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Abstract 

The deep embedment (DE) of fibre-reinforced polymer (FRP) bars is a promising shear-

strengthening scheme for existing concrete structures. In the current study, a three-

dimensional nonlinear finite element (FE) model for DE-strengthened reinforced concrete 

beams was developed and validated. The FE and Concrete Society TR55 predictions were 

compared with published experimental results. The FE-predicted/experimental shear 

strength enhancement ratio is 1.08 with a standard deviation of 0.25 whereas the TR55-

predicted/experimental shear strength enhancement ratio is 1.57 with a standard deviation of 

0.54. A numerical parametric study was carried out. The results showed that the predicted 

shear strength enhancement was positively influenced by the use of inclined DE FRP bars 

and the increase in concrete compressive strength but decreased with the increase in shear 

span-to-effective depth ratio and internal steel stirrup-to-DE FRP bar ratio. The predicted 

percentage of shear strength enhancement was not significantly influenced by size effect. 

1 Introduction 

The introduction of fibre reinforced polymer (FRP) reinforcement into the civil engineering 

industry can be traced back to the 1980s [1-3]. Since then, FRP shear strengthening of 

concrete structural elements, mainly in the form of externally bonded (EB) sheets or near 

surface mounted (NSM) bars, has grown dramatically [1-2,4]. However, the shear strength 

enhancement that can be provided by these systems is negatively affected by premature 

debonding at a stress level of 20 to 30% of the FRP tensile strength [5-7], especially in the 

cases of beams with (T) or (I) cross-sections [3]. Hence, unless proper anchorage is 

provided, it is not usually possible to fully utilise the high tensile strength of the FRP 

composites [2]. 

Valerio and Ibell [8] developed the deep embedment (DE) technique, also called the 

embedded through-section (ETS) method [4,9-11], which overcomes the shortcomings of the 
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EB and NSM strengthening techniques. In this method, vertical or inclined holes are drilled 

from the soffit of existing reinforced concrete (RC) structures in the desired shear span. High 

viscosity epoxy resin is then injected into the drilled holes and FRP or steel bars are inserted 

into the epoxy-injected holes. The use of FRP bars is favoured as it eliminates the possibility 

of corrosion of the shear strengthening system [12]. Compared to the EB and NSM 

techniques, embedding the FRP bars into the concrete core provides higher strengthening 

effectiveness because the DE method relies on the concrete core to transfer stresses 

between the concrete and FRP bars. The concrete core provides better confinement and 

consequently better bond characteristics to overcome the debonding failure usually 

associated with the other FRP strengthening methods. Other advantages of the DE method 

over the EB and NSM strengthening methods include higher protection against fire and 

vandalism; access to the top slab and time-consuming surface preparation are not required 

and less epoxy consumption [9].  

Limited studies have been carried out on the use of DE FRP bars for concrete shear 

strengthening. Valerio and Ibell [8] studied the effect of diameter, spacing and orientation of 

DE aramid FRP (AFRP) bars. Their findings confirmed the validity of the DE technique as 

three of the strengthened beams failed in flexure. Mofidi et al. [9] investigated the effect of 

presence of steel stirrups as well as surface coating, spacing and diameter of DE carbon 

FRP (CFRP) bars on the shear strength enhancement. The results showed that plain CFRP 

bars provided higher strength enhancement than sand-coated CFRP bars. The shear force 

gain due to the DE CFRP bars increased with the increase in CFRR bar diameter but 

decreased with the presence of stirrups and the increase in CFRP bar spacing. Qin et al. 

[11] examined the effectiveness of CFRP bars as DE shear reinforcement for RC T-girders 

with uncorroded or corroded steel stirrups. The strengthened girders had higher shear 

strengths than the corresponding unstrengthened ones. However, the efficacy of the 

strengthening system decreased with increasing the level of stirrup corrosion.  
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The above review shows that some of the parameters influencing the behaviour of RC 

beams shear-strengthened with the DE technique, e.g. concrete strength, shear span-to-

effective depth (a/d) ratio and effective beam depth, have not been studied. This may be 

partially attributable to the relatively high cost associated with carrying out physical tests. 

The use of a carefully developed finite element (FE) model can provide a viable solution to 

carry out an extensive parametric study on DE FRP shear-strengthened RC girders. In this 

study, a three-dimensional nonlinear FE model, capable of predicting the overall behaviour 

of shear-strengthened RC girders with DE FRP bars, is presented. The predictions of the FE 

model were verified against experimentally tested RC beams [8-9,11]. The FE model was 

then used to examine numerically the influence of FRP bar orientation, concrete 

compressive strength, a/d ratio, effective beam depth and interaction between the DE FRP 

bars and steel stirrups on the predicted shear strength. Furthermore, this paper evaluates 

the accuracy of the Concrete Society TR55 [13] design guidance. 

2 Research significance 

The lifetime extension of existing concrete infrastructure is an application of considerable 

economic importance. It has been estimated that the cost of replacing structurally deficient 

bridges in Europe, a significant amount of which are RC bridges, is about €400 billion [14]. In 

the United States, one in nine of the 607,380 bridges have been rated as structurally 

deficient and $20.5 billion would need to be invested annually to eliminate the bridge 

deficient backlog by 2028 [15]. This study provides valuable insight into the performance 

of the DE method, a promising technique for concrete shear-strengthening. In addition to 

establishing the influence of the main parameters governing the strengthened behaviour; this 

study identifies limitations in current shear strengthening design guidelines and presents an 

accurate FE model for predicting both the strength and behaviour of DE shear-strengthened 

RC structures. 
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3 Finite element model 

A three-dimensional nonlinear FE model was developed using DIANA [16]. Several 

constitutive models (from the published literature) and element types were tested. Based on 

the obtained results, the most appropriate ones were selected to develop the FE model. The 

modelling procedures used in this research are briefly illustrated in the following subsections. 

