
Spanogianopoulos, S, Zhang, Q and Spurgeon, S

 Fast Formation of Swarm of UAVs in Congested Urban Environment

http://researchonline.ljmu.ac.uk/id/eprint/9424/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Spanogianopoulos, S, Zhang, Q and Spurgeon, S (2017) Fast Formation of
Swarm of UAVs in Congested Urban Environment. IFAC-PapersOnLine, 50
(1). pp. 8031-8036. ISSN 2405-8963

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Fast Formation of Swarm of UAVs in
Congested Urban Environment

Sotirios Spanogianopoulos ∗ Qian Zhang ∗∗ Sarah Spurgeon ∗∗∗

∗ University of Kent, School of Engineering and Digital Arts, UK
(e-mail:ss976@kent.ac.uk)

∗∗ Liverpool John Moores University, Department of Electronics and
Electrical Engineering, UK (e-mail:Q.Zhang@ljmu.ac.uk)

∗∗∗ University College London, Department of Electronic and Electrical
Engineering, UK (e-mail:s.spurgeon@ucl.ac.uk)

Abstract: As Unmanned Aerial Vehicles (UAVs) become more readily available and reduce in
cost, using multiple UAVs simultaneously to accomplish a task becomes increasingly attractive.
Once swarms of UAVs share the same workspace (operational environment) it is necessary to
have a means to rapidly adopt an optimal collision-free formation in the workspace. A popular
approach for formation of an optimal swarm is to use Particle Swarm Optimization (PSO)
techniques. A variant of PSO was recently introduced called nPSO which claims to exhibit
more rapid convergence than other variants. In this paper nPSO is applied to the problem
of finding optimal positions of UAVs forming a swarm in presence of large obstacles such as
buildings in an urban environment. The experiments show that no more than 1000 iterations
are required to obtain near optimal formation of swarm of UAVs for different maps, including
maps relating to congested environments.

Keywords: Fast collision-free swarm formation, Autonomous Systems, UAV, Optimization in
swarm robotics.

1. INTRODUCTION

Application of aerial robotics are gaining increasing atten-
tion. For example, swarms of UAVs may be deployed for
exploration or surveillance tasks in outdoor environments.
Whenever a swarm of robots are used, it is necessary to
consider the optimal flight formation and co-ordination
across the swarm. In this paper, rapid optimal formation of
collaborative aerial robots is considered so that as the task
evolves, the algorithm will re-arrange the robot formation
rapidly whilst accommodating new constraints.

Existing technologies are available that enable swarms
of aerial robots to move in formation. For example, in
Vásárhelyi et al. (2014) authors present a decentralized
multi-copter flock that can autonomously navigate based
on dynamic information received across a swarm consisting
of up to 10 flying agents, each which has similar behaviour
as animal swarms.

Other approaches have considered PSO for aerial robots.
For example in Saska et al. (2016) the task of coopera-
tive surveillance of preselected Areas of Interest (AoI) in
outdoor environments by flocks of Micro Aerial Vehicles
(MAVs) is considered. In this kind of surveillance mission,
the basic task is to distribute the MAVs in the environment
in order to successfully cover the AoIs and to identify the
correct trajectories to reach the target location.

In Saska (2015) PSO is used to stabilise the navigation
of swarms of MAVs in a given environment with obsta-
cles. Controlling large numbers of aerial vehicles, without
relying on any inter-vehicle communication, the method

is based on visual localization which takes place from all
MAVs, and estimates the position of every neighbouring
robot in the flock.

Limitations on the computation power available on aerial
robots has stimulated research considering how swarms
of robots can be programmed dynamically in presence of
very limited communication channels and computational
functionality Morgan et al. (2016). The optimal assign-
ment problem is solved using a distributed auction assign-
ment and collision free trajectories are generated using
sequential convex programming. Model Predictive Control
(MPC) is used to solve the assignment and trajectory
optimization (SATO) algorithm effectively moves a swarm
of robots to a predefined shape in a distributed fashion.

Improving the Concurrent Assignment and Planning of
Trajectories (CAPT) for a swarm of robots is considered
in Turpin et al. (2014). Two challenges are considered:
the complex problem of determining a suitable assignment
for each robot in order to get to the target location and
the creation of a collision-free and parameterized trajec-
tory. This approach relies on a complete and centralized
algorithm that produces collision-free and optimal solution
to the CAPT problem. A restriction here is that the
environment must be obstacle-free.

