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Abstract 

The study focused on QSAR model interpretation. The goal was to develop a workflow for the 

identification of molecular fragments in different contexts important for the property modelled. Using 

a previously established approach – Structural and physicochemical interpretation of QSAR models 

(SPCI) – fragment contributions were calculated and their relative influence on the compounds’ 

properties characterised. Analysis of the distributions of these contributions using Gaussian mixture 

modelling was performed to identify groups of compounds (clusters) comprising the same fragment, 

where these fragments had substantially different contributions to the property studied. 

SMARTSminer was used to detect patterns discriminating groups of compounds from each other and 

visual inspection if the former did not help. The approach was applied to analyse the toxicity, in terms 

of 40 hour inhibition of growth, of 1984 compounds to Tetrahymena pyriformis. The results showed 

that the clustering technique correctly identified known toxicophoric patterns: it detected groups of 

compounds where fragments have specific molecular context making them contribute substantially 

more to toxicity. The results show the applicability of the interpretation of QSAR models to retrieve 

reasonable patterns, even from data sets consisting of compounds having different mechanisms of 

action, something which is difficult to achieve using conventional pattern/data mining approaches. 

 

Introduction 

Mechanistic interpretation of QSAR models is useful to understand the complex nature of 

biological or physicochemical processes. It can be applied to drug and product development to 

optimise the structures of studied compounds by increasing efficacy and reducing harmful effects. 

Model interpretation can also serve as a means to confirm the validity of a model, i.e. that the model 

has captured relevant and meaningful relationships between activity and structure [1]. It is also 

important for regulatory application, for example, the fifth of the OECD Principles for the Validation 



of QSARs requires, where possible, mechanistic interpretation on QSAR models. [2]. Whilst this 

principle is optional it is considered helpful to get round the long held belief that QSAR models were 

“black boxes” and interpretation was not always possible. Recently, several approaches have been 

proposed that have assisted in making QSAR models interpretable and have helped to establish a new 

paradigm for interpretation [1]. These methods are closely related to the matched molecular pairs 

(MMP) approach [3]. They allow for the calculation of the contributions of single atoms [4], arbitrary 

fragments [5], or predicted activity changes corresponding to given molecular transformations [6]. The 

contributions of identical fragments/transformations are usually averaged to reveal general trends in 

structure-property relationships [7-11]. Whilst useful, currently none of these approaches take into 

account the molecular context of the fragments considered which may significantly influence the 

fragment’s behavior, e.g. transforming a “safe” non-toxicophoric moiety into a reactive group. It has 

been demonstrated that consideration of the molecular environment may improve the outcome of the 

MMP analysis [12]. Therefore, we expect that capturing molecular context of fragments can improve 

interpretation of QSAR models. 

The aim of this study was to develop and utilise an unsupervised approach to analyse fragment 

contributions and the influence of molecular context on biological activity. This influence was 

captured implicitly by analysing distributions of the contributions of fragments from different 

compounds. Three scenarios were considered as illustrated in Error! Reference source not found.. The 

distribution of fragment contributions may constitute a narrow range of values (Error! Reference source 

not found.A). Since each single contribution comes from a particular molecule, such a shape may 

indicate that the influence of molecular context is insignificant or all compounds comprise the 

fragment in a very similar context. Broad distributions indicate that the molecular context could 

substantially influence calculated contributions (Error! Reference source not found.B and C). Broad 

distributions can have a single, or several, peaks. Multiple peaks on a distribution (Error! Reference 

source not found.C) may indicate different contexts of the fragment. Therefore, it would be reasonable 

to identify subpopulations (clusters) of fragments having different contributions, and inspect 

compounds corresponding to these subpopulations for meaningful structural patterns. To achieve these 

aims Gaussian mixture modelling (GMM) was used. Compounds corresponding to different clusters 

were analyed using SMARTSminer [13] in order to find discriminative structural patterns (Error! 

Reference source not found.). We applied the approach developed to analyse QSAR models for the 

toxicity of a range of compounds to Tetrahymena pyriformis in order to identify toxicophoric patterns.  

 

 

Materials and methods 

 

Data set 

The data set analysed was for the inhibition of growth  of chemical substances to the ciliated 

protozoan Tetrahymena pyriformis represented as lg(1/IGC50) (IGC50 in mol/l). Toxicity data were 

taken from the study of Ruusmann and Maran [14]. Standardizer was used for structure standardisation 



and tautomerisation, in addition structures were checked for errors [15] and duplicates were removed. 

The data set curation workflow is available from the public repository - 

https://bitbucket.imtm.cz/projects/STD/repos/std/browse. The curated data set comprised 1984 

compounds whose structures and activity values are provided in Supplementary materials. All 

modelling steps including descriptor calculation, model development and validation, molecule 

fragmentation and calculation of fragment contributions were performed with the open-source spci 

software [9, 16]. 

