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ABSTRACT 
Accurate urban water demand forecasting plays a key role in the planning and design 

of municipal water supply infrastructure. The reliable prediction of water demand is 

challenging for water companies, specifically when considering the implications of 

climate change (Zubaidi et al., 2018). Several studies have documented that weather 

variables drive water consumption in the short-term, and it enhances the accuracy of 

the prediction model when it is combined with socio-economic factors. However, the 

impact of climate change on the municipal water demand has yet to be challenged. 

To surmount this challenge, more research work is needed to accurately estimate the 

required quantity of water with increasing water demands. Recently, Artificial Neural 

Networks (ANNs) have been found to be an innovative approach to predict water 

demand. This PhD study aims to develop a novel methodology to forecast the impact 

of climate change on municipal water demands for a long-term time series based on 

the baseline period 1980-2010. It should be highlighted that, based on our knowledge, 

this is the first study of substantial duration, based on data collected from 1980-2010, 

which focuses on the associations between monthly climate change and municipal 

water consumption.  

A new approach is therefore proposed to quantifying municipal water demands 

through the assessment of climatic factors, using a combination of a Singular Spectrum 

Analysis (SSA) technique, three hybrid computational intelligence algorithms and an 

ANN model. These hybrid algorithms include a Lightning Search Algorithm (LSA-

ANN), a Gravitational Search Algorithm (GSA-ANN) and Particle Swarm 

Optimisation (PSO-ANN). The SSA technique is adopted to decompose the time series 

of water consumption and climate variables to detect the stochastic signal for each time 

series. In the same context, the hybrid algorithms are used to find the best value of 
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learning rate coefficient and the number of neurons in both hidden layers of the ANN 

model. Based on the performance of each hybrid algorithm, the most accurate and 

reliable water demand forecast model will be selected and used for estimating future 

water consumption. The considered environments of this study are applied in Australia 

and the United States from America for mitigating the uncertainty associated with the 

geographic location (the data of the United States of America was used to support the 

reliability of developing the municipal water demands prediction model). 

Furthermore, the Long Ashton Research Station Weather Generator (LARS-WG) 

model is utilised to simulate future climate factors over three periods (2011-2030, 

2046-2065 and 2080-2099) based on the B1, A1B and A2 emission scenarios and 

seven General Circulation Models (GCMs). The future projection of these climate 

factors is applied directly to the impact model of water consumption to obtain the 

projected municipal water demand for different future periods and different 

greenhouse emission scenarios.  

The principal findings of this research are the following: from the model perspective, 

1) the SSA is a powerful technique when used to remove the effect of socio-economic 

factors and noise, and detect the stochastic signal time series for water consumption. 

2) The ANN model has better performance in term of optimising the correlation 

between observed and predicted water consumption when using the (LSA-ANN) 

algorithm.  

3) The evaluation of the ANN model (using a validation data set) for Melbourne and 

Columbia Cities gives a correlation coefficient of 0.96 and 0.95, and the root mean 

square errors are 0.025 and 0.016 respectively. These findings indicate the capability 
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of the proposed model to predict water demands with high accuracy in different 

continents.  

4) The high performance of LARS-WG model results are found to be appropriate for 

the simulation of future climate variables.  

5) The harmonisation between future monthly water demand (for the periods 2011-

2030, 2046-2065 and 2080-2099) and stochastic signals of climate variables, relative 

to baseline period 1980-2010, emphasises the reliability of the present methodology. 

However, from the water demand perspective, the water percentage demand (WPD) 

are likely to rise in winter, drop in summer and fluctuate in both spring and autumn 

seasons for all periods and under all greenhouse emission scenarios. The results of 

WPD distribute between -3.5% and 3% for all periods and emission scenarios. The A2 

scenario shows the highest and lowest values of WPDs compared to the A1B and B1 

scenarios, in particular, in the 3rd period. The mean of seasonal WPD values shows 

that there is no dominant scenario as the best or the worst case of water demand over 

all future periods. The highest amount of seasonal demand happens in winter (A2 

scenario, 3rd period), and the lowest amount of seasonal demand occurs in autumn 

(A1B scenario, 3rd period). 

In conclusion, this study facilitates the conception of the impact of climate change on 

municipal water demand from the baseline period 1980-2010.  
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Chapter 1: Introduction  

1.1. Overview 

Water is a fundamental element for the continuation of life on our planet, and an 

efficient municipal water system is essential for the social and economic development 

of any country. At present, many countries face numerous concurrent challenges in 

the management of, and access to, potable water. van Leeuwen et al. (2012), UNDP 

(2013) and  Ferguson et al. (2013a) have identified the impact of global warming and 

related climate change, such as an increased frequency and severity of drought and 

flooding as one of the most significant impacts on our aquatic environment. As a 

result, considerable pressure is being placed on water infrastructure. 

Climate change adversely affects the lives and livelihoods of human societies, and 

these impacts differ based on the region, significance and term. However, freshwater 

resources are widely influenced, especially in the centre of cities (UNDP, 2012). In 

addition, United Nations’ reports show that, between 2009 and 2050, the level of 

urbanisation is expected to increase from 50% to 69% (Deng et al., 2015). Bougadis 

et al. (2005) pointed out that the prediction of municipal water consumption is very 

significant for decision makers in the water companies. Forecasting demand is 

therefore valuable in the operation and management of municipal water systems. 

Previous studies have used traditional models and proved that water consumption is 

affected by weather variables throughout the year for example Gato et al. (2005); Gato 

et al. (2007a) and Gato et al. (2007b). However, Urich and Rauch (2014) stated that 

global warming causes considerable uncertainties regarding long-term planning 

projections for water demand in urban areas. These uncertainties can lead to significant 
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problems for systems (such as supply, operation and cost), which traditional planning 

methods cannot solve. 

Several previous studies have established that artificial neural network (ANN) 

approaches outperform traditional methods (e.g. regression and time series) in 

different fields e.g. Jain et al. (2001), Mohammadi et al. (2005) and Azadeh et al. 

(2007). However, there has been disagreement on the criteria for selecting the factors 

of ANN model that could lead to over- or under-fitting the model (Gharghan et al., 

2016a). In addition, the precise effect of climate change on municipal water demand 

for the long term is a much-debated topic and extremely challenging (Behboudian et 

al., 2014). Accordingly, much uncertainty still exists about the relationship between 

the capacity of municipal water systems and a potential rapid increase in water demand 

resulting from acute climate factors on a monthly, seasonal and yearly basis. 

1.2. Strategic Environmental Assessment (SEA) 

Increasing concerns about the impact of climate change have confirmed the need to 

plan and manage water ahead, to guarantee meeting municipal water demands to the 

satisfaction of the consumer (Babel and Shinde, 2011). Cutore et al. (2008) reported 

that this type of strategic planning means planning now for an uncertain future.  

To provide sufficient information about the environmental implications of a potable 

water policy, plan or program, strategic environmental assessment (SEA) has been 

widely used by the decision makers. The aim behind the SEA is evaluation, 

identification and mitigation of these implications, as well as to protect the 

environment and encourage sustainability at the strategic level (Chaker et al., 2006; Li 

et al., 2014). In addition, WB (2005) defined the SEA as a formalised, systematic and 



1.3 Research Problem 3 
 

 
 

comprehensive process for evaluating the environmental impacts of a policy, plan, or 

program (PPP). A typical SEA methodological approaches diagram is revealed in 

Figure 1.1. 

 

Figure 1-1: Strategic Environmental Assessment (SEA) (Partidário, 2007) 

1.3. Research Problem  

Fogden and Wood (2009) mentioned that the environmental outlook of the 

Organisation for Economic Co-operation and Development (OECD) to 2050 indicates 

that global demand for water is anticipated to increase by 55%, relative to 2000 as a 

baseline. Moreover, a high percentage of the universal population may be under acute 

water stress. The global population percentage that has a lack of access to safe drinking 

water is presented in Figure 1.2. It can be seen that the worldwide population 

percentage that has the lack of access to safe drinking water increases as we go into 

the future, and it is likely to be 50% in 2050. 

https://ac.els-cdn.com/S0195925507000182/1-s2.0-S0195925507000182-main.pdf?_tid=3a591b7f-acf3-4029-9294-ceec7c07d7f6&acdnat=1540661541_85b6a2ac26cbbb086f4e154403fc5cc5
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Figure 1-2: The global population percentage that has a lack of access to safe 
drinking water (Fogden and Wood, 2009) 

The population is one of the significant factors that affecting the demand of municipal 

water and improving the prediction model as well as growing population lead to 

increase water demand  (Adamowski, 2008; Firat et al., 2010). The majority of 

previous studies employed population factor as a model input to predict water demand 

(e.g., Jain et al. (2001), Liu et al. (2003), Firat et al. (2009) and Behboudian et al. 

(2014)). However, in this thesis, this factor has not been considered because it is out 

the scope of the study as the focus only on climate change assessment not the socio-

economic factors. 

Hot weather conditions, extended dry periods and a general reduction in rainfall, also 

increase the consumption and demand, for water. As it is anticipated that climate 

change will cause substantial increases in temperature, a decrease in rainfall and more 

droughts, it is necessary to analyse these issues and explore the relationships between 

climate and water consumption used to predict water demand (Zhoua et al., 2000). 

Adamowski et al. (2012) stated that successive dry days with high temperatures and a 

low number of rainy days can play a crucial role in increased water demand. 
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Accordingly, the urban water supply infrastructure faces increasing pressures related 

to the impact of extreme climate factors. Under these pressures, the present urban 

water supply infrastructure is probably insufficient to meet future water demands. 

However, conventional models are no longer fit to predict urban water demand under 

the pressures of climate change in the future (Marlow et al., 2013). Babel and Shinde 

(2011) and Bakker et al. (2014) stated that using the climate factors in the model input 

had significant impact on the forecast water demand by decease the scale of errors. 

The peak municipal consumption of Columbia City changes depend principally on 

how dry it is during the summer months (Jacobs and St. Louis, 2015). Gato et al. 

(2005), Gato et al. (2007a) and Gato et al. (2007b), have confirmed that weather 

factors drive water demand over the year.  These studies were applied in different 

environments such as (Zhoua et al., 2000) in Australia, Adamowski et al. (2012) in 

Canada, Babel and Shinde (2011) in Thailand and Bakker et al. (2014) in Netherlands. 

As stated in aforementioned studies, we also believe that considering climate factors 

in a municipal water consumption has a significant effect on the forecasting water 

demand. 

A search of the literature revealed that few previous studies deal with municipal water 

demand prediction. However, studies have used different types of factors as forecast 

model input in mid-term prediction models including socio-economic data e.g. Liu et 

al. (2003); Firat et al. (2009) and Firat et al. (2010), a mixture of socio-economic with 

weather variables for example Mohammed and Ibrahim (2013), Behboudian et al. 

(2014), Al-Zahrani and Abo-Monasar (2015), and a combination of previously 

recorded values of water consumption, e.g. Firat et al. (2010) and Sebri (2013). Most 

of these studies have weaknesses in terms of considering the impact of climate factors, 

which results in increasing the uncertainties of municipal water demand.  
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In the same context, these studies have ignored the impact of the climate change 

considering the baseline period 1980-2010, where this period was chosen to assess the 

impact of climate change. They apply the short or mid-terms e.g. Cutore et al. (2008) 

and Adamowski et al. (2012). Therefore, exactly how climate change affects 

municipal water demands is still not yet fully understood.  

Although the previous studies have recognised weather factors, research has yet to 

systematically investigate the effect of these factors in terms of using adequate data 

preprocessing to remove the impact of socio-economic factors, which are insensitive 

to climate, in addition, applying a capable and effective forecasting technique that 

depended on a systematic basis instead of a trial and error approach. Accordingly, the 

studies to date have not been able to detect to what extent climate factors have driven 

municipal water demands. 

Overall, previous studies of municipal water prediction have suffered from inadequate 

sample sizes, methodological limitations and a lack of a strong theoretical framework. 

So, the debate continues on the best strategies for the management of municipal water 

demands under the impact of climate change with a low level of certainty. 

1.4. Aim and Objectives of this research  

This research aims to forecast monthly municipal water demand for the long term 

considering several climatic variables including temperature, rainfall and solar 

radiation, by using a combination of techniques that have various types of hybrid 

Artificial Neural Network (ANN) models to provide water companies with the right 

strategic decision in operations and planning for municipal water systems.  

The specific objectives for realising the aim of the thesis as stated above are: 
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1. To conduct a comprehensive literature review to identify gaps in this research 

field and to select the best approach. Many researchers have studied the 

prediction of water demand either for short-term, considering weather 

variables, or for mid-term, considering socio-economic factors and sometimes 

combined with some weather variables.  

2. To assess the long-term influence of climate change on monthly municipal 

water demands it is important to be compared relative to the baseline period 

(1980-2010). This period was chosen by scientists to assess climate change 

because there is no variation in the climate pattern in this period.  Furthermore, 

there is more data available during this period for climate change assessment.  

3. To identify the stochastic signals for water consumption and different climate 

factors. The stochastic signal of a water consumption time series is detected 

after removing the effect of socioeconomic factors (which are insensitive to 

weather and have a deterministic relation with water consumption), and noise 

from water consumption for a long-term monthly time series. 

4. To examining extra climate variables in the model inputs, and to select the best 

model input based on statistical techniques that increase forecasting accuracy 

compared with a trial and error approach.  

5. To optimise the prediction of long-term monthly municipal water demand with 

high accuracy and minimum error where it is applied to different continents 

(different environments). 

6. To simulate the rainfall, temperature and solar radiation variables in the future 

that are used in the water demand-forecasting model to investigate the climate 

change impact on municipal water consumption. 
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7. To increase the forecasting range and decrease the uncertainty of results for 

municipal water demands by using different models of hybrid ANN, general 

circulation models and different greenhouse emissions scenarios.  

8. To provide the decision maker with a clear scientific view about municipal 

water demand in the future that is affected by climate change, as accurately as 

possible.  

1.5. Contribution to Knowledge 

This section describes the thesis contributions to the body of knowledge of the 

municipal water demand under climate change research field. 

1. This research project investigates the municipal water demand prediction 

considering monthly data of climate factors on a long-term basis. In particular, 

a baseline period between 1980 and 2010 was used. 

2. This thesis employs a powerful technique, namely singular spectrum analysis 

(SSA), which has the ability to detect the stochastic signal of water 

consumption and climate factors after removing trend, seasonality and noise.  

In contrast, previous studies have used the traditional methods to remove trend 

and seasonality from time series, which have less accuracy in terms of the scale 

of errors. 

3. This research develops a new technique which includes cross-correlation and 

variance inflation factor. This technique was carried out to ensure that as many 

of the potential variables as possible were properly included in the map of the 

input-output relationship, to avoid multicollinearity, which can lead to 

incorrect conclusions. 
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4. Applying and comparing three hybrid intelligence algorithms to select the 

optimum parameters of the ANN model (i.e., Lightning Search Algorithm, 

Gravitational Search Algorithm and Particle Swarm Optimisation). The ANN 

parameters include the learning rate coefficient and number of neurons in both 

hidden layers. These parameters are responsible for mapping the relationship 

between the input and output variables adopted to develop the ANN model and 

minimise the error. 

5. Using the combination model, SSA and hybrid ANN, to forecast municipal 

water demand based on climate factors under three emission scenarios and 

over three periods 2011-2030, 2046-2065 and 2080-2099. 

1.6. Thesis Organisation: 

The overview, aim and novelty of this thesis are already discussed in the previous 

sections. Next, the thesis chapters are organised as follows: 

Chapter 2: The literature review presents different studies on climate change, and 

highlights the practical implications for freshwater resources and the different methods 

that are used to simulate future climate variables. The main techniques for predicting 

municipal water demand have been discussed in detail, includes current research 

contributes to it by introducing an innovative forecasting technique more consistent 

with the sustainable path. 

Chapter 3: This chapter presents the steps for conducting the research methodology 

that includes developing a new combination model to forecast municipal water 

demands regarding climate change, as well as, the process and approaches that are 

used to simulate future climate factors under different emission scenarios. 
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Chapter 4: This chapter focuses on the study area, which offers the essential issues 

regarding municipal water consumption such as the location of the city, its weather, 

freshwater resources and municipal water system for two different cities. In addition, 

the chapter presents the data preprocessing technique that helps to prepare the data set 

before employing it in the municipal water prediction model.  

Chapter 5: This chapter presents results and discussion, which show the development 

and validation of the proposed frameworks divided into three sections. 1) The 

evaluation of the combination model of forecasting the municipal water demands.        

2) The calibration and validation of the downscaling model and the simulating future 

climate variables. 3) The forecasting of future municipal water demand using results 

of the future climate factors (step 2) in the model of water forecasting (step 1). This 

chapter also discusses the outcome of the results from the different experimental 

scenarios. 

Chapter 6: The thesis conclusion contains the attained research aim and the 

contribution to fill the gap in this research field regarding the forecasting of municipal 

water demand considering climate change. Moreover, this chapter shows the 

limitations that are found in this research and the essential recommendations that 

should be considered to overcome these limitations.  

Appendices: Detailed appendices that contain copies of additional figures and tables 

concerning this study are displayed at the end of the thesis. The organisation of the 

chapters in this thesis is presented in Figure 1.3. 
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Chapter 2: Literature Review 

2.1. Introduction 

This chapter highlights the advantages of the literature review to find out the 

principles, usefulness and reliability of the suggested project, which is forecasting 

municipal water demand over the long term taking into consideration the impact of 

climate change on different scenarios of greenhouse emissions. Accordingly, this 

chapter focuses on a short overview of methods relevant to the methodologies defined 

in this thesis. It is organised as follows:  

Section 2.2 focuses on what climate change is and its implications. It covers the 

downscaling of the climate factors from large scale General Circulation Models 

(GCMs) and the approaches that are used for this purpose. Municipal water 

consumption and its priority to water companies are covered in section 2.3 and section 

2.4 reviews the water consumption simulation models that were used to predict water 

demand.  

Section 2.5 explores the water projection and its benefits for the municipal water 

system. Finally, section 2.6 discusses the time series analysis techniques that include 

data set and data preprocessing.  

All the above mentioned helps to discover more about the software programmes that 

are currently used, and the ideas developed for the different approaches that are 

applied in the field of water demands prediction. This is taken into consideration to 

ensure the performance techniques for the proposed solution in this research study are 

valid. As a result, it illustrates the differences between the proposed study and previous 

studies. 
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2.2. Climate Change 

Since the beginning of time, humanity has faced worldwide challenges, and one of the 

most significant problems is climate change. Climate change, which is also known as 

global warming, is the phenomenon of an increase in atmospheric temperature and 

change in magnitude and patterns of rainfall that causes modifications in the 

ecosystem. These modifications affect both people and their surrounding environment 

both directly and indirectly (Borbora and Das, 2014; Jewitt et al., 2015). 

UNFCCC (2007) stated that climate change has harmful effects on atmospheric 

stability, the aquatic environment and the wild environment. The long-term effects of 

elevated CO2 levels determine the world’s vulnerability to climate change. As the 

effects of climate change are expected to increase, they continue to have wide-ranging 

impacts on ecosystems and human societies. These impacts vary in terms of the zone, 

the effects and the seriousness, and they can be either short-term disasters or long-term 

variations in the climate system. However, one of the substantial impacts is that 

freshwater resources are widely affected, particularly in cities (UNDP, 2012). Climate 

change causes considerable problems for the ecosystem, for example, fluctuation of 

precipitation where scarce precipitation can lead to drought, which can in turn cause 

desertification, freshwater resources are widely depleted, particularly in city centres, 

the problems this causes are likely to be exacerbated because of increasing demands 

on freshwater (Davies and Simonovic, 2011). 

For example, in Australia the rainfall has shown different patterns from region to 

region. It increased in the north of Australia especially in summer, monsoon rainfall. 

While in contrast, precipitation dropped in the southern region. This reduction in 
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rainfall is likely because of raised the concentrations of greenhouse gas and land-use 

change (IPCC, 2007).  

Figure 2.1 presents the projected maximum temperature for Australia. The left-hand 

graph shows the change in maximum temperature under the B1, A1B and A2 

scenarios. This change is related to the stability in the concentrations of CO2 at 

different values 450 ppm (WRE450), 550 ppm (WRE550), 650 ppm (WRE650), 750 

ppm (WRE750) and 1,000 ppm (WRE1000). The graphical diagram of evaluating the 

relative coping range, adaptive capacity and vulnerability regarding the potential of 

global warming is shown in the right hand chart. The maximum temperature in 2100 

is likely to increase by about 2, 3 and 4°C for the B1, A1B and A2 scenarios 

respectively, and the vulnerability of water security becomes considerable for 2 to 

2.3°C of global warming  (IPCC, 2007). 

 

Figure 2-1: The expected maximum temperature for Australia and the coping range, 
adaptive capacity and vulnerability regarding of potential global warming (IPCC, 
2007) 

 

https://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4_wg2_full_report.pdf
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Antecedent research, such as Gato et al. (2005), Gato et al. (2007a) and Gato et al. 

(2007b), have confirmed that weather factors drive water demand over the year. 

Bakker et al. (2014) applied three varying models: a Multiple Linear Regression, a 

Transfer/-noise model, and an Adaptive Heuristic, with and without utilising weather 

input. The models' outcomes demonstrated that, when weather inputs are used, the 

average errors can be decreased by 7% and the largest predicting errors by 11%. 

Ferguson et al. (2013b) stated that currently, water managers and stakeholders are 

struggling to adapt municipal water systems to the increasingly complicated 

challenges of climate change. 

Partidário (2007) claimed that baseline details are collected as proof to confirm 

environmental deterioration. However, it is necessary to collect and arrange baseline 

data which represent all necessary information that is collected about past and current 

situations concern, and it is especially concerned with describing all related aspects. 

(Partidário, 2012) believed that baseline data could help to predict and extrapolate 

likely influences in the future, and prediction will contribute to building a desirable 

future. In this research, the baseline data for any factor will be divided into two groups, 

which comprise calibrating and verifying models. 

Climate change has placed considerable pressure on the environment in different areas 

of the world. These issues have increased the motivation of researchers to analyse and 

forecast the changes in critical climatic factors, such as temperature, rainfall and solar 

radiation, in order to offer valuable reference outcomes for management and planning 

in the future (Jewitt et al., 2015). 

There are many efforts to reduce the emission of greenhouse gases such as Paris 

Agreement on Climate Change This agreement dealing with mitigation, adaptation, 
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and finance of greenhouse-gas-emissions, agreed upon by more than 180 countries 

within the United Nations Framework Convention on Climate Change (UNFCCC) in 

2015 and starting in the year 2020. The long-term aim of this agreement is for keeping 

the rise in global average temperature to well below 2 °C above pre-industrial levels. 

Also, it discussed the technology transfer, financial transfer and enhance building 

capacity in the developing countries. Accordingly, it is expected that little decrease in 

the emissions will occur making the world may face rising difficulties (Jayaraman, 

2015). 

2.2.1. (Chen et al., 2011)Climate Projection 

Several approaches have been utilised to assess global climate simulations and to 

downscale different global climate scenarios (from the different emissions scenarios) 

for evaluating the climate influences on hydrologic systems (Salathe et al., 2007). 

Daniels et al. (2012) mentioned that the downscaling methods depend on several 

General Circulation Models (GCMs) and Intergovernmental Panel on Climate Change 

(IPCC) scenarios. These methods can be divided into two main types as shown in 

Figure 2.2: 
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Figure 2-2: Downscaling methodologies flow chart (Daniels et al., 2012) 

• The dynamical downscaling approach depends on the utilisation of a regional 

climate model that is similar to the GCM principles, but it has much higher 

resolution than GCM, and it covers particular regions of the global. The 

regional climate model (RCM)generates climate information at a spatial 

resolution of approximately 20–50 kilometres using the large-scale 

atmospheric information that is produced by the GCM model. Additionally, 

the regional climate model is dependent on the outputs of GCM, which causes 

the overall results to be affected by the quality of the GCM model.   

• The statistical downscaling method includes establishing statistical 

relationships between the historical large-scale atmospheric and local climate 

factors. After determining and validating the relation, the model is ready to 

simulate future climate factors at a site-specific level. However, this method 

depends on the critical assumption that the relationship between the local 

https://www.fs.fed.us/rm/pubs/rmrs_gtr277.pdf
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climate and present large-scale circulation remains valid at various conditions 

for simulating future climates. 

A GCM is the main tool applied to project the influences of emissions on future 

climates. It provides information at a scale of 100-500 kilometres for one grid size and 

temporal scales of monthly means and longer. Accordingly, it is considered too coarse 

for planning and assessment of the impact for almost all decision makers. The 

downscaling technique, however, has been used to obtain information on climate 

change at a scale more relevant to stakeholders. It is utilised spatially, with a resolution 

of 20 kilometres or even at a specific location, and temporally (e.g., daily temperature 

sequences from monthly or seasonal temperature figures) (Trzaska and Schnarr, 

2014). Roy and Majumder (2016) point out that the IPCC offers various climate 

change scenarios and attempts to forecast the result of that variation on different 

related natural phenomena. These scenarios are based on pollution and land use 

dynamics, population and the influence of climate change on these activities. These 

scenarios are: 

• The A2 scenario depicts a very heterogeneous world, with continuously 

growing global population and economic development is oriented regionally. 

• The B1 scenario describes a convergent world, global population will reach its 

peak mid-century and the introduction of clean technologies.  

• The A1B scenario is balanced between using fossil and non-fossil energy 

across all sources.  

More details about the IPCC scenarios can be found in IPCC (2007). 

Chen et al. (2011) stated that the main sources of uncertainty are connected to 

greenhouse gases emissions and General Circulation Models (GCMs), while 
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downscaling approaches have been  considered to have less influnce on the 

uncertainty. Accordingly, in this thesis seven GCMs and three greenhouse emission 

scenarios are considered to mitigate the uncertainties.  

For hydrologic impact researches, temperature and rainfall are the most significant 

climate factors that are obtained from downscaling models (Salathe et al., 2007). 

Therefore, the temperature, solar radiation and rainfall have been used as a model input 

to forecast municipal water demand. 