For further details about the material models and element types, please see the FE package 

user’s manual [16]. 

3.1 Geometric modelling 

3.1.1 Concrete and steel plates 

Three-dimensional eight-node isoparametric solid brick elements [16] were employed for the 

concrete (see Fig. 1), whereas the loading and support steel plates were represented using 

three-dimensional six-node isoparametric solid wedge elements [16]. Each node of these 

elements has three translational degrees of freedom. Several mesh densities were 

investigated for the concrete and the average mesh size of 30 mm (3da, where da represents 

the maximum aggregate size of the concrete mix) in each direction was selected. This mesh 

size, i.e. 3da, has also been recommended by Bažant and Oh [17]. Furthermore, the 

selected mesh size maintains a balance between accuracy and computational time. 

 

Fig. 1. Finite element model 

https://www.researchgate.net/publication/225111716_Crack_Band_Theory_for_Fracture_of_Concrete?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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3.1.2 Steel reinforcement (longitudinal bars and stirrups) 

Embedded bar (truss-like) elements [16] were employed to represent the longitudinal 

reinforcement and shear stirrups. This reinforcement element does not have independent 

degrees of freedom, and its strains are computed from the displacement field of the concrete 

elements surrounding it. Recent studies [18,19] demonstrated that, when the failure mode is 

not controlled by the bond between the steel reinforcement and the concrete, the behaviour 

of FRP-strengthened concrete structures could be successfully predicted using the perfect 

bond assumption. In this study, perfect bond was assumed between the internal steel 

reinforcement and the surrounding concrete as bond failure had not been observed during 

the experimental tests [8,9,11], which are presented in Section 4.1. 

3.1.3 FRP bars 

The FRP bars were represented using three-dimensional two-node truss elements [16]. 

These elements are only deformable in the axial direction, whilst bending and shear 

deformations are not allowed. 

3.1.4 FRP bar-to-concrete interface 

For modelling the bond area (i.e. interface region) between the FRP bars and the 

surrounding concrete, four-node three-dimensional interface elements [16] were employed. 

These elements linked the edges of the solid elements, which represented the concrete, to 

the truss elements which were used to model the DE FRP bars. The four-node three-

dimensional interface elements permitted the relative displacements, i.e. the slip, between 

the concrete and the DE FRP bars to be modelled. 

3.2 Material modelling 

3.2.1 Concrete 

A total strain rotating crack model (a smeared crack based model) was employed for 

simulating the concrete. In the adopted rotating crack model, the concrete behaviour in 

https://www.researchgate.net/publication/245408389_Shear_strengthening_of_existing_concrete_bridges?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/257945549_Experimental_Tests_and_Design_Model_for_RC_Beams_Strengthened_in_Shear_Using_the_Embedded_Through-Section_FRP_Method?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/270275335_CFRP_Shear_Strengthening_of_Reinforced-Concrete_T-Beams_with_Corroded_Shear_Links?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/269811293_Phased_Nonlinear_Finite-Element_Analysis_of_Precracked_RC_T-Beams_Repaired_in_Shear_with_CFRP_Sheets?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/269725484_Nonlinear_finite_element_modelling_and_parametric_study_of_CFRP_shear-strengthened_prestressed_concrete_girders?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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tension and compression is described with one stress-strain curve [16]. The stress-strain 

curve of Thorenfeldt et al. [20] was used in compression, which is given by: 

𝑓𝑐

𝑓𝑐
′ =

𝑛 (
𝜀𝑐
𝜀𝑐𝑜

)

𝑛 − (1 − (
𝜀𝑐
𝜀𝑐𝑜

)
𝑛𝑘

)
                   (1) 

where 𝑓𝑐 represents the concrete compressive stress at a specific strain 𝜀𝑐, 𝑓𝑐
′ is the 

concrete cylinder compressive strength, 𝜀𝑐𝑜 (automatically determined by DIANA) is the 

strain at 𝑓𝑐
′,  𝑛 is a parameter equal to 0.18 + (𝑓𝑐

′/17) and 𝑘 is a parameter governing the 

descending branch of Equation 1 and is equal to 0.67 + (𝑓𝑐
′/62)). The softening of concrete 

in compression, as a result of lateral cracking, was incorporated by adopting the model 

developed by Vecchio and Collins [21].  

The concrete tensile behaviour was modelled using a linear relationship up to concrete 

cracking. A linear tension softening model (based on fracture energy, 𝐺𝑓) was used to 

simulate the gradual drop in tensile stress after concrete cracking. The fracture energy was 

calculated using Remmel’s model [22]: 

𝐺𝑓 = 0.065 × ln (1 +
𝑓𝑐

′

10
)                    (2) 

An explicit model to simulate the shear behaviour of concrete after cracking was not required 

because, in the rotating crack model, the direction of the crack changes according to the 

change in the principal tensile stress direction. It follows that any crack plane in this model is 

a principal plane and consequently there are no shear stresses acting on this plane. 

Poisson’s ratio of concrete was taken as 0.15, which is consistent with the recommendations 

of CEB-FIP Model Code 1990 [23]. 

3.2.2 Steel reinforcement, steel plates and FRP bars 

An elastic-perfectly plastic stress-strain model was adopted for the internal steel 

reinforcement, as well as the steel plates (i.e. loading and support plates). For the FRP bars, 
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a linear-brittle stress-strain model, based on the ultimate strength values reported in the 

experimental tests [8,9,11], was used.   