Descriptors 

Counts of fragments having 2-4 heavy atoms were used as the descriptor set. Fragments were 

determined with either all atoms connected or containing two disconnected parts. The atoms in the 

fragments were labelled according to their partial charge, lipophilicity, refractivity and ability to form 

H-bonds calculated using Chemaxon cxcalc utility [17]. Descriptors were calculated by the sirms tool 

included in the spci software [18]. More details about descriptor calculation are available in previous 

publications [8-9, 16]. 

Model building 

Four regression QSAR models were built using Random Forest (RF), Partial Least Squares 

(PLS), Gradient Boosting Machine (GBM) and Support Vector machine (SVM) methods from scikit-

learn Python package [19]. The predictive performance of the models was assessed using five-fold 

cross-validation. Q2 and RMSE were used as statistical measures calclulated according to eq. (1) and 

(2) respectively. A consensus model (obtained by averaging predictions of individual models which 

had appropriate Q2 and RMSE) was used for interpretation in this study as, in common with previous 

studies [9], individual models were in close agreement and using the consensus model helped 

compensate biases of these models [9]. 

Q2 = 1 −  
∑ (yi,pred− yi,obs)2   i

∑ (yi,pred− y̅obs)2   i
       (1) 

RMSE = √ 
∑ (yi,pred− yi,obs)2   i

N
     (2) 

 

Fragmentation of molecules 

For the purpose of model interpretation exhaustive fragmentation was applied to the chemical 

structures from the data set to generate fragments. Fragments were enumerated by means of RDKit 

[20] using a SMARTS pattern [!#1]!@!=!#[!#1] matching bonds which can be cleaved during 

fragmentation. All possible fragments having at most three attachment points were generated from the 

training set compounds. An example of a molecule with all possible fragments generated is given in 

the first two columns of Table 1. 

https://bitbucket.imtm.cz/projects/STD/repos/std/browse


Table 1. Example of fragment generation by breaking of bonds matching a SMARTS pattern 

[!#1]!@!=!#[!#1]. Dashed arrows show the bonds cleaved. 

Source molecule Fragment for which 

the contribution is 

to be calculated 

Counter-

fragment 

Fragment kept? 

(if a counter-fragment has 

at least 2 heavy atoms) 

 

 

 

Kept 

 
 

Kept 

 

 

Kept 

 

 

Discarded 

 
 

Kept 

 

Model interpretation. Step 1: calculation of fragment contributions 

In this study the structural and physicochemical interpretation (SPCI) approach for QSAR 

development [9] was applied; this utilises the concept of matched molecular pairs. The approach can 

be summarised as follows. For a compound A consisting of two fragments B and C the contribution 

of fragment C can be calculated as the difference between predicted activity values for the initial 

compound A and the counter-fragment B (obtained by removal of the fragment C from the molecule 

A) (Error! Reference source not found.). In this way the overall contribution of the fragment C in the 

units of a studied activity was calculated. The fragment of interest can also be “removed” in terms of 

a certain type of descriptors (e.g. descriptors encoding partial atomic charge) to calculate the 

contribution of the fragment from a corresponding physicochemical point of view (Error! Reference 

source not found.). This is local interpretation which gives information about the contribution of a 

fragment in individual compounds. Averaging of contributions of identical fragments allowed for the 

ranking of different fragments and revealed general trends in structure-activity relationships (global 



interpretation). In this study we extended the global interpretation by means of using GMM (see „Step 

2“ below). 

In this study contributions were calculated only for those fragments whose counter-fragments 

had at least two atoms (Table 1) since only such structures can be properly encoded by the descriptors 

used. 

Step 2: Analysis of fragment contributions using Gaussian mixture models and SMARTSminer 

The contributions of fragments were calculated for all molecules where they occurred. If a 

particular fragment occurred in a molecule multiple times its contributions were calculated separately. 

Therefore the overall occurrence of the fragment and the number of its contributions calculated is 

greater than or equal to the number of compounds. Distributions of contributions were analysed for 

each fragment separately. The distribution can be represented by single or multiple Gaussians (Error! 