Many studies have applied downscale approaches to simulate future climate factors, 

such as Abdellatif et al. (2015) who investigated the spilling volume of urban drainage 

catchment in northwest England, under different climate change scenarios and climate 

models, using a generalised linear model and an ANN (hybrid GLM-ANN) model. In 

addition, Räisänen (2015) used 12 Regional Climate Model simulations (RCM) and 

baseline (1980–2010) monthly mean temperatures to investigate the changes in 

snowfall in northern Europe. Also, Masanganise et al. (2014) utilised 10 regional 

climate models (RCM) and monthly temperature and rainfall to describe climate 

changes in Zimbabwe for the 2040-2070 period, relative to the 1980-2010 baseline. 

Daniels et al. (2012) stated that the statistical downscaling method has advantages 

such as being efficient, computationally inexpensive and offering various emissions 

scenarios and GCM pairings, while the dynamic downscaling method needs high 

computational resources, expertise and a high volume of data inputs. The Long Ashton 

Research Station Weather Generator (LARS-WG) model considers one of the 

statistical downscaling methods that were used by several researchers in different 

areas.  
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Several studies tested the LARS-WG performance and confirmed that the model is 

reliable. For example, Chen et al. (2012) used the LARS-WG model with seven 

GCMs, A1B scenario and the baseline period 1980-2010 to examine the ability of the 

model to simulating precipitation and (maximum, minimum) temperature in Sudan 

and South Sudan over three periods (2011-2030, 2046-2065 and 2080-2099). Osman 

et al. (2017) employed the LARS-WG model with seven GCMs, the A2 scenario and 

baseline the period 1980-2010 to investigate the capability of the model to simulate 

precipitation over three future periods in different areas in Iraq. Behboudian et al. 

(2014) used the LARS-WG model under a HADCM3 (A1B) scenario to downscale 

the monthly observation value of maximum temperature depending on baseline period 

to predict its monthly value from 2011-2030. These future values are adopted with 

some socio-economic values to predict monthly municipal water demand during this 

period.  

Fenta Mekonnen and Disse (2018) Use LARS-WG version (5.5) to analyse the future 

climate change by projection maximum temperature, minimum temperature and 

rainfall of upper Blue Nile river basin. The result shows that the model is capable to 

simulate climate factors.  

For this study, a set of CMIP4 GCMs and LARS-WG software version 5.5 have been 

used, which was the latest version available when this research project has started. In 

order to assess the reliability and capability of our proposed methodology to accurately 

predict long-term monthly water demand, we considered necessary to maintain, the 

same CMIP4 GCMs that was used previously to thoroughly evaluate the proposed 

methodology. Moreover, other researchers are also currently using the same version, 

as an example please see Fenta Mekonnen and Disse (2018). However, we would also 
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like to stress that, even when not the latest CMIP5 GCMs was used, this study is 

proposing a novel method for the strategic management of municipal water demand 

under climate change; therefore, its novelty goes beyond the data used, to provide a 

method that anyone can use and translate to any future CMIPx GCMs. Extra details 

about the LARS-WG model can be found in section 3.6.1. 

2.3. Municipal Water Consumption 

Municipal water consumption can be divided into domestic, industrial and commercial 

sectors (Gato, 2006). Liu et al. (2003) defined residential water consumption include 

all uses of water both inside residences and in gardens. In addition, the demand of 

residential water may account for more than half of the total municipal use in many 

societies.  

Forecasting can be divided into short- and long-term. Short-term forecasting is 

fundamentally associated with scheduling operations related to pumping and 

decreasing the time that water is retained in storage tanks, which can improve the water 

quality (Bougadis et al., 2005). Long-term prediction is desired fundamentally to plan, 

design and make expansion plans for present municipal water systems (Jain et al., 

2001). In addition, to date, many reviews have been carried out in the field of water 

demand forecasting, but most of these studies have focused on the short-term forecast 

and have used self-correlation models in forecasting (Behboudian et al., 2014). 

Nowadays, increasing concerns about the impact of climate change have confirmed 

the need to plan and manage water ahead to guarantee meeting municipal water 

demands to the satisfaction of the consumer (Babel and Shinde, 2011). 
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2.4. Water Consumption Simulation 

Hot weather conditions, extended dry periods and a general reduction in rainfall, also 

increase the consumption of, and demand, for water. As it is anticipated that climate 

change will cause substantial increases in temperature, a decrease in rainfall and more 

droughts, it is necessary to analyse these issues and explore the relationships between 

climate and water consumption used to predict water demand (Zhoua et al., 2000). 

Prediction is a significant topic in the water industry. One of the primary applications 

of forecasting is the estimation of municipal water demand, yet achieving the 

anticipated prediction accuracy is quite challenging (Behboudian et al., 2014). 

Different techniques have been applied to forecast water demand, and these methods 

can be divided into three main kinds: Traditional, Artificial Intelligent and Hybrid 

models. 

2.4.1. Traditional Prediction Techniques 

Several researchers have examined the impact of weather factors on the water demand 

using conventional methods. More precisely, time-series and regression analysis, or a 

combination of the two methods, were most frequently adopted as the traditional 

modelling techniques by studies in the past (Jain et al., 2001). 

Zhoua et al. (2000) developed a time series model to predict daily water demand for 

greater Melbourne, Australia, that includes residential, industrial and commercial 

consumption. Water consumption was divided into base use, weather-insensitive, that 

represented the lowest month’s consumption; and seasonal use, weather-sensitive, 

which contains seasonal, climatic, and persistence components. The prediction model 

of daily water time series comprises a set of equations that represents the impacts of 
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four factors on water use containing trend, seasonality, climatic correlation, and 

autocorrelation. A polynomial was adopted to represent a yearly trend in base use 

consumption as a function of time. Seasonal, climatic and persistence components 

were utilised to model the seasonal water use. The study adopted the daily historical 

data of water consumption and three meteorological factors maximum temperature, 

precipitation and class A pan evaporation from 1st July 1989 to 31th January 1997. The 

results showed that Antecedent Precipitation Index improves the model and efficiency 

R2= 89.6% for cross-validation data. 

Gato et al. (2005) used a simple time series to develop a simple model of regression 

analysis for forecasting short-term water demand. The approach has potential to be 

utilised as a tool to determine the effects of water restrictions and conservation 

initiatives on water consumption, both base and seasonal use, that are allowed to be a 

function of weather factors. The study adopted the daily historical data of water 

consumption and two weather factors: maximum temperature and rainfall, from April 

1991 to December 2001. In addition, it focuses on the distribution zone of East 

Doncaster that is a large residential suburb of Melbourne City, Australia; while Zhou 

et al., (2000) covered Greater Melbourne, which contains mix areas. This study 

confirmed the next three postulates: (1) urban water consumption can be split into base 

use, during winter months, and seasonal use. Also, the outcomes indicate that base use 

is sensitive to weather variables. (2) Rainfall occurrence causes a temporary decrease 

in seasonal water use that minimises over time and is finally negligible. (3) During the 

rainfall absence, the alteration in seasonal water use follows the air temperature 

pattern. 
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Two years later, Gato et al. (2007a) applied the same postulation of total water used 

that is assumed in Zhou et al. (2000) to develop the model of Gato et al., (2005) with 

the same data. In addition, this study used the Zhou et al. (2000) deseasonalising 

approach, which was Fourier analysis  to calculate the potential component of seasonal 

water use instead of the heat function approach that was used in Gato et al., (2005). 

Also, Stepwise regression analysis was adopted in this study. The outcomes showed 

that base use was significantly affected by the maximum temperature, rainfall and the 

day of the week. It confirmed the findings of Gato et al.’s (2005) that base use is 

weather sensitive. Furthermore, the efficiency of the model had been improved. 

Gato et al. (2007b) then evolved the simple time series model in Gato et al., (2005) by 

using the same period and zone of daily data. The study aimed to examine the 

threshold levels of maximum temperature and precipitation that drive the total water 

demand. The results show that domestic water demand was not influenced by 

maximum temperature changes at 15.3°C or below and at precipitation levels of 4.8 

mm or higher. 

Sarker et al. (2013) employed the Gato et al., (2007b) model for checking to what 

extent the base use component is weather-sensitive for mixed areas, i.e. residential, 

industrial and commercial. This study used the daily historical data of water 

consumption, maximum temperature and precipitation for Greater Melbourne City, 

Australia from 1980-2009. The results showed that the threshold levels of temperature 

and rainfall were 15.53°C and 4.08 mm respectively. The maximum temperature 

threshold concerning residential water use was a little bit lower than that for mixed 

water use, While, the precipitation threshold corresponding to residential water use 

was higher than that of mixed water use. 
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The studies confirmed that water demand was driven by weather factors during the 

year by using various traditional methods, which offered results that have different 

prediction accuracy. The accuracy of the model has encouraged researchers to look 

for more accurate methods to forecast water demand, especially as climate change 

challenges increase, and Artificial Intelligence (AI) is one of the most important 

prediction techniques. 

2.4.2. Artificial Neural Network 

Artificial neural networks (ANNs) are an information processing technique that aims 

to emulate human brain functionality by adopting the same connectivity and 

operations as biological neurones. It can capture nonlinear relationships by system 

input and output training (Ahmed et al., 2016; Cutore et al., 2008). Mohammadi et al. 

(2005) stated that the ANN is a new approach for urban water modelling, which has 

the ability to deal with a large number of input and output patterns. These techniques 

are:  

•    Faster in comparison to their conventional counterparts. 

•    Robust in noisy environments. 

•    Flexible in terms of solving different problems. 

•    Highly adaptive to newer environments. 

These specifications make the ANN technique more efficient and viable in the 

comprehension of hydrologic issues (Mohammadi et al., 2005). Ghiassi et al. (2008) 

advised utilising the Artificial Neural Network (ANN) technique in water demand 

modelling because nonlinear relationships occur among the factors that determine the 

variation in water consumption. Moreover, the ANN approaches have been shown to 

be an efficient technique to analyse a variety of nonlinear time series events, including 

water demand prediction. Unlike many hydrological applications, it has been noted 
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that the artificial neural network technique has only limited application in terms of 

water demand modelling (Firat et al., 2010). 

Several previous studies have investigated and compared conventional and ANN 

models to predict water demand, and they found that ANN techniques have the ability 

to predict water demand better than the traditional model: 

Jain et al. (2001) examined three models, ANN, regression and time series. The study 

employed weekly historical data for water consumption and weather variables (total 

rainfall and average maximum air temperature) from 1989 to 1998 for Kanpur City, 

India. The findings show that the rainfall occurrence is a more effective indicator than 

the amount of rainfall itself and also that the ANN technique consistently 

outperformed both the traditional methods. 

One year later, Jain and Ormsbee (2002) presented an ANN model and compared it 

with two traditional models, regression and time series. The study employed the 

historical daily data for water consumption and weather variables in Kentucky state, 

USA, from 1982-1992. The results indicated that the simple ANN model produce 

more accurate prediction than the conventional techniques. 

Bougadis et al. (2005) investigated three methods: time series analysis, linear and 

multiple linear regression, and artificial neural networks. The research adopted the 

historical weekly data of water consumption, for summer months only, for the city of 

Ottawa, Canada, from 1993-2002. It also used the climate variables and antecedent 

water consumption as model inputs. The performance of the ANN models in 

predicting water demand consistently outperformed the traditional models.  
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Adamowski (2008) compared three approaches: time series analysis, multiple linear 

regression, and artificial neural networks to predict peak daily water demand in 

summer months only. Historical daily data of water consumption for the city of 

Ottawa, Canada from 1994-2002 were adopted in this study. Weather variables and 

previous water consumption were used as model inputs. Depending on results, ANNs 

techniques offered a better forecasting model for predicting peak daily water demand 

than the other approaches. 

These applications clearly show that ANN models consistently outperformed the 

conventional models. Babel et al. (2007) stated that traditional forecast models are 

often unable to adequately provide precise and reliable outcomes, as they tended to 

overestimate water demand. This causes the production and transmission of more 

drinking water than is needed and leads to pressure on previously stressed water 

resources. Thus, an accurate and reliable technique is required. This has promoted the 

use of different types of ANN methods to predict water demand. 

Msiza et al. (2007) investigated two types of artificial neural network: the multilayer 

perceptron (MLP) and the radial basis function (RBF). The study used data from 

Gauteng Province, in the Republic of South Africa for short- and medium-term water 

demand. Different activation functions, learning algorithms and numbers of neurons 

in the hidden layer were employed in this research. A comparison on the best networks 

from each type showed that the RBF network had the best accuracy and faster 

convergence. 

A year later, Msiza et al. (2008) applied and compared two types of machine learning 

include ANN and Support Vector Machine (SVM) to predict municipal water demand 

for Gauteng Province, South Africa. The models were built and assessed by using 
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daily historical data of municipal water consumption from January 1997 to July 2006. 

The findings revealed that the ANN model offered better performance than SVM 

techniques in term of its ability to generalise municipal water time series prediction. 

Firat et al. (2009) evaluated three types of ANN; Generalized Regression Neural 

Networks (GRNN), Feed Forward Neural Networks (FFNN) and Radial Basis Neural 

Networks (RBNN). This study used monthly socio-economic and weather variables 

as model inputs, from 1997-2005, for Izmir City, Turkey. The outcome, when using 

25 different input variables, revealed that a model consisting of multiple input 

variables is better than a single variable input. The GRNN outperformed all other ANN 

techniques and Multiple Linear Regression (MLR) when predicting monthly water 

demand. 

A year later, Firat et al. (2010) assessed three ANN models, including two of the 

techniques evaluated previously (FFNN, GRNN) and Cascade Correlation Neural 

Networks (CCNN). This study also used historical monthly data from Izmir City, 

Turkey, over the same period (1997-2005). The model input for the ANN techniques 

included several combinations of previous water consumption values. The results 

showed that using five of these values resulted in the best model input, CCNN 

consistently outperforming both FFNN and GRNN. 

Yurdusev et al. (2010) proposed the generalised regression neural networks (GRNN) 

model to predict municipal water consumption in Izmir City, Turkey. This study used 

historical monthly socio-economic and weather variables from 1997 to 2004 to build 

and examine the model. The data included water bills, population, number of 

households, gross national product, average temperature and rainfall. The results 
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reveal that the GRNN model is capable of successfully simulating municipal water 

demand. 

Babel and Shinde (2011) applied different artificial neural network (ANN) 

architectures, with various explanatory variables, to forecast daily and monthly water 

demands in Bangkok City, Thailand. This study used daily water consumption data 

and weather factors from October 2005 to August 2008 for daily predictions, and 

monthly water consumption data, meteorological variables and socioeconomic factors 

from October 2002 to August 2008, for monthly predictions. Cross-correlational and 

sensitivity analyses were applied to minimise the model input set to forecast water 

demand accurately. The results showed that weather factors had a more significant 

impact on the medium-term forecast as compared to short-term estimates. 

Mohammed and Ibrahim (2013)  used a multilayer perceptron neural network model 

with a multi-activation function (MLP-MAF), to predict both daily and monthly 

municipal water demand in Tampa City, USA. Various combinations of activation 

functions were used in the hidden layer of the model. To estimate the capability of the 

developed model over both the short and mid-term, daily water consumption data and 

four climatological factors over the period 1992 to 2004, were used. The results 

showed that the set of linear, sine and cosine activation functions within the MLP-

MAF and Radial Basis Function (RBF) models were better than other groups. Turning 

to the models in general, the combined MLP-MAF model was better than the MLP 

and RBF models, even though the MLP-MAF model did not perform particularly well. 

Ajbar and Ali (2015) applied ANN and compared with an econometric model to 

predict the monthly and yearly municipal water demand for Mecca City, Saudi Arabia. 

Both models were assessed using historical data of city population, persons per 
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household, household income, maximum temperature and a likely number of visitors 

each month over the period from 2003 to 2010. The results of the models showed that 

performance of the ANN was better than the performance of the econometric model 

based on monthly and yearly data. 

Prediction of water demand is a substantial topic for policy-makers in the water 

industry. It is still extremely challenging to achieve the expected forecasting accuracy 

with respect to the prediction trends (Behboudian et al., 2014). Accordingly, different 

optimisation methods can be used to tackle problems in applications. The aim of 

optimisation algorithms is to locate the optimum values for a system’s parameters, 

under different conditions (Ahmed et al., 2017). Recently, different hybrid models 

have been used to predict water demand accurately.  

2.4.3. Hybrid Models 

The need for increased reliability, capability and accuracy regarding data-driven 

techniques has encouraged researchers to evolve innovative models. Hybrid models 

are being developed to meet new requirements; their prime objective is to integrate 

the advantages of two or more techniques in such a way as to improve the capability 

of single models. These hybrid models are commonly an integration of techniques in 

a series where traditionally, one technique is deemed as the primary technique, the 

others functioning as pre-processing or post-processing methods (Araghinejad, 2014). 

Liu et al. (2003) proposed a combined model that included water demand forecasts 

and artificial neural networks (WDF-ANN). This study used historical monthly water 

consumption and socio-economic data for Weinan City, China, from 1991 to 2000, to 

establish a water prediction model. The results indicated that a WDF-ANN model had 

the ability to simulate monthly water consumption patterns. 
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Cutore et al. (2008) developed a novel hybrid model that shuffled complex evolution 

metropolis algorithm (SCEM-UA) with an artificial neural network to predict daily 

municipal water demand. The new technique was compared with three approaches 

containing a traditional ANN, regression and an adaptive neuro-fuzzy inferences 

system (ANFIS). The study used daily weather variables and antecedent water 

consumption data from 2003 to 2004 in Catania City, Italy. The outcomes obtained 

show that the predictive ability of the hybrid model was better than the predictive 

capability of the other models. 

Nasseri et al. (2011) developed a coupled model that combines the Extended Kalman 

Filter (EKF) and Genetic Programming (GP) to predict municipal water demand in 

Tehran City, Iran. Historical monthly data of municipal water consumption from 1992 

to 2002 were used to build and assess the model. The data were divided randomly into 

two sets of 70% for training and 30% for verification. In addition, three lags of 

measured municipal water consumption were employed as likely and independent of 

the model inputs. The results showed that the hybrid model was effective and capable 

of simulating municipal water demand (R=0.87). 

Azadeh et al. (2012) developed a relatively new technique of hybrid fuzzy linear 

regression–artificial neural network (FLR-ANN) and compared this with the artificial 

neural network (ANN) and fuzzy linear regression (FLR). This study employed daily 

historical data of municipal water consumption in Tehran City, Iran from 5th April 

2004, to 21th March 2009, to build and assess the model. The hybrid approach 

consistently outperformed the ANN and FLR techniques for both cold and warm days. 

Campisi-Pinto et al. (2012) applied a combined wavelet-denoising and ANN model 

and compared it with ANN and Multiple Linear Regression ( MLR) models to predict 
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urban water demand in Syracuse City, Italy. The model employed 84 historical 

monthly-observed data from January 2002 to December 2008 for building and 

assessing the models. The results showed that the wavelet-denoising had a significant 

impact on ANN that leads to making the combined model offering better results than 

the ANN and MLR models. 

Adamowski et al. (2012) developed a novel hybrid technique, a combination of 

discrete wavelet transforms and artificial neural networks (WA-ANNs) model, to 

predict municipal water demand for Montreal City, Canada. The daily historical data 

of rainfall, maximum temperature and previous water consumption over summer only 

(May to August) from 2001 to 2009 were employed to build the model. The WA-ANN 

model was tested and compared with the ANN, autoregressive integrated moving 

average (ARIMA), MLR and multiple nonlinear regression (MNLR). The results 

showed that the WA-ANN model was more accurate. 

Zhu and Xu (2012) established an effective technique (QPSO-RBF) using combined 

quantum particle swarm optimisation algorithm (QPSO) and radial basis function 

(RBF) artificial neural networks. These models were employed to predict municipal 

water consumption in a city in southern China. The daily historical data for water 

consumption and weather factors from April to July 2010 were used to build and assess 

the models. The QPSO algorithm was utilised to optimise the parameters for the RBF 

and this led to improvements in the speed and accuracy of the hybrid model. The 

results demonstrated that QPSO-RBF hybrid techniques are better than both PSO-RBF 

and RBF models based on the root mean square error, which is 2.14, 2.76 and 3.5 for 

QPSO-RBF, PSO-RBF and RBF respectively.  
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A year later, Zhu and Chen (2013) proposed a hybrid model (QPSO-LSSVM)  

combining a QPSO algorithm and a least squares support vector machine (LSSVM). 

This study used the same data set from the last research to build and examine the new 

hybrid model. QPSO technique was employed to select the optimum parameters for 

the LSSVM. The results depict that the speed of computation and the accuracy of 

prediction for the hybrid model (QPSO-LSSVM) are better than SVM, and LSSVM 

approaches based on the average relative error that is 1.76, 2.18 and 3.16 respectively. 

Al-Zahrani and Abo-Monasar (2015) established a model that combined the GRNN 

and time series (TS) techniques. Historical daily data of water consumption and 

weather variables for Al-Khobar City in the Kingdom of Saudi Arabia from 2006 to 

2009 were used. The results confirm that the combined model (TS-GRNN) is superior 

to both the GRNN and TS approaches alone in simulating water demand pattern and 

seasonal water demand trend. 

Brentan et al. (2017) proposed a novel hybrid model, which is support vector 

regression and adaptive Fourier series to predict short-term municipal water demand 

in France and Brazil. Historical meter data (every 20 minutes) from May 2012 to 

December 2013 were employed to build and evaluate the model. The findings showed 

that the model was viable and valid to use in both areas of study (France and Brazil). 

Various optimisation approaches can be adopted to handle a range of issues for 

different applications. Recently, the Lightning Search Algorithm (LSA) is a new 

nature-inspired meta-heuristic optimisation algorithm, based on the natural 

phenomenon of lightning, for tackling constraint optimisation issues. This algorithm 

has been applied in various areas such as: improving a fuzzy logic speed controller for 

an induction motor drive (Abd Ali et al., 2015), home energy management (Ahmed et 
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al., 2016) and a wind power model (Sirjani and Okonkwo, 2016). The Gravitational 

Search Algorithm (GSA), which is inspired by the Newtonian law of gravity and 

proposed by Rashedi et al. (2009), has been used to tackle various optimisation 

problems such as wireless sensor networks (Gharghan et al., 2016a), image processing 

(Zhao, 2011) and the electricity market (Vijaya Kumar et al., 2013). Also, Particle 

Swarm Optimisation (PSO) algorithm has been used in different fields such as 

municipal water prediction (Zubaidi et al., 2018), wireless sensor localisation 

mechanisms (Gharghan et al., 2016b) and estimating results of biological treatment 

(Ethaib et al., 2016).  

Based on these findings three optimisation techniques have been used in this thesis to 

estimate the best value for learning rate coefficient and the number of neurons in each 

hidden layer of the ANN model, for predicting long-term municipal water demand 

under climate change. 

2.5. Future Projection of Water Demand 

Forecasting municipal water demand aims to minimise the risks involved in decision-

making (Walker et al., 2015). Marlow et al. (2013) point out that accurate prediction 

can improve the performance of water distribution systems and encourage better water 

management in addition to urban water sustainability. However, the problems faced 

by the water sector as a result of global warming, has increased pressure on its 

infrastructure.  

Prediction of water demand can play a significant role in optimising the design, 

operation and management of urban water supply infrastructures. It can minimise the 
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uncertainty that results from a rapid increase in water demand due to climate effects 

(Bougadis et al., 2005). 

Behboudian et al. (2014) used a stationary chain and ANN to develop a municipal 

water demand model to predict water demand between 2011-2030. In addition, a linear 

regression model was utilised to compare and decrease the forecast uncertainty. 

Monthly data for maximum mean temperature, inflation index, income (economic 

growth) and water price of Neyshabour City, Iran, from 1997 to 2008, was adopted to 

assess the model. The values of maximum temperature were forecasted from 

downscaling the model of LARS-WG software (using HADCM3 General Circulation 

Model (GCM), A1B scenario) for the period 2011-2030. The results show that (1) for 

data preprocessing, normalising the data by logarithm and then detrending was better 

that detrending only (without normalising). (2) For different structures of ANN, 

statistical values indicate that ANN was more accurate than the regression model. 

The drawbacks of this study are:  

1) the prediction model was dependent on trial and error processes that may not offer 

an optimal solution;  

2) the study used small sample sizes and it employed maximum temperature and 

combined it with socio-economic factors;  

3) it used one GCM to simulate future maximum temperature and that increased the 

uncertainty. 

On examination of previous researches, no existing study has investigated the 

influence of climate change on municipal water demand over a recommended baseline 
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period. These studies have suffered from inadequate sample sizes, evidence for 

climate change impact has been mixed with socioeconomic factors and several 

conceptual and methodological weaknesses. So, the municipal water demand under 

the effect of climate change is still poorly understood. 

2.6. Time Series Analysis Techniques 
2.6.1. Data Set 

Many methods have employed different data sets of model inputs over various periods 

to predict water demands. 

Most studies of water demand prediction have only investigated the impact of socio-

economic factors (e.g. Liu et al. (2003); Firat et al. (2009); Firat et al. (2010)), or  a 

mixture of socio-economic and weather variables such as, Bougadis et al. (2005); 

Cutore et al. (2008); Firat et al. (2009); Babel and Shinde (2011); Mohammed and 

Ibrahim (2013); Behboudian et al. (2014); Al-Zahrani and Abo-Monasar (2015). Some 

of the previous research into water demand has focused on a combination of previously 

recorded values of water consumption for example, Firat et al. (2010) and Sebri 

(2013).  

Few studies have adopted weather variables only in their water demand models as well 

as employing limited variables includes (maximum temperature and total rainfall only) 

e.g. (Jain et al., 2001; Jain and Ormsbee, 2002; Adamowski, 2008; Adamowski et al., 

2012). Adamowski (2008) advised using extra weather variables in the water demand 

model to include evaporation, humidity, wind speed, and the amount of cloud cover 

and sunshine. 
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Much of the current literature on simulation of water demand pays particular attention 

to either short-term prediction such as Jain et al. (2001); Bougadis et al. (2005); Cutore 

et al. (2008); Adamowski (2008); and Firat et al. (2010), or mid-term prediction e.g. 

(Jain and Ormsbee, 2002; Adamowski et al., 2012; Mohammed and Ibrahim, 2013; 

Behboudian et al., 2014). 

Overall, these studies highlight the need for assessing the impact of climate change on 

municipal water consumption over the long term that needs a robust technique for data 

manipulation (data preprocessing). 