3.2.3 FRP bar-to-concrete interface 

The two-part bond-slip model of Mofidi et al. [9] was adopted to represent the behaviour of 

the interface behaviour between the FRP bars and concrete. The bond-slip model is used to 

represent the overall FRP bar-to-concrete interface behaviour rather than that of the 

adhesive material. The ascending branch of this model is defined by a parabolic bond 

stress-slip relationship, up to the bond strength (𝜏𝑚), and given by:  

𝜏 = 𝜏𝑚 (
𝑠

𝑠𝑚
)

𝛼

                    (3) 

The descending branch is described by the following linear relationship: 

𝜏 = 𝜏𝑚 (1 + 𝑝 − 𝑝
𝑠

𝑠𝑚
)                    (4) 

where 𝜏 is the bond stress at a specific slip 𝑠, 𝑠𝑚 is the slip value at 𝜏𝑚, 𝛼 is a curve-fitting 

parameter and 𝑝 is a parameter controlling the descending part of the bond-slip relationship. 

For sand-coated CFRP bars, 𝜏𝑚, 𝑠𝑚, 𝛼 and 𝑝 may be taken as 8.4 MPa, 0.08 mm, 0.09 and 

0.07, respectively [9]. 

It should be noted that the beams tested by Valerio and Ibell [8] were strengthened with DE 

AFRP bars (see Section 1). Due to the lack of a bespoke bond stress-slip model for the DE 

AFRP bars, the above bond stress-slip model was adopted for these beams as perfect bond 

between the AFRP bars and the concrete was deemed inappropriate. It is believed that the 

use of the above bond-slip model had insignificant implications on the modelled behaviour 

as none of the beams tested by Valerio and Ibell [8] failed due to debonding of the AFRP 

bars. 

https://www.researchgate.net/publication/245408389_Shear_strengthening_of_existing_concrete_bridges?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/245408389_Shear_strengthening_of_existing_concrete_bridges?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/245408389_Shear_strengthening_of_existing_concrete_bridges?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/257945549_Experimental_Tests_and_Design_Model_for_RC_Beams_Strengthened_in_Shear_Using_the_Embedded_Through-Section_FRP_Method?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/257945549_Experimental_Tests_and_Design_Model_for_RC_Beams_Strengthened_in_Shear_Using_the_Embedded_Through-Section_FRP_Method?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/257945549_Experimental_Tests_and_Design_Model_for_RC_Beams_Strengthened_in_Shear_Using_the_Embedded_Through-Section_FRP_Method?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/270275335_CFRP_Shear_Strengthening_of_Reinforced-Concrete_T-Beams_with_Corroded_Shear_Links?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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3.3 Solution algorithm 

An appropriate incremental-iterative procedure was adopted to solve the nonlinear 

equations. The vertical loads were applied as displacement increments and, for each 

increment, the Quasi-Newton iterative method (also known as the Secant method) was 

employed alongside a displacement-based convergence criterion. The displacement norm 

value of 0.1% was chosen based on the work of Hee and Jefferson [24]. Convergence was 

successfully achieved at the end of each load step using this procedure. A similar solution 

algorithm was successfully used by Qapo et al. [19].  

4 Model validation 

Three sets of experimentally tested RC beams were used for model validation. All 

considered beams failed in shear. Table 1 shows the material properties of the RC beams. 

Table 1.   Material properties of the tested RC beams 

RC beam set Material 

Elastic 

modulus 

(MPa) 

Cylinder 

compressive 

strength 

(MPa) 

Ultimate 

strain 

mm/mm 

Yield 

strength 

(MPa) 

Ultimate 

strength 

(MPa) 

Set 1 – 
includes: 
S0-CON,  
S0-12d130s, 
S1-CON and 
S1-12d260s [9] 

Concrete - 251 - - - 

Ø8 mm stirrups 200,000 - - 540 - 

Ø10 mm bars 200,000 - - 470 - 

Ø25 mm bars 200,000 - - 470 - 

Sand-coated CFRP 148,000 - 0.0127 - 1885 

Set 2 – 
includes: N00 
and R00 [11] 

Concrete (N00) - 21 - - - 

Concrete (R00) - 17.4 - - - 

Ø8 mm (test span) 186,000 - - 542 - 

Ø8 mm (other) 183,000 - - 573 - 

Ø20 mm bars 179,000 - - 576 - 

Ø25 mm bars 180,000 - - 537 - 

Sand-coated CFRP 124,000 - 0.0175 - 2172 

Set 3 – 
includes: 
Specimens 1, 
8, 9 and 10 [8] 

Concrete - 472 - - - 

Ø12 mm bars 200,000 - - 635 - 

Sand-coated AFRP 60,000 - 0.0240 - 1440 
1 The cylinder compressive strength of S1-12d260s was 29.6 MPa. 
2 The cylinder compressive strength of Specimen 1 was 41 MPa. 

https://www.researchgate.net/publication/269725484_Nonlinear_finite_element_modelling_and_parametric_study_of_CFRP_shear-strengthened_prestressed_concrete_girders?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/42581935_A_new_model_for_simulating_cracks_in_cementitious_composites?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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4.1 Details of test specimens 

The first set comprised the four RC T-beams S0-CON, S1-CON, S0-12d130s and S1-

12d260s [9]. S0-CON and S1-CON were unstrengthened control beams whereas S0-

12d130s and S1-12d260s were strengthened in shear using DE CFRP bars. The beams, 

which had a/d ratio of 3.0, were 4520 mm long and tested in three-point-bending as 

illustrated in Fig. 2. The beams had overall depth, flange width, web width and flange 

thickness of 406 mm, 508 mm, 152 mm and 102 mm respectively. Each beam was 

reinforced in tension with four Ø25 mm steel bars, whilst six Ø10 mm steel bars were used 

as compression reinforcement (see Fig. 3). S0-CON had no internal steel shear 

reinforcement, while S1-CON had Ø8 mm steel shear links spaced at 175 mm centre-to-

centre (c/c). S0-12d130s had no shear links and was strengthened in shear using Ø12.7 mm 

DE CFRP bars spaced at 130 mm c/c. S1-12d260s had Ø8mm internal steel shear links 

spaced at 175 mm c/c and Ø12.7 mm DE CFRP bars spaced at 260 mm c/c. 

