

Subject to ∑
k∈K

yik = rip ∀p ∈ P, i ∈ Nf (2)
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∑
k∈K

yik ≤ rip ∀p ∈ P, i ∈ Nnf (3)

∑
j∈Nc

x0jp =
∑
i∈Nc

xi0p = K ∀p ∈ P (4)

∑
j∈N

xijp =
∑
j∈N

xjip =
∑
k∈K

yik ∀i ∈ N(i 6= j), p ∈ P (5)

∑
i∈Vp

qipyik ≤ Q ∀k ∈ K, p ∈ P (6)

1− xijp − xjip ≥ yik − yjk ∀(i, j) ∈ Vp × Vp : i 6= j, k ∈ K, p ∈ P (7)

a0p = 0 ∀p ∈ P (8)

aip + xijp(sip + cij)− (1− xijp)T ≤ ajp ∀(i, j) ∈ Vc × Vc : i 6= j, p ∈ P (9)

aip + rip(sip + ci0) ≤ ripT ∀i ∈ Vc, p ∈ P (10)

aip − aip′ ≤ L ∀i ∈ Vp ∩ Vp′ , p ∈ P, p′ ∈ P : p 6= p′ (11)

y0k = 1 ∀k ∈ K (12)

yik, xijp ∈ {0, 1}, aip ≥ 0 ∀i, j ∈ N, k ∈ K (13)

ripc0i ≤ aip ≤ T − sip − ci0 ∀i ∈ Nf , p ∈ P (14)

The objective function (1) maximizes the net acquired profit, i.e. the dif-
ference between the total collected profit and the total traveling cost. Con-
straints (2) and (3) dictate that frequent customers must be visited on each
period they require service while the non-frequent customers must be visited
at most once on the period they require service. Constraints (4) impose that
K vehicles leave and return to the depot in every period. Constraints (5)
ensure route connectivity. Constraints (6) are capacity restrictions for each
vehicle. Constraints (7) show that each frequent customer must be serviced
by the same vehicle. Constraints (8),(9) and (10) calculate the arrival times
to the depot and to each serviced customer on each period. They constitute
the Miller-Tucker-Zemlin (MTZ) constraints for time duration and, thus,
function also as subtour elimination constraints (Kara et al., 2004). Con-
straints (11) ensure that the maximum difference between the earliest and
latest arrival time to each frequent customer does not exceed a predefined
threshold L. Constraints (12) impose that all vehicle routes start from the
depot on every period of the planning horizon. Finally, the last sets impose
binary conditions to x and y variables as well as lower and upper bounds for
the continuous a-variables.
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3. Solution Method

3.1. Basic Concept & Solution Framework

The ConVRP with Profits can be seen as a single-objective problem,
consisting of two conflicting components. The first component seeks to max-
imize the total collected profit, whereas the second component seeks to mini-
mize the total traveling distance, while providing consistent customer service.
These components are linked with different decisions. The profit maximiza-
tion is linked with determining the subset of frequent customers that will be
assigned to and consistently visited by a vehicle, along with the subset of
potential non-frequent customers that will be serviced. The distance mini-
mization refers to determining the visiting sequence of the serviced frequent
and non-frequent customers, satisfying all operational constraints. On the
basis of the above, the proposed Adaptive Tabu Search (ATS) metaheuristic
algorithm takes advantage of different search landscapes and seeks to ex-
plore the solution space on the basis of the total collected profit and the
total traveling distance.

From the algorithmic point of view, the proposed ATS can be seen as
a multi-start trajectory local search approach that utilizes short- and long-
term memories and multiple neighborhood moves to allow a more thorough
exploration of the search space. It uses a greedy randomized constructive
heuristic to generate a number of diversified initial solutions, which are fur-
ther improved by the ATS algorithm. A key element of the ATS solution
framework is the use of short- and long-term memory structures. The short-
term memory, being a key component of the ATS algorithm, prevents cycling
and revisiting the same solutions during the local search, while the long-term
memory records the “good” solution characteristics obtained during the ex-
ecution of the ATS algorithm. This information is then used to construct
initial solutions with “elite” characteristics. Furthermore, multiple neigh-
borhood moves that operate on different search landscapes are utilized and
explore the solution space in terms of the acquired profit and the traveling
cost.

Algorithm 1 presents the pseudocode of the proposed ATS scheme. At
first, a greedy randomized constructive heuristic (Line 4) is utilized to gener-
ate initial feasible solutions, which are then improved by the ATS algorithm
(Line 5) and the best obtained solution is updated accordingly (Lines 6-8).
At this point, the adaptive memory component is triggered (Lines 9-16). A
feasible solution is constructed using the long-term memory (“elite moves”)
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recorded during the ATS execution (Line 10). In the next step, after emp-
tying the adaptive memory (Line 11), ATS is triggered again to improve the
given solution (Line 12). The procedure is repeated until a number of zin
iterations is completed (Line 9). The ATS solution framework terminates
after Θ iterations (Line 3) (termination criterion) and the best encountered
solution s∗ is returned. Input parameters, zt,ut,zin and umem control the
termination condition for the ATS (number of iterations without observing
any improvement), the tabu tenure (tabu list size), the number of adaptive
memory component iterations and the adaptive memory size, respectively.

Algorithm 1: ATS solution framework

Input: zt, ut, zin, umem

1 s,s∗ ← ∅
2 m∗ ← ∅ //Generate empty elite moves set

3 for θ ← 1 to Θ do
4 s ← Constructive Heuristic(θ)
5 s′ ← ATS(s,zt,ut,umem,m∗)
6 if f(s′) > f(s∗) then
7 s∗ ← s′

8 end if
9 for i ← 1 to zin do

10 s ← Constructive Heuristic(m∗)
11 m∗ ← ∅ //Empty elite moves set

12 s′ ← ATS(s,zt,ut,umem,m∗)
13 if f(s′) > f(s∗) then
14 s∗ ← s′

15 end if
16 end for
17 end for

Output: s∗

3.2. Constructive Heuristic

A randomized constructive heuristic is proposed in this paper to create
initial feasible solutions. Algorithm 2 provides an overview of the proposed
constructive heuristic. The generated solutions contain all the required rout-
ing information, i.e. the list of daily routes and the corresponding customers’

10



visiting sequence. The initial feasible solutions are constructed in two phases.
In the first phase, the frequent customers are sorted in descending order on
the basis of their service requirements and their profit (Line 2). If two cus-
tomers have the same service requirements (tie-breaker) they are sorted in
descending order of their profits. Then, for each frequent customer the θ
least-cost feasible vehicle assignments are considered and the customer is as-
signed to one of these randomly (Line 3-9). The θ least-cost vehicles are
selected using a greedy function that takes into account the traveling cost
for all periods the customer under consideration requires service. After as-
signing the frequent customer to a specific vehicle, for each of the periods
of service requirement, all feasible insertion positions are considered and the
customer is routed to the one that causes the minimal traveling cost increase.
After routing all frequent customers, the non-frequent customers are sorted
in descending order based on their profit (Line 10). Thus, non-frequent
customers with higher profits are favored with the aim of maximizing the
total collected profit. For each non-frequent customer all feasible insertion
positions are considered and the one with the least cost is selected (Line
11-18). The constructive heuristic terminates after attempting to route all
non-frequent customers.

During the adaptive memory component execution, an initial feasible so-
lution is constructed in a deterministic way, using the information stored
in the long-term memory (Line 12 in Algorithm 1). Specifically, the stored
“elite moves” are considered consecutively and the corresponding frequent
customers are routed in the least-cost positions in the appropriate vehi-
cles. If it is infeasible to assign a frequent customer to the corresponding
memory-defined vehicle, then this customer is later considered for insertion
with the remaining frequent customers. The remaining unrouted frequent
customers are sorted in the same way as discussed in the randomized con-
structive heuristic above and are placed in the least-cost feasible insertion
positions, following a greedy rationale. After routing all frequent customers,
the non-frequent ones are selected and included in the solution in the same
way as described in the randomized constructive heuristic scheme.