2.6.2. Data Preprocessing  

Maier and Dandy (2000) stated that it is vital to pre-process data in an appropriate 

form before it is utilised in an ANN. These techniques are essential to confirm that all 

the data receives equal attention in the learning mode. Data cleaning includes 

identifying and removing trends and non-stationary components from a data set, as 

explained in Abrahart et al. (2004). Time series can be decomposed into trend (T), 

oscillatory (O), stochastic (S) and noise (Ɛ) components, with trend and oscillatory are 

considered deterministic signals (Araghinejad, 2014).  

Zhang and Qi (2005), used ANN to evaluate the effect of two preprocessing 

techniques; the detrending and deseasoning of nonlinear monthly data. Their results 

showed that both techniques can minimise prediction errors, and the combination of 

both was found to be the most efficient preprocessing method. Sebri (2013) 

investigated the impact of data preprocessing to include original (ORG); detrended 

(DET); deseasonalized (DES); and detrended and deseasonalized (DETDES) in an 

ANN. They compared the results with the traditional Box–Jenkins method, which is 

Seasonal Autoregressive Integrated Moving Average (SARIMA). Trimester data was 
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adopted in this study during (1983-2010) for Tunisia City, Tunisia. Four time-series 

step lags were used as the input for all models in this study because the time series of 

residential water consumption is quarterly. The results depict that the (SARIMA) 

model with (ORG) data is better than the ANN approach with (ORG), (DET), and 

(DES) data. The ANN technique with (DETDES) data was superior to all the other 

models. 

In this thesis, Singular Spectrum Analysis technique (SSA) is used for detrending, 

deseasoning and noise removal to detect the stochastic signals of water consumption 

and climate factors time series. 

2.6.2.1. Singular spectrum analysis (SSA) method 

SSA is a robust technique used to decompose the original time series, which may 

exhibit nonlinear properties, and to uncover the stochastic component after the 

removal of noise, trend and oscillatory components, as shown in Khan and Poskitt 

(2017).  

The SSA contains two main stages, decomposition and reconstruction. In the 

decomposition stage the time series is decomposed into a number of components, 

where the first components have the larger portion of the original signal variance while 

the last components have the lower portion. In the reconstruction stage, only the first 

few components are used to re-build the signal. The last components are neglected as 

they represent the noise. This will improve the prediction performance of the time 

series. Additionally, it has the ability to work well even for samples that are small in 

size (Hassani et al., 2015). 
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This approach does not require the imposition of any statistical assumptions such as 

normality or linearity. It has been successfully applied in different sectors including 

industry (Al-Bugharbee and Trendafilova, 2016), groundwater prediction (Polomˇcic´ 

et al., 2017) and hydrology (Baratta et al., 2003).  

No previous study has considered the impact of climate on water demands or 

employed a pretreatment signal technique, which has the ability to decompose the time 

series into different components such as trend, oscillatory behaviour (periodic or 

quasi-periodic components) and noise filtering. These components help to determine 

the effect of climate volatility on water consumption, to improve the accuracy of 

prediction, and to reduce the scale of error between observed and forecast water 

demand. 

Table 2.1: Summary of previous studies 

Period No. Authors Methods Factors 

Sh
or

t-t
er

m
 

1 Yurdusev et al. (2010) GRNN A and B 

2 Firat et al. (2010) CCNN C 

3 Al-Zahrani and Abo-Monasar (2015) TS-GRNN B and C 

4 Azadeh et al. (2012) ANN-FLR C 

5 Adamowski et al. (2012) WA-ANNs B and C 

M
id

-te
rm

 

1 Liu et al. (2003) WDF-ANN A and C 

2 Nasseri et al. (2011) EKF- GP C 

3 Msiza et al. (2008) ANN C 

4 Bougadis et al. (2005) ANN C 

5 Jain and Ormsbee (2002) ANN B and C 

A=Socio-economic, B=Weather and C=Previous water consumption 
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The research efforts discussed above are promising as shown in table 2.1. However, 

they all have one weakness or another. Unlike the existing proposals, the solution 

introduced in this thesis contains the climate factors only as model inputs and for the 

long-term time series (1980-2010). Additionally, to the best of the author’s knowledge 

this work is a uniquely that addresses the data preprocessing, considering the 

pretreatment signal, to detect the stochastic signal of water consumption and climate 

factors. Also, the selection of the ANN model input is based on statistical criteria 

(cross-correlation and variance inflation factor). 

2.7. Summary  

Climate change has adversely impacted freshwater resources especially in city centres. 

Therefore, there is a desire to activate solutions that protect freshwater resources and 

achieve sustainability. Prediction of municipal water demand is one of the best 

solutions for conserving water resources, which and has been given attention by both 

academia and decision makers. 

Many of the climate change studies have focused on identifying and evaluating the 

impacts of increasing temperature and decreasing rainfall. They consider how these 

factors affect the environment, in particular freshwater resources. Other researches 

have studied the prediction of municipal water demand where they pay attention to the 

impact of socio-economic factors more than weather factors. 

In this chapter, The relevent literature was briefly summarised as to its impacts and 

downscaling approaches for simulating future climate factors. The significance of 

water prediction for the water utilities was discussed, and different types of water 

demand prediction techniques, with a variety of different inputs, were discussed. The 
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results confirmed the effect of weather variables on water consumption, and more 

emphasis was given to the time series analysis techniques, especially the SSA method 

and the hybrid-ANN methods to forecast long-term municipal water demand under 

climate change.  

Based on the above, gaps have been identified along with suggested technical solutions 

to forecast long-term municipal water demand under different IPCC scenarios for 

three future time periods. The methodology of the proposed work is explained in 

Chapter 3. 
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Chapter 3: Inteligent Model for Forecasting Future Water 

Demand (Methodolgy) 

3.1. Introduction 

This chapter presents the research methodology to highlight the routes undertaken to 

complete forecasting municipal water demands based on climate change factors. This 

methodology is based on combination techniques of Singular Spectrum Analysis 

(SSA) and hybrid Artificial Neural Network (ANN) utilising monthly time series data 

for water consumption and five climate factors over the baseline period 1980-2010. 

The techniques of data preprocessing such data normalisation, data cleaning and 

pretreatment signal are presented in chapter 4. The first stage in this chapter shows all 

the fundamental issues regarding the ANN model. Next, three computational 

intelligence algorithms were adopted to optimise the best factors of the ANN model 

for reducing the uncertainty of municipal water demand prediction models regarding 

climate change. These algorithms are Lightning Search Algorithm (LSA), 

Gravitational Search Algorithm (GSA) and Particle Swarm Optimisation (PSO). Then, 

the ANN model runs to capture the relation between water consumption and climatic 

variables, in order to use it to forecast future municipal water demands.  

In the second stage, daily time series data of climate factors over the period 1980-2010 

were employed in statistical downscaling to simulate future weather data. The Long 

Ashton Research Station Weather Generator (LARS-WG) model is applied to simulate 

the future climate factors for three periods (2011-2030, 2046-2065 and 2080-2099). 

In addition, seven General Circulation Models (GCMs) are used to mitigate the 

uncertainty for different assumptions. Also, several Intergovernmental Panel on 

Climate Change (IPCC) scenarios are employed to cover all options of greenhouse 
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emission scenarios that are supported by the selected model. Finally, the simulated 

climate data applied in the ANN model that resulted from the first stage is used to 

forecast municipal water demands in the future.  

The diagrammatic representation of the municipal water demands model is presented 

in Figure 3.1. It contains two stages: the first one provides the steps for building the 

model of water prediction, and the second stage refers to the steps for building a model 

of downscaling the future climate factors based on the IPCC scenarios. 
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Figure 3-1: A flowchart shows the methodology steps of forecasting future 
municipal water demand under three scenarios over three future periods (2011-
2030, 2046-2064 and 2080-2099) 

3.2. Artificial Neural Network Technique 

The ANN is a subsystem of artificial intelligence (AI). Its approach is a system of 

information processing that attempts to mimic the brain's neurons by utilising a 

network of artificial neurons, which are regular in layers. It has the ability to 

adequately map the non-linear water demand trend (Babel and Shinde, 2011), As it is 
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capable of handling different complex nonlinear environmental problems, and is 

appropriated for long-term prediction (Mutlu et al., 2008). 

3.2.1. Basis of Artificial Neural Network 

ANN has a layered structure, and the multilayer perceptrons (MLP) type is the most 

commonly applied in hydrological engineering (Adamowski et al., 2012). Each layer 

includes one or more processing units named neurons or perceptrons. The input layer 

contains the problem effective variables, whereas the output (last) layer contains 

objective variables. The one or two hidden layers contain the neurons that represent 

the components of computation (black box). All of the perceptrons in the separate 

layers are fully or partially interconnected with one another by a series of synaptic 

weighted connections. The scale of these weights refers to the connections strength 

between neurons that are interconnected. A weight of zero means that there is no 

connection between these neurons. There are no connections between its neurons in 

the same layer (Sayadi et al., 2013). Figure 3.2 illustrates a classic ANN structure. 
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     Figure 3-2: The ANN model architecture 

A neuron comprises many components: input variables with bias, the synaptic weights 

of the inputs, the summation function, the activation function and the desired output 
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(Bennett et al., 2013; Zhang and Qi, 2005). Hagan et al. (2014), stated that training is 

used to optimise the connection synaptic weights. Kingston et al. (2005) points out 

that once the learning (optimisation) phase has been successfully completed, the 

learning model’s performance has to be validated to ensure that the model is able to 

simulate data or generate forecasts robustly. 

3.2.2. Modelling Issues in ANNs 

Several refinements for ANN models should be conducted to overcome impediments, 

which badly affect the prediction results. This study endeavours to develop the ANN 

model in a systematic manner that leads to an improved performance. Such an 

approach requires remedying main factors such as the activation function, the 

determination of the model architecture, the learning rate, the data division, the 

stopping criteria and the model optimisation (Abrahart et al., 2004; Araghinejad, 2014; 

Hagan et al., 2014). These factors are clarified and discussed in sections 3.2.2.1 to 

3.2.2.6. 

3.2.2.1. Activation Function 

The activation (or transfer) function is employed to transform the activation level of 

the neuron, the input summation term, to produce an output signal that arranges either 

[0,1] or [−1, 1] depending on the kind of transfer function used. This helps the network 

map any nonlinear process (Bennett et al., 2013). Jain et al. (2001) indicated that the 

transfer function is assumed to be continuous, differentiable, and bounded from above 

and below. Hagan et al. (2014) mentioned that the hyperbolic tangent, sigmoid and 

linear activation functions are commonly applied in the neural network (NN) models. 

The linear activation function is typically used in the output layer, and non-linear 

activation function are normally used in the hidden. Whereas, the input layer does not 
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contain an activation function. Noise has an adverse effect on the performance of the 

activation function. 

To understand how climate variables regulate water consumption, two types of 

activation functions were employed. These are the tansigmoidal activation function in 

both the hidden layers to cover all ranges of the negative input values, while the output 

layer utilised the linear activation function to cover the positive values of water 

demand. Araghinejad (2014) presented the tansigmoidal and linear activation 

functions as the equations below respectively. 

𝑓𝑓(𝑥𝑥) = �
2

1 + 𝑒𝑒−𝛼𝛼𝛼𝛼
� − 1    𝛼𝛼 > 0 (3.1) 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥 (3.2) 

3.2.2.2. Determination of Model Architecture 

The choice of the network architecture is a substantial and complicated issue in the 

development of an ANN model. Generally, it is conducted by determining the 

optimum number of hidden layers and the number of neurons in each of these. The 

determination of the network architecture affects the ability to locate the globally 

optimal set of synaptic weights during learning. This leads to capturing the 

relationship among dependent and independents variables (ASCE, 2000; Shahin et al., 

2008). There are two kinds of ANN models: i) a simple ANN models comprising only 

one hidden layer, and ii) a complex ANN model comprising two or more hidden layers 

(Bennett et al., 2013).  

A) Hidden Layer (HL) 
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The addition of intermediate layers between the input and output layers was to deal 

with nonlinearly separable issues. One HL is adequate to approximate continuous 

functions. It will be insufficient when the relationship among the variables involved is 

complicated. In this situation, more than one HL may be necessary for providing the 

modelling flexibility needed (Basheer and Hajmeer, 2000). Smaller networks have a 

higher processing speed, but more local minima. Large networks have advantages of 

speed training and an improved capability for avoiding local minima in the error 

surface, but it needs a large number of learning samples to fulfil perfect generalisation 

(Maier and Dandy, 2000). There is no systematic way to choose the number of HL, 

but several studies that have developed multi-layers’ perceptron (MLP), such those by 

Jain et al. (2001); Firat et al. (2010), examined several models and reported that two 

hidden layers present better results than one hidden layer. Many researchers have 

applied ANN with two HL in different aspects, and the results confirm the accuracy 

and robustness of these models (Gharghan et al. (2016a); Gharghan et al. (2016b); 

Ahmed et al. (2017) and Zubaidi et al. (2018)). Accordingly, two hidden layers were 

adopted to ensure that the ANN model could capture the nonlinear relation between 

water consumption and climate variables for a long-term period. 

B) Hidden Layer Neurons (HLNs) 

The number of HLNs significantly affects network performance; a network with few 

hidden neurons only resulting in a linear estiamtion of the actual trend. In contrast, 

with too many hidden neurons the network will overfit the learning data and lead to a 

poor generalisation of unlearned data (Basheer and Hajmeer, 2000). Figure 3.3 shows 

the impact of HLNs number on network generalisation. Choosing ANN parameters is 

not totally predicable and required trial and error, which can give a high level of error 
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in water demand prediction. To avoid this issue, computational intelligence algorithms 

were used to select the best number of neurons in both hidden layers to achieve 

accurate prediction models. 

 

Figure 3-3: Impact of HLN number on network generalisation (Basheer and 
Hajmeer, 2000) 

3.2.2.3. Learning Rate 

Hagan et al. (2014) stated that the learning rate coefficient is a factor that is used to 

preserve the learning speed by significantly altering the size of the steps taken in 

weight space from one cycle to another. It is utilised to help prevent the learning 

process being trapped at a local minima instead of on global minimum. The learning 

rate coefficient remains constant during the learning. A small value of learning rate 

will slow the training; in contrast, a large value may cause unstable weights (W) that 

oscillate about the optimal value (Basheer and Hajmeer, 2000). 

Many researchers such as Jain et al. (2001); Bougadis et al. (2005) and Adamowski et 

al. (2012) have utilised the trial and error technique, which is unsystematic, to locate 

https://ac.els-cdn.com/S0167701200002013/1-s2.0-S0167701200002013-main.pdf?_tid=8149e9df-d9e2-4709-ae20-0ed780f2f955&acdnat=1540661881_356430408216042d6ffc0fb31e502fda
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the optimum learning coefficients, But computational intelligence algorithms were 

applied to find the optimum coefficient of learning that avoids the learning process 

being trapped in local minima and offers a better generalisation model.  

3.2.2.4. Data Division 

Data division is a vital process that needs to be addressed in the ANN model. It is 

general practice to divide the obtainable data into three independent subsets, namely: 

learning, testing and validation. The learning data is used to adjust the weights; the 

test data is utilised to examine the performance of the network at different stages of 

training; the validation data is required to examine the generalisation capability of the 

model network (Basheer and Hajmeer, 2000). The training set should be adequately 

large to properly represent the data. All the three data sets must all be representative 

because the ANN model does not have the capability to extrapolate outside the range 

of data that is employed for training. Poor forecasts can be predicted if the validation 

data contain values outside of the range of those applied for learning (Maier and 

Dandy, 2000). In this study, the data were divided randomly into the training, testing 

and validation sets 70%, 15% and 15% respectively (Babel and Shinde, 2011; 

Behboudian et al., 2014; Zubaidi et al., 2018). 

3.2.2.5. Stopping Criteria 

Stopping criteria are required for ending the learning process. It was used to locate 

whether the model was optimally or sub-optimally learned. Learning can be stop when 

the learning error reaches an acceptable small value, after the display of a specific 

number of learning records, or when no, or only small alterations in the learning error 

occur. These definitions of stopping criteria either end training prematurely or 

overtrain. To unravel this problem, the cross-validation technique is commonly 
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recommended. It is deemed to be the most reliable tool to cease learning when the 

network starts to overtrain. This technique often needs abundant data and the data to 

be separated into three groups; learning, testing (cross training) and validation. In 

general, the error on the learning data set reduces indefinitely with rising learning 

cycles (epochs) or number of hidden neurons, as shown in (Figure 3.4). The primary 

considerable drop in error resulted from training, but the next slow decrease in error 

may be referred to two phenomena named memorisation and overtraining: (i) the 

excessive use of considerable numbers of epochs leads to network memorisation, 

and/or (ii) utilising a large number of hidden neurons causes overfitting (Basheer and 

Hajmeer, 2000). 

 

Figure 3-4: Criteria for stopping of learning and chosen of optimum NN architecture 
(Basheer and Hajmeer, 2000) 

Stopping criteria were designed according to the procedure used by Gharghan et al. 

(2016a). Two different techniques have been employed to cease learning containing 

cross-validation technique, and root mean square error RMSE as an objective function 

(i.e., error not more than RMSE value in the testing phase). These techniques was 

approved by Zubaidi et al. (2018). 

https://ac.els-cdn.com/S0167701200002013/1-s2.0-S0167701200002013-main.pdf?_tid=8149e9df-d9e2-4709-ae20-0ed780f2f955&acdnat=1540661881_356430408216042d6ffc0fb31e502fda
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3.2.2.6. Model Optimisation (Training & Validation) 

Training is the approach that is used to optimise the connection synaptic weights. This 

process is equal to the parameter assessment stage in the traditional models. There are 

two primary kinds of training (supervised and unsupervised). Supervised learning 

algorithm needs an external teacher to guide the learning mode. This type typically 

requires a large number of input and output data. An unsupervised training algorithm 

does not include a teacher, it only needs an input data set. The purpose of the training 

is to achieve a set of connection weights and nodal thresholds so that the ANN 

produces outputs that are adequately close to the target values and also attain a global 

solution. The dataset employed for the training process should have sufficient patterns 

to enable it to predict the targets with adequate precision. A cross-training approach is 

recommended to avoid overtraining as this causes poor prediction through memorising 

the individual examples (Hagan et al., 2014).  Kingston et al. (2005) stated that once 

the learning (optimisation) phase has been successfully completed, the learning 

model’s performance has to be validated. The validation data set should be an 

independent set which has not been utilised as part of the learning phase in any 

capacity. The training data set and validation data set should represent the same data 

patterns. Shahin et al. (2008) indicated that the aim of the model validation process is 

to ensure that the model is able to simulate data or generate forecasts robustly. All 

equations and additional details can be found in Hagan et al. (2014).  

In this research, the supervisor-learning approach and the Backpropagation Neural 

Network (BP-NN) kind were used. The BP algorithm has a number of attractive 

features such as various choices of transfer function, and it can locate the weight that 

approximates observed values of output with a choice in the level of accuracy (Nawi 

et al., 2013). The Levenberg-Marquardt (LM) learning algorithm was employed for 
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training, testing and validation. The major advantages of the LM training algorithm is 

that it offers minimum error, speed and efficiency, as proven in Payal et al. (2015). 

This technique was approved in Zubaidi et al. (2018). 

3.3. Computational Intelligence Algorithm 

Optimisation is the process of determining the optimum solution to issues relying on 

input variables after locating the objective function as a constraint. Often, this function 

is formulated depending on the particular application and can take the style of minimal 

error or cost, optimal design or management and so on. Various methods have been 

applied to deal with optimisation difficulties. Finding the optimal answer with 

traditional techniques becomes difficult because the size of the search space increases 

with the dimension of the optimisation problem (Kanzow et al., 2004; Shareef et al., 

2015). More recently, algorithms for computational intelligence optimisation have 

been widely applied for solving complicated optimisation issues in different fields 

such as; home energy management (Ahmed et al., 2016), wireless sensor networks 

(Gharghan et al., 2016a) and biological treatment (Ethaib et al., 2016), because of their 

ease of employment, global perspective and broad applicability. These algorithms 

include swarm intelligence methods, which are nature-inspired computational 

methodologies that can handle complicated problems of the real world (Shareef et al., 

2015). To find the best learning rate and the number of neurons in both hidden layers, 

the following new swarm intelligence techniques have been used in this work. These 

algorithms are the Lightning Search Algorithm (LSA), the Gravitational Search 

Algorithm (GSA) and Particle Swarm Optimisation (PSO). 
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3.3.1. Lightning Search Algorithm (LSA) 

LSA is a new nature-inspired meta-heuristic optimisation algorithm for tackling 

constraint optimisation issues. The lightning analogy is due to the mechanism of step 

leader propagation, virtual fast particles, known as projectiles, in the figuration of the 

binary tree structure of a step leader. There are 3 kinds of the projectiles: Transition 

projectiles, create the 1st step leader population N, the space projectiles try to be the 

leader, and the lead projectile, which represents the optimum positioned projectile 

found amid N number of step leaders (Mutlag et al., 2016; Shareef et al., 2015). 

LSA, like to other meta-heuristic algorithms, needs a population to start the search 

(Ahmed et al., 2016). More details about the LSA algorithm can be found in (Shareef 

et al., 2015). 

This algorithm has been applied in various areas such as; improving the fuzzy logic 

speed controller for an Induction motor drive (Abd Ali et al., 2015), home energy 

management (Ahmed et al., 2016) and wind power model (Sirjani and Okonkwo, 

2016).  

The formation of the step leaders is set in the first stage because transition projectiles 

are released from the cell of thunder in a random direction. The standard of uniform 

distribution can be expressed by Equation (3.3) (Ahmed et al., 2016; Shareef et al., 

2015): 

𝑓𝑓(𝑥𝑥𝑇𝑇) = �
1

(𝑏𝑏 − 𝑎𝑎)  , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 ≤  𝑥𝑥𝑇𝑇 ≤ 𝑏𝑏

0  ,                             𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑓𝑓𝑒𝑒
� (3.3) 

where xT: random number, which may offer the solution. 
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a and b: lower and upper levels of the solution space, respectively. 

And the probability density function f(xs) of an exponential distribution is presented 

by Equation (3.4): 

𝑓𝑓(𝑥𝑥𝑠𝑠) = �
1
𝜇𝜇

 𝑒𝑒�
𝛼𝛼𝑠𝑠
𝜇𝜇 �, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑠𝑠 ≥ 0

0 ,                     𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑠𝑠 ≤ 0
� (3.4) 

Once the initial is evaluated, then the position and direction are updated with Equation 

(3.5) 

𝑝𝑝𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠 = 𝑝𝑝𝑖𝑖𝑠𝑠 ± 𝑒𝑒𝑥𝑥𝑝𝑝 𝑓𝑓𝑎𝑎𝑟𝑟𝑟𝑟 (𝜇𝜇𝑖𝑖) (3.5) 

where the 𝑝𝑝𝑖𝑖−𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠  is a new projectile and 𝑝𝑝𝑖𝑖𝑠𝑠 : old projectile.  

Both the projectiles and the step leaders that have travelled near to the ground do not 

have sufficient potential for ionising considerable sections in front of the leading edge. 

In this method, the lead projectile can be created as a random number taken from the 

standard normal distribution. The function of normal probability density 𝑓𝑓(𝑥𝑥𝐿𝐿) is 

revealed as: 

𝑓𝑓(𝑥𝑥𝐿𝐿) = �
1

𝜎𝜎 √2𝜋𝜋
 𝑒𝑒
−�𝛼𝛼𝐿𝐿−𝜇𝜇�

2

2𝜎𝜎2 � (3.6) 

Where: 

f (xL): the normal probability density function. 

σ: scale parameter. 

µ: shape parameter. 
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From Equation (3.6), a randomly generated lead projectile has the ability to search in 

all directions from the existing position defined via the shape parameter. The scale 

parameter, σ, reduces exponentially to locate the best solution. So, the position of pL 

in step + 1 can be revealed in Equation (3.7):  

𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿 = 𝑝𝑝𝐿𝐿 + 𝑟𝑟𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑎𝑎𝑟𝑟𝑟𝑟(𝜇𝜇𝐿𝐿 ,𝜎𝜎𝐿𝐿) (3.7) 

𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿 : the new lead projectile. 

Figure 3.5 displays the flow chart of the suggested hybrid LAS-ANN model. 
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Figure 3-5: flow chart of the LAS-ANN model (Ahmed et al., 2016) 
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3.3.2. Gravitational Search Algorithm (GSA) 

Rashedi et al. (2009) proposed the GSA algorithm, which is based on the Newtonian 

law of gravity: “Every particle in the universe attracts every other particle with a force 

that is directly proportional to the product of their masses and inversely proportional 

to the square of the distance between them”. GSA has been used in different sectors 

such as image enhancement (Zhao, 2011), optimal power flow (Duman et al., 2012) 

and business (Vijaya Kumar et al., 2013).  

The mathematical principle of the GSA is dependent on the Newtonian law of gravity, 

which is given in Equation (3.8): 

𝐹𝐹 = 𝐺𝐺
𝑀𝑀1𝑀𝑀2

𝑅𝑅2
 (3.8) 

Where  

F = gravitational force,  

R = the distance between the first and second particles of mass (M1) and (M2) 

respectively, and 

G = the gravitational constant value. 

Newton’s second law, Equation (3.9), states that “acceleration is inversely 

proportional to mass M and directly proportional to force F”, as follows: 

𝑎𝑎 =
𝐹𝐹
𝑀𝑀

 (3.9) 
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Due to the influence of declining gravity, the real value of the “gravitational constant 

(G)” relies on the universe’s real age. Equation (3.10) offers a reduction of the 

gravitational constant with age (Gharghan et al., 2016a): 

𝐺𝐺(𝑡𝑡) = 𝐺𝐺(𝑡𝑡0) × (
𝑡𝑡0
𝑡𝑡

)𝛽𝛽       𝛽𝛽 < 1 (3.10) 

Where 

 G (t) = the gravitational constant at time t. 

G (t0) = the gravitational constant at the first cosmic quantum-interval of time t0, and 

 𝛽𝛽 = is a function of time. 

The agents' positions are initialised (i.e., the masses are chosen randomly within the 

offered search interval). The ith agent position it defined by Equation (3.11): 

𝑋𝑋𝑖𝑖 = �𝑋𝑋𝑖𝑖1, … … … ,𝑋𝑋𝑖𝑖𝑑𝑑 , … … . . ,𝑋𝑋𝑖𝑖𝑘𝑘�,    𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2,3, … . . ,𝑁𝑁 (3.11) 

Where  

N = the number of agents,  

Xd
i= the ith agent position in the dth dimension, and  

k = the space dimension.  