The second set included the two RC T-beams N00 and R00 [11]. The beams were 2700 mm 

long (with a total span of 2200 mm) and were tested in three-point-bending with a/d ratio of 

3.05. The web width, flange width and flange thickness were 125 mm, 260 mm and 100 mm, 

respectively. The beams had an effective depth of 295 mm. The longitudinal bars comprised 

three Ø20 mm in compression and four Ø25 mm in tension. Both beams had Ø8 mm steel 

shear links spaced at 275 mm c/c in the deficient shear span and 100 mm c/c elsewhere. 

N00 was an unstrengthened control beam whereas R00 was strengthened with Ø10 mm 

sand-coated CFRP bars with a centre to centre spacing of 275 mm.  

The third set included Specimens 1, 8, 9 and 10 tested by Valerio and Ibell [8]. Specimen 1 

was an unstrengthened control beam. Specimens 8, 9 and 10 had two Ø10 mm, two Ø7.5 

mm and one Ø10 mm sand-coated AFRP bars in each shear span respectively. The beams, 

which had a/d ratio of 3.17, were 3000 mm long (with a total span of 2250 mm) and were 

tested in a four-point-bending configuration. They had a rectangular cross-section with a 

width, effective depth and total depth of 110 mm, 189 mm and 220 mm respectively. In this 

https://www.researchgate.net/publication/257945549_Experimental_Tests_and_Design_Model_for_RC_Beams_Strengthened_in_Shear_Using_the_Embedded_Through-Section_FRP_Method?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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series, each beam was reinforced in tension with two Ø12 mm high yield steel bars. The 

beams had no steel compression or shear reinforcement.      

 

 Fig. 2. Details of the tested RC T-beams [9] 

 

(a)                                                             (b) 

 

(c)                                                             (d) 

Fig. 3. Cross-section dimensions of the tested T-beams: (a) S0-CON, (b) S1-CON, (c) S0-

12d130s and (d) S1-12d260s [9] 

1050 mm

1232 mm

3110 mm

178 mm
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4.2 Finite element model predictions 

The accuracy of the FE model was evaluated by comparing the experimental results with the 

FE predictions. The comparison included the shear force capacity, deflection response, 

strain in stirrups and FRP bars and crack patterns at failure. 

The experimental and FE-predicted shear strengths are given in Table 2. The overall mean 

predicted/experimental shear force capacity ratio and standard deviation are respectively 

1.02 and 0.05. The best predictions were obtained for the first set of beams [9] which had a 

mean predicted/experimental shear force capacity ratio of 1.00 and a standard deviation of 

0.02. Only the first set included RC beams with different shear links ratios (0 and 0.38%). 

Furthermore, the first set included beams with a T cross-section which adequately simulates 

the common slab-on-beam construction method. Thus, the first set of beams form the basis 

of the parametric study reported in Section 6.  

Table 2.   Experimental and FE-predicted shear force capacities 

Beam 
Shear force capacity, V (kN) 

FE/Exp. 1 
Experimental FE analysis 

S0-CON [9] 81.3 80.5 0.99 

S0-12d130s [9] 180.8 176.9 0.98 

S1-CON [9] 232.2 234.5 1.01 

S1-12d260s [9] 266.6 271.5 1.02 

N00 [11] 143.0 133.4 0.93 

R00 [11] 142.0 150.6 1.06 

Specimen 1 [8] 22.5 25.4 1.13 

Specimen 8 [8] 32.0 33.3 1.04 

Specimen 9 [8] 32.0 31.9 1.00 

Specimen 10 [8] 30.0 31.5 1.05 
1 Mean (FE/Exp.) value is 1.02 with a standard deviation of 0.05. 

The experimental and numerical variations of shear force with deflection under loading point 

for the beams tested by Mofidi et al. [9] are depicted in Fig. 4. The Figure shows that all 

curves are approximately linear up to crack formation. Subsequently, the curves turned 

nonlinear as a result of stiffness deterioration due to cracking. The deterioration continued 

https://www.researchgate.net/publication/257945549_Experimental_Tests_and_Design_Model_for_RC_Beams_Strengthened_in_Shear_Using_the_Embedded_Through-Section_FRP_Method?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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with increased loading until failure occurred. At failure, the load dropped suddenly which is a 

characteristic of shear failure. Fig. 4 clearly demonstrates that there is a very good match 

between the experimental and FE-predicted shear force-deflection behaviour from initial 

loading up to beam failure. This result further confirms the accuracy of the FE model. 

 

(a)                                                             (b) 

 

(c)                                                             (d) 

Fig. 4. Experimental [9] and FE-predicted shear force-deflection curves: (a) S0-CON, (b) S1-

CON, (c) S0-12d130s and (d) S1-12d260s 

The variations of shear force versus maximum strain in the steel stirrups and DE CFRP bars 

are presented in Fig. 5 and Fig. 6, respectively. The developed FE model correctly predicted 

that both the shear stirrups and DE CFRP bars remained passive up to the formation of 

inclined cracks. The developed model also correctly predicted the shear forces (50-75 kN) at 
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which the steel and CFRP shear reinforcement started to develop strain. The development 

of strain in the steel shear links was overall well modelled, whilst the strain in the DE CFRP 

bars was underestimated. This may be attributable to the smeared modelling of the discrete 

shear cracks. Nonetheless, the FE model successfully captured the main characteristics of 

the experimental behaviour which included yielding of the steel shear links, absence of DE 

CFRP bar debonding and brittle (shear) failure. 

