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Abstract

Species competition in a fluctuating environment is often modelled with stochastic reaction-

diffusion equations. In most cases the movement of individuals is described as Fickian

diffusion. However, in heterogeneous environments this is not the first choice. Recently,

it has been shown that Fokker-Planck diffusion describes the movement of species in a

more realistic way. Fickian diffusion always leads to spatially uniform stationary distri-

butions whereas the Fokker-Planck diffusion generates nonuniform solutions according to

the heterogeneity of the environment and the corresponding spatial variation of diffusion.

Species accumulate in regions of low diffusivity and tend to lower their densities in areas

of high diffusivity. In the present paper, the impact of Fokker-Planck diffusion is studied

with particular consideration of changing spatio-temporal population patterns during the

competitive invasion of a spatially heterogeneous, populated habitat. The standard Lotka-

Volterra competition model is applied to describe the resident-invader interaction. The

resident is assumed to be adapted to the heterogeneous living conditions, i.e., its motion

is modelled as space-dependent Fokker-Planck diffusion. The invader’s diffusion is taken

as neutral Fickian. Furthermore, it is shown that multiplicative environmental noise can

either foster or hinder the invasion.
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1. Introduction0

Biological invasions are a growing threat to biodiversity around the world. The spread of1

alien species can lead not only to the extinction of indigenous species, but also cause consid-2

erable economic damage in eco- and agro-ecosystems. These are, contrary to water-air-soil3

contamination, unfortunately mostly irreparable, since the invasive species constantly re-4

produce and often have no natural enemies. Well-known examples are the invasion of5

rabbits (Perrings et al., 2000) and cane toads (Urban et al., 2008) in Australia or the in-6

vasion of a Pacific oyster in the Dutch and German Wadden Sea (Diederich et al., 2005).7

Many of these invasions are caused by anthropogenic effects such as globalized traffic and8

trade or climate change. On the other hand it might be of interest to reintroduce a species9

into an ecosystem where it has been eradicated before.10

Modelling the invasion process can help to identify mechanisms which foster or hinder11

successful invasions. Most ecological models on this subject describe species densities on12

a population level. Individual movement is often described as diffusive process. In a13

heterogeneous environment the mathematical formalism which describes this process in a14

realistic way depends strongly on the respective species abilities.15

In a recent publication (Bengfort et al., 2016), different formulations for diffusivities have16

been assumed purely space-dependent. Spatial patterns may already occur without any17

interactions. For this setting, the spatially stationary solution has been derived. Fur-18

thermore, the speed of diffusive waves of a single logistically growing population has been19

analytically estimated, and conditions for the formation of spatio-temporal and Turing20

patterns in an excitable prey-predator system have been given.21

Another recent publication (Siekmann and Malchow, 2016) has dealt with the control of22

invasion of a populated habitat by selective infection of the invader. Forthermore, the area23

is subject to uncorrelated and/or correlated environmental noise the resident is adapted to24

but the invading population not.25

The present work shall link the two latter approaches. The Lotka-Volterra textbook model26

of the competition of two populations is combined with space-dependent Fokker-Planck27

diffusion of the residents, Fickian diffusion of the invaders and environmental noise. Two28

competing species, X1 and X2, are modelled with equal mutual competition rates but29

different movement abilities. It is assumed that the resident species is adapted to the30

environmental conditions in its habitat. Favourable regions are characterized by a lower31
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diffusion coefficient whereas it is rather high in unfavourable patches. Hence, the resident32

species move fast in unfavourable regions and tend to remain in the favoured. On the33

other hand, the invader’s diffusivity is spatially uniform, i.e., it moves independent of the34

environmental conditions. It will be shown that the spatial heterogeneity modelled by35

Fokker-Planck diffusion but also the external noise can foster or hinder the invasion.36

2. Methods37

Interactions and movements of populations in a heterogeneous and variable environment38

are often modelled with stochastic reaction-diffusion equations. Diffusive fluxes in ecology39

can differ due to specifics of the population’s relationships and environmental heterogeneity.40

They might be neutral cf. eq. (1), attractive (2) or repulsive (3), i.e., for N populations41

~jin = −Di(~r,X) ~∇Xi(~r, t) , (1)

~jia = −D2
i (~r,X) ~∇

[
Xi(~r, t)

Di(~r,X)

]
= +Xi(~r, t)~∇Di(~r,X)−Di(~r,X) ~∇Xi(~r, t) , (2)

~jir = −~∇ [Di(~r,X)Xi(~r, t)] = −Xi(~r, t)~∇Di(~r,X)−Di(~r,X) ~∇Xi(~r, t) ; (3)

i = 1, 2, . . . , N.