Reference source not found.). GMM utilizes the EM-algorithm for finding the optimal parameter values 

(mean and variance) by maximizing data log-likelihood function for a fixed number of Gaussian 

components. The number of components was chosen using integrated completed data likelihood 

criterion. Variance was set to be variable in this study. Cases where the distribution of fragment 

contributions is represented by multiple Gaussians can be due to the different molecular context of that 

fragment in different molecules. SMARTSminer was applied to find patterns discriminating 

compounds corresponding to different Gaussians (clusters). SMARTSminer takes as its input two sets 

of molecules and searches for discriminative patterns (SMARTS) which appear more often in one set 

(“positive”) than in the other (“negative”). In the case of two clusters we submitted compounds 

corresponding to the cluster with lower contributions as “negative” and compounds corresponding to 

the cluster with higher contributions as “positive” and vice versa in order to find patterns 

discriminating both clusters from each other. In cases where more than two clusters were identified 

one cluster could be chosen as a “positive” set and the remaining ones could be combined into the 

“negative” set, or these could be considered separately one by one. Patterns determined were ranked 

according to the calculated σ-score [13]. Additionally the user can specify desired levels of positive 

and negative support. In this work minimum positive support was set to 0.7 (at least 70% of molecules 

in the “positive” set must contain a pattern) and maximum negative support 0.3 (at most 30% of 

molecules in the “negative” set must contain the same pattern). The top scored patterns outputted by 

SMARTSminer were analysed to find those that may influence or cause changes in toxicity. 

Analysis of distributions of fragment contributions was performed using GMM from the mclust 

R package [21-22]. GMM model building and visualisation steps were implemented in the rspi R 

package to automate the analysis workflow [23]. 

 

Results and Discussion 

This study utilised models based on the growth inhibition of a large data set to T. pyriformis. 

These data have been the subject of numerous previous QSAR analyses [24] and it is stressed that the 

purpose here was not the modelling of toxicity per se but the use of the proposed algorithm to extract 



useful and usable information from the data and, more importantly, to validate in this way the approach 

proposed. 

Modeling of acute aquatic toxicological endpoints has a long history and is based on the premise 

that toxicity is governed by the ability of a chemical to reach the active site (e.g. the cellular membrane) 

and its ability to interact there [24-25]. In this context transport has usually been quantified by 

descriptors for hydrophobicity and interaction by descriptors for electrophilicity or more specific 

interaction such as receptor binding [24-26]. Many QSAR models for acute aquatic toxicity have been 

developed on a mechanistic basis [24-25, 27] currently more commonly referred to through Adverse 

Outcome Pathways [28]. 

However, despite extensive studies and numerous approaches proposed to allocate compounds 

to mechanisms of action, e.g. the Verhaar scheme [29], that has been recently updated [30], the 

schemes available are still limited in their applicability. Thus, the mining of databases and datasets of 

toxicological information to determine relevant structural features is essential. This study has focused 

in particular on the capability to determine fragments and their molecular contexts associated with 

excess toxicity, i.e. toxicity caused by reactive species or specific mechanisms of action. Baseline 

toxicity (non-polar narcosis) was taken into consideration as well, though it is governed by 

hydrophobicity and no specific patterns are expected to be found.  

 

Performance of the QSAR models to predict toxicity 

Whilst not the overall aim of this investigation, it is important to assess the validity of the QSAR 

models created. The performance of the SVM, RF and GBM models was found to be reasonable, 

whereas the PLS model had low predictivity overall (Table 2). Therefore, a consensus prediction was 

developed by averaging of the predictions of the SVM, RF and GBM models. The contributions of 

fragments calculated from the individual models, as well as the consensus model, was analysed and 

there was close agreement between all models. In order not to bias the analysis by a specific statistical 

approach, the consensus model was therefore used for further analysis. 

Table 2. Predictive performance of the QSAR models for the growth inhibition of compounds to 

Tetrahymena pyriformis, as estimated by 5-cold cross-validation.  

Model Q2 RMSE 

RF 0.76 0.51 

SVM 0.73 0.55 

GBM 0.77 0.50 

PLS 0.35 0.85 

Consensus (RF, SVM, GBM) 0.75 0.52 

 

Analysis of fragment contributions using GMM and SMARTSMiner 

All compounds were exhaustively fragmented and fragment contributions were calculated. The 

resulting number of distinct fragments obtained was 6742 (Error! Reference source not found.). 6431 



fragments were excluded from consideration due to the lack of occurrence: they appeared less than in 

10 compounds of the data set. GMM was applied to analyse contributions of the remaining 311 

fragments. For 193 fragments only one Gaussian was detected. For the subsequent analysis 39 of these 

fragments having low variance of contributions (<= 0.25) were selected. They are relevant to analyse 

since we assume that contributions of such fragments would not substantially depend on their 

molecular context, hence, those of them with high average contribution can indicate toxicophore 

moieties per se. For 118 fragments two or more clusters were identified. Those fragments frequently 

represented the same structural motifs and were highly similar/homologous, e.g. differed by a 

methylene group, etc. Therefore, we focused our analysis to the most relevant and not overlapping 

patterns. 