It is worth noting that there might be cases where adding a non-frequent
customer decreases the objective value, i.e. the net profit. There are two
categories of non-frequent customers that decrease the objective value; the
ones with an estimated profit equal to zero and the ones whose estimated
profit is greater than zero, but when including them in the initial solution the
required traveling cost is greater than their estimated profit. As expected,
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Algorithm 2: Randomized constructive heuristic scheme

Input: θ
1 s ← ∅ //Generate empty solution

2 Sort Frequent Customers()
3 for i ← 1 to Nf do
4 for k ← 1 to K do
5 Find θ Feasible Least-Cost Vehicles() // Find θ suitable

vehicles

6 end for
7 v ← Select Random() // Choose a vehicle randomly

8 s ← Insert Customer(v) // Route customer to this vehicle

9 end for
10 Sort Non-Frequent Customers()
11 for i ← 1 to Nnf do
12 for k ← 1 to K do
13 v ← Find Feasible Least-Cost Vehicle()
14 end for
15 if(v) then // If a suitable vehicle is found

16 s ← Insert Customer(v) // Route customer to this vehicle

17 end if
18 end for

Output: s

the proposed constructive heuristics do not allow the inclusion of the for-
mer category in the initial solution. However, they take into account the
latter category, as this can be altered during the ATS execution. Due to
the fact that during the solution construction phase the routing plans are in
a preliminary stage, the traveling cost is likely to be improved as the ATS
improvement phase progresses. This would make the non-frequent customers
belonging in the second category profitable and, therefore, they should be
included in the routing plans. For this reason, our constructive heuristics
take into consideration the aforementioned non-frequent customers.

3.3. Neighborhood moves

In the proposed implementation of ATS two different groups of moves
are utilized: the ones that affect the total collected profit and the ones that
affect the total traveling distance. The moves belonging to the first group,
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namely 1-1 Replace, 2-1 Replace and 1-2 Replace, change the decisions made
regarding the subset of serviced non-frequent customers (Figure 1). The 1-1
Replace, 2-1 Replace and 1-2 Replace moves proposed by Tarantilis et al.
(2013) are utilized. Figure 1 shows the moves concerning the selection of
non-frequent customers. The 1-1 Replace seeks to swap a non-frequent cus-
tomer i from a vehicle va with a non-serviced non-frequent customer j. All
possible insertion positions for j are examined prior to and after the removal
of i from va. If a feasible insertion position for j is found - without remov-
ing customer i - then a single customer Insertion is performed instead in
the least-cost feasible position. The complexity per iteration of 1-1 Replace
is O(n3). In Figure 1, non-frequent customer 1 is no longer serviced while
non-frequent customer 7 is included in the solution. In a similar manner, the
2-1 Replace attempts to remove two serviced non-frequent customers from
a vehicle va - regardless their position - and insert a non-serviced one. All
possible insertion positions are examined after the removal of both serviced
customers; as a result the complexity per iteration of 2-1 Replace is O(n4/2).
In our example, non-frequent customers 1 and 5 are removed from the vehicle
and non-frequent customer 7 is included. Finally, 1-2 Replace attempts to
remove one serviced non-frequent customer and to insert two non-serviced
ones. As previously, all feasible insertion positions are examined for the
pair of non-serviced non-frequent customers. The complexity per iteration
of 1-2 Replace is O(n5/2). It is noteworthy that the evaluation of each so-
lution within the neighborhood structures described above has a complexity
of O(1), i.e. to perform all the necessary feasibility checks and calculate the
cost components. As shown in Figure 1, non-frequent customer 2 is no longer
serviced while customers 8 and 9 are included for service.

For the routing counterpart of the ConVRP with Profits, the neighbor-
hood moves considered in the proposed implementation are traditional O(n2)
edge-exchange local moves, namely intra- and inter-route 2-Opt, 1-0 Relocate
and 1-1 Exchange (Tarantilis et al., 2012b), along with the ChangeVehicle
move (Figure 2). The ChangeVehicle move seeks to alter the assignment of
frequent customer i from vehicle va to vehicle vb. Specifically, for each of the
remaining vehicles and for each day of required service, all possible insertion
positions are examined and the least-cost ones are taken into account for the
calculation of the move cost. The complexity per iteration of ChangeVehicle
is O(n2|P |). As shown in Figure 2, the vehicle assignment of frequent cus-
tomer 5 changes for all days of the planning horizon. In particular, customer
5 is serviced by Vehicle 1, before applying the ChangeVehicle move, while
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Figure 1: Moves affecting the selection of non-frequent customers

afterwards Vehicle 2 visits customer 5 on each day of service requirement. It
should be noted that day 2, in which customer 5 does not require service,
remains unchanged.

From the implementation viewpoint, the key advantage of all aforemen-
tioned neighborhood moves is their simplicity and flexibility as well as their
ease of implementation. For their evaluation a lexicographic search is fol-
lowed. Emphasis is given on direct feasibility gains to accelerate the evalu-
ation process, i.e. to avoid unnecessary feasibility checks and early pruning
of the search tree. For example, we do not examine relocation moves for a
customer that cannot fit in terms of capacity to a particular vehicle. Fur-
thermore, we only focus on feasible solutions and we do not take into account
infeasible neighbors. As far as the neighborhood exploration is concerned, our
approach does not incorporate any spatiotemporal decomposition schemes or
heuristic restriction procedures to accelerate the neighborhood search. The
reader is referred to the works of Irnich et al. (2006) and Zachariadis &
Kiranoudis (2010) for techniques to accelerate neighborhood exploration.

3.4. Adaptive Tabu Search

The ATS algorithm is used to further improve the solutions generated via
the constructive heuristic. Algorithm 3 provides an overview of the proposed
ATS. ATS seeks to explore the solution space by moving at each iteration
from a solution s to the best admissible solution s′ in a subset Φw(s) of a
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Figure 2: ChangeVehicle move - affecting the assignment of frequent customers to vehicles

neighborhood move w. The oscillation among all moves is purely random
with equal selection probability and a best-accept strategy is followed. Dur-
ing the search, deteriorating solutions are accepted in order to escape from
local optima, and the search history is used (short-term memory) to avoid
cycling. This memory keeps track of the most recently encountered solution
attributes; its size is called tabu tenure (ut) (Lines 4-7).

During the ATS execution, the best improving moves (“elite moves”)
concerning the frequent customer assignment to vehicles are recorded in the
adaptive memory (long-term memory), whose size is denoted as umem (Line
8). The overall procedure terminates when a maximum number of itera-
tions zt without any further improvement is reached (Line 3) and the best
encountered local optimum st is returned.

3.5. Long-term memory structure

The long-term memory structure aims to exploit and reuse the “good”
solution characteristics obtained during the ATS execution, by storing the
corresponding “elite moves”. This information can be beneficial in the con-
struction of successive initial solutions. In particular, the moves encountered
during the execution of the ATS improvement method that fulfill certain se-
lection criteria are stored in the long-term memory and considered as “good”
solution characteristics (or alternatively “elite moves”). In our case, the best
improving feasible ChangeVehicle moves are selected and recorded in the
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Algorithm 3: ATS algorithm

Input: umem,zt,ut,m
∗,s

//Set of neighborhood moves, w = 1, 2, . . . , wmax//
1 mt ← ∅ //Generate an empty tabu moves set

2 st ← s
3 for z ← 1 to zt do
4 w ← Select Random()
5 Φw(s) ← Build Allowed Set(s, w)//Neighborhood evaluation

6 s ← arg maxs′∈Φw(s){f(s′)}
7 mt ← Update Tabu List(s,w,ut)
8 m∗ ← Update Adaptive Memory(s,w,umem)
9 if f(s) > f(st) then

10 z ← 0, st ← s
11 else
12 z ← z+1
13 end if
14 end for

Output: st

long-term memory structure during the ATS execution. The reason for stor-
ing only these moves is that the frequent customer assignment to vehicles is a
crucial decision as it directly affects the routing of frequent customers, as well
as the selection and routing of the non-frequent ones. Thus, it is important
to exploit the acquired information regarding the frequent customer assign-
ment to vehicles. It is noteworthy that the long-term memory is initialized
at the beginning of each ATS trigger and is subsequently updated during its
execution.