The circumstances under which the optimal true distance
between aerial robots (forming a swarm) can be reached by
providing an explicit and non-asymptotic model Yu et al.
(2015). The work also considered the identification of the
suboptimal strategies, in cases where the number of robots

cannot be freely defined. A hierarchical communication
method has been developed whereby the robots are able
to communicate only with the robots that belong to the
same hierarchically segmented region. This hierarchical
method can help to obtain an optimal solution with
constant approximations of true distance under specific
assumptions.

There have been studies tailoring PSO to the problem
of swarm of robots. For example in Adel and Songefeng
(2016), a PSO is altered such that it relies on a uniform
design (UD), i.e., the populations values don’t change
randomly. Thus a uniform design will cause an initial
population of particles to be scattered uniformly over the
search space. It has also been shown that with this design
approach it is possible to decrease the fitness function and
increase the performance compared to the standard PSO
algorithm.

A new method capable of automatically determining if
and where there are conflicts between a swarm of UAVs is
proposed that lies in the category of Conflict Detection and
Resolution (CDR) problems Alejo et al. (2013). Using an
axis-aligned minimum bounding box (BB), the approach
tries to resolve the conflicts one-at-a-time cooperatively
by applying a collision-free trajectory planning algorithm.
Then PSO refines the initial solution and alters the 4D
trajectories of the UAVs using a global minimum cost.

An algorithm based on modifying the normal PSO al-
gorithm using a random factor in order to reduce the
expectation time for searching targets and removing them
has been presented Cai et al. (2013). The task map
is separated into specific sub-areas and each sub-area is
further separated into distinct grids. The robots operate
in searching phases or removing phases. When the target
list of the robot does not include any detected targets,
then the robot mode is changed to the searching phase
else it will change its state to the removing phase. Every
robot takes decisions individually by the local information
it gathers and based on the communication it has with the
neighbouring robots.

A new optimization algorithm based on PSO with a new
’momentum term’ that is able to influence the convergence
properties of the original PSO algorithm has been de-
scribed Zhang and Mahfouf (2006). This new optimization
method, called nPSO, can successfully deal with the prob-
lem of premature convergence. It is also capable of making
particles’ optimal search process adaptive by encouraging
each particle to jump out of any local minima. The final
version of this algorithm, called new Multi-objective PSO
(nMPSO), along with nPSO was tested using a series of
challenging benchmarks and it is shown that the algorithm
performs better than the other optimization algorithms.

This paper applies nPSO and reports the results obtained
by it with suggested parameters settings. Reasoning and
techniques to improve convergence of a solution to the
constrained problem are suggested. Further, the paper is
organized as follows: Section 2 reviews and introduces the
concept of nPSO, Section 3 describes the nPSO design
and motivates the choise of a certain strategy to obtain
rapid convergence, Section 4 demonstrates the results of
the experiments conducted in 2D simulations and Section 5
concludes the paper.

2. REVIEW OF NPSO

Given the search space of the problem, the standard PSO
adjusts the velocity on-the-fly of each particle based on
the particle’s behaviour as well as the behaviour of it’s
other companions. With tuning by the PSO algorithm
the particles have a tendency to converge towards global
optimum quickly. The nPSO algorithm is an improved ver-
sion of PSO, where a momentum term is designed to deal
with the problem of premature convergence. nPSO makes
particle’s optimal search process adaptive by encouraging
each particle to jump out of any local minima.

2.1 Notation and Terms

The symbols and notations used for nPSO are as follows:

• D: The dimension of the particle
• N : Population size or the number of particles
• Xi: The ith particle in population
• xij : The jth element in the ith particle, i.e., Xi =

[xi1, xi2, ..., xiD]
• Vi: The velocity vector of the ith particle Xi.
• vij : The jth element in the ith velocity vector, i.e.,

Vi = [xi1, xi2, ..., xiD]
• F: The fitness function. F (Xi) generates a scalar

value indicating the fitness of particle.
• Pi: The best previous position of the ith particle as

determined by the fitness function F . So this variable
stores the best behaviour of ith particle and hence it
checks the local behaviour in search space.