To compute the GSA fitness function, a root mean square error (RMSE) can be 

adopted to select the best and the worst fit for each iteration. The purpose of the 

computations is to reduce the problems and locate the masses of each agent as follows 

(Shuaib et al., 2015): 
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𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �
1
𝑟𝑟
�𝑒𝑒2
𝑛𝑛

𝑖𝑖=1

 (3.12) 

𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡(𝑡𝑡) = min
𝑗𝑗∈{1,,…,𝑁𝑁}

 𝑓𝑓𝑖𝑖𝑡𝑡𝑗𝑗  (𝑡𝑡) (3.13) 

𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑡𝑡(𝑡𝑡) = max
𝑗𝑗∈{1,,…,𝑁𝑁}

 𝑓𝑓𝑖𝑖𝑡𝑡𝑗𝑗 (𝑡𝑡) (3.14) 

𝑛𝑛𝑖𝑖(𝑡𝑡) =
𝑓𝑓𝑖𝑖𝑡𝑡𝑖𝑖(𝑡𝑡) −𝑊𝑊𝑓𝑓𝑓𝑓𝑒𝑒𝑡𝑡(𝑡𝑡)
𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡(𝑡𝑡) −𝑊𝑊𝑓𝑓𝑓𝑓𝑒𝑒𝑡𝑡(𝑡𝑡)

 (3.15) 

𝑀𝑀𝑖𝑖(𝑡𝑡) =
𝑛𝑛𝑖𝑖(𝑡𝑡)

∑ 𝑛𝑛𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1

 (3.16) 

Where 

e = the predicted water error, and  

n = the number of samples.  

The actual water consumption was obtained based on observation, whereas the 

predicted water was gained using the GSA-ANN algorithm. The gravitational constant 

G at iteration t was calculated as follows: 

𝐺𝐺(𝑡𝑡) = 𝐺𝐺0𝑒𝑒(−𝛼𝛼𝛼𝛼 𝑇𝑇⁄ ) (3.17) 

The computation of the total force in different directions for the ith agent, calculation 

of the velocity and acceleration, and the position of the agents in the next iteration are 

given by Eqaution (3.18): 

𝐹𝐹𝑖𝑖𝑗𝑗𝑑𝑑(𝑡𝑡) = 𝐺𝐺(𝑡𝑡)
𝑀𝑀𝑝𝑝𝑖𝑖(𝑡𝑡) × 𝑀𝑀𝑎𝑎𝑗𝑗(𝑡𝑡)

𝑅𝑅𝑖𝑖𝑗𝑗 + 𝜀𝜀
(𝑋𝑋𝑗𝑗𝑑𝑑(𝑡𝑡) − 𝑋𝑋𝑖𝑖𝑑𝑑(𝑡𝑡)) (3.18) 
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𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡) = � 𝑓𝑓𝑎𝑎𝑟𝑟𝑟𝑟 𝑗𝑗𝐹𝐹𝑖𝑖𝑗𝑗𝑑𝑑 (𝑡𝑡)
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠𝛼𝛼,𝑗𝑗≠𝑖𝑖

 (3.19) 

𝑎𝑎𝑖𝑖𝑑𝑑(𝑡𝑡) =
𝐹𝐹𝑖𝑖𝑑𝑑(𝑡𝑡)
𝑀𝑀𝑖𝑖(𝑡𝑡)

 (3.20) 

𝜐𝜐𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) = 𝑓𝑓𝑎𝑎𝑟𝑟𝑟𝑟𝑖𝑖  × 𝜐𝜐𝑖𝑖𝑑𝑑(𝑡𝑡) + 𝑎𝑎𝑖𝑖𝑑𝑑(𝑡𝑡) (3.21) 

𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖𝑑𝑑(𝑡𝑡) + 𝜐𝜐𝑖𝑖𝑑𝑑(𝑡𝑡 + 1) (3.22) 

Figure 3.6 presents the flowchart that shows the details of the GSA-ANN operation 

based on the previous equations.  
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Figure 3-6: The GSA-ANN algorithm flowchart (Gharghan et al., 2016a) 
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3.3.3. Particle Swarm Optimisation (PSO) 

A PSO algorithm is a computational iterative search and optimisation technique. It is 

biologically inspired by the social behaviour of animal societies such as flocks of birds 

or schools of fish. This method comprises a swarm of particles where a particle denotes 

a possible solution (Rini et al., 2011). The PSO algorithm is commonly utilised to 

settle optimisation issues (Eberhart and Shi, 2001). Recently, studies have emphasised 

the positive use of hybrid PSO–ANN models to tackle engineering issues such as 

improving the precision of wireless sensor localisation mechanisms (Gharghan et al., 

2016b), estimating results of biological treatment (Ethaib et al., 2016) and home 

energy management (Ahmed et al., 2016). 

In each process of iteration, the velocity and position of each particle in the swarm is 

updated according to the two "best" values. The first one is the local best (Pbest) which 

indicates particle's memory about its own best position (best fitness). The second is 

the global best (gbest) denoting global knowledge of the best position or the best 

position in their neighbourhood. Particle positions are altered by adding velocity, 

updating dependent on Equations 3.23 and 3.24 from Wang et al. (2010) and Gharghan 

et al. (2016b). The updating process continues until either an appropriate gbest is 

attained or the pre-set number of iterations (kmax) is reached. 

𝑉𝑉𝑖𝑖𝑑𝑑(𝑘𝑘 + 1) = 𝜔𝜔𝑉𝑉𝑖𝑖𝑑𝑑(𝑘𝑘) + 𝑐𝑐1 𝑓𝑓1(𝑘𝑘)(𝑃𝑃𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑑𝑑 − 𝑋𝑋𝑖𝑖𝑑𝑑)

+ 𝑐𝑐2 𝑓𝑓2(𝑘𝑘)(𝑔𝑔𝑏𝑏𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑑𝑑 − 𝑋𝑋𝑖𝑖𝑑𝑑) 
(3.23) 

𝑋𝑋𝑖𝑖𝑑𝑑(𝑘𝑘 + 1) = 𝑋𝑋𝑖𝑖𝑑𝑑(𝑘𝑘) + 𝑉𝑉𝑖𝑖𝑑𝑑 (𝑘𝑘 + 1)   (3.24) 
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where Vid is the velocity of the particle, Xid indicates the position of the particle; k is 

the iteration number; ω the inertia weight; r1(k) and r2(k) are random values ranging 

between 0 and 1; c1 and c2  are acceleration constants which are often equal; 

c1r1(k)(Pbestid − Xid ) and c2r2(k) (gbestid − Xid) represent the update of particle 

velocity. Eberhart and Shi (2001) and Lavanya and Udgata (2011) both recommend ω 

=0.5, and c1= c2 =1.494 to achieve faster convergence. Figure 3.7 shows the proposed 

hybrid PSO–ANN algorithm flow chart used to enhance water demand prediction 

accuracy. 
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Figure 3-7: Flow chart of hybrid PSO–ANN algorithm, adapted from Gharghan 
et al. (2016b) 
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3.4. Proposed Computational Intelligence Algorithm-Base Artificial 

Neural Network 

In this research study the ANN technique has been employed to predict long-term 

municipal water demand considering climatic variables as model inputs. The number 

of neurons in the hidden layers and the learning rate coefficient are considered 

essential factors of ANN architecture. They are responsible for mapping the relation 

between the input and output variables that are adopted in developing the ANN model 

and avoids the local minima (Jain et al., 2001). The computational intelligence 

algorithms were hybridised with the ANN to select the optimum parameters of the 

ANN (i.e., the learning rate value and the number of neurons in both hidden layers). 

It addresses such an issue to enhance the performance of the ANN model, which can 

be utilised in forecasting future water demand. Choosing ANN parameters is not 

totally reliable and is dependent on trial and error, which in return gives a high level 

of error in water demand prediction. 

Five population sizes: 10, 20, 30, 40 and 50, were applied to let each algorithm 

determine the population that could attain the minimal fitness function value. The 

fitness function for optimising the model minimising was the root-mean-squared error 

(Wang et al., 2010).  

3.5. Model Performance and Accuracy Measurements 

After calibrating all the model structures via the calibration/training data set, their 

performance was assessed in terms of several standard statistical criteria, which depict 

the errors related to model predictions (Adamowski, 2008). The statistical criteria 

parameters provide a means of measuring prediction accuracy, so prediction errors 
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play a considerable role in the choice of suitable models and in providing insights in 

advising alterations to present models to minimise deviations in future predictions 

(Donkor et al., 2014). Several statistical parameters will be applied in the model’s 

calibration such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE) and Correlation Coefficient (R). These indicators are 

defined in Equations. (3.25) through (3.28). 

𝑀𝑀𝑀𝑀𝑅𝑅 =
∑ �𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑝𝑝�𝑁𝑁
𝑚𝑚=1

𝑁𝑁
 (3.25) 

𝑀𝑀𝑅𝑅𝑅𝑅 =
∑ �𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑝𝑝�

2𝑁𝑁
𝑚𝑚=1

𝑁𝑁
 (3.26) 

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �∑ �𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑝𝑝�
2𝑁𝑁

𝑚𝑚=1

𝑁𝑁
 (3.27) 

𝑅𝑅 =

⎣
⎢
⎢
⎡ ∑ (𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑜𝑜���)�𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑝𝑝����𝑁𝑁

𝑚𝑚=1

�∑(𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑜𝑜���)2 ∑�𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑝𝑝����
2
⎦
⎥
⎥
⎤

 (3.28) 

Where xo= observed water consumption, xp= predicted water demand, N= sample size, 

𝑥𝑥𝑝𝑝���= mean of predicted demand, and 𝑥𝑥𝑜𝑜���= mean of observed consumption. 

The stationarity of stochastic time series for all variables will be examined by two 

digital tests, the Augmented Dickey-Fuller (ADF) test and Kwiatkowski– Phillips–

Schmidt–Shin (KPSS) test. A residual analysis will be utilised to check the goodness 

of fit of the ANN model, and Bland–Altman analysis, which is a scatter plot test 

employed to locate the area of agreement between (observed- predicted) versus 

([observed+ predicted]/2), and the percentage of data that is distributed inside the 

limits of the agreement area (Bland and Altman, 2007).  
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3.6. Statistical Downscaling Technique 

The statistical downscaling technique employed to simulate the future climate factors 

was performed as recommended in Daniels et al. (2012). Trzaska and Schnarr (2014) 

reported that there are several types of statistical downscaling models such as the Long 

Ashton Research Station Weather Generator LARS-WG, MarkSim GCM and 

Nonhomogeneous Hidden Markov Mode. There are major caveats related with 

MarkSim GCM and Nonhomogeneous Hidden Markov Models. For MarkSim GCM 

model, high rainfall variances are not well projected and since the model simply 

matches future climate projections with a present climate cluster that is the most 

similar, future climate that is various from current day weather cannot be simulated. 

For Nonhomogeneous Hidden Markov Model, the methodology of this model depend 

on the hidden state, which is difficult to interpret and determine number of states. For, 

Long Ashton Research Station Weather Generator LARS-WG, Semenov et al. (2013) 

reported that this model was used successfully with same baseline period 1980-2010 

in different regions (environments). Accordingly, LAR-WG (version 5.5) uses in this 

thesis. 

3.6.1. The Long Ashton Research Station Weather Generator (LARS-WG) 

Model 

LARS-WG is a stochastic weather generator utilised to generate a long series of 

synthetic data in three periods (2011-2030, 2046-2065 and 2080-2099). It was 

designed to study the impact of climate change and it has been tested for various sites 

across the world, and shown to give reasonal approximations (Semenov, 2008).  

A reference baseline period is necessary to define the measured climate from which to 

calculate any scenario changes in climate. The availability of the required municipal 
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water consumption data will govern the baseline period choice. Accordingly, the 

period 1980-2010 was used as a reference baseline to compare with future climate 

scenarios. Semenov et al. (2013) suggested this period is valid for generating future 

climatic factors. Additionally, several researchers, such as (Masanganise et al., 2014); 

(Kadiyala et al., 2015) and (Räisänen, 2015), have adopted this period in other 

different environments. 

For this research, a new version (5.5) of LARS-WG and 7 GCMs will be used to 

reduce the uncertainty for three different periods. In addition, three scenarios (A2, B1 

and A1B) will be applied to represent all possible emission scenarios that are 

supported by the LARS-WG model. These scenarios will be investigated to show its 

influence in municipal water demand prediction. Use of more than one GCM and 

IPCC scenario is required to eliminate the uncertainty that result from the assumptions 

for long-term period projection.  

The generation of synthetic weather data using the LARS-WG model can be divided 

into three stages:  

1. Calibration: to calibrate the LARS-WG model, daily historical data of climate 

variables were employed over the period 1980-2010. Model calibration is  

achieved  to employ the function “SITE ANALYSIS” in LARS-WG, which 

analyses measured climate data (e.g., maximum and minimum temperature, 

solar radiation and precipitation) to determine the statistical characteristics of 

these climate factors, and to store them in a files for use in the next stage. 

2. Validation: the parameter files that were derived from measured weather data 

during the model calibration stage, are employed for generating synthetic 

weather data with the same statistical characteristics as the original measured 
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data. A statistical comparison between historical weather data and synthetic 

weather data generated by LARS-WG model will be performed to ensure that 

the model can simulate climate data probability distributions that are close to 

the real long-term measured distributions for the selected site. Graphical tests 

based on mean and standard deviation as well as P-value and Kolmogorov-

Smirnov (K-S) are used to do the comparison between measured and synthetic 

climate data.  

3. Generation: the model becomes ready to generate synthetic weather data based 

on B1, A1B and A2 scenarios and 7 GCMs over three periods 2011-2030, 

2046-2065 and 2080-2099. The first period of the B1 scenario is chosen and 

the first GCM to simulate the first time series for all climate factors for period 

2011-2030. The process is repeated 7 times based on seven different GCMs. 

Accordingly, we get 7 simulate time series for each climate factor and calculate 

the ensemble mean of these 7 time series (e.g., rainfall). These processes are 

repeated for second and third periods of the B1 scenario. In the same context, 

all the above procedure are repeated for A1B and A2 scenarios to reduce the 

uncertainty of assumptions. The daily future projection will be accumulated to 

monthly before being used with ANN.  

Extra details about the modelling procedure and the basic ideas can be referred to 

Semenov and Barrow (2002). Table (3.1) presents the seven GCMs that were chosen 

from the IPCC Fourth Assessment Report (AR4). 
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Table 3.1: Selected 7 global climate models from IPCC AR4 
No. GCM Research centre Grid 

1 CNCM3 Centre National de Recherches France 1.9×1.9° 

2 GFCM21 Geophysical Fluid Dynamics Lab USA 2.0×2.5° 

3 HADCM3 UK Meteorological Office UK 2.5×3.75° 

4 INCM3 Institute for Numerical Mathematics Russia 4×5° 

5 IPCM4 Institute Pierre Simon Laplace France 2.5×3.75° 

6 MPEH5 Max-Planck Institute for Meteorology Germany 1.9×1.9° 

7 NCCCS National Centre for Atmospheric USA 1.4×1.4° 

Melbourne City has a considerable number of meteorological stations that are spread 

around the area of the city. The Yarra Valley Water Company provided this study with 

the average daily value of all the climate factors that covered its service area. It 

requested the data from the Australia Bureau of Meteorology, and applied the 

arithmetic mean method to calculate the average value. In this technique, each climate 

variable for each meteorological station was added and then divided by the total 

number of stations, to get the mean value of that variable as in Equation (3.29). In 

addition, it is the simplest and easiest technique to calculate the average daily value. 

Each meteorological station had equal weight regardless of its location (Bhavani, 

2013). 

𝑝𝑝𝑚𝑚 = {(𝑝𝑝1 + 𝑝𝑝2 + 𝑝𝑝3 + ⋯+ 𝑝𝑝𝑛𝑛)/𝑟𝑟} (3.29) 

3.7. Summary 

This chapter described the methodology to investigate the extent that climate change 

influences municipal water demand. The chapter covered the steps of the research 

methodology in order to meet the objectives set out in Chapter one based on the 
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literature review of current and previous studies on the ANN, computational 

intelligence algorithm and weather downscaling as mentioned in Chapter two. 

Artificial Neural Network (ANN) 

Several studies recommended using ANN to predict water demand because of its 

ability to map the non-linear relation between water demand and climate factors, and 

it is also appropriated for long-term prediction. 

This section presented a short background about ANN, and explored the main 

components: model architecture, activation function, learning rate, data division, 

stopping criteria and model optimisation (training and validation). It also discussed its 

strengths, and how to select better choices. 

Computational Intelligence Algorithms 

The optimisation technique is adopted to choose the best learning rate coefficient and 

number of hidden neurons that enhance the performance of the ANN. Three different 

algorithms for computational intelligence optimisation were used to mitigate the 

model prediction uncertainty. These algorithms are: Lightning Search Algorithm 

(LSA), Gravitational Search Algorithm (GSA) and Particle Swarm Optimisation 

(PSO). The selection of the best computational intelligence algorithm is based on the 

minimum error of the objective function. 

Weather Downscaling 

This section discussed the methodology adopted for weather downscaling. The 

statistical downscaling approach was employed in this study to simulate future climate 

variables. Several studies have recommended using the Long Ashton Research Station 
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Weather Generator (LARS-WG) model. Three emission scenarios (A2, B1 and A1B) 

with seven GCMs were applied to reduce the uncertainty. Daily data for maximum 

temperature, minimum temperature, rainfall and solar radiation, which are supported 

by the LARS-WG model, over the period 1980-2010 were employed.   

The next chapter presents the studied area and data manipulation that includes 

normalisation, cleaning and the determination model inputs, as well as demonstrating 

the results of model input developments. 
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Chapter 4: Studied Area and Data Manipulation 

4.1. Introduction 

This chapter illustrates the study field of the proposed methodology. The study 

investigates the impact of climate change on municipal water demands in Melbourne 

City in Australia and Columbia City in the United States of America. These two 

studied catchments were chosen based on the size of each city. It is important to assess 

the impact of climate change on different scale of water consumption such as big city 

like Melbourne and small city like Columbia.  Also the availability and reliability of 

long-term data for those two cities is another reason for the selection. The reliability 

of data is a significant issue for forecasting models. The data sets gained from the 

Yarra Valley Company for the areas that are served in Melbourne City and from the 

city council for Columbia City. This data comes from reliable establishments and it is 

observed data not calculated or estimated data. Chapter five will confirm its reliability. 

Several techniques need to be conducted on the data before using it in the prediction 

model. This chapter describes the essential issues regarding the municipal water 

consumption, such as the location of the city, the weather, the freshwater resources, 

the municipal water system and the percentage of customer types. Then, monthly 

historical data is presented, which includes the water consumption and five climate 

factors: maximum, mean and minimum temperature; rainfall and solar radiation. 

The data preprocessing techniques such as data normalisation, data cleaning and 

pretreatment signal are presented with the results of the model input.  

Note that, the data for Melbourne City is used by all data preprocessing steps. All the 

results of data preprocessing for Columbia City are presented in Appendix 4-A. 
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4.2. Study Area 

The Two areas selected for this work are described in more details in the following 

sections: 

4.2.1. Melbourne City, Victoria, Australia 

Melbourne City is the coastal capital of Victoria state, which is located in south-

eastern Australia (Figure 4.1). The city has an area of around 9,992.5 km² as well as 

its coordinates are 37.8136° S, 144.9631° E. The Melbourne City region has 

experienced an increase in population, which was 2,765,000 capita in 1980 to 

3,276,000 capita in 2010. The average yearly water consumption of Melbourne is 

estimated at 40,000 Megalitre. This was dominated by urban and residential water use, 

which was approximately 60%. Of the remainder, 28% was accounted for by industry 

and cooerence, 8% by leakage and 4% is miscellaneous. Melbourne City has faced a 

drought since 1998 that has pushed the city water authorities to enforce water 

restrictions after a long time of unrestricted supply (Gato et al., 2007a; MW, 2017).  

 

Figure 4-1: Location Map of Melbourne City 



4.2 Study Area 76 
 

 
 

4.2.1.1. Climate of Studied Catchment 

The weather in Melbourne City varies from summer, which is warm, to winter, which 

is cold and windy. The seasons in Australia are spring - the three transition months 

September, October and November, summer - the three hottest months December, 

January and February, autumn - the transition months March, April and May and 

finally, winter - the three coldest months June, July and August. As for temperature, 

the warm period is statistically between 15th December to 16th March with an average 

daily high temperature higher than 23°C. Statistically the coldest period is from 23th 

May to 7th September with an average daily high temperature less than 15°C. Rainfall 

occurs throughout the year, but the most rain occurs during the 31 days around 3rd 

November, with an average total accumulation of 56 millimetres. The wet seasons 

called the monsoon seasons are hotter than the dry seasons with, temperatures around 

30-50°C and it continues from November to March. This is due to the high humidity 

during the wet seasons. Frequent flooding occurs during the monsoon period (Diebel 

et al., 2013). Table 4.1 presents the statistical indicators for the four climate variables 

data that will be employed in this study over the period from 1980-2010. These 

variables are maximum temperature (Tmax), minimum temperature (Tmin), rainfall 

(Rain) and solar radiation (Radi). 
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Table 4.1: Max., Min. and Ave. values for four climate factors for a period (1980-
2010) 
 Tmax (°C) Tmin (°C) Rain (mm) Radi (MJ/m2) 
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J 30 22 27 16 12 14 97 1 50 26 21 23 

F 31 24 27 16 12 14 153 0 40 23 19 21 

M 28 21 24 15 11 12 113 14 48 18 15 16 

A 24 17 21 12 7 10 140 18 59 13 10 12 

M 19 16 17 11 7 8 120 16 58 9 7 8 

J 16 13 14 9 4 6 150 19 67 7 6 7 

J 14 12 13 7 3 6 109 20 56 8 6 7 

A 17 13 15 8 5 6 104 25 65 12 9 10 

S 19 14 17 9 6 7 151 19 69 16 11 14 

O 22 17 19 10 7 9 149 10 71 22 17 18 

N 27 20 22 14 9 11 170 27 73 24 19 21 

D 27 21 24 14 10 12 189 15 71 26 19 23 

4.2.1.2. Water Supply System  

Melbourne Water Company has provided water services to the community of 

Melbourne for over 125 years. It delivers bulk water and sewage services to three retail 

water utilities, Yarra Valley Water, South East Water and City West Water.  

The supply network of the Melbourne Water Company consists of 11 large storage 

facilities, treatment facilities and transfer infrastructure as shown in Figure 4.2.  



4.2 Study Area 78 
 

 
 

 

Figure 4-2: Melbourne’s Water Services Area (MW, 2017) 

The company has a program of work (2010 to 2020) to upgrade and maintain dams to 

meet standards and cover the future demand of Melbourne’s residents.They also have 

the Victoria Desalination Plant which delivers a rainfall-independent source of water 

for Melbourne. In 2016, the Minister declared the first water order, 50 gigalitre, from 

the desalination plant to mix with the Thomson and Upper Yarra catchments (MW, 

2017). 

Melbourne Water Corporation has made a considerable investment in promoting 

alternative sources of water for non-potable uses. It is primarily achieved by: 1) storm 

water harvesting, which represents more than 2 gigalitre of water per year; 2) recycling 

treated water from sewerage networks, which is approximately 20 gigalitre annually. 

The recycled water is used in different sectors such as a) residential estates for toilet 

flushing and garden watering, b) irrigating pastures and public open spaces, c) 

intensive agriculture and horticulture and d) industrial processes and wash down 

facilities (MW, 2017). 

https://www.melbournewater.com.au/sites/default/files/2017-09/Corporate-Plan-2016-17.pdf
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Melbourne has faced dry climatic conditions since 1998, which led the authorities to 

push water restrictions after twenty years of unlimited supply. This strategy was 

evolved to guarantee a continuation of a reliable, safe and cost-efficient water supply 

that is environmentally sustainable in the long-term period (Gato, 2006). 

One catchment area in Melbourne (Yarra Valley Water) has been used to develop the 

water demand model. Yarra Valley Water is one of three retail water utilities that 

delivers essential municipal water supplies and sewerage services to more than 1.8 

million capita and 50,000 businesses who live in the catchment area of Yarra River, 

Melbourne City. The Yarra Valley Water buys wholesale water from Melbourne 

Water, this water is usually harvested from protected catchments in the mountains. 

The service area managed by the company is approximately 4,000 km2, and covers the 

northern area of Melbourne and the eastern suburbs, from Wallan in the north to 

Warburton in the east (YVW, 2017). 

4.2.2. Columbia City, Missouri State, United States of America: 

Columbia is a small city in northern mid-Missouri, which is located in the middle of 

the United States of America (Figure 4.3). The city lies near the Missouri River and 

has an area of around 164.5 km²; its coordinates are 38.9517° N, 92.3341° W. 

Columbia City experienced an increase in population from 62,061 capita in 1980 to 

108,500 capita in 2010. In addition, the total number of customers for all the different 

services inside the city was 44,360 in 2010 and 92% of them are residential customers. 

Columbia’s water company supplies water services to residential, institutional, 

commercial and industrial, within the limits of Columbia City, and utilises the 

groundwater as a freshwater resource (Jacobs and St. Louis, 2015). 
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Figure 4-3: Location Map of Columbia City 

4.2.2.1. Climate of Studied Catchment 

 Weather in Columbia City varies from summer, which is hot, muggy and wet to 

winter, which is very cold. The hottest period is statistically from 31th May to the 17th 

September with an average daily high temperature above 26°C and the coldest period 

is from 28th November to 26th February with an average daily high temperature below 

10°C. Rainfall occurs throughout the year, but the most rain happens during the 31 

days concentrated around 18th May, with an average total accumulation of 111 

millimetres. While the period of snow is from 15th November to 22nd May with a 

sliding 31-day liquid-equivalent snowfall of at least 3 millimetres. During the period 

from 22nd May to 22nd September the humidity is approximately 67% (Diebel et al., 

2013). Table 4-2 presents the statistical indicators for the four climate variables data 

that have been employed in this study over the period from 1980-2010. These variables 

are maximum temperature (Tmax), minimum temperature (Tmin), rainfall (Rain) and 

solar radiation (Radi). 
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Table 4.2: Max., Min. and Ave. values for four climate factors for a period (1980-
2010) 
 Tmax (°C) Tmin (°C) Rain (mm) Radi (MJ/m2) 
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J 10 -3 3 1 -11 -5 147 1 45 10 6 8 

F 10 0 6 2 -8 -3 157 3 52 13 8 11 

M 17 5 12 7 -2 2 191 19 69 17 10 14 

A 25 12 19 11 4 7 245 33 102 22 13 18 

M 28 20 25 16 9 12 320 40 134 26 15 22 

J 34 26 30 19 15 17 261 3 113 28 22 25 

J 40 29 34 23 17 20 337 2 109 27 20 24 

A 37 29 33 22 16 19 245 14 105 24 18 22 

S 32 23 27 17 11 14 298 11 100 20 16 17 

O 22 15 20 11 5 8 283 17 93 15 9 13 

N 18 8 12 6 -1 3 265 6 79 11 5 8 

D 8 -6 5 0 -12 -3 177 8 66 9 5 7 

4.2.2.2. Water Supply System  

Columbia water company supplies water services to all types of customers such as 

residential, institutional, commercial and industrial within the limit of Columbia City. 