The pseudocode that depicts the adaptive memory component is pre-
sented in Algorithm 4. Let umem denote the size of the adaptive memory
and dc(s, w) denote the traveling cost improvement when applying move w
to solution s. Each stored move consists of a customer ID i and a vehicle
ID v, accompanied with the corresponding traveling cost improvement c′. If
the adaptive memory is empty, then the move under consideration is stored
(Lines 1-2), otherwise the stored “elite moves” are sorted in descending or-
der according to their traveling cost improvement (Lines 6-8), after searching
the adaptive memory component (Line 5). If an encountered improving move
contains a frequent customer already included in another stored “elite move”,
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then the “elite move” with the higher cost improvement will be the one fi-
nally recorded (Lines 9-11). It is worth highlighting that since all vehicles
are identical, possible symmetry issues might occur in the adaptive mem-
ory. However, to overcome these, in the daily routing plans the vehicles are
sorted according to the ID of the first routed frequent customer. Thus, it is
meaningful to assign a frequent customer to a specific vehicle and record this
information in the adaptive memory.

Algorithm 4: Update adaptive memory

Input: s,w,umem

1 if (m∗ = ∅) then
2 m∗ ← Add(w,dc(s, w))
3 else
4 for l ← 1 to umem do
5 i,v,c′ ← getStoredMove(m∗)
6 if (w(customer) 6= i and dc(s, w) > c′) then
7 m∗ ← Add(w,dc(s, w))
8 end if
9 if (w(customer) = i and w(vehicle) 6= v and dc(s, w) > c′) then

10 m∗ ← Replace Existing Move(w,dc(s, w))
11 end if
12 end for
13 end if

Output: m∗

4. Computational Results

4.1. Benchmark Datasets

For the evaluation of the proposed solution method, various compu-
tational experiments were conducted using existing and new benchmark
datasets. In particular, the ConVRP benchmark instances of Groër et al.
(2009) were utilized to test the efficiency and robustness of the proposed
ATS algorithm. In addition, to further test the performance of our solu-
tion approach, we generated 13 new small-scale instances for the ConVRP
with Profits and solved them to optimality. Lastly, 36 new medium- and
large-scale ConVRP with Profits instances were created for parameter tun-
ing, algorithmic component testing and managerial insights analysis.

17



The existing ConVRP benchmark instances originate from the traditional
VRP instances of Christofides and Eilon (1969), containing 50 to 199 cus-
tomers. A 5-day planning horizon with a non-fixed fleet size is assumed,
along with a low percentage of non-frequent customers, ranging up to 5%.
Vehicle capacity and route duration constraints are taken into consideration.
To follow our algorithm’s rationale, a profit was generated for each customer,
utilizing the formula presented below, and a fleet size was determined on the
basis of the number of vehicles reported in Tarantilis et al. (2012b). The
fleet size specified in the aforementioned paper ensures that all customers
can be serviced with the available resources; in this case the maximum profit
is obtained and the ConVRP with Profits is reduced to the typical ConVRP.
As no constraints are imposed on the maximum arrival time difference limit
L of each benchmark instance, this was set according to the results obtained
in Groër et al. (2009) to ensure consistency and a fair comparison with the
existing solution methods.

In a similar manner, to create the ConVRP with Profits benchmark in-
stances, the existing small, medium and large-scale ConVRP instances of
Groër et al. (2009) were adopted and modified accordingly. A profit gi was

defined for each customer i, based on the formula: bi

∑
j∈Nc

cij

n
l, where∑

j∈Nc
cij

n
is the average distance of all customers belonging in the same in-

stance, l is a random number uniformly distributed in the interval [0, 1] and
bi is a number that links the acquired profit to the transportation cost as in
Chbichib et al. (2011). In a realistic logistical model, the transportation cost
as a percentage of sales turnover is 5%-10% while the gross profit margin may
be between 20% and 50% of the sales turnover (Rushton et al., 2010). Thus,
the total profit is 3 to 5 times the transportation cost. Following this dis-
tribution, customer i can be assigned a value bi that links the corresponding
acquired profit, which is proportional to their demand, to the transportation
cost. To this end, the customer i with the highest demand qi is assigned
the value 5, i.e. bi = 5 and the customer j with the lowest demand qj is
assigned the value 3, i.e. bj = 3. All other customers with demands ranging
between the minimum and maximum demands are assigned a corresponding
value b according to the ranking of their demand. In this way, the total ac-
quired profit is linked to the total transportation cost. The random number
l represents the probability of gaining a potential non-frequent customer and
acquiring the corresponding profit, as in Tricoire et al. (2010). For this rea-
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son, for each frequent customer i, l is equal to 1 and for each non-frequent
customer j, l ∈ [0, 1].

The small ConVRP instances of Groër et al. (2009) contain 10 to 12
customers, a 3-day planning horizon as well as vehicle capacity and route
duration constraints. A fleet size was determined experimentally and the
capacity and route duration limits were modified accordingly, if necessary.
Moreover, a specific profit was generated for each customer, as described
above. Furthermore, in a number of instances, some frequent customers
were randomly chosen to become non-frequent, as the original number of non-
frequent customers was not sufficient. Finally, the small-scale instances set
for ConVRP with Profits was enriched with some larger instances containing
up to 18 customers, following the same rules.

Adopting the same process, we constructed the medium and large-scale
ConVRP with Profits benchmark instances. A profit was generated for each
customer; a fixed fleet size was specified and vehicle capacity and route dura-
tion limits were adapted accordingly, along with the non-frequent customers’
percentages. Subsequently, the large-scale benchmark datasets for the Con-
VRP with Profits are divided into three sets based on their percentage of
non-frequent customers. In the first set 15% of customers are non-frequent
(set 1), in the second set 25% of customers are non-frequent (set 2) while in
the third set 50% of the customers are non-frequent (set 3).

All experimental results reported in the following sections consider fixed
parameter settings over a single simulation run; our metaheuristic algorithm
was implemented in C++ and all computational experiments were performed
on a 3.30 GHz Intel Core i5 PC over a single thread. It is worth highlighting
that insignificant differences were observed over multiple runs.

4.2. Parameter Settings & Experimental Analysis

The proposed ATS solution method uses four user-defined parameters,
i.e. the tabu list size ut, the maximum number of ATS iterations without
observing any improvement zt, the size of the adaptive memory umem and
the iterations of the adaptive memory component zin. Assuming reasonable
value ranges, well performing parameter settings can be determined with
modest effort, since most of these parameters are relatively insensitive to the
characteristics of the problems considered.

In what follows, the effect and behavior of the novel algorithmic com-
ponent and its associated parameters are experimentally examined. A rich
scientific literature is devoted to Tabu Search algorithm (Tarantilis et al.,
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2012b; Nikolopoulou et al., 2017; Kotiloglu et al., 2017); thus standard set-
tings in the VRP literature are used for the ATS algorithm in all executions
with ut = 30 and zt = 3000, providing a good balance between effectiveness
and computational time consumption. Additionally, as far as the multi-start
procedure parameter Θ is concerned, a small positive number ranging from 5
to 20 was used throughout the computational experiments. This number is
related to the instance size and was calculated using the following formula:
n

10
, where n is the number of customers of the instance, as larger instances

require more computational effort to obtain high quality solutions.
Regarding the adaptive memory component, two structural parameters

are incorporated to determine the search strategy: the adaptive memory size
umem and the number of maximum iterations zin. Due to the fact that this
is a novel algorithmic component, various combinations for both parameters
were experimentally tested, in an attempt to find the one that provides a
good compromise between effectiveness and computational effort. In partic-
ular, value ranges from 0 to 50 and from 5 to 15 were examined for umem and
zin, respectively. Figure 3 shows the results obtained for a total of 33 combi-
nations with respect to the average objective value obtained over 6 of the 36
generated medium and large-scale ConVRP with Profits instances (Figure
3(a)) and the CPU time consumption in seconds (Figure 3(b)). The param-
eter tuning experiments were conducted on six randomly chosen instances
to avoid overfitting. Specifically, the results presented in the following figure
concern instances P3 and P4 from set 1, P13 and P15 from set 2 and P21
and P24 from set 3.