• pij : The jth element in the Pi

• Pg: The particle with the best global fitness value
found by the PSO algorithm

• pgj : The jth element in Pg

• Vmax: The upper limits of the achievable velocities of
particles

• vmax,j : The velocity upper limit for the jth dimension
• Pt: The particle with the best fitness value among all

the particles at the current generation t

Given iteration t, the next velocity vij(t + 1) of the jth
element xij in Particle Xi is computed using the following
equation:

vij(t+ 1) =wij × r1(t+ 1)× vmax,j

+ vij(t) + c1 × r2(t+ 1)× (pij − xij)
+ c2 × r3(t+ 1)× (pgj − xij)

(1)

, where c1 and c2 are positive acceleration co-efficients con-
stants of algorithm PSO, and r1(t+1), r2(t+1) and r3(t+1)
are uniformly distributed random variables ranging from
(0, 1). wij is the momentum weight of the ith particle in
the jth dimension.

Once the velocity Vi of particle Xi is computed for all
its element using the above formula, the next position of
particle is computed as:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (2)

2.2 Algorithm Process

The momentum term of the Eguation 1 can provide parti-
cles adjustable momentum to realise a balance between
exploration and exploitation in the optimization search

process. If a particle converges to a solution, which is
judged by whether the velocity of the particle is very small,
the momentum weight is set at big values to encourage the
particle to jump out from the local area. When the particle
does not converge, the momentum weight is dynamically
adjusted according to the particles search experience, i.e.
if the particle cannot find a better solution in the previ-
ous generation(s), the momentum weight is decreased to
enhance the local search ability, and otherwise the mo-
mentum weight is increased to enhance the global search
ability. In details, nPSO is described using Algorithm 1.

Algorithm 1 The New Structure Particle Swarm Opti-
mization (nPSO)

1: Set acceleration coefficients c1, c2, momentum decreas-
ing and increasing factors m1,m2, convergence judge-
ment factor ε, population size N and max. Number of
iterations Kmax

2: Generate Particles Xi from i = 1 to N with random
values

3: Set Momentum weights wij = 1 from i=1 to N , j= 1
to D

4: for Generation t = 1 to Kmax do
5: for i = 1 to N do
6: Compute fitness value of particle Xi using fitness

function F
7: end for
8: for i = 1 to N do
9: if The fitness value of the best local position Pi

is worse than the new current fitness value of Xi

then
10: Pi = Xi

11: end if
12: end for
13: Pt ← the particle with the best fitness value among

all the particles at current generation t
14: if The best global fitness value Pg is worse than the

fitness of Pt then
15: Pg = Pt

16: end if
17: if Pg is the optimal solution found then
18: Exit with solution Pg

19: end if
20: For all the elements of velocities of particles do the

following:

wij =


1, if vij < ε× vmax,j

m1 × wij if no improvement in

fitness for new particle Xi

m2 × wij otherwise
(3)

21: Compute next velocity Vi(t + 1) of all the particles
using Equation 1

22: Ensure next velocity Vi(t + 1) for all particles does
not exceed set maximum velocity Vmax

23: Compute next position Xi(t+ 1) of all the particles
using Equation 2

24: end for

3. APPLYING NPSO TO AERIAL ROBOTICS

nPSO appears to be very suitable for the UAVs allocation
problems studied in this paper, where the presence of

multiple UAVs and the environment with a large number
of buildings has formed a complex optimization problem
including multiple local optima.

It is assume that there is a communication base station at
which the best location of swarms of UAVs is computed.
The communication base station also has a geographical
map of the environment with positions of all the buildings.
A typical synthetic map is shown in Figure 1(a). For
simplicity and to provide a more rapidly collision checking
computation, the tall buildings or obstacles as an axis
aligned bounding box, shown in grey.

3.1 Problem setup

Each UAV position is represented by two elements (x, y).
The number of UAVs required to cover a rectangular area
with no obstacles can be computed as n– if A is the area
of rectangular region that UAVs need to cover and a is
the area of the maximum rectangular area that can be
accommodated by the UAVs circular sensing region, then
the least number of UAVs required to cover area A in
presence of obstacles is given by:

n ≥ A

a
(4)

So for n UAVs the configuration of a swarm of UAVs can
be represented by 2n elements. The particle is designed as
shown in the following equation.

X = [x1, y1, x2, y2,, xn, yn] (5)

The particle is initialized with values (see Figure 1(b)) such
that the overlap between UAVs is minimal in completely
free space. Also the final UAV is randomly placed in the
environment so as to minimise the chance of initialising
the system at or close to a local optima.