Additionally, extra water providers in the area consist of rural water districts for the 

surrounding rural regions, and Missouri University, which has its own private deep 

well water system (Jacobs and St. Louis, 2015). Figure 4.4 presents the water services 

area of Columbia City. 
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Figure 4-4: Columbia’s Water Services Area (Jacobs and St. Louis, 2015) 

The city uses groundwater as a freshwater resource. It has fifteen shallow alluvial 

wells located near the Missouri River, and three additional alluvial wells for future 

use. It also has one deep well inside the metropolitan area that is utilised during 

excessive demand periods. The city has changed two of their deep wells into aquifer 

storage and recovery facilities that allow the city to store municipal water from the 

water treatment plant during off-peak demand periods. The total capacity of these two 

deep wells is around 7.5 Megalitre per day (Jacobs and St. Louis, 2015). 

The city receives the municipal water from the McBaine water treatment plant, which 

is located about 20 kilometres southwest of the city near the Missouri River. The 

capacity of the plant was expanded in 2006 to become 121 Megalitre per day. The 

water distribution system has four pump stations with different capacities. From 2002 

to 2012, water loss accounted from for approximately 7.1%-17.4% of total 

consumption. The peak municipal consumption changes depend principally on how 

dry it is during the summer months, which tends to occur between July and October. 
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The city has an additional system of raw water to irrigate the gardens (Jacobs and St. 

Louis, 2015).  

4.3. Data Set 

This study will employ monthly historical data containing information such as 

municipal water consumption (Megalitre, ML), maximum temperature (°C), minimum 

temperature (°C), mean temperature (°C), rainfall (mm) and solar radiation (MJ/m2) 

over the periods (1980-2010) and (2011-2015). The period (2011-2015) was only used 

for extra validation. These data were collected from the Yarra Valley water company 

for the areas that are served in Melbourne City and from the city council for Columbia 

City (i.e. daily climate factors will be employ to simulate future climate factors). 

These climate factors have been adopted by several researchers in different areas of 

study for example, (Masanganise et al., 2014); (Kadiyala et al., 2015); and (Räisänen, 

2015), to assess the impact of climate change. They are considered robust predictors, 

able to simulate municipal water demand as shown in Zubaidi et al. (2018). The 

socioeconomic variables such as population, water price and household income are 

deterministic signals (Zhoua et al., 2000; Gato et al., 2005). For this reason, these 

factors were not included in our analysis, as these signals are out of the scope of this 

study. 

A reference baseline period is necessary to define the measured climate from which to 

calculate any scenario changes in climate. The availability of the required data for 

municipal water consumption will govern the baseline period choice. Accordingly, the 

period 1980-2010 was used. Semenov et al. (2013) suggested that the period from 

1980-2010 is valid as a baseline period for generating future climatic factors. Several 
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researchers, including (Masanganise et al., 2014); (Kadiyala et al., 2015) and 

(Räisänen, 2015), have adopted this period in other different studies and areas. 

The reliability of data is a significant issue for forecasting models. The data sets gained 

from the Yarra Valley Company for the areas that are served in Melbourne City and 

from the city council for Columbia City. This data is assumed to be reliable as it comes 

from reliable establishments. Chapter five will confirm its reliability. Several 

techniques need to be conducted on the data before using it in the prediction model. 

The distribution of any quantitative variable can be presented using a box and whisker 

plot, which is a graphical plot used for five number summary to offer a quick 

numerical description. The five number are the minimum value, the first quartile, the 

median, the third quartile, and the maximum value of a data set. Figures from (4.5) to 

(4.10) show the distribution for all selected variables. 

Figure 4.5 shows the average monthly maximum temperature. What stands out in this 

figure is both data sets have no outliers and have approximately the same median. The 

distribution of the dataset for Columbia City is around double that of Melbourne City. 

Unlike Melbourne City, the dataset of Columbia City includes negative temperatures. 

 

Figure 4-5: Box plot of average monthly maximum temperature for both cities 
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Figure 4.6 displays the average monthly mean temperature. It is very similar to Figure 

4.5 but its median is approximately 5°C lower. 

 

Figure 4-6: Box plot of average monthly mean temperature for both cities 

The box plot of average monthly minimum temperature for both cities can be seen in 

Figure 4.7. It is apparent from the figure that there are no outliers for both cases. The 

dataset is distributed between 4 and 16°C and the median is 9°C for Melbourne City. 

While, the distribution of the data set for Columbia City is from -13 to 23°C and the 

median is 7°C.  

 

Figure 4-7: Box plot of average monthly minimum temperature for both cities 

Figure 4.8 illustrates the solar radiation for both cities. It is apparent that there is no 

significant variation between the plot of both cities and there are no outliers. For 
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Melbourne City, the median is 15MJ/m2 and the quartiles are between 9 to 21MJ/m2. 

For Columbia City, the median is 16MJ/m2 and the quartile range is 9 to 22MJ/m2. 

 

Figure 4-8: Box plot of average monthly solar radiation for both cities 

As shown in Figure 4.9, the median value of rainfall for Columbia City is 75mm and 

its more than the median of Melbourne City with around 15mm. The maximum value 

of precipitation is 220mm for Columbia City while it is equal to about 140mm for the 

Melbourne City. The outliers in Columbia City are higher in comparison with 

Melbourne City. 

 

Figure 4-9: Box plot of total monthly rainfall for both cities 

It is apparent from Figure 4.10 that the water consumption for Melbourne City is 

significantly higher than Columbia because of the population variance and the size of 

the serviced area. The median value of Melbourne City is around 14,100ML compare 
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with 1,190ML for Columbia City. Melbourne City has many more outliers than 

Columbia City, and that is considered a normal condition regarding the magnitude of 

the delivered municipal water. 

 

Figure 4-10: Box plot of total monthly water consumption for both cities 

4.4. Data Pre-processing Techniques 

Data preprocessing techniques are a significant step in the data mining process. These 

techniques play an important role in ANNs’ performance by improving precision with 

minimal computational cost of the training stage. Noisy and unreliable information 

that could be present in data records will adversely affect the learning phase and result 

in a poor model (Kotsiantis et al., 2006). In spite of the ability of artificial neural 

networks to forecast any kind of relationship in the data with high accuracy, several 

experimental studies have highlighted the role of data preprocessing before employing 

them as inputs to neural network models (Sebri, 2013). Abrahart et al. (2004) stated 

that data preprocessing is steps include: data normalisation, cleaning, and identifying 

convenient model inputs. A novel technique will be applied in this study, that was 

successfully proven in Zubaidi et al. (2018) 
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4.4.1. Data Normalisation 

Normalisation rescales the model input data to that each input has zero mean and unity 

variance. It aims to smooth the answer space and minimise the effects of noise 

(Araghinejad, 2014). Tabachnick and Fidell (2013) mention that transforming the 

continuous variables is important in making the time series normally, or near normally, 

distributed. The results of the model are degraded when the time series of variables 

are not normally, or near normally, distributed. In this research, the natural logarithm 

method was adopted to conduct the normalisation for the input data. A major 

advantage of the natural logarithm technique is that it makes data more static and 

removes collinearity between variables. In addition, it could rescale back the output 

values of ANN to the similar water demand unit (Behboudian et al., 2014). 

4.4.2. Data Cleaning 

Data cleaning techniques comprise detection and treatment of irrelevant or 

meaningless data, such as noise or outliers, to improve the outcomes of data analysis 

(Xiong et al., 2006). Extreme data has adverse effects on the regression solution and 

influences the accuracy of the model (Pallant, 2011). Donkor et al. (2014) ; Bakker et 

al. (2014) and Ghiassi et al. (2008) referred to the fact that sometimes the total system 

contains leaks and other system flaws, which cannot be deemed as actual demand. 

Taking this into consideration, it would be more suitable to predict the actual water 

demand including leakages to facilitate the actual system optimisation and revenue. 

 Based on Abrahart et al. (2004) data cleaning includes identifying and removing 

trends and non-stationary components within a data set. The time series can 

decompose to trend (T), oscillatory (O), stochastic (S) and noise (Ɛ) components (i.e. 
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trend and oscillatory are considered deterministic signals) as shown in Equation (4.1) 

(Araghinejad, 2014).  

𝑌𝑌𝛼𝛼 = 𝑇𝑇𝛼𝛼 + 𝑂𝑂𝛼𝛼 + 𝑅𝑅𝛼𝛼 + Ɛ𝛼𝛼 (4.1) 

To identify outliers, the box and whisker method was used, and the then outliers were 

treated. The Singular spectrum analysis (SSA) technique was used to detect the 

stochastic signals for municipal water consumption and climate variables time series 

that was proven in Zubaidi et al. (2018). After that, the Augmented Dickey-Fuller 

(ADF) test and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test were employed to 

investigate the stationarity of the stochastic time series. 

Box et al. (2016) state that "Stochastic" means having a random probability function 

or pattern that may be analysed statistically. A stochastic model is a tool for describing 

the probability structure of potential outcomes by letting for random variation in one 

or more inputs through time. Stochastic models were used to describe the time series 

that has received a great deal of importance, includes what are named stationary 

models. These models suppose that the mean level and variance should be constant 

over the time series. This technique applied initially in physics and now applied in 

different sectors such as engineering and environmental sciences (meteorology). In 

this study, the stochastic model used to characterise, analyse and understand the 

dynamic relationships among municipal water consumption and climate factors for 

long term, also enhance the accuracy of prediction.  

Noise is an undesirable variance in the time series that comes from flied measurements 

Tabachnick and Fidell (2013). Noise signals represent very small percent from the 

total time series (e.g., it about 0.0001% of the total municipal water consumption time 

series as shown in Figure 4.12 B). 
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4.4.2.1. Singular spectrum analysis (SSA) method 

SSA is a powerful method used to analyse time series to uncover significant prediction 

characteristics. It can be used for both linear and nonlinear time series and small 

sample sizes.  It does not rely on any statistical assumptions based on the stationarity 

and linearity of the series, or on the  normality of the residuals (Hassani et al., 2009). 

SSA has been used in different fields including medical engineering (Ghodsi et al., 

2009), economics (Hassani et al., 2015) and hydrology (Marques et al., 2006). SSA is 

utilised for decomposing the original time series into a number of independent 

components; the principal components (PCs). These PCs including trend, oscillatory 

components and irregular components. Then, a number of PCs can be used to 

reconstruct the initial time series (Rocco S, 2013). 

The main reason for using SSA is to uncover the stochastic component, which is 

considered a significant prediction characteristic of the time series. This process is 

achieved by removing noise and a slowly varying components (trend, and oscillatory 

components). 

The SSA approach consists of two stages: decomposition of the original time series 

into different principle components (PCs) including trend, oscillatory components and 

irregular components, and noise removal and reconstruction of a new time series that 

has less noise (Al-Bugharbee and Trendafilova, 2016). Extra details about SSA and 

the basic ideas are explained in Golyandina et al. (2001). 

A) Decomposition stage  
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In the decomposition step, a sub-signal y of length T, y1, y2, …., yT, is mapped onto a 

length window (L) to create the so-called trajectory matrix, Hankel matrix, X (L×K) 

where K=T-L+1 (Equation (4.2)). 

X= 
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The Hankel matrix (X) undergoes to singular value decomposition to get L 

eigenvectors (Ui, i= 1, 2…., L) corresponding to L eigenvalues (λi, i=1, 2…, L). Any 

λi refers to the partial alteration of the original time series in the Ui direction. The 

corresponding principal components (PCi) can be obtained by projecting the Hankel 

matrix onto every eigenvector: 

𝑃𝑃𝐶𝐶𝑖𝑖(𝑛𝑛) = �𝑋𝑋ʹ(𝑛𝑛 + 𝑗𝑗 − 1) ∗ 𝑈𝑈𝑖𝑖(𝑛𝑛)
𝐿𝐿

𝑗𝑗=1

 (4.3) 

where i=1,2….L, m= 1,2…T, j=1,2…L, and the prime means transpose. 

Projecting the PCs on the eigenvectors (U) gives the primary matrices L (EIi=Ui PCʹi) 

where i= 1,2…..L and the prime denotes transposition.  

In this study, L will be equal to 12 so as to extract together all seasonal components 

(12, 6, 4, 3, 2.4, and 2-months harmonics), trend and noise (Golyandina et al., 2001) . 

The contribution of these primary matrix norms to the original Hankel matrix norm 

follows the singular values’ trend, meaning that the highest contribution will go to the 

first matrix while the lowest contribution will go to the last. 

B) Reconstruction stage  
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As mentioned above, the signals can be reconstructed via a linear combination of 

several, or all, the PCs. When choosing the number of PCs, there are various criteria 

to observe (Kilundu et al., 2011). In this study, valuable insight is offered via 

inspection breaks testing in the eigenvalue spectra to select the number (w) of PCs. A 

slight decrease in the singular sequence values indicates pure noise according to the 

latter test. The seasonal signal of the original sub-signal is contained in the new 

reconstructed signal (yr). The process of reconstruction is achieved via the diagonal 

averaging mechanism that is depicted in Equation (4.4) (Ghil et al., 2002). 

𝑦𝑦𝑓𝑓(𝑛𝑛) = 1
𝑁𝑁𝑚𝑚

∑ ∑ 𝑃𝑃𝐶𝐶𝑖𝑖𝑈𝑈𝑚𝑚
𝑗𝑗=𝐿𝐿𝑚𝑚𝑖𝑖∈𝑤𝑤 (𝑛𝑛− 𝑗𝑗 + 1) × 𝑈𝑈𝑖𝑖(𝑛𝑛)   ,𝑛𝑛 = 1,2, , ,𝑟𝑟 − 1                 (4.4) 

The normalisation factor (Nm) and the upper (Um) and the lower (Lm) limits y the 

inner of sum vary for the centre and edges of the signal. They are defined as shown 

below: 
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 (4.5) 

4.4.3. Determination of Model Inputs 

The selection of explanatory variables that influence water demand as model input 

data is one of the most significant stages in evolving a satisfactory forecasting model 

(Zhang et al., 2006). Maier and Dandy (2000) pointed out that the selection of suitable 

model inputs is highly significant in the ANN prediction model. The criteria for 

selecting the model inputs were as follows: cross-correlation was used to investigate 

the relation between dependent and independents variables. The variance inflation 
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factor (VIF) technique was applied to examine the multicollinearity among 

independents variables. These stages of the process were carried out to ensure that as 

many of the potential variables as possible were properly included in the map of the 

input-output relationship, to avoid multicollinearity, which can lead to incorrect 

conclusions. This technique of selection for model inputs was successfully proven in 

Zubaidi et al. (2018). 

4.5. Results of Model Inputs Developments 

This section corresponds to step A in Figure 3.1. Five monthly climate factors have 

been used to assess the impact of climate change on monthly water consumption. 

These factors are maximum temperature (Tmax), minimum temperature (Tmin), mean 

temperature (Tmean), solar radiation (Radi) and rainfall (Rain). The followings are the 

methods for data pre-processing: 

1) Normalisation by natural logarithm to treat some of outliers and mitigate the rest 

of outliers. 

2) Cleaning data outliers by using box and whisker method to identify the outliers. 

Each outlier was treated by calculate the mean of three recorded data (outlier, data 

before and data after). The average monthly data for water consumption and all 

climate factors after normalisation and cleaning can be found in Appendix 4-B. 

Pre-treatment signal analysis (SSA) then was used to uncover the stochastic 

component. Components of the original time series were examined to detect the 

stochastic signal. It represents the third signal in water consumption and all the 

climate factors time series except the solar radiation time series which was the 

second signal. The stationarity of the stochastic signal has been examined by the 

Augmented Dickey-Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin 
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(KPSS) tests. Figure 4.11 presents the original time series and the first four 

components of water consumption and all climate factors.  

  

 
 

  

Figure 4-11: Original signal and the first  four components obtained by SSA 
(Melbourne City) 
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eigenvalue spectra values could be assumed as the beginning of pure noise. Figure 

4.12 A shows the graph of eigenvalue spectra for the water consumption time series, 
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redrawn in section B. In this section, a significant drop occurred in the third signal, 

this representing the beginning of the noise floor. The figures for climate variables 

time series are presented in Appendix 4-C. 

  
A B 

Figure 4-12: Eigenvalues of water consumption time series (Melbourne City) 

Figure 4.13 gives the descriptive statistics (maximum, minimum, median, upper 

quantile and lower quantile) for the monthly box plot of the stochastic signal for water 

consumption and all climate variables. The median for all factors is approximately 

zero and there are no outliers. 

   

   
Figure 4-13: The monthly box plot of the stochastic signal for water consumption and 
all climate variables (Melbourne City) 
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3) A variance inflation factor (VIF) was applied to examine the multicollinearity 

between the independent variables. Three independent factors, i.e. Tmax, Radi 

and Rain, were selected as the model input. To decide on the appropriate sample 

size needed for developing a good ANN model, Tabachnick and Fidell (2013) 

proposed a sample size for the model that is dependent on the number of 

predictors, as shown in Equation (4.6). 

𝑁𝑁 ≥ 104 + 𝑛𝑛 (4.6) 

Where N= sample size and m= number of independent variables. 

The sample size required for the model was estimated by using Equation (4.6), 

obtaining that 107 (104+3) were needed. In this study the number of cases is N=372, 

which is more than three times the minimum required. 

A Pearson product-moment correlation coefficient was used to determine the 

relationship between the stochastic components of water consumption and chosen 

climate variables. Figure 4.14 shows the correlation between the independent and 

dependent variables. We can see in this figure the strong correlation between water 

consumption and the climatological variables, especially with maximum temperature 

(R=0.94).  
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Figure 4-14: Correlations between water consumption and climate factors 
(Melbourne City) 

A correlation matrix was used for water consumption and the selected weather 

variables with the raw data and compared with the stochastic phases (after 

preprocessing) to show the impact of the SSA on the data (Table 4.3). What stands out 

in this table is the significant increase in the correlation coefficient between water 

consumption and climate factors (e.g. maximum temperature correlation increases 

from 0.69 to 0.94 after removing trend, seasonal and noise signals by using SSA). 

These results confirm that adopting the SSA method as a pretreatment signal, helps to 

improve the correlation between the dependent and independent variables, when 

forecasting water demand models. 
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Table 4.3: Correlation matrix analysis results for raw and stochastic data (Melbourne 
City)  

Data  Municipal water 
Maximum 

temperature 
Rainfall Radiation 

Raw 
1 

0.69** -0.24** 0.63** 

Stochastic 0.94** -0.53** 0.84** 

**Correlation is significant at the 0.01 level (2-tailed). 

 From these results, we can see that water demand (dependent variable) can be 

expressed as a function of Tmax, Radi and Rain (independent variables) and the 

process of optimisation to select the optimum parameters for the ANN model is ready 

now. 

4.6. Discussion  

Data preprocessing techniques have a significant role to play in the ANN input model, 

specifically the SSA method, to uncover the stochastic signal and remove the effect of 

socio-economic factors and noise (e.g. Tmax correlation increases from 0.69 to 0.94). 

The selection methods of explanatory variables (i.e., Tmax, Rain and Radi) are reliable 

predictors based on cross corealtion and VIF techinques to use to simulate long-term 

municipal water demand. Accordingly, data pre-processing techniques are effectively 

associated with the accuracy and robustness of the results. 

4.7. Summary  

This chapter described the areas of study that were chosen to assess the impact of 

climate change on municipal water consumption (i.e. background, climate condition, 

freshwater resources and municipal water supply system). It presented the data 
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preprocessing that is employed to prepare raw data before using it in the municipal 

water prediction model.  

Area of Study 

The availability and reliability of data lead to the selection of Melbourne City as a case 

study. It is a significant city located in Australia, summer months are December, 

January and February, rainfall harvesting is the primary freshwater resource, and 60% 

of water customers are residential (i.e. comprise the catchment area of Yarra River 

only, which is served by YVW company). 

The next city selected was Columbia City. It is a small city located in the American 

continent, summer months are June, July and August, groundwater is the primary 

freshwater resource, and 92% of water customers are residential. 

Data Set 

This part of the chapter presented the type of data that will be used as independent 

variables in the prediction model over a specific period and their reliability. The 

independent variables comprise maximum temperature, mean temperature, minimum 

temperature, rainfall and solar radiation (i.e. these variables were used in several 

previous studies) over the recommended baseline period 1980-2010. 

Data Preprocessing 

A novel process of data manipulation was discussed, which included several 

techniques to prepare the raw data before employing it in the forecasting model. The 

main idea from data preprocessing is to detect the stochastic signal of dependent and 

independents variables because the relation between water consumption and climate 
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variables is stochastic (i.e. remove the effect of socioeconomic factors, which 

represent deterministic signals). 

The findings highlight the significance of the data preprocessing technique especially 

the SSA approach to uncover the stochastic signal of water consumption and all 

climate factors time series. In addition, the data preprocessing technique helps to select 

the best model input that has the ability to simulate municipal water demand 

accurately. 

The next chapter presents the results of the municipal water demand model 

development, simulation of the future climate factors and the expected future 

municipal water demand.
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Chapter 5: Development of Water Consumption and 

Downscaling Models (Results and Discussion) 

5.1. Introduction 

This chapter describes the results and discussion of the thesis, which are divided into 

three main groups:  

first group, develop municipal water demands model by using three computational 

intelligence algorithms include Lightning Search Algorithm (LSA), Gravitational 

Search Algorithm (GSA) and Particle Swarm Optimisation (PSO) to support the 

primary model, which is an Artificial Neural Network (ANN).   

Second, simulate future climate factors by employing the Long Ashton Research 

Station Weather Generator (LARS-WG) model. In addition, seven General 

Circulation Models (GCMs), daily data of climate factors for the baseline period 1980-

2010 and three of the Intergovernmental Panel on Climate Change (IPCC) scenarios 

A2, A1B and B1.  

Third, forecast municipal water demands over three future periods and under three of 

the IPCC scenarios to cover all options of emission scenarios that are supported by the 

selected model.  

The author would highlight that all the data through this chapter belong to the 

Melbourne City. While the data results from Columbia City are presented in Appendix 

5-A. 
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5.2. Development of Municipal Water Demand Model  
5.2.1. Application of the Hybrid PSO-, GSA- and LSA-ANN Algorithms 

This section corresponds to step B in figure 3.1. We used the MATLAB toolbox to 

run the LSA-ANN, GSA-ANN and PSO-ANN algorithms. For estimating the best 

number of hidden neurons and the optimum learning rate coefficient of all three 

techniques, we used five population sizes (10, 20, 30, 40 and 50). Note that these 

population sizes relate to the size of the swarms, which is different to the sample size 

mentioned earlier (section 4.5). As can be seen in Figure 5.1, a population size of 50 

provides the best solution for all three algorithms. Closer inspection of the fitness 

function values for all algorithms shows that the RMSE for the LSA-ANN algorithm 

(after 40 iterations) is 0.0236, whereas GSA-ANN does not improve a RMSE of 

0.0241, and PSO-ANN algorithm only reaches its best RMSE of 0.0245 after 62 

iterations, as presented in Figure 5.2. Accordingly, LSA-ANN algorithm outperforms 

GSA-ANN and PSO-ANN, as it achieves a smaller error (better performance) in a 

smaller number of iterations (making it a less complex model). Table 5.1 compiles the 

design parameters of the ANN model based on the LSA-ANN algorithm. 
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Figure 5-1: Fitness function for various populations using the computational 
intelligence algorithms (Melbourne City) 

 

 

Figure 5-2: Comparison of the performance of the best swarm size of LSA, GSA and PSA 
algorithms (Melbourne City) 
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Table 5.1: ANN-designed parameters (Melbourne City) 
Parameter Value Type 

Number of inputs 3 As discussed in section 4.5 

Number of outputs 1 
Our target, which is water 

demand 

Number of hidden layers 2 
As used in Zubaidi et al. 

(2018)  

Number of neurons in hidden layer N1 3 Estimated by LSA 

Number of neurons in hidden layer N2 4 Estimated by LSA 

Learning rate coefficient 0.1988 Estimated by LSA 

The ANN model now is ready to simulate municipal water demand based on three 

climate factors. 

5.2.2. Application of Artificial Neural Networks 

This section corresponds to step C and D in figure 3.1. After identifying the parameters 

for the ANN, the model was run several times to find the best neural network 

architecture to forecast municipal water demand. A range of statistical tests was 

applied to evaluate the performance of the model. Firstly, the coefficient of regression 

(R) and residual distribution were determined between the measured and predicted 

water demands, as shown in Figure 5.3. The observed water consumption (i.e., the 

target on the x-axis) is plotted against the predicted water demand (i.e., the output on 

the y-axis). The combination model was significant R=0.96 at the validation stage. 

This figure emphasises the ability of the hybrid LSA-ANN technique to accurately 

predict municipal water demand. 
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Figure 5-3: ANN algorithm performance for the validation data (Melbourne City) 

In order to examine the goodness of fit of the model, an error analysis was performed. 

The scatter plots of error, versus a number of samples for validation, are presented in 

Figure 5.4. Three important patterns have emerged from the data; the data had a 

smaller error scale between -0.04 and 0.04 except for some data, no special trend exists 

for the pattern of distribution and the distribution of error density for all data is regular.  

 

Figure 5-4: Residual scatterplots for validation data stage (Melbourne City) 

Figure 5.5 provides a graph of the results for the observed and simulated water 
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model to capture the pattern of the observed data. The simulated data is a close match 

to the observed data regarding the scale of error. There is some deviation in the plot 

for the last months. It may come from the impact of additional climate factor in this 

period not included in the model like humidity (i.e., Melbourne City suffered from the 

impact of climate change). However, it is not statistically significant when the 

deviation has been assessed by T-test and shows that around 98% distribution fit 

between agreement limits of a Bland–Altman scatters plot as shown in Figure 5.6. 