Fragments for which one Gaussian (cluster) was identified by GMM 

The largest average contributions (around 1.0-2.0) amongst 39 fragments having narrow 

distributions corresponded to various aromatic fragments (Error! Reference source not found.). This can 

be explained to a large part by their high lipophilicity and hence implicit relationship to non-polar 

narcosis. However, some of them, such as benzaldehyde derivatives, can be reactive. Several 

structurally overlapping fragments were found comprising a methacrylate substructure and having 

close average contributions (around 0.7-0.9). Their toxic effect can be caused by the reactivity of the 

esters of acrylic acid which may participate as electrophilic substances in Michael addition. 

Fragments for which multiple Gaussians (clusters) were identified by GMM 

Halogens (single-atom fragments being halogens) 

As expected, the halogens all have a positive contribution to toxicity i.e. the inclusion of a 

halogen atom on a molecule will make it more toxic in comparison to the parent. The median 

contribution of halogens (in rank order) was: F (0.25) < Cl (0.52) < Br (0.72) < I (0.91). This means 

that on average inclusion of a particular halogen atom on a molecule increases pIGC50 on the specified 

value. This can be interpreted in two ways. The trend in the halogens is consistent with both 

hydrophobicity [31] and electrophilicity [32]. Depending on the configuration of the halogen the 

increase can be related to either. For instance, halogen substitution on an unsubstituted aromatic ring 

or alkyl chain will increase hydrophobicity and is hence related to non-polar narcosis [33]. A halogen 

that is adjacent to an activating group, however, will become unspecifically reactive through one of 

several electrophilic mechanisms of chemical reactions. 

The distributions of the contributions of chlorine, bromine and iodine atoms to toxicity are 

broadly similar and illustrated in Error! Reference source not found.. The distributions had a large peak 

and a relatively long right tail, the tail being detected by GMM as a distinct cluster. Taking chlorine as 

an example, the majority of the contributions (96% of data) were in the first cluster with mean value 

of 0.47. The second cluster, with more significant contributions comprised only 4% of the data and 

had a mean contribution of 1.16. This finding is consistent with the hypothesis that if non-activated 

(halogens belonging to the first cluster), the addition of a halogen will have a contribution equivalent 

to its hydrophobicity [33].  However, an activated halogen (halogens belonging to the second cluster) 

will have a much greater contribution. For instance, one of the prevalent patterns corresponding to the 

second cluster was A[CD3H0](CCl)=[OX1-0]. It matches α-chloroketones, esters or amides present 



in the cluster. In the first cluster the prevalent highest scored patterns were simple aromatic carbon and 

other SMARTS matching aromatic compounds. Patterns with examples of compounds matching are 

shown in Table 3. 

13% of bromine fragments fell into the second cluster (the right tail of the overall distribution) 

with mean contribution of 1.68 (Error! Reference source not found.). The highest scored SMARTS 

patterns were A[CX4][CX3]=[C,O], Br[CX4][CX3] and several others which matched the α-

bromoketones and esters, analogously to chlorine, and additionally α-bromoalkenes, which are also 

reactive species (Table 3). No significant and consistent patterns were found for the first cluster which 

had a mean contribution to toxicity of 0.64. 

The findings for bromine and chlorine fragments are in accordance with the understanding that 

activated halogens (e.g. adjacent to an ester or other unsaturation) are electrophilic in nature and will 

have a strong influence on toxicity [34]. Specifically, the reactivity of -haloactivated compounds  

occurs as a result of their reactivity in Phase II enzymes. It is mediated by a SN2-type of transition state 

with the partially negative charged sulfur atom from the thiol groups of glutathione S-transferases. It 

was noted [32] that the halo-substituted compounds of this type were one of eight classes of SN2 

electrophiles. 

There was a small number of compounds containing iodine atoms of which only a few 

compounds were detected as belonging to the second cluster with high contribution values (mean 

contribution is 2.72). For this reason, we did not apply SMARTSminer and manually found that these 

compounds were α-iodoketones and esters – as noted above, these are activated halogens and likely to 

act as SN2 electrophiles. 

Table 3. Examples of SMARTS patterns and molecules corresponding to each cluster detected by 

GMM for chlorine, bromine and iodine. Colours of Gaussians correspond to Error! Reference source 

not found.. SMARTS patterns matched in structures are coloured in blue.  