The usual notation is used: X(~r, t) = {Xi(~r, t); i = 1, 2, . . . , N} is the vector of population42

densities at position ~r = {x, y} and time t and Di(~r,X) their possibly space- and density-43

dependent diffusion coefficient. The formulations (1–3) have been elaborated by Skellam44

(1951; 1973, and nicely summarized by Okubo (1980), see also Aronson (1985) and Murray45

(1989). In order to complete the list of ecodiffusive fluxes in heterogeneous media, one could46

add the flux in environmental potentials U(~r)47

~jip = ~jik + γiXi(~r, t)~∇U(~r); i = 1, 2, . . . , N ; (4)

where γi is called the coefficient of affinity of Xi to the environment and index k can48

be n, a and r respectively, i.e., one of the fluxes (1–3) can be applied. The minima of49

U(~r) correspond to preferable and, therefore, attracting habitats. The latter concept has50

been derived from the ideas of habitat value and environmental density (Morisita, 1971;51

Shigesada and Teramoto, 1978).52

The neutral diffusion is also called Fickian (Fick, 1855) whereas the repulsive type is named53

after Fokker and Planck (1914; 1917). For a certain density dependence of diffusion, the54
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latter has been used for modelling the spatial segregation of populations (Shigesada et al.,55

1979; Mimura and Kawasaki, 1980) as well as the formation of Turing patterns (Malchow,56

1988).57

2.1. The stochastic competition-diffusion model58

The dynamics of resident X1 and invader X2 is described by59

∂X1

∂t
=(1−X1)X1 − c12X1X2 + d1∇2(X1D

∗(x, y)) + g1(X1)ξ(~r, t) , (5)

∂X2

∂t
=(1−X2)X2 − c21X1X2 + d2∇2X2 + g2(X2)ξ(~r, t) . (6)

c12 and c21 are parameters to describe the strength of interspecific competition between60

X1 and X2. d1 and d2 are constant parameters to describe the strength of diffusion. Both61

species are assumed to grow logistically. The space dependence of the resident’s diffusivity62

is chosen as63

D∗(x, y) = D0 +

 a
(

sin(
√
x2 + y2)

)m
if
√
x2 + y2 < 3π ,

a (sin(3π))m else .
(7)

This spatially varying diffusivity is meant to represent a simple fragmented landscape with64

a varying habitat quality for speciesX1. The parameter m is an even number which controls65

the steepness of D∗. Zero-flux boundary conditions are assumed. In order to avoid effects66

from spatial heterogeneities at the boundaries, D∗ is set constant for
√
x2 + y2 < 3π,67

whereas x = 0, y = 0 defines the center of the landscape.68

For simplicity, just uncorrelated white noise ξ(~r, t) is applied here, i.e.,69

〈ξ(~r, t)〉 = 0 , 〈ξ(~r1, t1)ξ(~r2, t2)〉 = δ(~r1 − ~r2)δ(t1 − t2) (8)

with linearly density dependent noise intensities70

gi(Xi) = ωiXi ; i = 1, 2 . (9)

2.2. Numerical methods71

We integrate the equations (5) and (6) numerically with a splitted scheme. Therefor we72

use a different method to solve the diffusion terms than we use for the reaction and noise73

terms on the right hand side of the equations. Both numericl methods are explaind in the74

following.75
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2.2.1. Crank-Nicolson scheme for two dimensions with Fokker-Planck diffusion76

We split the Laplace operator into two parts. First, we calculate the diffusion in one spatial77

dimension (x), second we do the same for the other spatial dimension (y).78

∂X

∂t
= ~∇2(XD) =

∂2(XD)

∂x2
+
∂2(XD)

∂y2
, (10)

where X is the population density and D its spatially varying diffusion coefficient which79

can be written as80

D(x, y) = d1D
∗(x, y) (11)

with d1 = const and D∗(x, y) 6= 0 ∀ x, y. Now we formulate the Crank-Nicolson algorithm81

(Crank and Nicolson, 1947) for one spatial dimension as follows82

X t+∆t
k −X t

k

∆t
=

d1

2∆x2

(
X t+∆t

k+1 D
∗
k+1 − 2X t+∆t

k D∗
k +X t+∆t

k−1 D
∗
k−1

+X t
k+1D

∗
k+1 − 2X t

kD
∗
k +X t

k−1D
∗
k−1

)
. (12)

Here k ∈ (1, n) is the index of the spatial position of X, whereas t is the time which varies83

with a discrete time step ∆t. With α = d1
∆t

∆x2
we can write this as a system of linear84

equations85

A
(
~X t+∆t ~D∗

)
= B

(
~X t ~D∗

)
(13)

where ~X and ~D∗ are vectors of length n including the values of Xk and D∗
k at each spatial86

position in one dimension k ∈ (1, n). A and B are the (n× n) tridiagonal matrices87

A =



2

(
1

D∗
1

+ α

)
−α 0 . . . 0

−α . . . −α 0
...