 

Figure 5-5: Observed and predicted stochastic signal of municipal water demands 
for the validation data (Melbourne City) 

A Bland–Altman scatter plot was employed to examine the agreement of the model 

for validation data. It has the ability to reveal the systematic and random differences 

as well as the merit of exhibiting the variation in the outcomes. In this plot, mean (m) 

and standard deviation (SD) of the differences were obtained by applying the T-test 

technique that used to assess the difference between the mean of observed and 
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(systematic) variation, the scatter of the values, and to display whether there is a 

relation between the observed and predicted error. 

The most obvious finding to emerge from the analysis is that scattered data suggests 

an excellent distribution fit between agreement limits with percentage range values 

around 98%, as shown in Figure 5.6.  

 

Figure 5-6: Bland–Altman plot of the relation between observed and predicted 
stochastic signal of municipal water (Melbourne City) 

For more statistical support, Table 5.2 provides three measures of the differences 

between the predicted and observed time series, to evaluate the model performance. 

We can see that the differences between the observed and predicted water demands 

are negligible (MSE= 6.3911 10-04). Up to this point in this section, we were covering 

step C from figure 3-1. 

Table 5.2: Three statistical criteria for the validation data (Melbourne City) 
Data MAE MSE RMSE 

Validation 0.0201 6.3911 10-04 0.0253 

MAE: mean absolute error, MSE: mean square error, RMSE: root mean 
square error  
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Finally, the model was also validated by evaluating an independent set of data from 

2011 to 2015, and this corresponds to step D of our proposed methodology (figure 

3.1). Two copies of water consumption data were adopted, the first one has the same 

12 original signals. The second one contains the same components for the first one 

except for the stochastic signal, which was replaced by the predicted signal that was 

produced by the ANN model. Both sets were reconstructed, rescaled and the 

correlation coefficient between them was 0.98, which is sufficient assurance that the 

ANN network can generalise accurately as shown in Figure 5.7.  

O
ut

pu
t~

=1
.1

*T
ar

ge
t+

 -8
.7

*1
02

 

Figure 5-7: ANN algorithm performance for the independent set of 
data (2011-2015) (Melbourne City) 

As shown in Figure 5.8, the graphical form was employed to display the outcomes in 

terms of measured and predicted water demands. The figure shows an excellent fit 

between actual and predicted municipal water supplies demonstrating the capacity of 

this model to capture the pattern of water consumption for the period 2011-2015 

accurately. 
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Figure 5-8: Observed and predicted municipal water demands for the independent 
set of data (2011-2015) (Melbourne City) 

5.2.3. Municipal Water Demand Model Validation 

Two cities (Melbourne and Columbia) were employed to validate the proposed 

methodology in Chapter 3, where they apply to show the impact of using different 

geographical locations and environments on the performance of the municipal water 

demands model. Melbourne City is different from Colombia City in a number of facts 

as presented in Table 5.3. It notices from the table that Melbourne has a higher 

population than Columbia city. In addition, in terms of the water consumption, 

Columbia City has indoor use only (i.e. it has an additional system of raw water to 

irrigate the gardens), while the Melbourne City has indoor and outdoor consumption 

(Jacobs and St. Louis, 2015; YVW, 2017).  
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Table 5.3: Different facts of Melbourne and Columbia Cities 

Factors Melbourne City* Columbia City 

Location Australia United States of America 

Population (capita) 1,800,000  108,500 

Fresh water 

resource 

harvested from protected 

catchments 
groundwater 

Customers 60% of them are residential 92% of them are residential 

Water consumption  indoor and outdoor indoor only 

Median value of 

water consumption 

(1980-2010) (ML) 

14,100 1,190 

*These data are considered for the areas that are served by the Yarra Valley water 
company in Melbourne City. 

 

The performance of the current methodology, applied to Melbourne and Columbia 

Cities is illustrated in Table 5.4. It appears from the table that the model inputs have 

the same climate factors for both cities include (Tmax, Rain and Radi). However, the 

correlation between the stochastic signal for water consumption and climate factors 

are slightly different from city to another, because of these cities have different climate 

conditions. The results confirm that the data preprocessing techniques to detect a 

stochastic signal and select the best model inputs are reliable because it has a 

significant correlation between dependent and independents factors. Moreover, as 

shown in the table, the hybrid algorithm LSA-ANN (Swarm=50) has a better 

performance compared with the other types of hybrid algorithms in respect of fitness 

function (i.e., based on RMSE) for both cities. 
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Different statistical criteria (e.g., R, MAE and RMSE) are used to evaluate the 

performance of the combination SSA and LSA-ANN model. An important point that 

emerged from the data was that the model has the ability to predict the water demands 

accurately in both cities. The R is approximately the same for both cities, while the 

MAE and RMSE for Columbia City are slightly better than the values of Melbourne 

City. The reason behind that is regarding the variation in the population, size of the 

serviced area and climate factors. 

Table 5.4: The details comprising the results of the proposed methodology in 
different cities 

Factors Melbourne City Columbia City* 

Model input 

(presented in 

chapter 4) 

Tmax 0.94 0.92 

Rain -0.53 0.59 

Radi 0.84 0.78 

Hybrid algorithm LSA-ANN (swarm 50) LSA-ANN (swarm 50) 

ANN Model 

Performance 

R 0.96 0.95 

MAE 0.0201 0.0126 

RMSE 0.0253 0.0163 

* These results are presented in Appendix 4-A and 5-A. 
 

5.2.4. Results Comparison to Previous published work  

The results’ performance of the current methodology that are presented in Chapter 3 

are compared to the two recently published works. Both studies have confirmed the 

effectiveness of data preprocessing (i.e. make the time series stationary). Sebri (2013) 

used detrend and deseasonal for preprocessing data, Trimester from 1983 to 2002 as a 

model input and ANN model. Behboudian et al. (2014) applied normalised by natural 

logarithm and detrend to make the series stationary. Monthly socio-economic and 
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Tmax from 1997 to 2008 used a model input and ANN model. The details of the 

compared results are present in Table 5.5. As can be seen from the table the reported 

results of the group of the present methodology significantly outperform the other two 

groups, although the previous studies used socio-economic factors over mid-term, in 

term of correlation coefficient and three statistical criteria to check the error between 

observed and predicted water consumption. Accordingly, the comparison of the 

findings with those of the other studies confirms the present methodology to forecast 

municipal water demand under climate change for the long term. 

The significant drawbacks of previous approaches are that these works have not dealt 

with SSA to remove trend, seasonal factors and noise. In addition, these studies suffer 

from unsystematic techniques to choose the parameters of the ANN model. 
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Table 5.5: The details of the compare results of present methodology and previous work 

No. Author Method 
Data 

Preprocessing 
Data set R MSE RMSE MAE 

1 Sebri (2013) ANN DETDES 

Trimester, 

1983-2002 

- - 1,741.12 1,467.68 

2 Behboudian et al. (2014) ANN 
Stationary 

chain 

Monthly, 

1997-2008 

0.92 0.03 - - 

3 Our research study 
The methodology present 

in Ch.3 

Monthly, 

1980-2010 

0.96 6.3911 10-4 0.0253 0.0201 
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5.3. Simulation of Future Climate Factors 
5.3.1. LARS-WG model Calibration and Validation 

This section relates to the second column in figure 3.1: “Statistical downscaling 

model”. Historical daily climate variables data over the period 1980-2010 (31 years) 

were employed for calibration and validation of the LARS-WG model for the selected 

area. Two statistical criteria tests and graphics comparisons between observed and 

synthetic weather data generated by LARS-WG model were adopted for maximum 

temperature (Tmax), rainfall (Rain) and solar radiation (Radi) to assess how well the 

model performs.  

For the two statistical criteria tests, the Kolmogorov-Smirnov (K-S) test was 

performed to test the equality of the distributions of daily climate factors calculated 

from measured data and simulated data. In addition, a p-value was utilised for 

acceptance or rejection of the hypothesis that both sets of data (i.e., observed and 

simulated) could have come from the same distribution. A very high p-value and a 

corresponding low K-S value indicate that the simulated climate is likely to be the 

same as the measured climate; hence must be accepted (Semenov et al., 2013). 

Semenov et al. (2013) recommended that a p-value of 0.01 should be employed as the 

significance level of acceptance instead of 0.05, which was applied in most statistics 

to increase the accuracy.  

Table 5.4 presents the results of the statistical analysis for model performance in 

simulating the Tmax, Rain and Radi observed from the data. It can be seen from the 

assessment results in the table that the performance of the model in simulating the 

distribution of the daily Tmax, Rain and Radi is perfect.   
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Table 5.6: K-S and P-value tests for daily Tmax, Rain and Radi distributions 
 Daily Tmax 

distributions 

Daily Rain 

distributions 

Daily Radi 

distributions 

Month K-S P-Value K-S P-Value K-S P-Value 

J 0.106 0.9989 0.056 1 0.044 1 

F 0.105 0.9991 0.016 1 0.087 1 

M 0.053 1 0.042 1 0.044 1 

A 0.105 0.9991 0.031 1 0.087 1 

M 0.105 0.9991 0.081 1 0.087 1 

J 0.106 0.9989 0.015 1 0.087 1 

J 0.105 0.9991 0.039 1 0.044 1 

A 0.053 1 0.056 1 0.087 1 

S 0.053 1 0.011 1 0.044 1 

O 0.106 0.9989 0.041 1 0.044 1 

N 0.053 1 0.056 1 0.087 1 

D 0.106 0.9989 0.056 1 0.044 1 

In addition for statistical parameters, which contain mean and standard deviation for 

observed and synthetic data as shown in Figure 5.9. It can be seen in the figure that 

the model is able to accurately fit the three variables (Tmax, Rain and Radi), especially 

maximum temperature and solar radiation. 

The LARS-WG model reveals an adequate performance in replicating the observed 

Tmax, Rain and Radi in this study, which obviously emphasises that the model is 

appropriate for this region. Similar reliable performances in generating climate factors 

have been found for the LARS-WG model in various locations around the world, as 
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mentioned in Osman et al. (2017). Accordingly, confidence was increased to employ 

the downscaling model in this study. 

The model is ready to simulate future daily data for Tmax, Rain and Radi using seven 

GCMs and three IPCC scenarios (B1, A1B and A2) over three periods (2011-2030, 

2046-2065 and 2080-2099) as in the next section. 

  

 
Figure 5-9: Calibration and validation of the LARS-WG model by using measured and 
simulated mean and standard deviation of maximum temperature, solar radiation and 
rainfall at study area (1980-2010) 

5.3.2. Projection of Future Climate Factors 

After calibration and validation of the model, the LARS-WG model was employed to 

simulate future daily data for Tmax, Rain and Radi over three periods 2011-2030, 

2046-2065 and 2080-2099, depending on the A1B, B1 and A2 scenarios generated 

from seven GCMs (Table 3.1).  
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The results of the yearly maximum temperature, rainfall and solar radiation forecasting 

data for all GCMs and their ensemble mean under A1B scenario over 2011-2030 

period are plotted in Figure 5.10. For maximum temperature, the figure shows that all 

the GCMs’ projected data over the period 2011-2030, in general, are closer to each 

other. While the INCM3 model has approximately the same pattern but it is not close 

to them. In addition, all GCMs models exhibit anomalous behaviour in the first quarter 

of the period. The limitation of ensemble is projected between around 19.7-20.6°C 

(i.e. it means the maximum and minimum values over the 20 years). 

The results for the rainfall, present that all GCMs show approximately the same pattern 

compare with INCM3 model, which has considerable variation. In addition, the GCMs 

exhibit anomalous behaviour in the first quarter of the period. The limitation of 

ensemble is projected to be approximately 47-75mm. The solar radiation results 

present that all the GCMs’ projected data over the chosen period except MPEH5 and 

INCM3 models, in general, have little variation except some years such as years (3rd, 

7th, 10th and 18th). The MPEH5 model has the same pattern but it is not close to others 

primarily in the first half of period while, the INCM3 model has an irregular pattern 

along the period. The limitation of ensemble is projected around 14.7-15.7MJ/m2. The 

results of yearly data for all climate factors under A1B, B1 and A2 scenarios and over 

three future periods are shown in Appendix 5-B. 
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Figure 5-10: Projected yearly Tmax, Rain and Radi data under A1B scenario and over 
2011-2030 period 

The scale of the future climate variables over three periods for all three scenarios then 

changes from daily to monthly data (i.e. the scale of water prediction model is 

monthly). The monthly average mean with confidence interval level, 0.95% for A1B 

scenario, for all climate factors and over the three periods was drawn to increase the 

knowledge about how the climate variables will change in the future, as shown in 

Figure 5.11. The figure shows that Tmax is expected to increase as we go into the 

future, e.g. the values for the month of July, Tmax= 13.7, 14.3 and 14.9°C for the 1st, 

2nd and 3rd period, respectively. Radi is also expected to increase over the three periods, 

e.g. for the month of December, Radi= 22.4, 22.7 and 23MJ/m2 for the 1st, 2nd and 3rd 

period, respectively; and the confidence interval level was excellent for both factors 

over all periods. In contrast, Rain is expected to decrease, e.g. the values for the month 

of December, Rain= 85, 56.6 and 42.5mm for the 1st, 2nd and 3rd period, respectively, 

and the confidence interval level is approximately the same for all periods. All these 

show LARS-WG capabilities of simulating future climate variables very accurately. 

The figures regarding B1 and A2 scenarios are displayed in Appendix 5-C. 
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Figure 5-11: The average monthly mean for three simulated climate factors of A1B 
scenario over the future periods (2011-2030, 2046-265 and 2080-2099) 

Figure 5.12 shows the average monthly maximum temperature has the same pattern 

under B1 scenario for 2011-2030, 2046-2065 and 2080-2099 periods, but it has 

variation in magnitude of degrees Celsius from one period to another. Tmax is likely 

to rise gradually from the first period to the last one, e.g. the values for the month of 

July, Tmax= 13.5, 14.3 and 14.5°C for the 1st, 2nd and 3rd period, respectively. The 

probable effects of climate change on future maximum temperature under A1B and 

A2 scenarios are similar to those of the B1 scenario for all future periods. However, 

the value of average monthly maximum temperature is different for each period under 

B1, A1B and A2 scenarios depending on the scenarios' assumptions. Accordingly, for 

the month of July, the expected difference between 1st and 3rd period is 1, 1.2 and 

1.8°C for B1, A1B and A2 scenarios respectively. In addition, the average monthly 
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maximum temperature is likely to reach a peak at 15.6°C in the 3rd period under the 

A2 scenario.  

   
Figure 5-12: The average monthly maximum temperature under B1, A1B and A2 
scenarios over three future periods 

The average monthly values of solar radiation under B1, A1B and A2 scenarios for 

the three future periods are presented in Figure 5.13: In general, the results of B1 

scenario are similar to those projected by A1B and A2 scenarios. In addition, there is 

a little variation among the three periods for any month regarding all IPCC scenarios. 

June tends to have less solar radiation, while January has a higher value. Also, solar 

radiation was expected to reach a peak in January under A2 scenario for the first period 

about 23.3MJ/m2. 

   
Figure 5-13: The average monthly of solar radiation under B1, A1B and A2 scenarios 
over three future periods 

Figure 5.14 displays the average monthly data of rainfall under B1, A1B and A2 

scenarios for 2011-2030, 2046-2065 and 2080-2099 periods. What can be clearly seen 

in this figure is the expected decline in rainfall amount as we go into the future (i.e. 1st 

period has rainfall more than 2nd and 3rd periods) for all three scenarios. The range of 

precipitation is likely to fall between (38 and 80) mm, (39 and 85) mm and                    
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(35 and 78) mm for B1, A1B and A2 scenarios respectively. Therefore, the A2 

scenario is projected to be a drier scenario compared with the B1 and A1B scenarios. 

Also, the month of February is probably going to be driest month compare with other 

months of the year under all IPCC scenarios. 

   
Figure 5-14: The average monthly of rainfall under B1, A1B and A2 scenarios and 
over three future periods 

Monthly data of simulated climate factors for each period will be presented and 

compared to provide a clear scientific view about the impact of climate change in the 

future in two phases, which are expected time series and its stochastic signal time 

series. 

5.3.2.1. Expected Time Series 

The expected climate variables time series will be divided into three groups based on 

the periods 2011-2030, 2046-2065 and 2080-2099. In any period, each expected 

climate factor under a specific IPCC scenario will be compared with the two additional 

IPCC scenarios.  Four months were chosen during the year to display the projected 

climate factor in each period. These months are January, April, July and October to 

represent summer, autumn, winter and spring seasons respectively (in the southern 

hemisphere). The figures regarding the rest of the months are displayed in Appendix 

5-D. 

 

J F M A M J J A S O N D

Average monthly time series

20

30

40

50

60

70

80

90

100

110

R
ai

n
fa

ll 
(m

m
)

Rainfall- B1 Scenario 

2011-2030 2046-2065 2080-2099

J F M A M J J A S O N D

Average monthly time series

20

30

40

50

60

70

80

90

100

110

R
ai

n
fa

ll 
(m

m
)

Rainfall- A1B Scenario

2011-2030 2046-2065 2080-2099

J F M A M J J A S O N D

Average monthly time series

20

30

40

50

60

70

80

90

100

110

R
ai

n
fa

ll 
(m

m
)

Rainfall- A2 Scenario

2011-2030 2046-2065 2080-2099



5.3 Simulation of Future Climate Factors 122 
 

 
 

A) First Period 2011-2030 

The maximum temperature for the 1st period (20 years) for four months is shown in 

Figure 5.15. In general, January has the higher expected value of Tmax, July the lower 

and April more than October. In addition, the variation in the value of Tmax among 

B1, A1B and A2 scenarios for each month is no more than 1°C and July is likely to 

have less variation. In approximately half of these time series for each month, the 

expected Tmax value under A2 scenario exceeds other scenarios. The values of Tmax 

under B1, A1B and A2 scenarios fall between (25.8 and 28.5) °C, (19.5 and 22.2) °C, 

(13 to 14.1) °C and (18.7 and 21.2)°C for (January, summer), (April, autumn), (July, 

winter) and (October, spring) respectively. 

 

 

 

 

 

 

 



5.3 Simulation of Future Climate Factors 123 
 

 
 

 

 

 

 
Figure 5-15: The maximum temperature projection under B1, A1B and A2 scenarios 
for the future period (2011-2030) 

The rainfall time series is sorted based on a monthly basis and presented in Figure 

5.16. It can be seen that projection of precipitation under various scenarios shares a 
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number of key features such as rainfall distributed over the year, there is no trend over 

these months (rainfall fluctuated).  

In addition, there is little variation among the value of rainfall under B1, A1B and A2 

scenarios for each month except some anomalous months. The range of rainfall is (8-

142) mm, (30-123) mm, (32-115) mm and (23-108) mm for January, April, July and 

October months respectively. 
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Figure 5-16: The rainfall projection under B1, A1B and A2 scenarios for the future 
period (2011-2030) 

Figure 5.17 shows the probable solar radiation for four months representing the 

seasons over the year for the first period. The solar radiation has the same distribution 

of maximum temperature except for its magnitude in (October, spring) more than in 
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(April, autumn). The limitation for projected Radi is 21-24.3MJ/m2, 11.2-13.1MJ/m2, 

7-8.5MJ/m2 and 17.5-19.6MJ/m2 for January, April, July and October respectively. 

 

 

 

 
Figure 5-17: The solar radiation projection under B1, A1B and A2 scenarios for the 
future period (2011-2030) 
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B) Second period 2046-2065 

The maximum temperature for the 2nd period (20 years) for four months is shown in 

Figure 5.18. The expected monthly results of Tmax are similar to those reported in the 

first  period regarding the pattern and the variation in the value of Tmax among B1, 

A1B and A2 scenarios for each month, but differ in values. In addition, in 

approximately half of these time series for each month, the expected Tmax value under 

A2 scenario exceeds other scenarios. The values of Tmax under B1, A1B and A2 

scenarios fall between (25.2 and 30) °C, (20.2 and 23.4) °C, (13.3 and 14.9) °C and 

(18.2 and 21.5) °C for January, (summer), April, (autumn), July, (winter) and October, 

(spring) respectively. 
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Figure 5-18: The maximum temperature projection under B1, A1B and A2 scenarios 
for the future period (2046-2065) 

Rainfall time series for the three scenarios are presented in Figure 5.19. What is 

interesting about the data in this figure is that all months are wet over the year. It can 

be seen that the expected rainfall fluctuates between all IPCC scenarios during the 
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year. The figure shows that there has been a slight increase in the trend of precipitation 

for January and July and no clear direction for other months. The range of rainfall is 

15-106mm, 8-104mm, 30-128mm and 28-94mm for January, April, July and October 

respectively. Accordingly, a higher percentage of precipitation is likely happen in 

winter and a lower ratio in autumn. 
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Figure 5-19: The rainfall projection under B1, A1B and A2 scenarios for the future 
period (2046-2065) 

Figure 5.20 displays the probable monthly solar radiation data for the second period 

under three various IPCC scenarios. In general, the data have a similar pattern to those 

in the first  period, and there is no significant difference in values over four months. 
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The distribution of data are 21-24.5MJ/m2, 11-13.4MJ/m2, 7.2-8.3MJ/m2 and 17.5-

20.2 MJ/m2 for January, April, July and October respectively. 

 

 

 

 
Figure 5-20: The solar radiation projection under B1, A1B and A2 scenarios for the 
future period (2046-2065) 
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C) Third Period 2080-2099 

Figure 5.21 shows the projected monthly maximum temperature data for the third 

period under B1, A1B and A2 scenarios. The pattern of Tmax is similar to the Tmax 

in the first  and second  periods but has some differences. These differences include 

the variation in the value of Tmax among B1, A1B and A2 scenarios for each month 

up to approximate 2°C and July is likely to have less variation. In addition, look at the 

figure it realised that the A2 scenario in common has the highest values in all the 

seasons. The values of Tmax under B1, A1B and A2 scenarios fall between (26.3 and 

31.5) °C, (20.3 and 24.6) °C, (13.7 and 16) °C and (20 and 24.6)°C for January, April, 

July and October respectively. 
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Figure 5-21: The maximum temperature projection under B1, A1B and A2 scenarios 
for the future period (2080-2099) 

Projected rainfall time series for the B1, A1B and A2 scenarios over the 2080-2099 

period are presented in Figure 5.22. Closer inspection of the figure shows that there is 

no clear direction to an increase or decrease in rainfall for all months. The expected 
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peak value will happen under the A2 scenario in January while, it occurs in July under 

the B1 scenario. In the same context,there is no dominant scenario for other months, 

and in October, the time series for all scenarios are close to each other. 

 

 

 

 
Figure 5-22: The rainfall projection under B1, A1B and A2 scenarios for the future 
period (2080-2099) 

Rainfall (January) - B1, A1B and A2 Scenarios (2080-2099)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Ra
inf

all
 (m

m)
 

B1 A1B A2

Rainfall (April) - B1, A1B and A2 Scenarios (2080-2099)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Ra
inf

all
 (m

m)

B1 A1B A2

Rainfall (July) - B1, A1B and A2 Scenarios (2080-2099)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Ra
inf

all
 (m

m)

B1 A1B A2

Rainfall (October) - B1, A1B and A2 Scenarios (2080-2099)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Ra
inf

all
 (m

m)

B1 A1B A2



5.3 Simulation of Future Climate Factors 135 
 

 
 

Figure 5.23 displays the probable monthly solar radiation data for the third  period 

under three various IPCC scenarios. In general, data have a similar pattern to those in 

the first  and second  periods, and there is no significant difference in values over four 

months. The distribution of the data are 21.6-24.7MJ/m2, 11.9-13.1MJ/m2, 7.2-

8.5MJ/m2 and 18.1-20.5MJ/m2 MJ/m2 for January, April, July and October 

respectively. 
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Figure 5-23: The solar radiation projection under B1, A1B and A2 scenarios for the 
future period (2080-2099) 

These monthly time series of all climate factors under B1, A1B and A2 scenarios and 

over three future periods were normalised and decomposed by the SSA technique to 
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detect their stochastic signals. The monthly stochastic signals will be used in the ANN 

model to forecast future municipal water demand over three periods. 

5.3.2.2. Stochastic Time Series 

The stochastic signals of the ensemble means for Tmax, Rain and Radi that were 

simulated from the three IPCC scenarios and the seven GCMs were considered. The 

differences between the stochastic signals of the ensemble means for B1, A1B and A2 

scenarios over all simulated periods and the stochastic signals of the baseline (1980-

2010) were plotted, as shown in Figures 5.24, 5.25 and 5.26 respectively. 

Figure 5.24 shows that Tmax will rise in general based on the average monthly basis 

for all months in winter and spring seasons (i.e., 2046-2065 is the hottest period), and 

it will decrease in summer and autumn. Radi will increase during the months May to 

September, and it increases even more as the prediction moves into the future. Rain 

has a non-uniform pattern for the three periods; it will increase for the first period 

except the months from March to September. For the second period, it will increase 

except the months May to June. For the third period, it will increase from February to 

July months and reduce from August to December months. Compared to other periods, 

the final period has the highest increase, which happens in March, and has the highest 

decrease, which happens in November. 
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Figure 5-24: The differences in average monthly stochastic signal for three climate 
factors under B1 scenario between the future periods (2011-2030, 2046-265 and 2080-
2099) and the current period (1980-2010) 

Figure 5.25 presents that Tmax will increase in general based on the average monthly 

basis for all months in winter and spring seasons (i.e., 2080-2099 is the hottest period), 

and it will decrease in summer and autumn. Radi will increase during the months May 

to October, and it increases even more as the prediction moves into the future. 

However, Radi will decrease over the rest of the months, and the third period has the 

highest and lowest signals. Rain has a non-uniform pattern for the three periods; it will 

increase for the first period except the months from March to September. For the 

second period, it will decrease except the months August, December and from January 

to March. For the third period, it will increase for the first six months and reduce for 

last six months. Compared to the rest of the periods, the final period has the highest 
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increase, which happens in March, and has the highest decrease, which happens in 

October. 