 

(a)                                                             (b) 

Fig. 5. Experimental [9] and FE-predicted shear force vs. strain in the steel shear links: (a) 

S1-CON and (b) S1-12d260s 

 

(a)                                                             (b) 

Fig. 6. Experimental [9] and FE-predicted shear force vs. strain in the DE CFRP bars: (a) 

S0-12d130s and (b) S1-12d260s 
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Mofidi et al. [9] did not provide figures for the experimental crack patterns at failure of the 

modelled beams. However, they reported that failure of S1-12d260s occurred when parallel 

diagonal shear cracks, that formed at relatively equal distances with an inclination angle of 

37°-42°, opened up and reached the flange of the beam. This description is quite 

comparable to the predicted principal tensile strain contours at failure of S1-12d260s, which 

are shown in Fig. 7. 

 

Fig. 7. Predicted principal tensile strain contours for S1-12d260s at failure 

For the beams tested by Qin et al. [11], the experimental and FE-predicted shear force 

versus deflection under loading point curves are shown in Fig. 8. The stiffer behaviour 

predicted for R00 can be attributed to the FRP-to-concrete bond-slip model [25-26]. 

  

 (a)                                                             (b) 

Fig. 8. Experimental [11] and predicted shear force-deflection curves: (a) N00 and (b) R00 

https://www.researchgate.net/publication/270275335_CFRP_Shear_Strengthening_of_Reinforced-Concrete_T-Beams_with_Corroded_Shear_Links?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/270275335_CFRP_Shear_Strengthening_of_Reinforced-Concrete_T-Beams_with_Corroded_Shear_Links?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/279889585_Brittle_failure_in_FRP_plate_and_sheet_bonded_beams?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/245303997_Analysis_of_Repaired_Reinforced_Concrete_Structures?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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The experimentally tested beams failed in shear. There was no sign of FRP debonding for 

R00. This behaviour was accurately predicted by the developed FE model as can be seen in 

Fig. 9 which compares the experimental and FE-predicted failure modes for R00. Fig. 10 

shows that the FE model correctly predicted the shear force-strain variation for the middle 

steel stirrup in R00. The strain results for the DE FRP bars in R00 were not published. 

 

Fig. 9. Experimental [11] and FE-predicted failure modes of R00 

 

Fig. 10. Experimental [11] and FE-predicted shear force-strain variation for the middle steel 

stirrup in R00 

Fig. 11 compares the experimental and FE-predicted shear force versus mid-span deflection 

curves for the beams tested by Valerio and Ibell [8]. The available experimental and the 

corresponding FE-predicted failure modes are compared in Fig. 12. Based on the presented 

https://www.researchgate.net/publication/245408389_Shear_strengthening_of_existing_concrete_bridges?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/270275335_CFRP_Shear_Strengthening_of_Reinforced-Concrete_T-Beams_with_Corroded_Shear_Links?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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comparisons, it can be concluded that the developed FE model successfully captured the 

experimental behaviour of both the control and the strengthened beams with high accuracy. 

  

 (a)                                                             (b) 

  

 (c)                                                             (d) 

Fig. 11. Experimental [8] and FE-predicted shear force-deflection curves: (a) Specimen 1, 

(b) Specimen 8, (c) Specimen 9 and (d) Specimen 10 
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(a) 

 

(b) 

 

(c) 

Fig. 12. Experimental [8] and FE-predicted failure modes: (a) Specimen 1, (b) Specimen 8 

and (c) Specimen 10 
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5 Comparison of experimental results with FE and TR55 predictions  

The Concrete Society’s [13] Technical Report 55 (TR55) is the first, and currently the sole, 

standard document to provide detailed design guidelines for DE FRP shear reinforcement. 

TR55 suggests the following expression for the shear force carried by DE FRP bars (𝑉𝑓): 

𝑉𝑓 =
𝜀𝑓𝑠𝑒𝐸𝑓𝑑𝐴𝑓

𝑠𝑏
𝑊𝑒𝑓𝑓                    (5) 

where 𝜀𝑓𝑠𝑒 is the effective strain in the FRP bars (taken as 0.004 mm/mm), 𝐸𝑓𝑑 is the design 

Young’s modulus of the FRP bars (MPa), 𝐴𝑓 represents the area of one FRP bar (mm2), 𝑠𝑏 

represents the spacing between the FRP bars (mm) and 𝑊𝑒𝑓𝑓 is the effective width (mm) 

over which the FRP bars may act and given by: 

𝑊𝑒𝑓𝑓 = ℎ − 2𝑙𝑏,𝑚𝑎𝑥                    (6) 

where ℎ is the strengthened depth (mm) and 𝑙b,max is the maximum anchorage length (mm) 

beyond which no additional capacity gain can be achieved, given by: 

𝑙𝑏,𝑚𝑎𝑥 =
𝜀𝑓𝑠𝑒𝐸𝑓𝑑𝐴𝑓

(𝜋𝑑𝑏
𝜏𝑏

𝛾𝐴
)

                    (7) 

where 𝑑b is the FRP bar diameter (mm), 𝜏b represents the average bond stress (MPa) over 

the anchored length and can be taken as 15 MPa in the absence of test data and 𝛾A is a 

partial safety factor for the adhesive material. 

A comparison of the experimental results with FE and TR55 predictions for 𝑉𝑓 is presented in 

this section. All safety factors are set equal to 1.00 for the purpose of comparison. The 

experimental and numerical (FE) values of 𝑉𝑓 were calculated by subtracting the shear 

strength of an unstrengthened beam from the shear strength of the corresponding 

strengthened beam. Differences in the concrete strength between the control and 

strengthened beams (see Table 1) were taken into consideration when calculating the 

experimental and numerical (FE) values of 𝑉𝑓.  
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Table 3 compares the shear force gain predicted by the FE model and TR55 design model 

with the experimental results. TR55 predictions overestimated the shear force gain with a 

mean predicted/experimental ratio of 1.57 and a standard deviation of 0.54. The discrepancy 

of TR55 predictions may be attributable to the relatively high value of average bond stress 

(15 MPa) allowed by the design guidance. Thus, the TR55 model underestimates the value 

of the anchorage length (𝑙b,max) and consequently overestimates both 𝑊𝑒𝑓𝑓 and 𝑉𝑓. The FE 

model gave much better predictions for the shear force gain with a mean 

predicted/experimental ratio of 1.08 and a standard deviation of 0.25.  