Halogen 

Gaussian 

SMARTS  

found 

σ-

score 
Molecule examples 

Cluster 

number 
Mean 

Standard 

deviation 

Coverage, 

% 

Cl 

First 

(Pink) 
0.47 0.24 95 

c 0.91 

 

A[cH0]:[c,n] 0.91 

 

Second 

(Orange) 
1.16 1.02 5 

A[CD3H0](CCl)

=[OX1-0] 
0.91 



C(Cl)[CD3H0] 0.90 

 

Br 

First 

(Pink) 
0.64 0.24 77 - - 

 

Second 

(Orange) 
1.68 0.79 23 

A[CX4][CX3]=[

C,O] 
0.84 

 

Br[CX4][CX3] 0.84 

 

I 

First 

(Pink) 
0.83 0.27 87 - - 

 

Second 

(Orange) 
2.72 0.46 13 - - 

 

 

The results for fluorine were different from the rest of halogens (Error! Reference source not 

found.). The GMM algorithm did not identify clusters, however manual inspection of the data found 

that fluorine atoms had high contributions in molecules where multiple fluorine atoms were attached 

to benzene or pyridine ring. No other apparent discriminative patterns were found. However, there 

were a small total number of fluorine-containing compounds and thus any conclusions would have 

weak support. 

Methylcarbonyl (acetyl) 



Whilst the methylcarbonyls were almost symmetrically distributed around zero (from -0.5 to 

0.5), the right side tail covered by the second Gaussian contained fragments which demonstrated quite 

significant contributions to toxicity (Error! Reference source not found.). The polar nature of the 

unactivated fragment is likely to be the cause of its reduction in toxicity due to the reduction in 

hydrophobicity. However, some patterns e.g. C[CD3H0]([CD1H3])=[OX1-0] and 

C([CD1H3])[CX3]=[C,O] were found to be discriminative for the second cluster, one with increased 

toxicity (Table 4). The former matches acetyl itself connected to aliphatic carbon which appears to be 

not toxicophoric per se. The latter is also non-toxicophoric to our knowledge. These patterns thus can 

be considered artifacts. Visual inspection of compounds from the second cluster revealed that when 

the carbonyl group of methyl carbonyl moiety is conjugated with a double bond the corresponding 

compounds are potential Michael acceptors [32, 35-36]. The corresponding manually derived pattern 

[CD3H0]([CX3]=[CX3])=[OX1-0] was not found by the SMARTSminer with chosen settings due to 

its low positive support 58% (Table 4). 

It should be noted that before modeling the most stable tautomers were generated for all 

compounds. That converted β-diketones to α,β-unsaturated ketones, see the last example in Table 4 

which were identified as belonging to the second (orange) cluster. This shows the importance of 

choosing of appropriate tautomeric forms of molecules for modeling. 

Table 4. Examples of SMARTS patterns and molecules corresponding to each cluster detected by 

GMM for methylcarbonyl. Colours of Gaussians correspond to Error! Reference source not found.. 

SMARTS patterns matched in structures are coloured in blue. 

Gaussian 

SMARTS found 
σ-

score 
Molecule examples 

Cluster 

number 
Mean 

Standard 

deviation 

Coverage,  

% 

First 

(Pink) 
0.12 0.25 86 - - 

 

Second 

(Orange) 
1.24 0.72 14 

C[CD3H0]([CD1H3

])=[OX1-0] 
0.86 

 

C([CD1H3])[CX3]=

[C,O] 
0.86 

 

C[CD3H0]([CX4])=

[OX1-0] 
0.86 

 



[CD3H0]([CX3]=[C

X3])=[OX1-0] * 
0.75 

 
* the pattern was derived manually 

 

Ester group 

Two clusters were found for ester fragments. The cluster with higher contributions (in orange in 

Error! Reference source not found.) corresponds to esters of α,β-unsaturated acids (mainly acrylic and 

2-butynoic acid) and α-halogen carboxylic acids that were found by visual inspection (Table 5). These 

compounds can participate in Michael addition or nucleophilic substitution reactions [32] and hence 

are associated with excess toxicity. SMARTSminer did not identify them, since each of these two 

patterns has positive support about 50% which is lower than the chosen threshold (70%) and because 

the algorithm implemented in SMARTSminer does not use generalised bond patterns, e.g. “double or 

triple bond”. Ester groups with lower contributions (the pink cluster in Error! Reference source not 

found.) correspond to different esters of aliphatic and aromatic acids and no patterns were found by 

SMARTSminer. Simple esters are known to act as non-polar narcotics to T. pyriformis but are 

metabolised to reactive toxicants in other species e.g. fish [37]. 

Table 5. Examples of SMARTS patterns and molecules corresponding to each cluster detected by 

GMM for ester group. Colours of Gaussians correspond to Error! Reference source not found.. 