(a) umem vs Solution Quality (b) umem vs CPU Time

Figure 3: Performance profile of the adaptive memory component

As shown in Figure 3, the adaptive memory component seems to have a
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clear contribution to the algorithm’s overall performance. This observation
will be further discussed in section 4.4.2. Moreover, we observed that the
adaptive memory component performance seems to remain on the same levels
after a certain adaptive memory size. This is expected as there is a limit to
the number of “elite moves” encountered during the local search. However,
from the computational effort viewpoint the trade-off and the expense of
computational time seem to increase. On this basis, an adaptive memory
size of 10 moves (umem = 10) and a number of maximum iterations equal to
five (zin = 5) seem to provide a good compromise between solution quality
and computational effort. These parameter settings have been used in all
the experiments described in the following sections.

4.3. Results for ConVRP Benchmark Instances

This section discusses the results obtained from our algorithm on the
ConVRP instances and compares them to the state-of-the-art. The Con-
VRP instances of Groër et al. (2009) were modified, as described in sec-
tion 4.1, to follow our algorithm’s rationale and the algorithmic parameter
settings described in section 4.2 were utilized. Tables 1 and 2 show the
corresponding results and the computational times in seconds (where avail-
able), respectively. The proposed ATS algorithm was used on the existing
ConVRP instances and was compared to all available metaheuristics, i.e. the
Record-To-Record travel algorithm for the ConVRP (ConRTR) (Groër et al.,
2009), the Master And Daily Scheduler (MADS) (Sungur et al., 2010), the
template-based Tabu Search (TTS) (Tarantilis et al., 2012b), the template-
based Adaptive Large Neighborhood Search(TALNS) (Kovacs et al., 2014b),
the Large Neighborhood Search (LNS) (Kovacs et al., 2015a) and the De-
composition, Repair and Distance Reduction approach (DRDR) (Luo et al.,
2015). For each algorithm and each instance, the total travel time (TT) and
the maximum arrival time difference (Lmax) are reported. TTm is the best
result obtained in five runs for the TTS and the TALNS and in 10 runs for
the LNS and the DRDR. It is noteworthy that as far as the DRDR approach
is concerned, the authors report the solutions with the smallest maximum
arrival time difference, instead of the ones with the smallest traveling cost.
For this reason, the solutions presented in this table are denoted as TT and
not TTm. Additionally, both MADS and DRDR do not bound Lmax. There-
fore, only the instances with a maximum arrival time difference smaller or
equal to those found by Groër et al. (2009) are reported to ensure fairness
and consistency. The best solutions reported in the literature in terms of the
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Table 1: Comparative analysis on ConVRP instances
Best ConRTR MADS TTS TALNS LNS DRDR ATS

# TT Lmax TT Lmax TT Lmax TT Lmax TTm Lmax TTm Lmax TT Lmax TT Lmax %Gap
P1 2124.21 20.18 2282.14 24.38 2281.05 24.27 2210.56 21.99 2124.21 23.72 2124.21 20.18 2150.57 23.84 2135.70 23.63 0.54
P2 3540.80 25.41 3872.86 34.26 3954.99 30.00 3622.71 27.75 3600.41 31.86 3540.80 25.41 3653.62 25.22 3559.43 34.11 0.53
P3 3280.47 21.22 3628.22 22.87 - - 3451.1 21.92 3326.12 22.21 3280.47 21.22 3492.05 22.63 3355.89 20.94 2.30
P4 4473.31 19.85 4952.91 27.53 - - 4572.00 25.15 4556.33 24.19 4473.31 19.85 4711.01 20.12 4560.09 26.05 1.94
P5 5632.22 17.69 6416.77 26.93 - - 5732.62 19.99 5664.06 22.69 5632.22 17.69 5802.72 15.48 5650.02 26.72 0.32
P6 4051.48 63.29 4084.24 63.47 - - 4096.87 55.38 4051.48 63.29 4070.72 40.39 4283.40 51.61 4053.96 55.69 0.06
P7 6673.61 43.72 7126.07 83.96 7062.52 60.88 6752.36 63.28 6770.49 76.62 6673.61 43.72 7065.47 56.74 6675.69 75.73 0.03
P8 7126.29 50.27 7456.19 73.04 7461.98 67.49 7279.39 62.01 7129.79 65.97 7126.29 50.27 7571.57 49.82 7167.81 68.08 0.58
P9 10370.60 104.22 11033.54 106.43 10872.44 74.87 10585.10 84.76 10381.90 88.85 10390.70 59.07 10974.20 61.55 10370.60 104.22 0.00
P10 12955.10 55.19 13916.8 60.17 13646.84 59.48 13120.40 57.17 13102.70 57.95 12955.10 55.19 13992.70 50.16 13019.90 59.83 0.50
P11 4471.22 13.91 4753.89 16.10 - - 4721.09 15.68 4485.37 15.33 4471.22 13.91 4643.78 14.63 4590.83 15.31 2.68
P12 3497.93 16.50 3861.35 17.58 3938.11 16.82 3607.88 16.91 3497.93 16.50 3521.88 13.63 3617.33 11.24 3505.77 16.94 0.22
Avg 5683.10 37.62 6115.42 46.93 7031.13 47.69 5812.67 39.33 5724.23 42.43 5688.38 31.71 5996.54 33.59 5720.47 43.94 0.81

total traveling time are presented (Best), along with the corresponding %Gap
obtained by our metaheuristic algorithm compared to the best reported so-
lutions. The average results over all instances are given in the last row of the
table. The best-known solutions are indicated in bold.

Table 2 presents the corresponding reported computational times (in sec-
onds). As different machines and different numbers of simulation runs were
utilized to obtain the results reported in literature, in order to provide an
efficiency indication of the different solution approaches, we followed the
procedure discussed in Bräysy and Gendreau (2005) and Tarantilis et al.
(2012a). The bottom section of the table describes the machine used, the
number of runs, the relative speed of the machine, and the normalized av-
erage computational time. The relative speed of each machine is derived
with respect to an Intel Xeon 2.8GHz, using the PassMarkr CPU marks
(https://www.cpubenchmark.net/CPU_mega_page.html). To that end, the
normalized computational time is calculated from the relative speed multi-
plied by the mean computational time (in seconds) and the number of runs.
It is worth mentioning that this procedure provides an efficiency indication
for each solution approach; however, it cannot be used as a basis for direct
comparisons.