0 −α . . . . . . 0
... . . .

. . . . . . −α

0 . . . −α 2

(
1

D∗
n

+ α

)


,

B =



2

(
1

D∗
1

− α
)

α 0 . . . 0

α
. . . α 0

...

0 α
. . . . . . 0

... . . .
. . . . . . α

0 . . . α 2

(
1

D∗
n

− α
)


.
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This implicit scheme has been proven to be unconditionally stable for two spatial di-88

mensions in case of homogeneous diffusion. A strictly positive D∗ does not change the89

von-Neumann stability criterion given by Crank and Nicolson (1947).90

In order to implement zero-flux boundary conditions we have to add the term −α to the91

matrix components A11 and Ann, and the term α to the matrix components B11 and Bnn.92

To calculate the distribution of X t at time step t+ ∆t, we have to multiply the vector ~X t
93

with the spatially varying coefficient of diffusion ~D∗ and solve the equation A~Y = B ~X,94

where ~X is a input-vector (in our case ~X t · ~D∗) and ~Y is a output-vector. After that the95

components of the output-vector ~Y has to be divided with the corresponding components96

of the vector ~D∗, which is temporally constant in order to get the distribution X t+∆t. Once97

this scheme has been performed for each row in one spatial direction it has to be repeated98

for the other spatial dimension in every time step.99

2.2.2. Derivative-free Milstein method for interactions and noise100

For numerical integration of the interaction and noise terms, the derivative-free Milstein101

method is used (Milstein, 1995; Kloeden and Platen, 1999). The Milstein scheme reads for102

white noise (8,9) with time step ∆t and in Stratonovich interpretation103

X t+∆t
i = X t

i + fi(X
t
i )∆t+ ωiX

t
i∆Wi +

ωi

2

[
fi(X

t
i )
√

∆t+ ωiX
t
i

]
(∆Wi)

2 , (14)

with

∆Wi = W t+∆t
i −W t

i ∼
√

∆tN (0, 1) ,

whereW t
i is a Wiener process andN (0, 1) stands for the normal distribution with zero mean104

and unity variance. The required uniformly distributed random numbers are generated105

with the Mersenne Twister (Matsumoto and Nishimura, 1998), the normally distributed106

random numbers with the common Box-Muller algorithm (Box and Muller, 1958). More107

details about this scheme can be found in Siekmann and Malchow (2016).108

3. Numerical simulations and results109

The model as well as the algorithms described in this paper were implemented in FORTRAN.110

The above mentioned numerical schemes are performed successively for each time step.111

The dimensionless spatial model describes a rectangular domain with a length of Lx =112
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Ly = 3000 with 200 × 200 grid points and zero-flux boundary conditions. The temporal113

and spatial step sizes ht, hx and hy were114

ht = 0.02, hx = hy = 15. (15)

The following parameters have been applied:115

D0 = 1 , m = 8 , c12 = c21 = 1.2 .

The parameter values are chosen arbitrarily without a limitation of generality. We set116

D0 = 1 because this is the minimal value for D∗. In this case the diffusivity of both species117

can directly be spotted from d1 and d2. The effect of Fokker-Planck diffusion depends on118

the heterogeneity of the coefficient of diffusion. We set m = 8 in order to generate large119

values in the first and second derivative of D∗. Because both species are described with120

equal competition parameters (c12 and c21), the difference in the coefficient of diffusion121

determines whether or not an invasion of species X2 is successful in case of homogeneous122

D, i.e., a = 0, cf. eq. (7). Both c12 and c21 exceed unity, so that the system is in a bistable123

parameter range. In case of a non-spatial model without diffusion or noise the species with124

a larger initial density will become dominant and drive its opponent to extinction.125