3.2 Designing fitness function

Computing the fitness function is a computationally time
consuming process in nPSO algorithm. Even if the nPSO
may try to converge within a few iterations, the fitness
function design can dramatically affect the computational
performance with respect to time.

Three parameters are used with different importance in
deciding upon an appropriate fitness function:

(1) Penetration extent of UAVs with axis aligned bound-
ing boxes

(2) Sum of penetration extent of UAVs among themselves
within some threshold

(3) Sum of penetration extent of all UAVs having an
overlap with their sensing region

Standard intersection checking between UAVs (circle) and
buildings (axis-aligned bounding box) is used for param-
eter 1. The penetration is computed using standard eu-
clidean distance function for parameters 2 and 3. Matlab
implements a fast euclidean distance computation mecha-
nism computing in parallel on the arrays of elements. The
fitness function is thus rapidly computed.

The threshold value in parameter 2 can be chosen by
the user based on the least distance that needs to be
maintained between UAVs within a neighbourhood. This

(a)

(b)

Fig. 1. (a) A synthetic map with axis aligned bounding
boxes as obstacles shown in grey and (b) Initial
formation of swarm of UAVs in free physical space

assists the convergence of the nPSO in the presence of
obstacles as movement of a particle element is restrained
by parameter 2.

4. EXPERIMENTS AND RESULTS

The nPSO code is implemented in Matlab-64bit version
along-with the visualization code for environment with
UAVs. The PC used for the simulations has a dual core
i5-3230M processor running at 2.6GHz with 4GB RAM
memory.

4.1 Environment Setup

This research assumes that the environment is a map
of fixed obstacles such as buildings represented by axis
aligned bounding boxes. Figure 1(a) shows an example of
bounded environment ranging from [0 120] units along x-
axis and [0 120] units along y-axis.

The map is generated by placing random axis aligned
boxes with varied length and breadth ranging from [5 15]
units. The gray coloured objects are axis-aligned bounding
boxes that bound the buildings in an urban setting.

Each UAV is represented by a solid red circle with a
diameter 5 units. The concentric dotted circle around a
UAV represents the maximum region that can be sensed
or viewed by that UAV in free space. This concentric circle
diameter is 35 units. Note that we need at least 18 UAVs
to fill the entire environment with given units.

4.2 Testing nPSO on different maps with increasing
complexity

The main parameters of nPSO are set in Table 1. These
parameters are fixed for all the experiments. Note that c1
is purposely selected very small compared to c2 to obtain
fast convergence. A large C2 encourages a particle to fly
towards the global best particle found so far and a small
C1 makes the particle to fly towards its own historical best
position found so far. Such a setting enables the particles
to cooperate more with each other and concentrate the
optimization search in one area rather than different local
areas, which causes a faster convergence.

Also note m1 is very small compared to m2 so as to benefit
the particle that experiences more positive behaviour.
A large m2 provides particles with more vigour, which
will speed up the search process for most continuous
optimization problems. Note that Vmax value is mentioned
in grid units per sec. A smaller value is chosen so that the
initial UAV positions adopted do not change drastically
and move to nearby spaces only. Such an assumption is
practical when UAVs are distributed in real environment
as the next optimal position change should be nearby to
save energy and time of flight for UAVs. The significance
of ε is to help the search process to progress if the particle’s
velocity by at least two decimal places. These factors were
observed while performing experiments.

Table 1. Parameter settings of nPSO

Parameter c1 c2 m1 m2 ε Vmax

Value 0.01 3.8 0.5 10 0.01 19

Table 2 contains the results of experiments conducted.
The weights W1,W2 and W3 are used for each parameters
configuration of fitness function as orderly mentioned in
section 3.2. Experiment 1 contains a small number of
obstacles and as can be seen in Figure 2(a) the optimal
solution is obtained very fast (within 408 iterations).
We double the obstacles keeping the same number of
UAVs and iteration rises to 747 for Experiment 2 (see
Figure 2(b)).

The numbers of obstacles are kept same but the number
of UAVs is increased in Experiment 3. Note the change
in weight W2 to give higher significance to keep UAVs
away from each other at least maintaining some threshold
distance. We make the environment further crowded with
UAVs in Experiment 4 and we discover that iterations are
nearly same as that of Experiment 3.