Combining the values reported in Tables 1 and 2, Figure 4 illustrates the
two-dimensional space with respect to the average travel time and the aver-
age normalized computational time (in seconds) of each approach, following
the rationale suggested by Bräysy and Gendreau (2005). The closer a point is
to the lower left corner (low traveling cost requiring the least computational
effort), the better is the associated solution approach. It is noteworthy that
ConRTR and MADS are not plotted in Figure 4, as there are no computa-
tional times reported for ConRTR and MADS cannot be directly compared
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Table 2: Computational times in seconds of different algorithms for ConVRP
# TTS TALNS LNS DRDR ATS
P1 80.00 5.45 15.13 8.00 10.20
P2 93.00 14.69 18.82 6.00 10.05
P3 369.00 25.58 40.22 29.00 20.34
P4 388.00 84.31 62.71 31.00 37.36
P5 550.00 122.24 87.26 38.00 43.04
P6 70.00 6.63 14.58 5.00 26.04
P7 161.00 18.33 19.68 4.00 30.19
P8 539.00 32.24 31.27 16.00 42.29
P9 947.00 97.39 50.24 23.00 40.27
P10 1052.00 146.32 78.73 31.00 84.33
P11 480.00 35.96 83.63 56.00 30.00
P12 172.00 25.60 27.41 17.00 14.25

Average 408.42 51.23 44.14 22.00 32.36
Machine IX 2.801 IX 2.672 IX 2.672 IX 2.273 ICi5 3.304

Runs 5 10 10 10 1
Relative speed 1.00 3.19 3.19 3.81 4.30

Normalized time 2042.10 1634.24 1408.07 838.20 139.15

1 Intel Xeon 2.80 GHz
2 Intel Xeon X5550 2.67 GHz
3 Intel Xeon 2.27 GHz
4 Intel Core i5 3.30 GHz

to the other metaheuristics, as explained above.
As shown in Table 1, the ATS algorithm performed well, compared to

the state-of-the-art, and obtained a new heuristic lower bound for instance
P9. As far as the computational time is concerned, the ATS framework
required a very competitive computational time, proving its efficiency. As
illustrated in Figure 4, our metaheuristic is non-dominated, providing a very
good combination of solution quality and speed.

From the algorithmic viewpoint, the majority of the existing metaheuris-
tic algorithms addressing the ConVRP adopt the concept of template routes.
A template is a set of predetermined artificial routes, containing only the fre-
quent customers, that are used as a guide to design the actual daily schedules.
According to the literature and the obtained results, the methods utilizing
the rationale of template routes as a focal algorithmic component do not
perform as well as the ones that construct and handle the daily routes ac-
counting for all customers (Kovacs et al., 2015a). However, Groër et al.
(2009) highlight that in optimal ConVRP solutions the frequent customers
are routed in the same order over the planning horizon, following the idea
of a template. Investigating this statement further, Gounaris (personal com-
munication, October 5, 2017) reports that, in the optimal ConTSP solutions
they have obtained, 75% of frequent customer pairs appear in the same order
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Figure 4: Efficiency analysis - ConVRP metaheuristics

in all common periods and, in only two optimal solutions out of more than
400, all pairs of customers satisfied the precedence rule. Our findings are in
line with the findings reported by Gounaris, as none of our solutions satisfies
the precedence rule fully. However, it is worth highlighting that in our Con-
VRP solutions, 95% of frequent customer pairs appear in the same order in
all common periods. Taking all the above into consideration, we believe that
a solution framework tackling a Vehicle Routing Problem with consistency
constraints could utilize the idea of template routes as a means to construct
an initial solution rather than a fixed decision that restricts the local search
space.

4.4. Results for ConVRP with Profits Benchmark Datasets

In this section we discuss all the computational results obtained on the
new small- and large-scale benchmark instances for the ConVRP with Profits.
In particular, the small-scale instances are solved to optimality and compared
to our algorithm’s results. Moreover, we use the medium- and large-scale in-
stances to test the efficiency of our algorithmic components as well as to
examine the trade-off between the collected profits and the fixed fleet size
and consistency constraints. In all the aforementioned experiments, the fo-
cus is on the offered service level, i.e. the maximum arrival time difference
(Lmax) and the percentage of unvisited non-frequent customers (%UNFC).
Both metrics are of high importance and lead to increased customer satis-
faction. Low Lmax values result in less diverse and “more consistent” daily
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Table 3: Comparative analysis on ConVRP with Profits small-scale instances
CPLEX ATS

# NP Lmax %UNFC Root Node CT # Nodes NP Lmax %UNFC %Gap %Lgap

P1 357.31 4.67 50.00 369.17 1.97 2529 357.31 4.67 50.00 0.00 0.00
P2 289.04 4.63 0.00 293.78 2.36 1914 279.56 3.93 0.00 3.28 -15.12
P3 375.12 2.50 0.00 398.80 8.36 5433 375.12 2.50 0.00 0.00 0.00
P4 413.11 3.98 0.00 422.87 11.23 5592 413.11 3.98 0.00 0.00 0.00
P5 391.69 4.17 0.00 406.60 12.37 5393 389.50 4.40 0.00 0.56 5.52
P6 440.98 3.93 0.00 477.30 222.11 76280 440.87 3.93 0.00 0.02 0.00
P7 303.77 4.25 50.00 308.25 0.38 358 303.77 4.25 50.00 0.00 0.00
P8 431.56 3.34 0.00 446.91 14.65 4791 431.56 3.34 0.00 0.00 0.00
P9 377.63 4.21 0.00 396.25 51.20 25481 369.40 4.61 0.00 2.18 9.50
P10 305.08 4.48 67.00 310.92 2.43 1628 298.87 4.15 67.00∗ 2.04 -7.37
P11 588.61 4.99 0.00 605.15 5759.34 1374780 581.21 2.03 0.00 1.26 -59.32
P12 715.63 3.48 75.00 735.35 340.38 104901 715.63 3.48 75.00 0.00 0.00
P13 698.92 4.66 75.00 735.46 1038.31 244180 698.92 4.66 75.00 0.00 0.00

Average 437.57 4.10 24.38 454.37 574.24 142558.50 434.99 3.84 24.38 0.72 -5.14

schedules, while lower percentages of unvisited non-frequent customers con-
tribute not only to customer satisfaction but also to higher acquired profits.

4.4.1. Small-scale instances

To further test the performance of our algorithm, we used the small-scale
benchmark instances and the corresponding optimal solutions were obtained
by solving exactly the proposed mathematical model, using a commercial
solver (ILOG CPLEX 12.7). Table 3 presents the optimal solutions and the
results obtained by the ATS framework. The objective function value (NP),
Lmax, the percentage of unvisited non-frequent customers, the root node, the
number of nodes being examined during the CPLEX execution and the corre-
sponding computational time in seconds (CT) are reported for each optimal
solution. The obtained objective function value, the percentage of unvisited
non-frequent customers and Lmax are reported for our metaheuristic algo-
rithm. The gap in the objective function value and the maximum arrival
time difference obtained by our metaheuristic compared to the optimal so-
lutions, i.e. %Gap and %Lgap respectively, are calculated. In all cases, ATS
took less than a second to find the presented solutions.

As shown in Table 3, our metaheuristic managed to obtain high quality
solutions. Specifically, it found seven optimal solutions, while its average
deviation from the optimal solutions was 0.72% (worst case performance is
3.28%). As far as consistency is concerned, the proposed solution method
produced “more consistent” solutions, improving the average Lmax by 5.14%.
However, this result should be treated with caution as it occurs not only due

25



to our metaheuristic’s effectiveness to improve consistency but also as a trade-
off between the net acquired profits and the service consistency constraints. It
is worth noting that ATS identified the optimal set of non-frequent customers
in 12 out of 13 instances. The only case that ATS did not identify the optimal
set of non-frequent customers to be serviced was P10 (noted by asterisk),
where the solution obtained by ATS included the same percentage of non-
frequent customers as the optimal solution, however there was a difference
in the subset of serviced non-frequent customers (one non-frequent customer
was different). All the aforementioned results demonstrate the effectiveness
of the proposed framework.

4.4.2. Medium and Large-scale instances

As shown in the previous section, the computational time for solving op-
timally instances of realistic size is excessive. To this end, larger instances
were solved via the proposed metaheuristic algorithm. Several computational
experiments were performed on these instances in order to test the perfor-
mance of the introduced algorithmic mechanisms and the effect of the fixed
fleet size to the overall profits.