Given the importance of TR55 [13] as the only standard document that provides detailed 

design guidance for DE FRP shear reinforcement, improving the accuracy of its predictions 

is urgently needed. 

Table 3.   Experimental, FE and TR55 shear force gain 

Beam 

Shear force gain due to FRP bars 
(kN) 

Vf,FE / Vf,exp
 2 Vf,TR55 / Vf,exp

 3 Experimental 

Vf,exp
1 

FE model 

Vf,FE
1 

TR55 [13] 

Vf,TR55 

S0-12d130s [9] 99.5 96.4 89.4 0.97 0.90 

S1-12d260s [9] 20.3 28.0 44.7 1.38 2.20 

R00 [11] 11.8 17.0 27.5 1.44 2.33 

Specimen 8 [8] 8.4 7.9 13.2 0.94 1.57 

Specimen 9 [8] 8.4 6.5 8.5 0.77 1.01 

Specimen 10 [8] 6.4 6.1 8.8 0.95 1.38 
1 Calculated taking into consideration differences in concrete strength between the 
control and strengthened beams (see Table 1). 
2 Mean (Vf,FE / Vf,exp) value is 1.08 with a standard deviation of 0.25. 
3 Mean (Vf,TR55 / Vf,exp) value is 1.57 with a standard deviation of 0.54. 

6 Parametric study 

Based on the demonstrated accuracy of the developed FE model, a numerical parametric 

study was executed to study the effect of DE FRP bar inclination angle, concrete 

compressive strength, a/d ratio, effective beam depth and interaction between steel stirrups 

and DE FRP bars on the predicted shear strength. As explained in Section 4.2, the 
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parametric study was based on beams tested by Mofidi et al. [9]. Where appropriate, FE and 

TR55 [13] predictions are compared and similarities and differences are highlighted.  

Of note is that the FE predictions reflect the performance of the developed model. Further 

experimental tests are required to confirm the FE predictions.   

6.1 DE FRP bar orientation 

The effect of DE FRP bar orientation was investigated by modelling beams nominally 

identical to S0-12d130s and S1-12d260s. For each modelled beam, the DE FRP bars were 

inclined at either 45° or 90° to the longitudinal beam axis.  

Table 4 presents the FE-predicted results. The predicted shear force capacities of the 

beams without (S0-12d130s) and with (S1-12d260s) internal steel stirrups increased by 

12.5% and 4.3%, respectively when the DE FRP bar inclination angle was changed from 90° 

to 45°. This outcome is in broad agreement with the work of Barros and Dalfré [10] who 

reported that inclined DE steel bars were more efficient compared with vertical ones, 

especially for the case of RC beams without internal steel stirrups. The higher strength 

enhancement offered by inclined DE bars may be attributable to two reasons. First, inclined 

DE bars are less susceptible to debonding owing to the higher anchorage length. Second, 

for the same values of 𝐴𝑓, 𝑏𝑤 (web width) and 𝑠𝑏; the shear reinforcement ratio of inclined 

DE bars (𝐴𝑓/𝑏𝑤𝑆𝑏𝑆𝑖𝑛𝜃), where 𝜃 is the DE bar inclination angle, is higher than that of vertical 

bars (𝐴𝑓/𝑏𝑤𝑆𝑏). Thus, inclined DE bars offer higher resistance to crack opening than vertical 

DE bars. 

Table 4.   Effect of DE FRP bar orientation 

Beam 

Shear force capacity, V (kN) Increase 
attained by 

inclined bars 
(%) 

Vertical DE bars 

(90°) 

Inclined DE bars 

(45°) 

S0-12d130s 176.9 199.0 12.5 

S1-12d260s 271.5 283.1 4.3 
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TR55 design model [13] does not consider the influence of DE FRP bar orientation on the 

shear strength enhancement. Therefore, it was not possible to compare the FE results for 

beams with inclined DE FRP bars with TR55 predictions. 

6.2 Concrete cylinder compressive strength 

The effect of concrete compressive strength was studied by modelling beams nominally 

identical to S0-CON, S0-12d130s, S1-CON and S1-12d260s. For each beam, concrete 

cylinder compressive strength values of 25, 35, 45, 55 and 65 MPa were considered.  

Fig. 13a and Fig. 13b present the influence of concrete cylinder compressive strength on the 

predicted shear force at failure and shear force contribution of the DE FRP bars, 

respectively. Some of the FE models for S1-CON and S1-12d260s failed in flexure and their 

predictions were discarded. All the remaining predictions presented in Fig. 13 are for FE 

models that failed in shear.  

  

 (a)                                                             (b) 

Fig. 13. Influence of concrete cylinder compressive strength on the predicted (a) shear force 

capacity and (b) gain in shear force attributable to DE FRP bars 

Fig. 13a shows that the predicted shear strength increased linearly with the increase in 

concrete grade. The predicted shear strength increased respectively by 33.8% and 52.8% 

for the unstrengthened (S0-CON) and strengthened beams without steel shear 
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reinforcement (S0-12d130s) when the concrete compressive strength was increased from 25 

to 65 MPa. For the unstrengthened beam with steel shear reinforcement (S1-CON), 

increasing the concrete cylinder compressive strength from 25 to 45 MPa resulted in an 

increase in the predicted shear force capacity by 26.1%. The predicted shear force capacity 

increased by 18.3% for the strengthened beam with steel shear reinforcement (S1-12d260s) 

as a result of increasing the concrete cylinder compressive strength from 25 to 35 MPa. The 

predicted increases in the shear force capacities may be attributable to the enhancement in 

the concrete shear force contribution as a result of increasing the grade of concrete. 