Experiments 5 and 6 tested nPSO in a large number of
obstacles, that form a congested environment. And we no-
tice from results that we obtain the nearly optimal solution
within 1000 iterations (see Figure 2(e) and Figure 2(f)).

5. CONCLUSION

This paper addresses the basic problem of fast formation
of swarm of UAVs using a recently developed algorithm
Zhang and Mahfouf (2006)called New Structure Particle
Swarm Optimization (nPSO). The nPSO algorithm was
applied successfully to achieve optimal separation between
UAVs in the presence of obstacles. The default settings
of the algorithm were modified to suit the problem under

Table 2. Experiments and Results

Exp. # of Fitness # Obstacles # UAVs [W1,W2,W3]
iterations Value

1 408 29.1272 10 18 [3, 0.175, 0.1025]
2 747 30.2558 20 18 [3, 0.175, 0.1025]
3 616 34.1902 20 18 [3, 0.375, 0.1025]
4 664 67.8993 20 25 [3, 0.375, 0.1025]
5 820 70.4825 30 25 [3, 0.375, 0.1025]
6 946 45.0974 40 18 [3, 0.375, 0.1025]

(a) Exp #1: Fitness value=29.1272 (b) Exp #2: Fitness value=30.2558 (c) Exp #3: Fitness value=34.1902

(d) Exp #4: Fitness value=67.8993 (e) Exp #5: Fitness value=70.4825 (f) Exp #6: Fitness value=45.0974

Fig. 2. Six experiments conducted to measure the performance of nPSO

consideration and the reasoning for the parameter settings
adopted has been presented. In general, the experimental
results presented have shown that nPSO results in faster
convergence to nearly optimal solution with a straightfor-
ward implementation.

Future work will involve investigating repeated calling of
nPSO to seek an optimal solution when the task con-
straints change incrementally from previous constraints.
The case where a Manned Aerial Vehicle (MAV) with
its own sensing region covers some area of environment
independently of the UAVs will be considered. As the MAV
moves continuously the neighbouring UAVs need to change
their positions accordingly.

REFERENCES

Adel, H. and Songefeng, L. (2016). A particle swarm
optimization algorithm based on uniform design. The
International Journal of Data Mining and Knowledge
Management Process, 6(1), 29–36.

Alejo, D., Cobano, J., Heredia, G., and Ollero, A. (2013).
Particle swarm optimization for collision-free 4d tra-
jectory planning in unmanned aerial vehicles. In In-

ternational Conference on Unmanned Aircraft Systems
(ICUAS), 298–307. IEEE.

Cai, Y., Chen, Z., Li, J., Li, Q., and Min, H. (2013).
An adaptive particle swarm optimization algorithm for
distributed search and collective cleanup in complex en-
vironment. International Journal of Distributed Sensor
Networks, 2013.

Morgan, D., Subramanian, G.P., Chung, S.J., and
Hadaegh, F.Y. (2016). Swarm assignment and tra-
jectory optimization using variable-swarm, distributed
auction assignment and sequential convex program-
ming. The International Journal of Robotics Research,
0278364916632065.

Saska, M. (2015). Mav-swarms: Unmanned aerial vehicles
stabilized along a given path using onboard relative
localization. In International Conference on Unmanned
Aircraft Systems (ICUAS), 894–903. IEEE.

Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno,
G., and Kumar, V. (2016). Swarm distribution and
deployment for cooperative surveillance by micro-aerial
vehicles. Journal of Intelligent & Robotic Systems, 1–24.

Turpin, M., Michael, N., and Kumar, V. (2014). Capt:
Concurrent assignment and planning of trajectories for
multiple robots. The International Journal of Robotics

Research, 33(1), 98–112.
Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N.,

Szorenyi, T., Nepusz, T., and Vicsek, T. (2014). Out-
door flocking and formation flight with autonomous
aerial robots. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2014), 3866–
3873. IEEE.

Yu, J., Chung, S.J., and Voulgaris, P.G. (2015). Target as-
signment in robotic networks: Distance optimality guar-
antees and hierarchical strategies. IEEE Transactions
on Automatic Control, 60(2), 327–341.

Zhang, Q. and Mahfouf, M. (2006). A new structure
for particle swarm optimization (npso) applicable to
single objective and multiobjective problems. In IEEE
International Conference on Intelligent Systems, 176–
181. IEEE.