Initially, the cooperative and synergistic effect between the long-term
memory structure, i.e. the adaptive memory, and the multi-start mechanism,
is examined. For this purpose, the proposed ATS framework is compared to
Tabu Search (TS), a well-known, robust and effective metaheuristic. As far
as the TS implementation is concerned, a number of 30,000 iterations with-
out observing any further improvement and a tabu list size equal to 30 were
used. The corresponding computational results are summarized in Table 4.
For each algorithm and each instance, the obtained objective function value,
Lmax, the computational time in seconds and the percentage of non-frequent
customers not included in the final solution are reported. Additionally, we
have calculated the %Gap between the two metaheuristic algorithms. It is
worth highlighting that both ATS and TS use the same multi-start mecha-
nism to ensure fairness in their comparison.

All in all, comparable results are obtained by both solution frameworks,
indicating the efficiency and the effectiveness of the proposed ATS meta-
heuristic. In particular, ATS found slightly better solutions in terms of the
objective function value than the TS algorithm on average, obtaining im-
provements of up to 1.16%. The reason behind this improvement is that the
ATS solution framework managed to include more non-frequent customers in
the final solution by 1.1% on average than the TS algorithm, with the highest
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Table 4: Results on ConVRP with Profits medium and large-scale instances
ATS TS

# NP Lmax CT %UNFC NP Lmax CT %UNFC %Gap
P1 15352.90 128.79 0.97 25.00 15354.80 132.18 6.47 25.00 -0.01
P2 27915.10 106.63 4.48 27.00 27915.10 106.63 29.91 27.00 0.00
P3 35400.00 135.90 2.33 7.00 35253.70 160.28 21.01 13.00 0.41
P4 55536.00 127.15 14.62 9.00 55536.00 127.15 123.47 9.00 0.00
P5 73648.30 128.00 253.39 3.00 73480.10 124.52 317.14 7.00 0.23
P6 15938.50 248.73 0.70 14.00 15938.50 248.73 6.12 14.00 0.00
P7 26596.10 217.04 2.78 18.00 26596.10 217.04 25.63 18.00 0.00
P8 32442.40 284.04 4.30 0.00 32067.60 273.27 28.96 7.00 1.16
P9 49065.30 258.91 14.76 0.00 49065.30 258.91 88.33 0.00 0.00
P10 67020.00 262.75 162.92 0.00 66765.00 272.77 199.80 3.00 0.38
P11 69669.70 139.98 5.67 6.00 70077.50 237.38 49.84 0.00 -0.59
P12 36145.10 125.74 6.19 0.00 36412.60 123.81 49.38 0.00 -0.74

Average (set 1) 42060.78 180.31 39.43 9.08 42038.53 190.22 78.84 10.25 0.07

P13 13699.80 149.11 4.33 15.00 13572.40 163.61 25.99 15.00 0.93
P14 25865.20 104.64 0.58 5.00 25865.20 104.64 0.55 5.00 0.00
P15 31186.40 209.80 13.53 8.00 31130.10 185.22 33.62 12.00 0.18
P16 50824.60 140.72 240.96 16.00 50610.80 145.60 263.06 14.00 0.42
P17 66436.80 161.01 625.07 10.00 66279.00 128.75 489.71 6.00 0.24
P18 14208.60 225.13 4.83 17.00 14053.40 222.87 7.79 8.00 1.09
P19 23893.00 179.04 4.20 21.00 23706.40 183.81 36.55 16.00 0.78
P20 29118.60 293.90 6.08 16.00 29118.60 293.90 58.99 16.00 0.00
P21 43315.20 259.94 14.02 0.00 42867.90 271.79 69.21 3.00 1.03
P22 59187.10 247.00 440.18 20.00 59109.50 273.97 316.28 22.00 0.13
P23 64016.90 209.80 2.90 0.00 64016.90 209.80 2.73 0.00 0.00
P24 32948.60 126.92 5.66 8.00 32893.10 134.77 78.66 8.00 0.17

Average (set 2) 37891.73 192.25 113.53 11.33 37768.61 193.23 115.26 10.42 0.41

P25 9926.88 140.97 1.83 20.00 10009.40 153.36 47.33 12.00 -0.83
P26 17699.00 139.93 21.59 40.00 17696.90 139.93 204.79 39.00 0.01
P27 21893.20 184.24 110.35 30.00 21794.10 199.28 448.58 28.00 0.45
P28 35915.20 158.87 1451.27 22.00 35762.40 160.58 2836.18 22.00 0.43
P29 46441.50 156.79 3650.98 16.00 46377.90 181.21 5360.62 18.00 0.14
P30 10299.10 174.88 18.81 0.00 10214.00 162.33 147.68 4.00 0.83
P31 16521.30 170.51 484.56 24.00 16482.80 169.39 236.80 21.00 0.23
P32 20943.40 285.36 44.19 32.00 20943.40 285.36 151.90 32.00 0.00
P33 30606.80 203.47 370.68 35.00 30606.80 203.47 1156.24 35.00 0.00
P34 42175.30 223.77 1048.58 29.00 42095.70 223.77 3015.00 32.00 0.19
P35 44489.10 218.17 106.07 5.00 44290.60 232.25 780.42 5.00 0.45
P36 22939.70 193.84 374.04 22.00 22902.70 185.69 352.55 18.00 0.16

Average (set 3) 26654.21 187.57 640.25 22.92 26598.06 191.39 1228.17 22.17 0.17

Average 35535.57 186.71 264.40 14.44 35468.4 191.61 474.09 14.28 0.22

difference being 7%. Furthermore the ATS solutions were “more consistent”
than the TS solutions by 2.62%. Specifically, the highest difference concern-
ing Lmax (5.5%) was observed in the problem set with the lowest percentage
of non-frequent customers (set 1). This is due to the fact that large numbers
of frequent customers result in less diverse daily schedules and “more consis-
tent” routes. Thus, a strategy of assigning effectively the frequent customers

27



to vehicles can lead to consistent solutions. Finally, ATS was much faster
than the TS algorithm, requiring almost 80% less time to obtain its solu-
tions. The above indicates that there is a clear cooperative and synergistic
effect between the adaptive memory component and the multi-start mecha-
nism. Although this is more or less expected as two different methods are
combined to improve the current best solution, it is worth highlighting that
their combination not only helped the search to acquire better solutions, but
also expedited the overall search process in terms of computational times.

Another interesting point for investigation is the required fleet size to visit
all customers and maximize the collected profit. One of the key characteris-
tics of ConVRP with Profits is the fact that the available resources, i.e. the
number of vehicles, are not adequate to serve/visit all customers. Therefore,
from a managerial point of view it would be useful for the decision-makers
to be aware of the trade-off between the potential acquired profit and the
cost of the required vehicles. To this end, computational experiments were
conducted to determine the net collected profit provided the available fleet
size was sufficient to visit all customers. For all problem instances the num-
ber of available vehicles was increased until the obtained solution included
all customers. The corresponding results are summarized in Table 5. The
results for the original fleet size are reported under the ATS label, while the
results for the increased fleet size are reported under the ATS-fi label. For
each instance, we present the corresponding objective function value, Lmax,
the computational time in seconds and the number of vehicles required for
the obtained solution (|K|). The %Gap between the two objective function
values and the %Gap(|K|) between the required numbers of vehicles were
calculated. It is worth noting that some instances are not included in the
table as our algorithm managed to include all customers utilizing the original
fleet size.

Clearly, the net acquired profit increases with larger fleet size. Specif-
ically, there is an average improvement of 1.35% in terms of the objective
function value. This improvement seems to increase as the number of non-
frequent customers increases, ranging up to 5.23%. This is expected as the
more non-frequent customers included in the final solution, the higher the
net collected profit will be. Additionally, the solutions utilizing more vehi-
cles were “more consistent” by 8.3% and the required computational time
was decreased by 84%. These differences are due to the higher number of
available vehicles, increasing the degrees of freedom and enabling the ATS
metaheuristic algorithm to route all customers more easily and efficiently.