Fig. 13b shows that the higher the concrete grade, the higher the predicted shear strength 

enhancement due to the DE FRP bars. Due to the good bond between the concrete and DE 

FRP bars, which is represented by the bond-slip model, bond failure does not occur. The 

weakest link becomes the concrete next to the FRP-to-concrete interface. Increasing the 

concrete grade results in a corresponding increase in the concrete tensile strength and this, 

in return, improves the DE FRP contribution. The predicted shear contribution of the DE FRP 

bars increased from 96.4 kN to 162.6 kN for the beams without steel stirrups as a result of 

the increase in concrete grade from 25 to 65 MPa. For the beams with steel stirrups, 

increasing the concrete grade from 25 to 35 MPa resulted in an increase in the predicted 

shear force gain from 11.2 kN to 26.8 kN.  

As demonstrated in Fig. 13b, TR55 design model [13] does not consider the influence of 

concrete compressive strength on the shear strength enhancement provided by DE FRP 

bars. 

6.3 Shear span-to-effective depth ratio 

The a/d ratio has a substantial effect on the shear behaviour of RC beams as the change in 

a/d ratio results in a change in the shear resisting system. RC beams with an a/d ratio less 

than 2.5 (i.e. deep beams) behave as a tied arch after crack formation. The tied arch system 
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results in direct transfer of the shear force into the support. In contrast, RC beams with a/d 

ratio higher than 2.5 (i.e. slender beam) resist shear by beam action [27]. 

Sayed et al. [28] and Qapo et al. [19] recently assessed the influence of a/d ratio on the 

shear behaviour of reinforced and prestressed concrete girders strengthened by EB CFRP 

sheets, respectively. The results showed that the shear contribution of the EB CFRP sheets 

was substantially influenced by the a/d ratio of the beam. The influence of a/d ratio on the 

shear contribution of DE FRP bars has not been investigated.  

The influence of a/d ratio was investigated in this study by developing FE models nominally 

identical to S0-CON, S0-12d130s, S1-CON and S1-12d260s. For each modelled beam, a/d 

ratios in the range from 2.6 to 4.1 were considered. FE models with a/d ratios higher than 

4.1 failed in flexure and thus their predictions were discarded.  

The effect of a/d ratio on the predicted average shear stress in the concrete at beam failure 

is depicted in Fig. 14a. The Figure shows that increasing the a/d ratio leads to a reduction in 

the predicted average shear stress at failure, which is compatible with the results reported by 

Kani et al. [27], Sayed et al. [28] and Qapo et al. [19]. This finding might be attributable to the 

switch in the shear resisting mechanism from arch-action to beam-action. The maximum 

reduction was about 28.3% for S1-12d260s series. 

Fig. 14b shows that increasing the a/d ratio has a negative impact on the predicted shear 

force gain due to DE FRP bars. The predicted shear force gain due to DE FRP bars 

decreased approximately linearly by 36.4% and 64.4%, for S0-12d130s and S1-12d260s 

series respectively, as a result of increasing the a/d ratio from 2.6 to 4.1. This outcome is 

compatible with the findings of Sayed et al. [28] who modelled EB FRP shear-strengthened 

RC beams and Qapo et al. [19] who modelled EB CFRP shear-strengthened prestressed 

concrete beams.  

https://www.researchgate.net/publication/269725484_Nonlinear_finite_element_modelling_and_parametric_study_of_CFRP_shear-strengthened_prestressed_concrete_girders?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/269725484_Nonlinear_finite_element_modelling_and_parametric_study_of_CFRP_shear-strengthened_prestressed_concrete_girders?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/269725484_Nonlinear_finite_element_modelling_and_parametric_study_of_CFRP_shear-strengthened_prestressed_concrete_girders?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/274102780_Modeling_of_Shear_Capacity_of_RC_Beams_Strengthened_with_FRP_Sheets_Based_on_FE_Simulation?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
https://www.researchgate.net/publication/274102780_Modeling_of_Shear_Capacity_of_RC_Beams_Strengthened_with_FRP_Sheets_Based_on_FE_Simulation?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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 (a)                                                             (b) 

Fig. 14. Effect of a/d ratio on the predicted (a) shear stress at failure and (b) gain in shear 

force attributable to DE FRP bars 

As shown in Fig. 14b, TR55 design model [13] does not take into account the effect of a/d 

ratio. This shortcoming needs urgent attention since a/d ratio is one of the key parameters 

governing the strengthened behaviour. 

6.4 Effective beam depth 

Previous studies on concrete beams [29,30] have shown that the nominal shear stress at 

failure tends to decrease with increasing beam depth. This is attributable to wider cracks in 

larger sections [6]. Moreover, studies on concrete beams shear-strengthened with EB FRP 

laminates have revealed that the increase in beam depth can have a detrimental influence 

on the shear contribution of the FRP reinforcement [19,31]. The influence of effective beam 

depth has not been studied in beams shear-strengthened using DE FRP bars. 

In this study, FE models with effective depths of 350 mm (i.e. 1.0d), 525 mm (i.e. 1.5d) and 

700 mm (i.e. 2.0d) were developed for S0-CON, S0-12d130s, S1-CON and S1-12d260s in 

order to study the influence of effective beam depth. The flange dimensions were also 

changed proportionally with the change in beam depth, whereas other parameters (e.g. a/d 

https://www.researchgate.net/publication/269811473_Precracked_Reinforced_Concrete_T-Beams_Repaired_in_Shear_with_Prestressed_Carbon_Fiber-Reinforced_Polymer_Straps?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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ratio, longitudinal steel ratio, stirrup ratio, DE FRP bar ratio and mesh size) were kept 

constant.  