Gaussian 

SMARTS 

found 
σ-score Molecules examples 

Cluster 

number 
Mean 

Standard 

deviation 

Coverage,  

% 

First 

(Pink) 
0.22 0.22 75 - - 

 

Second 

(Orange) 
1.04 0.7 25 - - 

 

 

Cyano group 

Two clusters were detected by GMM for cyano group contributions The second cluster, with 

higher contribution values, was made up predominantly of compounds with a halogen in α-position to 

the cyano group: C(#N)[CX4][F,Cl,Br,I] (Table 6, Error! Reference source not found.). Such polarized 



cyano compounds can add via Michael addition, causing significant increased toxicity. Surprisingly, 

many cyano-containing compounds are considered to act by a narcotic-type mechanism (probably 

polar narcosis) to T. pyriformis [38], this is consistent with the observation in the first cluster not being 

associated to significant increase in toxicity and that no clear patterns were detected. 

Table 6. Examples of SMARTS patterns and molecules corresponding to each cluster detected by 

GMM for cyano group. Colours of Gaussians correspond to Error! Reference source not found.. 

SMARTS patterns matched in structures are coloured in blue. 

Gaussian 

SMARTS found σ-score Molecules examples 
Cluster 

number 
Mean 

Standard 

deviation 

Coverage,  

% 

First 

(Pink) 
0.22 0.24 90 - - 

 

Second 

(Orange) 
1.04 1.01 10 

C(#N)[CX4][F,Cl,Br,I] 0.89 

 

A[CX4][F,Cl,Br,I] 0.85 

 

 

Carbamoyl group (-C(=O)NH2) 

In most cases, carbamoyl group appeared in aliphatic and aromatic hydrocarbons and appeared 

to decrease the toxicity of compounds (Error! Reference source not found.). This is consistent with the 

polar and unreactive nature of these fragments, thus their addition to a molecule will reduce 

hydrophobicity and hence baseline narcotic potency. No patterns were found by SMARTSminer for 

first cluster. Only four carbamoyl containing compounds had significantly elevated toxicity, which 

formed the second cluster. Those compounds feature halogens in α-position to the carbamoyl moiety 

Table 7 and are expected to be electrophilic through nucleophilic substitution reactions [32]. 

Table 7. Examples of SMARTS patterns and molecules corresponding to each cluster (with the second 

consisting of four outliers) detected by GMM for carbamoyl. Colours of Gaussians correspond to Error! 

Reference source not found..  SMARTS patterns matched in structures are coloured in blue. 



Gaussian 

SMARTS found σ-score Molecules examples 
Cluster 

number 
Mean 

Standard 

deviation 

Coverage,  

% 

First (Pink) -0.25 0.33 91 - - 

  

Second 

(Orange) 
1.87 0.12 9 

C[CD2H2][F,Cl,Br,I] 0.98 

 

[CD3H0]([CX4][F,Cl,

Br,I])([ND1H2])=[OX

1-0] 

0.92 

 
 

Saturated linear C8 and C9 alkylene moieties 

Two clusters with large difference between average contribution values were detected by GMM 

for the longer chain alkyl groups (Error! Reference source not found.). According to the SMARTS 

patterns found, compounds containing aliphatic carboxylic group appeared predominantly in the first 

cluster. Whereas 

C([C,O][C,O][CD1H3])[CD2H2][CD2H2][CD2H2][CD2H2][CD2H2][CD2H2][C,O] pattern 

encoding long linear alkyl chain was found discriminative for the second cluster (Table 8). However, 

visual inspection showed that dicarboxylic acids were mainly present in the first cluster while the 

second one is more populated with monocarboxylic acids (Table 8). This subtlety could not be captured 

by SMARTSminer due to inability to search for disjoint or variable length patterns. 

The overriding effect on toxicity is due to the relative hydrophobicity of these fragments. An 

eight carbon chain will have an intrinsic logarithm of the octanol-water partition coefficient (log P) of 

about 4 units, increasing considerably the toxicity of the molecule. This will be tempered by the 

presence of the carboxylic acid groups. Monocarboxylic acids have higher lipophilicity relatively to 

dicarboxylic acids and  this can explain the substantially different contributions of alkylene chains in 

these compounds [39]. 

Table 8. Examples of SMARTS patterns and molecules corresponding to each cluster detected by 

GMM for C8 and C9 linear alkylene groups. Colours of Gaussians correspond to Error! Reference source 

not found..  SMARTS patterns matched in structures are coloured in blue. 

Fragment 

Gaussian 

SMARTS 

found 

σ-

score 
Molecules examples 

Cluster 

number 
Mean 

Standard 

deviation 

Coverage,  

% 



C8 and C9 
First 

(Pink) 

1.22-

1.24 
0.37-0.41 10-11 

[CD2H2][CD

2H2][CD2H2]

[CD2H2][CD

3H0][OX2] 

0.84 

 

C8 and C9 

Second 

(Orange

) 
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0.18-0.28 89-90 
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[CD1H3])[CD

2H2][CD2H2]

[CD2H2][CD

2H2][CD2H2]

[CD2H2][C,O

] 

0.89 

 

 

Hydroxyl and carboxyl groups 

Only a single cluster was detected by GMM for hydroxyl and carboxyl fragments (Error! 