Due to its spatial variation, the diffusivity d1 ·D∗ of the native species X1 can be greater126

or less than the constant invader’s diffusion coefficient d2. An invasion will be successful127

only in those areas where d2 > d1 ·D∗ (Fig. 2). Areas with a high diffusivity of the native128

species act as barrier for the invasion. This fits well earlier published results on diffusion-129

controlled competitive invasions (Malchow et al., 2011). In this scenario multiplicative130

density-dependent noise (8,9) accelerates the speed of invasion (Fig. 2b). However, strong131

noise can push the invader through the barriers of large resident diffusivity and induce the132

invasion of further regions with low resident diffusivity.133

Because of the Fokker-Planck diffusion in eq. (5), the spatial distribution of the resident134

species, X1, develops proportional to ∇2D∗(x, y), as described in Bengfort et al. (2016). If135

this effect is strong enough, the reduced resident concentration in areas with high resident136

diffusivity enables an invasion of species X2, even if the diffusivity of X1 is larger than137

the diffusivity of X2 everywhere in the domain (Fig. 3). In this scenario, multiplicative138

density-dependent noise has a decelerating effect on the speed of invasion (Fig. 3b).139
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(a) Initial distribution
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(b) D∗(x, y) for a = 9
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(c) ∇2D∗(x, y) for a = 9

Figure 1: Initial settings for densities (green = resident, red = invader) and resident’s diffusivity

(a) t = 3900 ; ω1 = ω2 = 0 (b) t = 3900 ; ω1 = ω2 = 0.4 (c) t = 600 ; ω1 = ω2 = 0.6

Figure 2: d1 = 5, d2 = 25, a = 9: The density of the resident species is reduced in areas of large D∗. The

invader successfully invades the space, where it has a larger coefficient of diffusion as the resident species.

Density-dependent multiplicative noise accelerates the invasion in areas of small D∗. Areas with large D∗

act as a barrier for the invasion. Strong noise can break through these barriers and induces invasion of

X2 in the inner circles with small D∗. Video sequences showing the dynamical process are included in the

online version of this document. (Click on the image.)
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(a) ω1 = ω2 = 0 (b) ω1 = ω2 = 0.25

Figure 3: t = 4400, d1 = 30, d2 = 25, a = 19; large ∇2D(~r): Due to the reduced resident concentration

in areas of large D∗ invasion is possible even though the invader has a smaller coefficient of diffusion

everywhere in the spatial domain. Noise reduces the invasion speed. Strong noise can invert the invasion.

Video sequences showing the dynamical process are included in the online version of this document. (Click

on the image.)
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4. Discussion140

This Fokker-Planck type modelling of the movement of organisms generates patterns in the141

spatial population distribution which correspond to the spatial variation of the diffusion142

coefficient. If this effect is small (small spatial derivatives in D∗), the competitor can invade143

the domain in areas where its (spatially constant) coefficient of diffusion is larger than that144

of the resident species. This is not surprising because both species are described with equal145

parameters for growth and competition so that diffusivity determines the success of invasion146

if the size of the initial patch of the invading species exceeds the related critical patch size.147

This is also the case if the resident would follow Fickian diffusion with a heterogeneous148

coefficient of diffusion. In a non-deterministic environment, where the populations are149

subject to stochastic fluctuations, the speed of invasion increases with increasing noise150

intensity. Strong noise can also induce invasions in areas which are perfectly protected151

against an invasion in the deterministic case. If the pattern forming effect of the Fokker-152

Planck diffusion is stronger, invasion is possible even though the coefficient of the invader153

is smaller than the one of the resident species everywhere in the domain. Contrary to the154

former example, noise has a negative effect on the success of invasion. This is caused by155

the fact, that the density dependent noise counteract the pattern forming properties of the156

Fokker-Planck diffusion. The resident species benefits from the homogenising effect of the157

noise because it has a larger coefficient of diffusion than the invader. A Fickian diffusion for158

the resident can not reproduce these patterns. In this case the resident would outcompete159

the invader because of its larger coefficient of diffusion.160

5. Conclusions161

It has been shown that a non-uniform diffusivity, i.e., Fokker-Planck diffusion, of a resident162

species in a spatially heterogeneous habitat can have different effects on the ability of a163

similar competing species to invade the habitat.164

Spatiotemporal Gaussian noise was applied in order to model the variability of the envi-165

ronment. For future research it would be interesting to investigate the effect of spatially166

and/or temporally colored noise in combination with the Fokker-Planck diffusion which167

generates patterns in the resident species with a certain wavelength.168

Here, it was assumed that only the resident species favours certain areas in the domain and169

consequently move with a spatially varying speed and is therefore described with Fokker-170
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Planck diffusion. One can also think of an inverse situation where the resident species171

is described with constant Fickian diffusion and the invader follows the Fokker-Planck172

description. From a theoretical point of view this scenario is not as interesting because the173

invader starts in a relatively small spatial domain where the heterogeneity in the coefficient174

of diffusion does not play a crucial role. A situation in which both species follow a Fokker-175

Planck description and favour the same or different spatial domains was not part of this176

study. This will be subject of future investigations.177
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