The influence of effective beam depth on the predicted ultimate shear stress is depicted in 

Fig. 15a. The Figure shows that the predicted shear stress at failure decreases with 

increasing effective beam depth. The predicted shear stress at failure decreased 

respectively by 19.1%, 20.7%, 25.2% and 20.5% for S0-CON, S0-12d130s, S1-CON and 

S1-12d260s when the effective depth of the beams was doubled. This result is consistent 

with the findings of previous studies [19,29-31] and may be explained by the wider cracks in 

larger members. 

Fig. 15b presents the effect of effective beam depth on the shear strength enhancement 

percentage. The percentage of the predicted shear force gain decreased from 119.7% and 

12.2% to 115.3% and 9.5% for series S0-12d130s and S1-12d260s, respectively, when the 

effective depth of the beams was doubled. This result is important because it suggests that 

beam depth does not significantly affect the shear strength enhancement offered by the DE 

FRP bars. 

Fig. 15c compares the FE-predicted shear strength enhancement results with TR55 [13] 

predictions. This Figure shows that both the FE and TR55 [13] models predict that the shear 

strength enhancement increases with increasing beam depth. This may be explained by the 

increase in effective bond length in large beams [32]. It can also be observed from Fig. 15c 

that in the case of strengthened beams with steel stirrups (i.e. S1-12d260s series), TR55 

model [13] predicted much higher shear strength enhancement levels than the FE model. 

According to the FE results, the shear force gain increased from 96.4 kN and 28.0 kN to 

302.2 kN and 75.3 kN for series S0-12d130s and S1-12d260s, respectively, when the 

effective depth of the beams was doubled. The corresponding increases predicted by TR55 

model [13] were from 89.8 kN and 44.7 kN to 357.7 kN and 178.8 kN, respectively. The 

values predicted by TR55 [13], especially for S1-12d260s series, seem unrealistically high. 

As explained in Section 5, the high value of average bond stress allowed by TR55 [13] leads 

https://www.researchgate.net/publication/269076111_Precracked_reinforced_concrete_T-Beams_repaired_in_shear_with_bonded_carbon_Fiber-Reinforced_Polymer_sheets?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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to overestimating the contribution of the DE FRP bars. Further experimental tests are 

recommended to confirm the FE predictions. 

  

(a)                                                             (b) 

 

 (c) 

Fig. 15. Influence of effective beam depth on (a) the predicted shear stress at failure, (b) the 

percentage of shear force gain attributable to DE FRP bars and (c) the predicted shear force 

gain 

6.5 Interaction between steel stirrups and DE FRP bars 

For the case of RC beams shear-strengthened with EB FRP sheets [33,34], the presence of 

steel stirrups is one of the substantial parameters influencing the shear contribution of FRP 

https://www.researchgate.net/publication/222401648_Rehabilitation_of_rectangular_simply_supported_RC_beams_with_shear_deficiencies_using_CFRP_composites?el=1_x_8&enrichId=rgreq-143c1f79-5f83-4633-8397-3ccbdf895f3e&enrichSource=Y292ZXJQYWdlOzMwMDAyNDE5NztBUzozNDg3MzcyMDIzNDM5MzZAMTQ2MDE1NjgzNjMxNQ==
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composites. The influence of the steel stirrup-to-DE FRP bar ratio was examined by 

modelling FE beams similar to S1-12d260s but with different steel stirrup-to-DE FRP bar 

ratios. The FE results are presented in Fig. 16 in terms of predicted shear force gain due to 

DE FRP bars versus Es.ρs/Efrp.ρfrp (i.e. elastic modulus of steel stirrups multiplied by steel 

stirrups ratio / elastic modulus of DE FRP bars multiplied by DE FRP bars ratio). Based on 

the FE results, the predicted shear contribution of the DE FRP bars is inversely proportional 

to Es.ρs/Efrp.ρfrp.  

Similar to the cases of DE FRP bar orientation, concrete compressive strength and a/d ratio, 

the TR55 design model [13] does not consider the interaction between steel stirrups and DE 

FRP bars. Consequently, the TR55 design model [13] might overestimate the shear strength 

enhancement for beams with high steel stirrup ratios. Further tests are required to confirm 

this result. 

 

Fig. 16. Interaction between shear stirrups and DE FRP bars 

7 Conclusions 

A FE model for RC beams shear-strengthened with DE FRP bars was developed and 

validated using published experiments from the literature. The comparison of FE and TR55 

predictions with experimental results demonstrates that the FE model is a significant 
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improvement over TR55 design model. The FE model had a mean predicted/experimental 

shear strength enhancement ratio of 1.08 (standard deviation of 0.25) whereas TR55 

overestimated the shear strength enhancement with a mean predicted/experimental ratio of 

1.57 (standard deviation of 0.54). A wide-ranging parametric study was conducted to study 

the influence of DE FRP bar orientation, concrete compressive strength, a/d ratio, effective 

beam depth and interaction between DE FRP bars and internal steel shear reinforcement on 

the predicted behaviour of RC beams strengthened in shear using DE FRP bars. The use of 

45° inclined DE FRP bars, compared with vertical DE FRP bars, enhanced the predicted 

shear force capacity for beams with and without steel stirrups. The predicted shear strength 

enhancement was positively influenced by the increase in concrete compressive strength but 

decreased with increasing the a/d ratio and steel stirrup-to-DE FRP bar ratio. The increase in 

effective beam depth did not have a substantial influence on the percentage shear strength 

enhancement offered by the DE FRP bars. Compared to the FE results, TR55 design model 

overestimated the influence of effective beam depth on the shear strength enhancement, 

especially for the case of strengthened beams with shear links. TR55 does not consider the 

effect of DE FRP bar orientation, concrete compressive strength, a/d ratio and interaction 

between steel stirrups and DE FRP bars. Finally, it is noteworthy that the presented FE 

predictions reflect the performance of the developed model. Further experimental tests are 

therefore needed to confirm the FE predictions. 
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