  

 
Figure 5-25: The differences in average monthly stochastic signal for three climate 
factors under A1B scenario between the future periods (2011-2030, 2046-265 and 
2080-2099) and the current period (1980-2010) 

Figure 5.26 displays that Tmax will increase in general based on the average monthly 

basis for all months in winter and spring seasons (i.e., 2080-2099 is the hottest period), 

and it will decrease in summer and autumn. Radi will increase during the months May 

to October (except some months for the first  period), and it increases even more as 

the prediction moves into the future. However, Radi will decrease over the rest of the 

months, and the third period has the highest and lowest signals. Rain has a non-

uniform pattern for the three periods; it will increase for the first period except the 

months from April to September. For the second period, it will increase except the 

months from April to October. For the third period, it will increase for the first six 
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months and reduce for last six months. Compared to the rest of periods, the final period 

has the highest increase, which happens in February, and has the highest decrease, 

which happens in October. 

  

 
Figure 5-26: The differences in average monthly stochastic signal for three climate 
factors under A2 scenario between the future periods (2011-2030, 2046-265 and 2080-
2099) and the current period (1980-2010) 

The differences between the expected stochastic signal of the ensemble means for B1, 

A1B and A2 scenarios over all simulated periods and the stochastic signals of the 

baseline (1980-2010) for all climate variables were plotted in the monthly time series. 

Four months were chosen along the year to display the projected climate factor in each 

period. These months are January, April, July and October to represent summer, 

autumn, winter and spring seasons respectively (in the southern hemisphere). The 

figures regarding the rest of the months are displayed in Appendix 5-E. 
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A) First Period 2011-2030 

The differences in stochastic signal of the maximum temperature under B1, A1B and 

A2 scenarios for the first  period (20 years) for four months is shown in Figure 5.27. 

The stochastic signals in January will decrease under all IPCC scenarios compared 

with the baseline period. There is no clear trend for reducing, and B1 scenario has the 

coldest values over around half of the time series. On another hand, a stochastic signal 

of Tmax will increase over all time series in July, and B1 scenario represents the 

hottest scenario over around half of the time series. Stochastic signals of Tmax will 

fluctuate (i.e. increase and decrease) along with the time series in April and October. 
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Figure 5-27: Stochastic signals of the maximum temperature projection under B1, 
A1B and A2 scenarios for the period (2011-2030) 

Figure 5.28 shows the differences between the expected stochastic signals of rainfall 

under three scenarios and the stochastic signals of the 1980-2010 period. Generally, 

precipitation is likely to increase in summer, decrease in winter and be oscillatory in 
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spring and autumn seasons and tend to reduce. In addition, all scenarios have the same 

pattern and are close to each other. 

 

 

 

 
Figure 5-28: Stochastic signals of the rainfall projection under B1, A1B and A2 
scenarios for the period (2011-2030) 
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The expected differences in stochastic signals of the solar radiation are shown in 

Figure 5.29. It can be seen that solar radiation is likely to reduce in January and the 

A1B scenario has the lowest values over around half of the time series. In addition, 

Radi rises in July except for some months in the time series. Moreover, the signal of 

solar radiation fluctuates along the time series in April and October. 
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Figure 5-29: Stochastic signals of the solar radiation projection under B1, A1B and 
A2 scenarios for the period (2011-2030) 

B) Second Period 2046-2065 

The expected differences between stochastic signals of the maximum temperature 

under B1, A1B and A2 scenarios for the 2nd period (20 years) and the baseline period 
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for four months are shown in Figure 5.30. The results of differences are likely to 

reduce for (January, summer) for B1, A1B and A2 scenarios for 20 years with varying 

values from one scenario to another and from month to month. The B1 represents the 

coldest and the A1B the hardest scenario over around half of the time series. The 

stochastic signal rises in July, (winter) under all IPCC scenarios over the selected 

period, and the A2 scenario tends to be the hottest one. The signals for April and 

October are oscillating, but it tends to increase in April and reduce in October. 

 

 

 

 

 

 

 

 

 



5.3 Simulation of Future Climate Factors 147 
 

 
 

 

 

 

 
Figure 5-30: Stochastic signals of the maximum temperature projection under B1, 
A1B and A2 scenarios for the future period (2046-2065) 

Figure 5.31 provides the probable differences between stochastic signals of the future 

IPCC scenarios and the 1980-2010 period of rainfall. The IPCC scenarios generally 

have the same pattern. However, the A1B and A2 scenarios are closer to each other 
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than the B1 scenario. There is neither a clear trend nor dominance for any scenario. 

Summer is wetter than other seasons, whereas winter is the driest season. Both autumn 

and spring share a number of key features, but these vary with the magnitude of 

precipitation. 

The projected differences for the stochastic signal of solar radiation for the second  

period are set out in Figure 5.32. The signal drops markedly in January and rises in 

July. In addition, it varies from positive to negative for the rest months, but it tends to 

decrease in April and increase in October. 
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Figure 5-31: Stochastic signals of the rainfall projection under B1, A1B and A2 
scenarios for the future period (2046-2065) 
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Figure 5-32: Stochastic signals of the solar radiation projection under B1, A1B and 
A2 scenarios for the future period (2046-2065) 
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C) Third Period 2080-2099 

Figure 5.33 shows the expected differences results for the stochastic signal of 

maximum temperature for the third  period. It increases in July, fluctuates in April and 

falls in January and October, but January differs from October in the magnitude of 

dropping. The values of the A2 scenario dominates the months of January, July and 

October, while the B1 dominates April only. 

 

 

 

 

 

 

 

 

 



5.3 Simulation of Future Climate Factors 152 
 

 
 

 

 

 

 
Figure 5-33: Stochastic signals of the maximum temperature projection under B1, 
A1B and A2 scenarios for the future period (2080-2099) 

Figure 5.34 presents the projected differences values for the stochastic signal of 

rainfall for the 2080-2099 period. It can be seen that the signal fluctuates (between 

positive and negative) for January and the A2 scenario is likely to be the wettest one. 
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The higher positive signal is expected for April compared with the other months, and 

the A1B scenario is the best one. In July, signals oscillate around and close to zero, 

and the B1 scenario has the highest positive peaks. The highest negative signal 

happens in October that is considered the driest month. 
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Figure 5-34: Stochastic signals of the rainfall projection under B1, A1B and A2 
scenarios for the future period (2080-2099) 

The probable differences results for the stochastic signal of solar radiation in the 2080-

2099 period are displayed in Figure 5.35. What stands out in the figure is that the 

signal drops markedly in January and slightly in April. In addition, it rises clearly in 
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July and slightly in October. The values of the A2 scenario dominates in January 

(reduction) whereas, there is an increase in July. 

 

 

 

 
Figure 5-35: Stochastic signals of the solar radiation projection under B1, A1B and 
A2 scenarios for the future period (2080-2099) 
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Severe weather, increased Tmax and decreased Rain, may become more common in 

the future. Therefore, a stochastic signal of climate factors for three future periods 

under B1, A1B and A2 scenarios is employed to examine to what extent climate 

change will impact on  future monthly municipal water demand. 

5.4. Expected Future Municipal Water Demand 

This section corresponds to step E of our proposed methodology (figure 3.1). For the 

monthly data of water consumption over the baseline period 1980-2010, the average 

mean of the 12 signals was calculated based on monthly bases (i.e. it can be seen that 

one average year represents 31 years, each month has 12 average signals). The 

monthly average water consumption time series over baseline period 1980-2010 are 

reconstructed and rescaled as shown in Figure 5.36. 

 

Figure 5-36: The monthly average water consumption time series over period 
1980-2010 

Stochastic signal of climate variables over three future periods, and under three IPCC 

scenarios, were employed to forecast the stochastic signal of monthly municipal water 

demands by using ANN. For each period, which is spanning over 20 years, the 
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stochastic signals of water demand were filtered based on months (e.g., 20 signals 

represent January months for each period). Two sets of each month in the average year 

of the baseline period that has 12 signals were made. The first set kept the same 

components; the stochastic component of the second set was replaced by future 

stochastic signal; this process was repeated for all months over the 20 years. 

 After reconstructing and rescaling of signals for both sets, we calculate the monthly 

percentage difference between the future and baseline water demand. Based on this 

calculation, the socio-economic variables were fixed to have the same effect for 

baseline and future periods. Therefore, the difference between the future and baseline 

water demands include the impact of climate change only (represented by stochastic 

signal) without the socio-economic effect. The monthly percentage difference between 

the expected future (for B1, A1B and A2 scenarios) and baseline water demands can 

be categorised into three periods 2011-2030, 2046-2065 and 2080-2099.  

5.4.1. First Period 2011-2030 

Figures 5.37, 5.38, 5.39 and 5.40 present the difference percentage for monthly water 

demands between the expected (B1, A1B and A2 scenarios) and baseline water 

demands for the first  period (2011-2030). The Water Percentage Demands (WPDs) 

of December , January  and February (summer season) are illustrated in Figure 5.37. 
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Figure 5-37: The projected WPDs under three scenarios for the period (2011-2030) 
based on the average monthly baseline period (1980-2010) (summer season) 

Close inspection of this figure shows that the water demands in the summer season 

overall decrease and this reduction is consistent with the stochastic signal of climate 

variables for each scenario (see Figures 5.24, 5.25 and 5.26). That resulted due to the 

fact that the climate variables such as the Tmax and Radi are dropped, and the Rain 

rises in summer and under the B1, A1B and A2 scenarios. For more details, we 

describe the results depending on the monthly basis. 

The highest decrease of WPDs happens in the third  year which is (-2.05% = -355ML) 

under the A2 scenario in December while it is (-2.46% = -460ML) in the final year 

Municipal water demand (December)- B1, A1B and A2 Scenarios (2011-2030)
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Municipal Water Demand (January)- B1, A1B and A2 Scenarios (2011-2030)
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Municipal Water Demand (ِFebruary)- B1, A1B and A2 Scenarios (2011-2030)
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under the A1B scenario in January. In addition, it occurs in the third  year which is             

(-2.29% = -412ML) under the B1 scenario in February. The highest increase of WPDs 

happen in the first  year which is (2.09% = 362ML) under the B1 scenario in December 

whereas, it is (1.06% = 198ML) in the first  year under the A1B scenario in January. 

In addition, it occurs in the eighth  year which is (1.62% = 291ML) under the A1B 

scenario in February. The majority of reduction percentage signals are distributed 

between (-0.25% and -1.5%), (-0. 5% and -2%) and (-0.25% and -1.5%) for the months 

of December, January and February respectively.  

Figure 5.38 shows the WPDs of March, April and May that represent the autumn 

season. It can be noticed from the figure that the simulated municipal water demand 

in general decreases in March and fluctuates in April and May. The trend of water 

demand gradually increases going from March to May regarding the impact of climate 

variables. In March, the negative peak of WPDs is (-2.4% = -403ML) in the second  

year and under the B1 scenario, whereas the WPDs reach the maximum value 

(1.32%=231ML) in the seventeenth  year and under the same scenario. In addition, 

about 74% of the negative signals of WPDs fall between (-0.25% and -1.5%). 

The WPDs in April start with a slight rise compared with the previous month, and the 

negative and positive peaks of WPDs are (-2.43%=-342ML) and (1.57%=221ML) in 

the first  and seventh  years respectively under the A1B scenario. The range of most 

negative signals for WPDs are distributed between (0% and -1.25%). In May, the 

WPDs continuously increase, and the boundary limits for most signals are (-1% to 

1%). The maximum WPDs value in the third year under A2 scenario is 

(1.76%=231ML), and the minimum WPDs value in the first year under the B1 

scenario is (-2.6%=-337ML). 
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Figure 5-38: The projected WPDs under three scenarios for the period (2011-2030) 
based on the average monthly baseline period (1980-2010) (autumn season) 

The WPDs results of the winter season which is the months of June, July and August 

can be seen in Figure 5.39. What is interesting about the signals in this figure is that 

the WPDs values increase in the winter season and this increase in WPDs is linked to 

the pattern of stochastic signals of climate factors (increase Tmax and Radi, and 

decrease Rain signals) (see Figures 5.24, 5.25 and 5.26).    
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Municipal Water Demand (April)- B1, A1B and A2 Scenarios (2011-2030)
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Municipal water demand (May)- B1, A1B and A2 Scenarios (2011-2030)
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Figure 5-39: The projected WPDs under three scenarios for the period (2011-2030) 
based on the average monthly baseline period (1980-2010) (winter season) 

The pattern of WPDs results increases for June, except in the first, seventh, eighth and 

ninth years, and its range of distribution is (0% to 1%). The maximum peak of WPDs 

is (2.26%=274ML) in the sixth  year (A2 scenario). On the other hand, the lower 

WPDs is (-1.47%=-178.8) in the eighth  year (A1B scenario). The effects of climatic 

factors on WPDs in July are similar to those of June. Both months approximately have 

the same pattern, but most of the WPDs values in July fall between (0.25% and 1.5%) 

and its positive peak is (2.1%=260.2ML) in the fourteenth  year (A1B scenario). In 

addition, WPDs reduce in two years only (seventh and eighth) and its peak of reduction 

Municipal water demand (June)- B1, A1B and A2 Scenarios (2011-2030)
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Municipal Water Demand (July)- B1, A1B and A2 Scenarios (2011-2030)
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Municipal Water Demand (August)- B1, A1B and A2 Scenarios (2011-2030)
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is equal to (-1.17%=-146ML) in the eighth  year (A1B scenario). The results of WPDs 

in August are similar to those reported in June and July.  The increasing rates of WPDs 

range from (0.25% to 1.25%) with a maximum value of (2.1%=267.3ML) in the 

thirteenth  year (A1B scenario). The WPDs decline in the eighth  year only (A1B 

scenario) with value equal to (-0.4%=-51.4ML). 

The WPDs of the months of September, October and November (autumn season) are 

summarised in Figure 5.40. The most interesting aspect of this figure is the WPDs 

values present in three modes. It increases in September (which is similar to winter 

season), fluctuates in October and decreases in November that is similar to the summer 

season. The results, as shown in the figure, indicate that the fluctuations in WPDs 

results are due to climate variability from winter to the summer season. 

The range of WPDs results in September is likely to fall between (0% and 1%), but 

the peak value of WPDs is (2.55%=323ML) in the thirteenth  year (A1B scenario), 

while the highest reduction in WPDs value is (-0.6%=-76ML) in the sixteenth  year 

(same scenario). The values of WPDs for October oscillate between (-0.75% and 

0.5%), its positive peak is equal to (1.53%=216.6ML) in the thirteenth year (B1 

scenario) whereas, the negative peak is equal to (-1.56%=-221.6ML) in the sixteenth  

year (A1B scenario). The reduction range of WPDs results in November is (-0.25% to 

-1%), but the peak decline is (-1.6%=-243.2ML) in the  tenth year (B1 scenario) while, 

the highest WPDs values is (0.56%=85.3ML) in the twelfth  year (A1B scenario). 
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Figure 5-40: The projected WPDs under three scenarios for the period (2011-2030) 
based on the average monthly baseline period (1980-2010) (spring season) 

Overall for this period, WPDs decrease from November to April and the best range of 

reduction is (-0.5% to -2%) in January whereas, it increases from June to September 

and the worst range of WPDs are distributed between (0.25% and 1.5%) in July, and 

the WPDs fluctuate in May and October. All these results are based on the variability 

of the stochastic signals for the climate factors. 

5.4.2. Second Period 2046-2065 

The expected results of WPDs for summer, autumn, winter and spring seasons under 

three IPCC scenarios (B1, A1B and A2) for the second period 2046-2065 are displayed 
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Municipal Water Demand (October)- B1, A1B and A2 Scenarios (2011-2030)
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Municipal Water Demand (November)- B1, A1B and A2 Scenarios (2011-2030)
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in Figures  5.41, 5.42, 5.43 and 5.44. The first Figure 5.41 provides the WPDs for the 

months of December, January and February (summer season). 

The WPDs for December decline generally with peak negative value equal to                  

(-2.17%=-376.1ML) in the ninth  year (A2 scenario) and the majority of reduction 

values are distributed between (0% and -1.5%). In addition, the positive peak of WPDs 

is (1.77%=307ML) in the eleventh  year (A1B scenario). The WPDs in January are 

similar to those in December, but in January WPDs tend to have more reduction than 

in December. The lower value of WPDs is (-2.19%=-410ML) in the seventeenth  year 

(A2 scenario) while, the maximum increase of WPDs is (0.9%=169.1ML) in the 

eleventh  year (same scenario). The range that has the most decline of WPDs value is 

(-0.25% to -1.75%). Approximately (75%) of WPDs results drop in February and most 

of these values are distributed between (-0.5% and -1.5%). The maximum reduction 

of WPDs is (-2.35%=-422.6ML) in the fourth  year (A1B scenario) whereas, the 

positive peak of WPDs is (1.84%=331.5ML) in the fifth  year (B1 scenario). 
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Figure 5-41: The projected WPDs under three scenarios for the period (2046-2065) 
based on the average monthly baseline period (1980-2010) (summer season) 

Figure 5.42 shows the WPDs results for autumn season (March, April and May). It 

can be seen from the data in the figure that the WPDs rise slightly as time moves from 

March to May. In general the WPDs drop in March with a peak of (-2.24%=-390.3ML) 

in the twentieth  year (A2 scenario). On another hand, the highest value of WPDs is 

(2.4%=418.5ML) in the fifth  year (B1 scenario). The range of most of the decline 

values is (-0.25% to -1.25%). In April, the WPDs rise gradually compared with the 

previous month and that leads to the start of  fluctuation in the values of WPDs, and 

most of these values fall between (-1% and 0.75%). The positive peak of WPDs is 

Municipal Water Demand (December)- B1, A1B and A2 Scenarios (2046-2065)
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Municipal Water Demand (January)- B1, A1B and A2 Scenarios (2046-2065)
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Municipal Water Demand (February)- B1, A1B and A2 Scenarios (2046-2065)
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(1.65%=233ML) in the tenth  year (A1B scenario) while, the lower value of WPDs is 

(-1.9%=-267ML) in the final year (A2 scenario). The WPDs in May continue to 

fluctuate and tend to increase with a high percentage of WPDs values falling between 

(-0.5% and 1%). The highest reduction is (-1%=-135.8ML) in the final year (A2 

scenario). In contrast, the maximum increase is (1.8%=237ML) in the nineteenth  year 

(B1 scenario). 

 

 

 
Figure 5-42: The projected WPDs under three scenarios for the period (2046-2065) 
based on the average monthly baseline period (1980-2010) (autumn season) 

Figure 5.43 illustrates the probable WPDs results for June, July and August (winter 

season). What stands out in this figure is the growth of the WPDs’ values is more 

Municipal Water Demand (March)- B1, A1B and A2 Scenarios (2046-2065)
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Municipal Water Demand (April)- B1, A1B and A2 Scenarios (2046-2065)
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Municipal Water Demand (May)- B1, A1B and A2 Scenarios (2046-2065)
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precise in July. The WPDs in June increase with the maximum value of WPDs 

reaching (1.65%=201ML) in the eighteenth  year (B1 scenario) and the range of WPDs 

is (0% to 1.5%). On another hand, the lowest WPDs value is (-1.34%=-162.6ML) in 

the twentieth  year (same scenario). The highest positive ratio of WPDs value occurs 

in July, and most of these values are located between (0.25% and 1.5%). The positive 

peak value of WPDs is (2.7%=338ML) in the seventeenth  year (A2 scenario). 

However, the best status is (-1.2%=-148.4ML) in the final year (B1 scenario). The 

WPDs in August are similar to those of July, but it is different from the WPDs in July 

in a number of respects. The majority of WPDs values are distributed between (0% 

and 1.5%), the worst value of WPDs is (2.6%=329.5ML) in the seventeenth  year 

(A1B scenario). In contrast, the best value of WPDs is (-0.68%=-86.5ML) in the 

fifteenth  year (B1 scenario). 
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Figure 5-43: The projected WPDs under three scenarios for the period (2046-2065) 
based on the average monthly baseline period (1980-2010) (winter season) 

The results of WPDs for the spring season (the months of September, October and 

November ) are set out in Figure 5.44.  It has been noted that there are three patterns 

regarding WPDs (increase, oscillate and decrease the values of WPDs) in this season. 

These patterns are consistent with the fluctuation of climatic factors from winter to 

summer season. 
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Municipal Water Demand (July)- B1, A1B and A2 Scenarios (2046-2065)
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Municipal Water Demand (August)- B1, A1B and A2 Scenarios (2046-2065)
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Figure 5-44: The projected WPDs under three scenarios for the period (2046-2065) 
based on the average monthly baseline period (1980-2010) (spring season) 

The WPDs results in September are similar to those proposed in the winter season, it 

increases generally, and the range of most WPDs values is (0.25% to 1.5%). The 

maximum value of WPDs is (2.41%=306.2ML) in the third  year (A1B scenario) 

whereas, the minimum value of WPDs is (-1.62%=-206ML) in the sixth  year (B1 

scenario). The WPDs fluctuate in October, it has a positive peak in the final year equal 

to (2.4%=342.6ML) (A2 scenario) and negative peak in the sixth  year is (-2%=-

282.5ML) (A1B scenario). In addition, the majority of WPDs results fall into a wide 

range equal to (-1.5% to 1.5%). The WPDs results in November follow the pattern of 

 Municipal water demand (September)- B1, A1B and A2 Scenarios (2046-2065)
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Municipal Water Demand (October)- B1, A1B and A2 Scenarios (2046-2065)
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Municipal Water Demand (November)- B1, A1B and A2 Scenarios (2046-2065)
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the summer season. It decreases in general with a peak value equal to (-2.3%=-357ML) 

in the ninth  year (A2 scenario) while, the positive peak is (1.6%=243ML) in the  

twentieth year (same scenario). 

Generally for this period, WPDs decrease from November to March and the best range 

of reduction is (-0.25% to -1.75%) in January. However, it increases from June to 

September and the worst range of WPDs results are distributed between (0.25% and 

1.5%) in July and WPDs fluctuate in April, May and October. Accordingly, the second  

period differs from the first  period in the range of reduction in January. In addition, 

the pattern of the month of April changes from decreasing to fluctuating style. The 

future water demand is affected by the variability of the stochastic signals for the 

climate factors from season to another. 

5.4.3. Third Period 2080-2099 

Figures 5.45, 5.46, 5.47 and 5.48 show the probable monthly WPDs results for the 

third  period (2080-2099) under IPCC scenarios (B1, A1B and A2) and baseline period 

(1980-2010).  

Figure 5.45 displays the WPDs for the summer season (December, January and 

February). Looking at the figure, it is apparent that the WPDs’ values decrease in 

general and the A2 scenario presents a significant reduction more than the other two 

scenarios. In addition, the continuous extreme decrease in WPDs results is probable 

to occur between the twelfth and seventeenth years  for the months of January and 

February. In December, the WPDs results tend to decline with a different ratio based 

on IPCC scenarios, and it is 30%, 50% and 75% for B1, A1B and A2 scenarios 

respectively. The highest WPDs value is (1.91%=330.5ML) in the second  year (B1 

scenario) while, the minimum value is (-2.4%=-416ML) in the nineteenth  year (A2 
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scenario). In addition, most WPDs are distributed between (-1% and 1%). The 

behaviour of WPDs in January tends to decrease except (25%) of B1 scenario values. 

The boundary of most decline values is (-0.25% to -1.75%), and the best value is (-

2.5%=-468ML) in the nineteenth year  (A2 scenario). In contrast, the extreme positive 

value of WPDs is (2.23%=419ML) in the second  year (B1 scenario). 

 

 

 
Figure 5-45: The projected WPDs under three scenarios for the period (2080-2099) 
based on the average monthly baseline period (1980-2010) (summer season) 

The WPDs for January and February are shared in a number of key features. However, 

in February, WPDs tend to see more of a reduction than in January because of the 

impact of the climate factors’ behaviour. The majority of WPDs are distributed 
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Municipal Water Demand (January)- B1, A1B and A2 Scenarios (2080-2099)
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Municipal Water Demand (February)- B1, A1B and A2 Scenarios (2080-2099)
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between (-0.25% and 2%) but the maximum reduction falls in the fifteenth  year which 

is (-3.26%=-586ML) under the A2 scenario. In contrast, the worst case of the WPDs 

falls in the eighth  year that is (1.46%=262ML) and under the B1 scenario. 

The projected WPDs results for the months of March, April and May (autumn season) 

can be seen in Figure 5.46. One interesting finding is WPDs decline in all months 

except about (30%) of the B1 scenario results in March and April. Another significant 

finding is that the continuous extreme reduction in WPDs results is likely to happen 

between the eleventh and sixteenth years for March and April. The maximum WPDs 

values in March occur in the first  year under the B1 scenario about (1.87%=326.1ML) 

while, the lowest WPDs value is (-3.14%=-548ML) in the fifteenth  year (A2 scenario) 

and the range of most WPDs’ value is (-0.5% to -2.75%). The values of WPDs in April 

are similar to those values in March. However, it is less reduction, and the most WPDs 

values are distributed between (-0.5% and -2.5%). It has the best value in the ninth  

year under the A1B scenario about (-2.77%=-390.4ML). On the other hand, the worst 

WPDs value is (1.39%=195.3ML) in the fourth  year (B1 scenario). The WPDs results 

in May present less reduction than WPDs values in both months March and April and 

most WPDs values in May fall between (-0.25% and -1.5%). The maximum decrease 

in WPDs value is (-2.82%=-369.7ML) in the eighth  year (B1 scenario), and the 

highest increase in WPDs value is (1.2%=157.7ML) in the nineteenth  year (same 

scenario). 
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Figure 5-46: The projected WPDs under three scenarios for the period (2080-2099) 
based on the average monthly baseline period (1980-2010) (autumn season) 

Figure 5.47 provides the expected results of WPDs in the winter season (the months 

of June, July and August). As can be seen from the figure the WPDs fluctuate in June 

and increase in July and August, and the highest continuous demand is from the twelfth 

to the sixteenth year in August.  The WPDs results in June show various styles based 

on each IPCC scenario. The WPDs results of the B1 scenario decrease with (70%) but 

it rises for an A2 scenario about (80%), and it fluctuates for the A1B scenario (i.e. it 

increases about (50%)). The highest WPDs result is (2.04%=248.1ML) in the 

nineteenth  year (A2 scenario) and lowest WPDs value is (-2.25%=-273.9ML) in the 
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Municipal Water Demand (April)- B1, A1B and A2 Scenarios (2080-2099)
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Municipal Water Demand (May)- B1, A1B and A2 Scenarios (2080-2099)
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eighth  year (B1 scenario). The WPDs in July rise except (35%) of B1 scenario results, 

the range of most WPDs values fall between (0% and1.5%) but the maximum value is 

(2.33%=290ML) in the fourteenth  year (A2 scenario) while the minimum value is (-

1.35%=-168.3ML) in the fourth  year (B1 scenario). The WPDs results in August are 

similar to those in July. However, the WPDs values in August tend to increase more 

than the WPDs value in July. The WPDs results are distributed between (0.25% and 

2.25%), but the maximum value of WPDs is (2.87%=363ML) in the fourteeenth  year 

(A2 scenario) whereas, the minimum value is (-1.2%=-151ML) in the fourth  year (B1 

scenario). 