28



Table 5: Results on increasing fixed fleet size
ATS ATS-fi

# NP Lmax CT |K| NP Lmax CT |K| %Gap %Gap(|K|)
P1 15352.90 128.79 0.97 3 15373.10 134.60 1.89 4 -0.13 33
P2 27915.10 106.63 4.48 6 28367.40 92.18 67.32 7 -1.62 17
P3 35400.00 135.90 2.33 4 35506.90 174.48 53.87 5 -0.3 25
P4 55536.00 127.15 14.62 8 55797.30 110.98 110.78 9 -0.47 13
P5 73648.30 128.00 253.39 11 73702.50 125.71 95.95 12 -0.07 9
P6 15938.50 248.73 0.70 3 16074.70 244.40 33.17 3 -0.85 0
P7 26596.10 217.04 2.78 5 26958.50 217.04 5.04 6 -1.36 20
P11 69669.70 139.98 5.67 4 70580.80 210.35 139.15 5 -1.31 25

Average (set 1) 40007.08 154.03 35.62 5.50 40295.15 163.72 63.40 6.38 -0.77 17.75

P13 13699.80 149.11 4.33 3 13760.60 137.93 2.12 4 -0.44 33
P14 25865.20 104.64 0.58 6 26390.30 85.59 6.49 7 -2.03 17
P15 31186.40 209.80 13.53 4 31307.70 126.00 17.60 5 -0.39 25
P16 50824.60 140.72 240.96 7 50961.80 117.24 170.11 9 -0.27 29
P17 66436.80 161.01 625.07 9 66681.50 134.13 91.40 10 -0.37 11
P18 14208.60 225.13 4.83 3 14316.70 213.47 2.08 3 -0.76 0
P19 23893.00 179.04 4.20 6 24093.00 176.32 8.53 7 -0.84 17
P20 29118.60 293.90 6.08 5 29623.40 275.62 97.91 6 -1.73 20
P22 59187.10 247.00 440.18 9 60032.70 222.91 52.51 10 -1.43 11
P24 32948.60 126.92 5.66 5 33288.10 91.04 7.50 6 -1.03 20

Average (set 2) 34736.87 183.73 134.54 5.70 35045.58 158.03 45.63 6.70 -0.93 18.30

P25 9926.88 140.97 1.83 2 10076.60 123.97 10.62 3 -1.51 50
P26 17699.00 139.93 21.59 4 18625.50 86.79 45.88 6 -5.23 50
P27 21893.20 184.24 110.35 3 22606.60 144.57 63.42 4 -3.26 33
P28 35915.20 158.87 1451.27 5 36401.00 131.59 40.65 6 -1.35 20
P29 46441.50 156.79 3650.98 7 47069.90 123.77 164.68 9 -1.35 29
P31 16521.30 170.51 484.56 5 16686.10 176.57 59.76 6 -1.00 20
P32 20943.40 285.36 44.19 3 21616.20 249.58 5.15 4 -3.21 33
P33 30606.80 203.47 370.68 6 31599.70 192.38 13.11 7 -3.24 17
P34 42175.30 223.77 1048.58 7 42740.30 221.83 21.17 8 -1.34 14
P35 44489.10 218.17 106.07 3 44687.00 214.32 75.08 4 -0.44 33
P36 22939.70 193.84 374.04 3 23380.70 162.62 26.19 4 -1.92 33

Average (set 3) 28141.03 188.72 696.74 4.36 28680.87 166.18 47.79 5.55 -2.17 30.18

Average 33688.85 177.43 320.50 5.14 34079.54 162.69 51.35 6.17 -1.35 22.65

This observation is consistent with the findings of Kovacs et al. (2015a), re-
porting that time consistency can be improved with a modest increase in the
average fleet size. However, this comes with the extra cost of acquiring more
vehicles to enlarge the existing fleet and serve all customers. In this case,
in order to increase the net profit by 1.35%, an increase of the fleet size by
22.65% is required, utilizing one extra vehicle on average. Our results indi-
cate that more vehicles are needed as the number of non-frequent customers
increases. This is due to the fact that in ConVRP with Profits the available
vehicles are sufficient to visit all the frequent customers but only a subset
of the non-frequent ones. Therefore, the larger the number of non-frequent
customers, the more vehicles are required. However, there should be extra
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Table 6: Results on decreasing fixed fleet size
ATS ATS-fd

# NP Lmax CT |K| %UNFC NP Lmax CT |K| %UNFC %Gap %Gap(|K|)
P25 9926.88 140.97 1.83 2 20.00 9539.77 249.67 0.11 1 64.00 3.90 50.00
P26 17699.00 139.93 21.59 4 40.00 17621.10 154.67 22.71 3 47.00 0.44 25.00
P27 21893.20 184.24 110.35 3 30.00 20766.10 207.89 59.06 2 60.00 5.15 33.33
P28 35915.20 158.87 1451.27 5 22.00 34122.30 187.70 339.53 4 55.00 4.99 20.00
P29 46441.50 156.79 3650.98 7 16.00 43272.00 159.39 369.52 6 66.00 6.82 14.29
P30 10299.10 174.88 18.81 3 0.00 9852.11 195.40 3.89 2 75.00 4.34 33.33
P31 16521.30 170.51 484.56 5 24.00 15576.70 173.19 24.75 4 50.00 5.72 20.00
P32 20943.40 285.36 44.19 3 32.00 20761.00 182.72 10.78 2 38.00 0.87 33.33
P33 30606.80 203.47 370.68 6 35.00 30228.90 209.82 24.3 5 43.00 1.24 16.67
P34 42175.30 223.77 1048.58 7 29.00 39909.20 248.79 499.79 6 62.00 5.37 14.29
P35 44489.10 218.17 106.07 3 5.00 42969.60 271.88 1.93 2 37.00 3.41 33.33
P36 22939.70 193.84 374.04 3 22.00 21122.50 206.95 0.77 2 68.00 7.92 33.33

Average 26654.21 187.57 640.25 4.25 22.92 25478.44 204.00 113.10 3.25 55.42 4.18 27.24

consideration taken when making decisions regarding the fleet size with high
fixed costs occurring.

Apart from investigating the effect of increasing the available fleet size,
we also explored the impact of decreasing the fleet size to the net acquired
profits. The instances of set 3 were utilized, as they are the ones with the
largest number of non-frequent customers, and are thus more likely to obtain
feasible solutions, when reducing the available fleet size. Table 6 shows the
corresponding computational results. The results for the original fleet size
are reported under the ATS label, while the results for the increased fleet
size are reported under the ATS-fd label. For each instance, we present
the corresponding objective function value, Lmax, the computational time
in seconds, the number of vehicles required for the obtained solution and
the percentage of non-frequent customers not included in the final solution.
The %Gap between the two objective function values and the %Gap(|K|)
between the required numbers of vehicles were calculated.

As expected, the net acquired profits decrease with a smaller fleet size.
Specifically, there is an average decrease of 4.18% as far as the objective
value is concerned. This is due to the fact that less non-frequent customers
are included in the final solution. There is a clear indication that the more
non-frequent customers not included in the routing plans, the lower the net
collected profit will be. Moreover, the solutions utilizing less vehicles were
“less consistent” by 8.76% and the required computational time was de-
creased by 82%. The former observation is a result of the lower number of
available vehicles, making the routing of frequent customers more difficult.
The latter is due to the fact that the feasible solution search space regarding
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the non-frequent customers’ inclusion to the routing plans was constrained,
accelerating the evaluation process of the local search and leading to lower
computational times. Overall, our results indicate that reducing the available
fleet size by 27.24% leads to a decrease of the net acquired profits by 4.18%.
This further supports the argument that additional consideration should be
exercised when decisions are made regarding the fleet size, as this could have
a great impact on profitability.