Reference source not found.). Therefore, SMARTSminer could not be applied. However, the left 

shoulder on the distribution of carboxyl group contributions was observed and two peaks could be 

visually detected on the distribution of hydroxyl group contributions as well. We checked whether 

these observations were related to context-dependence or were artifacts. Fragmentation SMARTS 

patterns were applied which match explicitly aliphatic and aromatic carboxyl and hydroxyl groups. 

Distributions of contributions of both these groups in the case of aliphatic and aromatic derivatives 

were significantly different according to the Kolmogorov-Smirnov two-sided test. Aliphatic hydroxyl 

groups (e.g. in aliphatic alcohols) have lower contributions to the toxicity in comparison to aromatic 

OH groups (in phenols). On Error! Reference source not found. smoothed densities of aromatic and 

aliphatic hydroxyl and carboxyl group contributions are shown in orange and pink. A carboxylic group 

showed lower toxicity in aromatic compounds than in aliphatic ones. This example demonstrates that 

GMM models cannot always separate contributions of fragments when distributions substantially 

intersect. Therefore, visual inspection of contribution distributions would be required to detect such 

cases. Both functional groups will reduce toxicity due to their polar nature and through the reduction 

of hydrophobicity. However, higher toxicity of aromatic hydroxyl group compared to aliphatic can be 

explained as follows. Certain combinations of di-hydroxy aromatic compounds (e.g. the in the –ortho 

or –para configuration) are responsible for increased toxicity via their oxidation to the corresponding 

quinone which, in turn, is electrophilic [40-41]. Besides that, phenols themselves are also associated 

with a number of different modes of action including non-polar narcosis and respiratory uncoupling 

[42]. 

Physicochemical interpretation of fragment contributions 

Since the descriptors used for modelling encoded different physicochemical properties, the 

contribution of different physicochemical terms to the studied toxicity could be estimated (Error! 

Reference source not found.). The polarisability of halogen atoms, cyano and carbamoyl groups had 

high contribution (the second clusters on Error! Reference source not found.) to toxicity. This is 

consistent with the reactivity of the patterns detected as described above. Also as discussed above, the 

major contribution factor to the high toxicity of alkylene chains was their hydrophobicity which is 



supported by experimental findings [39]. Thus, physicochemical interpretation can provide more 

detailed knowledge about the contributions of fragments and help shed light on mechanisms of action. 

Applying SMARTSminer directly to the whole dataset 

SMARTSminer was also applied directly to the whole set of compounds modelled in order to find 

possible toxicophoric patterns and make a comparison of such a straightforward approach to that 

applied here. Since the approach is only suitable for working with classification tasks, two subsets of 

compounds were selected based on thresholds: the “negative” set with 500 compounds having pIGC50 

<= 2.5 and the “positive” set with 406 compounds having pIGC50 >= 5. No patterns were found by 

running SMARTSminer with the chosen settings for positive and negatives (0.7 and 0.3, respectively). 

Decreasing positive and negative thresholds to 0.6 and 0.2, respectively, helped retrieve about 100 

patterns. They mostly matched aromatic and some heteroaromatic substructures which are abundant 

in the “positive” set of compounds (Error! Reference source not found.) and less frequent in the 

“negative” set. 

Further decreasing support values did not help to any great extent; numerous general patterns 

matching mainly aromatic substructures were found. The patterns identified by our approach could not 

be found because all of them had low positive support values (<0.1). Poor performance of 

SMARTSminer might be explained by the high structural diversity of the compounds in the data set 

and different, or mixed, mechanisms of toxic action. 

Comparison to analysis of fragments of a greater size 

In principle, analysis of structural context can be replaced by using fragments of a greater size, 

which will include both a fragment and its context. This can be done in some particular cases but is 

not applicable in general. One of main reasons is that structurally identical fragments can have different 

number and positions of attachment points making them not identically represented (e.g. as SMILES). 

This results in several variants of one fragment which are less frequent, and if their occurrence will be 

below the threshold, they would be ignored (see Figure 3). It is not trivial to unite such fragments in 

order to analyse their contributions together. Ignoring attachment points in fragments will make 

various different fragments indistinguishable, e.g. methoxy (CO[*]) and hydroxymethyl ([*]CO) 

groups. Our approach by design is more flexible in this respect, since the context can be expressed as 

more abstract pattern, compared to “fixed” large fragment. 