4.5. Cost of arrival time consistency

In this section, we discuss the price of service consistency. In particular,
we examine the effect of decreasing the maximum arrival time difference on
the obtained objective function value, the collected profit, the traveling cost
and the number of unvisited non-frequent customers. To this end, several
computational experiments were conducted, determining the value of L. For
each instance, the value of L was specified as a percentage of the Lmax ob-
tained when L was not fixed. It is noteworthy that in our case the fleet size is
fixed and no waiting time is allowed either at the depot or at the customers’
locations, thus, tightening the arrival time difference constraints cannot be
overcome by increasing the number of vehicles or by shifting the vehicles’
departure times as in Kovacs et al. (2014b). This resulted in a number of
unsolved instances as the proposed metaheuristic algorithm could not find a
solution satisfying the given consistency constraints, using the available ve-
hicles. For this reason, only the instances that the ATS solution framework
managed to find a suitable solution for are presented.

Figures 5, 6, 7 and 8 summarize the obtained computational results.
Figure 5 depicts the effect of decreasing L on the average objective function
value on all problem sets (Figure 5(a)) and on each set respectively (Figure
5(b), 5(c) and 5(d)). As expected, constraining the value of L leads to
reduced net profits. As shown in Figure 5, decreasing L by 60% results in
an average decrease of 0.81% in the obtained objective value (ranging from
0.6% up to 0.89%, depending on the number of non-frequent customers). In
other words, an improvement in service consistency of 60% costs 0.81% in
the net acquired profits.

Figure 6 shows the impact of decreasing L on the average collected profits
on all problem sets (Figure 6(a)) and on each set respectively (Figure 6(b),
6(c) and 6(d)). Following the same trend as the objective value, constraining
L by 60% leads to an average decrease of 0.31% in the total collected profits
(ranging from 0.02% up to 0.52%, depending on the number of non-frequent
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Figure 5: Effect of L value on the net profits

customers). This means that improving service consistency by 60% costs
0.31% in the total collected profits.

Figure 7 illustrates the effect of improving service consistency on the
average traveling costs on all problem sets (Figure 7(a)) and on each set
respectively (Figure 7(b), 7(c) and 7(d)). Clearly, constraining the value of
L results in increased traveling costs. Specifically, our results indicate that
decreasing L by 60% leads to an average increase of 6.18% in the required
traveling cost (ranging from 3.77% up to 6.97%, depending on the dataset).
In other words, an improvement in service consistency of 60% is followed by
an increase of 6.18% in the traveling costs.

These findings are in line with the literature. Subramanyam and Gounaris
(2016) report that an average cost increase of 1.31% occurs in order to provide
consistent service in the optimal ConTSP solutions. Kovacs et al. (2015a)
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Figure 6: Effect of L value on the total profits

study the generalized version of the ConVRP and discuss that a large de-
crease in L can be achieved with a modest increase in the total traveling
cost. Additionally, Kovacs et al. (2015b) examined the arrival time consis-
tency cost in their multi-objective version of the ConVRP and showed that
in the case of restricting driver consistency to one driver per customer, reduc-
ing L by 70% causes an average increase in the traveling distance of 2.43%.
In contrast, Kovacs et al. (2014b) demonstrate that in the ConVRP a 60%
reduction on L can lead to a cost increase by up to 186.15%. This is due to
the fact that in ConVRP all customers need to be visited and the number of
vehicles is unlimited. Therefore, in order to cope with the tightening of the
arrival time constraints more vehicles are required, resulting in a substantial
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Figure 7: Effect of L value on the traveling cost

increase in the total traveling cost. Kovacs et al. (2014b) suggest that this
issue can be resolved by allowing a shift in the vehicles’ arrival times. In
our case this problem can be avoided by altering the subset of non-frequent
customers to be visited.

Figure 8 presents the effect of decreasing L on the average percentage
of the unvisited non-frequent customers on all problem sets (Figure 8(a))
and on each set respectively (Figure 8(b), 8(c) and 8(d)). The figures show
that there is a decrease in the number of visited non-frequent customers as
time consistency improves. In particular, 2% less customers are visited on
average when improving service consistency by 60% (ranging from 1% up to
4%, depending on the dataset). However, there seems to be a fluctuation in
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the obtained results. As illustrated in Figure 8(c), in set 2 when decreasing
L by 40% there is an increase in the number of visited non-frequent cus-
tomers of 1%. Following the same trend, in set 3 when decreasing L by 20%
there is an increase in the number of visited non-frequent customers of 1%.
These results contradict our earlier findings which show a decrease in the
objective value. This is due to the fact that different subsets of non-frequent
customers were chosen to be included in the final solutions. Thus, increas-
ing service consistency led to the inclusion of non-frequent customers with
lower profits, resulting in a decrease of the final objective value as far as set
2 is concerned. The results concerning set 3 are different, demonstrating a
reverse effect of increasing the net profits and total profits and reducing the
total traveling cost, when constraining the value of L by 20%. We believe
that this is a result of suboptimal solutions obtained for this particular set.
Another explanation can be that adding more customers may help satisfy the
consistency constraint, due to the fact that the vehicle departure time is al-
ways anchored at point 0. Overall, our findings indicate that decision-makers
should carefully consider the service consistency level that will be offered as
this can have an impact on profitability and may lead to a considerate de-
crease in the percentage of visited customers, imposing a negative effect on
customer satisfaction.

5. Conclusions

Nowadays, companies focus on and invest in customer relationship man-
agement in an attempt to enhance customer satisfaction and brand loyalty
by forming bonds with their customers. Along these lines, a new problem is
introduced in this paper, the ConVRP with Profits. It is a customer-oriented
routing problem that aims at maximizing a company’s net profits, while pro-
viding customer service in a consistent manner. In particular, given a set
of mandatory frequent and potential ad hoc customers with known profits,
demands and service requirements over a planning horizon of multiple days,
the goal is to design vehicle routes that maximize the difference between the
total profits and the overall traveled distance, utilizing all available resources.

A novel Adaptive Tabu Search (ATS) algorithm has been developed with
few user-defined parameters to address this complex transportation prob-
lem. The proposed solution approach starts by generating a random ini-
tial solution, which is improved by the ATS algorithm. The “elite moves”
encountered during the local search execution are stored in the long-term
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Figure 8: Effect of L value on the %UNFC

memory component and are then used as a basis to construct solutions with
“good characteristics”. For the performance evaluation of the proposed meta-
heuristic algorithm, existing and newly generated benchmark instances were
utilized. In particular, our solution approach was tested on the ConVRP
benchmark dataset, performing well compared to the state-of-the-art and
obtaining new improved heuristic upper bounds. Furthermore new small
benchmark instances were constructed and solved to optimality. The aver-
age gap from the optimal solutions was 0.72%. Finally, as far as the newly
generated medium and large-scale instances are concerned, the proposed so-
lution approach was compared to TS, producing slightly better results and
requiring 80% less computational time. All the aforementioned computa-
tional experiments highlight the efficiency and effectiveness of the proposed
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ATS framework.
Our computational study indicates that in order to increase the net ac-

quired profits by 1.35% on average, an increase of the fleet size by 22.65%
is required. Additionally, when reducing the available fleet size by 27.24%
the net acquired profits are decreased by 4.18% on average. Thus, decision-
makers are advised to carefully determine the company’s fleet size, as it can
have an impact on profitability. Furthermore, the price of the arrival consis-
tency was examined. Our findings suggest, in accordance with the literature,
that an improvement in the service consistency of 60% leads to a decrease of
0.81% in the net acquired profits, an average decrease of 0.31% in the total
collected profits and an average increase of 6.18% in the total traveling costs,
while decreasing the percentage of visited non-frequent customers by 2%.
Therefore, careful consideration is required when defining the offered level of
service consistency as this may have a negative impact on both net profits
and customer satisfaction. One research direction worth pursuing would be
to examine the multi-objective version of the ConVRP with Profits, including
collected profit, routing cost, arrival time consistency and driver consistency
as independent objectives of the problem.
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