 

Conclusions 

The results of the study demonstrated that interpretation of QSAR models can retrieve reasonable 

and rational structural patterns within molecules. Using Gaussian mixture modelling in combination 

with SMARTSminer allowed for the detection of the influence of the different molecular contexts of 

the fragments having high contributions to the studied property. The developed approach was applied 

to study the toxicity of various classes of organic compounds to Tetrahymena pyriformis. Patterns 

indicating different mechanisms of action were identified. For example, halogens were associated with 

substantially higher contributions to the toxicity when being a part of α-haloketones, esters or amides 

than in other compounds. In general, the results obtained from structural and physicochemical 



interpretation of QSAR models in this study were consistent and corresponded to expert knowledge 

about environment toxicophores and their mechanisms of action. This confirmed the validity of the 

approach developed. However, the proposed workflow to determine molecular context of important 

fragments has some limitations. If contributions of fragments in different contexts were numerically 

similar, GMM could not separate them into clusters to perform further analysis, e.g. as observed for 

aliphatic and aromatic hydroxyl and carboxyl groups. 

Overall, SMARTSminer helped automate the search for the molecular context of fragments. 

However, due to its limitations, e.g. the absence of generalised bond patterns or disjoint patterns that 

were not captured, SMARTSminer could not retrieve results in some cases and manual inspection was 

required to retrieve reasonable patterns. Moreover, our observations suggest that there is difficulty in 

applying SMARTSminer directly to data sets when the compounds studied have a variety of different 

patterns or different mechanisms of action. This issue was due to the low supports of the discriminative 

patterns. Interpretation of QSAR models is more suitable in that case because the only prerequisite is 

the possibility to build a predictive model. This makes interpretation of QSAR models a more versatile 

approach to retrieve structure-property relationships from data sets of chemical compounds. The 

proposed workflow of implicit detection of molecular context can be also used for MMP analysis. 
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Figure 1. Workflow for the analysis of the context-dependence of fragment contributions. A: a narrow 

range of values indicates either “stable” contribution of a fragment regardless of molecular 

environment it appears in or a very similar context of a fragment in all compounds of a studied data 

set. B, C: a broader range suggests context-dependence of fragment influence on a modelled property. 

Distributions can be analysed with GMM to detect clusters (in the case C they will appear). Clusters 

can have distinct molecular contexts indicating important patterns, e.g. “fragment + context = 

toxicophore” (combination of fragment and context in which the fragment has high contributions). 

Search for patterns was performed using SMARTSminer or manually. 

 

Figure 2. Schemes for the structural and physicochemical interpretation of QSAR models. In the case 

of physicochemical interpretation the contribution of H-bonding is calculated for the fragment C. 

Subscript E, H, D and HB denote descriptors representing electrostatic, hydrophobic, dispersive 

interactions and H-bonding, respectively. 

Figure 3. Decision tree illustrating the workflow for the analysis of fragments. Green boxes contain 

fragments to be analysed. The upper green box contains the fragments of main interest to this study 

since clusters were found in their distributions. The lower green box contains fragments having 

narrow distributions with no clusters (sd <= 0.25, sd – standard deviation). 

Figure 4. Distributions of contributions of fragments having the highest average contributions to the 

toxicity and narrow distributions of values. 

Figure 5. Distributions of contributions of halogens (Cl, Br, I) with regard to their toxicity to T. 

pyriformis. Histograms and dashed lines represent actual fragment distribution. Coloured lines 

represent Gaussians detected by GMM. 

Figure 6. The distribution of fluorine atom contributions. Coloured line represents Gaussian detected 

by GMM. 

Figure 7. The distribution of methylcarbonyl fragment contributions. Coloured lines represent 

Gaussians detected by GMM. 

Figure 8. The distribution of contributions of ester group. Coloured lines represent Gaussians 

detected by GMM. 

Figure 9. The distribution of contributions of cyano group. Coloured lines represent Gaussians 

detected by GMM. 

Figure 10. The distribution of contributions of carbamoyl group. Coloured lines represent Gaussians 

detected by GMM. 

Figure 11. Distributions of contributions of C8 and C9 linear alkylene groups. Coloured lines 

represent Gaussians detected by GMM. 

Figure 12. Distributions of the contributions of carboxyl (right) and hydroxyl (left) groups with 

smoothed densities (black dashed line) and subpopulations of fragments in aliphatic and aromatic 

context matched explicitly (solid colored lines). 

Figure 13. Median physicochemical contributions of fragments to their toxicity to Tetrahymena 

pyriformis (M denotes the number of compounds having a particular fragment and N – the overall 

fragment occurrence). 

  



 

Figure 14. Top-ranked discriminative patterns found by SMARTSminer to discriminate high from 

low toxicity compounds and examples of matched compounds from the „positive“ set. 