 

 

 

Figure 5-47: The projected WPDs under three scenarios for the period (2080-2099) 
based on the average monthly baseline period (1980-2010) (winter season) 
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Municipal Water Demand (July)- B1, A1B and A2 Scenarios (2080-2099)
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Municipal Water Demand (August)- B1, A1B and A2 Scenarios (2080-2099)
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The WPDs results of the spring season (September, October and November) are set 

out in Figure 5.48. In this figure, there is a clear trend of increases in WPDs results for 

September and October that are similar to the winter season, and WPDs fluctuate for 

November, which is a result of changing the impact of climate factors from one season 

to another. The pattern of WPDs values in September is similar to those WPDs values 

in August with a maximum positive peak in the fifteenth  year under the B1 scenario 

equal to (2.93%=372ML), but the most WPDs values fall between (0.25% and 2%). 

On the other hand, the negative peak value of WPDs is (-1.27%=-161ML) in the fourth  

year (same scenario).  The WPDs in October still have the same style of rising with 

the majority of its values distributed between (0.25% and 1.75%), but the worst WPDs 

value is (2.8%=394ML) in the fifteenth  year under the B1 scenario. In contrast, the 

best WPDS value is (-1.65%=-233.6ML) in the first  year (same scenario). The WPDs 

values have an oscillating mode, which results from the fluctuation of the climate 

variables from season to season. The highest reduction of WPDs value is (-2.4%=-

416ML) in the nineteenth year (A2 scenario). However, the maximum WPDs value is 

(1.91%=330.5ML) in the second  year under the B1 scenario, but the boundary on 

most WPDs results is (-1% to 1%).   
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Figure 5-48: The projected WPDs under three scenarios for the period (2080-2099) 
based on the average monthly baseline period (1980-2010) (spring season) 

Overall for the 2080-2099 period, the WPDs results decline from January to May, and 

the highest limit of decreasing is (-0.5% to -2.75%) in March. In contrast, it rises from 

July to October, and the maximum range of increasing is (0.25% to 2.25%) in August, 

and WPDs fluctuate in November. The WPDs values in June and December  have 

different patterns based on IPCC scenarios. The WPDs results in June decrease, vary 

and increase for B1, A1B and A2 scenarios respectively. However, it rises, drops for 

B1 and A2, and stays the same (fluctuates) for an A1B scenario in December. The 

future water demand is driven by the high variability of the stochastic signals for the 
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Municipal Water Demand (October)-B1, A1B and A2 Scenarios (2080-2099)
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Municipal Water Demand (November)-B1, A1B and A2 Scenarios (2080-2099)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Wa
ter

 de
ma

nd
 pe

rce
nta

ge

B1 A1B A2



5.4 Expected Future Municipal Water Demand 177 
 

 
 

climate factors from season to another particularly in this period. Therefore, the WPDs 

results in the third  period differ from those results in the first  and second  periods in 

patterns and magnitudes that result from the style of expecting climate factors in the 

third  period especially for the A2 scenario. 

The means of seasonal municipal water percentage demands with confidence interval 

level, 0.95% for B1, A1B and A2 scenarios were calculated to increase the knowledge 

about how the climate change affects the water demand depending on a seasonal basis, 

in addition, to examine and select the best and worst IPCC scenarios for each season 

over three future periods. 

For the first period, the expected mean of the water percentage demands (MWPDs) 

are shown in Figure 5.49.  

 

Figure 5-49: The average monthly mean for the seasonal municipal water demands 
percentage under B1, A1B and A2 scenarios for the 1st periods 

It can be seen that the MWPDs value is -0.65, -0.71 and -0.71% for B1, A1B and A2 

scenarios respectively. The water demand is likely to decrease in the summer season 
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under all IPCC scenarios and (A1B and A2) are the best scenarios. The MWPDs in 

autumn is equal to -0.25, -0.19 and -0.17% for B1, A1B and A2 scenarios. The water 

demands still decline under all scenarios, but the B1 scenario is the best one. The 

magnitudes of MWPDs in winter is 0.75, 0.73 and 0.74% for B1, A1B and A2 

scenarios. The water demands are expected to rise for all situations and the worst case 

is the B1 scenario. For the spring season, the MWPDs drop to -0.076, -0.099 and -

0.075% for B1, A1B and A2 scenarios. Therefore, the A1B scenario is the best one 

based on the MWPDs values. In general, no dominant scenario offers the best or the 

worst case but we can choose A1B as the best and B1 as the worst scenario based on 

what the scenario is likely to present in each season. 

Figure 5.50 presents the seasonal MWPDs for the second  period under B1, A1B and 

A2 scenarios. The results of MWPDs, in general, show a difference in values and style 

compare with the first  period. The MWPDs results show a decrease in summer that is 

equal to -0.44, -0.66 and -0.71% for B1, A1B and A2 scenarios and A2 is the best 

case. The MWPDs value is 0.12, -0.19 and -0.2% for B1, A1B and A2 scenarios in 

autumn. Accordingly, the A2 is the best one, and B1 is the worst scenario. In winter, 

the MWPDs results increase for all situations and its value is 0.36, 0.56 and 0.71% for 

B1, A1B and A2 scenarios. Therefore, all IPCC scenarios are increased, but the A2 is 

the worst scenario. The MWPDs values are -0.24, 0.08 and 0.04% for B1, A1B and 

A2 scenarios in the spring season. The B1 scenario offers a reduction in the MWPDs 

whereas, both A1B and A2 scenarios present a slight increase in the MWPDs values. 

Accordingly, the A2 scenario shows a decrease in summer and autumn but it shows 

an increase in winter and spring. 
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Figure 5-50: The average monthly mean for the seasonal municipal water demands 
percentage under B1, A1B and A2 scenarios for the 2nd periods 

The seasonal MWPDs results for the third  period under different IPCC scenarios are 

displayed in Figure 5.51. The A2 scenario presents a lower reduction in MWPDs 

values (-0.93%) than B1 and A1B scenarios in summer. The style of data in autumn 

differs from the summer but still decreases, and the lowest case is -0.98% under the 

A1B scenario. The MWPDs values rise in winter, and worst is 0.92% under the A2 

scenario. In the spring season, the data still increase, and the highest is 0.72% under 

the A1B scenario. Overall, the A2 scenario still offers the same pattern in the second  

period (i.e. it drops in summer and autumn and increases in winter and spring). It can 

be noted that this period has the lowest and highest values of MWPDs in the autumn 

(A1B) and winter (A2) respectively. 
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Figure 5-51: The average monthly mean for the seasonal municipal water demands 
percentage under B1, A1B and A2 scenarios for the 3rd periods 

5.5. Discussion  

The RMSE for the LSA-ANN algorithm (after 40 iterations) is 0.0236, whereas GSA-

ANN does not improve the RMSE of 0.0241, and PSO-ANN algorithm only reaches 

its best RMSE of 0.0245 after 62 iterations. Therefore, the LSA-ANN algorithm 

outperforms the GSA-ANN and PSO-ANN algorithms, due to the fact that LSA-ANN 

achieves a smaller error (better performance) within a smaller number of iterations 

(making it a less complex model). 

The use of a novel combination of techniques, including SSA and hybrid LSA-ANN 

model has also proven to be a successful choice for this particular application. This 

technique has resulted in stronger correlation coefficients (R=0.98 for independent 

data set) and less error (MSE= 6.3911 e-04), for the long-term prediction of municipal 

water demands based only on climatic factors. Our findings compared with results of 

previous studies that were used traditional technique to preprocessing data and ANN 

model (e.g.  Sebri (2013) with RMSE= 1,741.12 and Behboudian et al. (2014) with 
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R=0.92). Another comparison was conducted with Mohammed and Ibrahim (2013) 

that used climate variables as model input and ANN model with R= 0.87. The 

comparison of the findings with those of the other studies confirms the present 

methodology to forecast municipal water demand under climate change for the long 

term. 

The model was used for different data in Columbia City, USA and it offers  significant 

results as shown in Appendices 4-A and 5-A. According to this data analysis and 

statistical criteria, it can be inferred that these results provide further support for the 

hypothesis that our novel combination techniques can be applied successfully in any 

continent and under different environments. In addition, the most striking result to 

emerge from the results is the confirmation of the association between climate change 

and municipal water demands over the long-term. 

Two statistical criteria (K-S, p-value) tests and graphics comparisons were performed 

to examine the equality of the distributions of daily climate factors calculated from 

measured and simulated data for the baseline period 1980-2010. Based on these 

results, the LARS-WG model reveals an adequate performance in simulating the 

future climate variables (Tmax, Rain and Radi). These results are comparing with the 

finding of other studies that used LARS-WG in different environments such as Chen 

et al. (2011) in Sudan, Behboudian et al. (2014) in Iran, Osman et al. (2017) in Iraq 

and Fenta Mekonnen and Disse (2018) in Ethiopia. The result of comparison broadly 

supports the work of other studies in this area downscaling climate factors by the 

LARS-WG model. 

The monthly average of probable future maximum temperature has the same pattern 

under B1, A1B and A2 scenarios for 2011-2030, 2046-2065 and 2080-2099 periods. 
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However, Tmax has variation in the magnitude of degrees Celsius from period to 

another depending on the scenarios' assumptions. Tmax is expected to increase as we 

move toward the future, and the A2 scenario offers the warmest scenario (e.g. Tmax 

(in July) = 14.5, 15 and 15.6°C for the B1, A1B and A2 scenarios respectively). 

The potential effects of climate change on the future solar radiation under B1, A1B 

and A2 scenarios are similar in the all periods, but there is a little difference among 

the three periods for any month in respect to all IPCC scenarios. Radi is expected to 

increase slightly over all the periods and reaches a peak solar radiation in January 

under the A2 scenario for the first period at 23.3MJ/m2. 

The monthly average data of future expected under B1, A1B and A2 scenarios for 

2011-2030, 2046-2065 and 2080-2099 periods are likely to decline in rainfall amount 

as a move toward the future (i.e.  the first period has rainfall more than the second  and 

third  periods) for all three scenarios. The A2 scenario projects to be a drier scenario 

(35 to 78) mm compared to the B1 and A1B scenarios. Moreover, February expects to 

be the driest month compared to other months of the year for all IPCC scenarios. 

The differences between the stochastic signals of the ensemble mean of Tmax for B1, 

A1B and A2 scenarios over all simulated periods and the stochastic signal of the 

baseline (1980-2010) present that Tmax rises, generally, in winter and spring and 

drops in summer and autumn. In addition, the third  period (2080-2099) is the hottest 

one and the A2 scenario presents the highest reduction in summer and a maximum 

increase in winter compared with the other scenarios. Solar radiation stochastic signals 

are similar to Tmax signals with slight variation from period to period and one scenario 

to another. The A2 scenario, in the third period, shows the lowest signal in summer 

and highest signal in winter compared with other periods and scenarios. Rainfall 
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stochastic signals have a non-uniform pattern for the three periods and under all IPCC 

scenarios. In all scenarios, the third period displays the highest decrease, which 

happens in spring. In contrast, it shows the highest increase that occurs in autumn for 

B1 and A1B scenarios whereas, it happens in summer for the A2 scenario. 

The WPDs results for all periods and under all scenarios are likely to drop in summer, 

and the highest limit of decrease happens in January for the first and second periods, 

while it occurs in March for the third period. In addition, it rises in winter, and the 

maximum range of increase happens in July for the first and second periods, whereas 

it occurs in August for the third period. For autumn, the WPDs values either drop or 

fluctuate and tend to fall. In contrast, the WPDs in spring either increase or oscillate 

and tend to rise. Both the first and second period have a number of similarities. 

However, the third period is different from the first and second periods in some 

respects, especially for the A2 scenario. In addition, it has the highest and lowest 

values of WPDs compared with the other periods. Some of our significant findings 

comparing with previous study (Behboudian et al. (2014)) can by briefly highlighted 

here, where the projection of water conception is over period 2011-2030. Moreover, 

in this study there are many issues include: 1) it considers 12 years to build the 

prediction model of water demand instead of 31 years as baseline period; 2) it employs 

maximum temperature with some socio-economic factors as model input, while we 

consider Tmax, Rain and Radi as a model input; 3) it uses one GCM to project the 

Tmax over 2011-2030, where as we uses 7 GCMs to reduce the uncertainty of 

assumptions. 

Based on the seasonal values of MWPDs under all scenarios and over the three 

periods, no dominant scenario offers the best or the worst case. For the first period, 
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the seasonal values of MWPDs drop in all seasons except winter, while in the second  

and third  periods, it decreases in summer and autumn and rises in winter and spring 

except for two values of the B1 scenario in the second  period (autumn and spring). In 

addition, the lowest and highest values of MWPDs are in the autumn (A1B) and winter 

(A2) for the third  period respectively. 

Climatological variability has a significant impact on the in economic terms, e.g., the 

Water Company in Melbourne City depends on water harvested from protected 

catchments as freshwater resources and the city faced a drought that has pushed the 

city water authorities to enforce water restrictions. Based on IPCC scenarios in this 

thesis, the Tmax and Radi are likely to increase and Rain to decrease that lead to 

adversely impact on the freshwater resources. Accordingly, additional restrictions on 

water consumption and raise the water price is expected. On another hand, municipal 

water demand expects to increase to around 3% based on baseline period 1980-2010. 

The significance of this percent is related to several issues such as availability of fresh 

water resource at that time, the population of the city in the future and capacity of the 

municipal water system to deliver the rapid increase of water demand due to rise the 

climate effects. Therefore, all these issues associated with economic terms to tackle 

the problem of increasing water demand and water scarcity at the same time. The 3% 

gives the stakeholders a scientific view about what is likely to occur in future that 

reduces the uncertainty result from the impact of climate change on the municipal 

water demand and find the alternatives base on IPCC scenarios. Therefore, it should 

be support and activated the climate change agreements such as (Paris agreement) to 

mitigate the impact of climate change and support the sustainability at the strategic 

level. 
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5.6. Summary  

This chapter highlights the process of assessing the long-term impact of climate 

change on the municipal water demands under various IPCC scenarios. We consider 

three climate factors over the baseline period 1980-2010 to determine to what extent 

that climate change affects the municipal water demands.  

The findings’ results are classified into three sets: the first results refer to the 

development of a water demand model, which uses a novel combination technique 

Singular Spectrum Analysis (SSA) and hybrid Artificial Neural Network (ANN) to 

predict the monthly municipal water demands regarding climate change. Then results 

of the historical daily climate variables data over the period 1980-2010 (31 years) with 

seven GCMs and three IPCC scenarios are used to support the LARS-WG model to 

simulate future climate factors under B1, A1B and A2 scenarios over the 2011-2030, 

2046-2065 and 2080-2099 periods. Finally, the final sets of results represent the 

forecasting of municipal water demands under the three IPCC scenarios over the three 

periods. These results came from substituting the second set of results for future 

climate factors with the first set of results, which represent the water demand model. 
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Chapter 6: Conclusions and Future Works 

 

This chapter summarises the key findings concerning the research goals and describes 

the conclusions based on the results of this study. In addition, it illustrates the 

contributions outcome, which come from the combination model of singular spectrum 

analysis (SSA) and hybrid artificial neural network to forecast municipal water 

demands considering climate change over the baseline period 1980-2010. Finally, this 

chapter explains different aspects as recommendations to extend the research work of 

this thesis in future. 

6.1. Conclusions 

The need for estimating water demands is an essential component for planning and 

managing the water resources, because this can help to identify suitable alternative 

resources to guarantee a balance between water consumption and supply in the future. 

A high degree of seasonality and trend variability in municipal water demands not 

only intensifies this need but also creates a demand for predictive methods that are 

able to accurately deal with these variations. Returning to the findings, which were 

posed in this study, it is now possible to state that: 

Municipal Water Demand Model Development 

• Data preprocessing techniques have a significant role to play in the model 

inputs, specifically in the SSA technique to uncover the stochastic signal and 

remove the effect of socio-economic factors and noise of long-term municipal 

water consumption time series. In addition, another key strength of data 
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preprocessing is that the selection of best model inputs components based on 

statistical criteria is better than using a trial and error method. 

• Maximum temperature (Tmax), solar radiation (Radi) and rainfall (Rain) are 

reliable and robust predictors to forecast long-term municipal water demands.  

• The LSA-ANN algorithm performance is more accurate than the GSA-ANN 

and PSO-ANN algorithms in terms of water demands estimation accuracy. 

• The combination SSA and LSA-ANN model was a reliable, efficient and 

successful choice for this particular application (water demand forecasting). 

This technique has resulted in stronger correlation coefficients and less error 

for simulating municipal water demands based on climatic factors only and for 

a long-term time series in different two continents. 

• The most striking conclusion to emerge from the results is supporting the 

conceptual premise that municipal water demands are driven by climatic 

factors in the long-time period, thus decreasing the uncertainties around the 

impact of climate change.   

Climate factors model 

• The Long Ashton Research Station Weather Generator (LARS-WG) model 

provides an excellent performance for generating a maximum temperature, 

solar radiation and rainfall, based on statistical tests for the baseline period 

1980-2010. Therefore, it is a valid model to simulate the future climate 

variables under different emission scenarios. 

• The maximum temperature and solar radiation are expected to increase as we 

move toward the future, in the same context, the rainfall is likely to decline in 

amount as we a move toward the future that is impacted by Co2 emissions. In 
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addition, the third period and A2 scenario are the worst situations compared 

with other periods and scenarios. 

• We calculate the difference between the stochastic signals of (Tmax, Radi and 

Rain) for the expected ensemble mean and the baseline period (1980-2010). 

Then, the results show that the values of Tmax and Radi are rising in general 

in winter and spring seasons, while they drop in summer and autumn seasons. 

In the same context, the Rain values have a non-uniform style for all periods 

and under all emission scenarios. In general, the A2 scenario is the hottest and 

driest scenario especially in the 3rd period. 

Future water demands 

• The water percentage demands (WPDs) are expected to increase in winter and 

decrease in summer for all periods and under all emission scenarios. Besides, 

WPDs rises or fluctuates upwards in spring while it drops or fluctuates 

downwards in autumn. The A2 scenario shows the highest positive and 

negative values compared with A1B and B1 scenarios, in particular, in the third  

period. In addition, this study has identified that the WPDs values fall between 

-3.5% and 3% based on all periods and emission scenarios. 

• There is no dominant scenario which shows the best or the worst case of water 

demands based on the mean of seasonal water percentage demands values 

(MWPDs). The values of MWPDs, in general increase in winter and drop in 

summer while fluctuating in spring and autumn seasons for all periods and 

scenarios. The positive peak value happens in winter and in the third  period 

of  the A2 scenario. In contrast, the lowest MWPDs value occurs in autumn 

and in the third  period of the A1B scenario. 
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6.2. Research Novelty and Contribution to Knowledge 

Recently, the municipal water prediction under climate change has been considered as 

one of the promising and significant techniques in the municipal water industry. The 

development of this methodology introduces a new approach in water management 

resulting in a sustainable development. This study contributes as follows: 

• Introduce novel techniques to forecast municipal water demands for the long 

term to perform accurate, economical and applicable modelling. 

• Forecasting the municipal water demands under different emission scenarios 

(B1, A1B and A2) over three periods 2011-2030, 2046-2065 and 2080-2099 

to investigate the impact of climate change on the municipal water demands 

for both short and long-term periods. 

• Estimating urban water demands improves the water industry; that is, the short-

term forecasting enhances the quality of municipal water by improving the 

scheduling operations of pumping water and decreases the time of retention in 

storage tanks; while, the long-term forecast is beneficial for planning the water 

supply system expansion and formulating the policy of water management.  

• Provide policy-makers with a clear sight about the impact of climate change 

on municipal water demands for both short and long-term periods. 

6.3. Thesis Recommendations 

•  Further works can be conducted on this methodology by testing the impact of 

applying more climate variables depending on the availability of data on water 

consumption for different locations around the world.   
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• Implementing the statistical and dynamical downscale approaches to get the 

future climatic variables for comparing the outcomes and eliminating the 

uncertainty that results from different assumptions.  

• Also, the findings of this study have clarified the relevance of climate change 

on water consumption, which is significant to both practitioners and policy-

makers. However, more research studies are required to develop a deeper 

understanding of the relationships between climate change and municipal 

water demands over the long term and at different locations. 
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Appendices 

Appendix4-A The data preprocessing results for Columbia 

City.  

  

  

  
Figure 4-A.1: Original signal and the first four components obtained by SSA 
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Figure 4-A.2: Eigenvalues of water consumption and climate factors time 

series 
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Figure 4-A.3: The monthly box plot of the stochastic signal for water consumption 

and all climate factors 

 
Figure  4-A.4: Correlations between water consumption and climate factors 
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Appendix 4-B 

The average monthly data for water consumption and all 
climate factors after normalisation and cleaning (Melbourne 
and Columbia Cities). 

 

 

 

 

 
Figure 4-B.1: The average monthly data for climate factors after normalisation 
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Figure 4-B.2: The average monthly data for water consumption after normalisation 

 

 

 
Figure 4-B.3: The average monthly data for rainfall after normalisation and 

cleaning data 
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Appendix 4-C 

The graphs of eigenvalues spectra for the water consumption 
and climate factors time series (Melbourne City). 

  

  

  

  

  

  
Figure 4-B.1: Eigenvalues of water consumption and climate factors 
time series 
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Appendix 5-A 

The results for developing municipal water demands model 
for Columbia City. 

  

 
Figure 5-A.1: Fitness function for various populations using the computational 

intelligence algorithms 

 

 
Figure 5-A.2: Comparison of the performance of the best swarm size of LSA, GSA 

and PSA algorithms 
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Table 5-A.1: ANN-designed parameters 

Parameter Value Type 

Number of inputs 3 
As presented in Appendix  

4-A 

Number of outputs 1 
Our target, which is water 

demand 

Number of hidden layers 2 
As used in Zubaidi et al. 

(2018)  

Number of neurons in hidden layer N1 5 Estimated by LSA 

Number of neurons in hidden layer N2 5 Estimated by LSA 

Learning rate coefficient 0.4500 Estimated by LSA 

 

 

 
Figure 5-A.3: LSA-ANN algorithm performance for the validation data 
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Figure 5-A.4: Residual scatterplots for validation data stage 

 
Figure 5-A.5: Observed and predicted stochastic signal of municipal water 

demands for the validation data 

 
Figure 5-A.6 : Bland–Altman plot of the relation between observed and predicted 

stochastic signal of municipal water 
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Appendix 5-B 

The results of yearly data for maximum temperature 

(Tmax.), rainfall (Rain.) and solar radiation (Radi) under 

A1B, B1 and A2 scenarios over three future for Melbourne 

City 
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Figure 5-B.1: Projected yearly Tmax, Rain and Radi data under A1B scenario  
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Figure 5-B.2: Projected yearly Tmax, Rain and Radi data under B1 scenario  
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Figure 5-B.3: Projected yearly Tmax, Rain and Radi data under A2 scenario  
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Appendix 5-C 

The results of monthly average mean with confidence 

interval level, 0.95% for B1 and A2 scenarios, for all climate 

factors over the three periods for Melbourne City. 

   

   

   
Figure 5-C.1 : The average monthly mean for three simulated climate factors of B1 

scenario over the future periods (2011-2030, 2046-265 and 2080-2099) 
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Figure 5-C.1: The average monthly mean for three simulated climate factors of A2 

scenario over the future periods (2011-2030, 2046-265 and 2080-2099) 
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Appendix 5-D 

The expected climate factors under B1, A1B and A2 
scenarios for three periods (Melbourne City). 
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Figure 5-D.1:The maximum temperature projection under B1, A1B and A2 
scenarios for the period (2011-2030) 
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Figure 5-D.2:The rainfall projection under B1, A1B and A2 scenarios for the period 
(2011-2030) 
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Figure 5-D.3:The solar radiation projection under B1, A1B and A2 scenarios for the 
period (2011-2030) 
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Figure 5-D.4:The maximum temperature projection under B1, A1B and A2 
scenarios for the future period (2046-2065) 
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Maximum Temperature (May) - B1, A1B and A2 Scenarios (2046-2065)
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Maximum Temperature (June) - B1, A1B and A2 Scenarios (2046-2065)
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Maximum Temperature (August) - B1, A1B and A2 Scenarios (2046-2065)
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Maximum Temperature (September) - B1, A1B and A2 Scenarios (2046-2065)
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Maximum Temperature (October) - B1, A1B and A2 Scenarios (2046-2065)
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Figure 5-D.5:The rainfall projection under B1, A1B and A2 scenarios for the future 
period (2046-2065) 
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Figure 5-D.6:The solar radiation projection under B1, A1B and A2 scenarios for the 
future period (2046-2065) 
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Figure 5-D.7:The maximum temperature projection under B1, A1B and A2 
scenarios for the future period (2080-2099) 
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Figure 5-D.8:The rainfall projection under B1, A1B and A2 scenarios for the future 
period (2080-2099) 
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Figure 5-D.9:The solar radiation projection under B1, A1B and A2 scenarios for the 
future period (2080-2099) 
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Appendix 5-E 

The differences between the expected stochastic signals of the 
ensemble means and the baseline (1980-2010) for all climate 
factors under B1, A1B and A2 scenarios for all periods 
(Melbourne City). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendices 225 
 

 
 

  

  

  

  

  

  
Figure 5-E.1: Stochastic signals of the maximum temperature projection under B1, 
A1B and A2 scenarios for the period (2011-2030) 
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Figure 5-E.2: Stochastic signals of the rainfall projection under B1, A1B and A2 
scenarios for the period (2011-2030) 

Stochastic Signal of Rainfall (January, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (February, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (March, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (April, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (May, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (June, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (July, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (August, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (September, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (October, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (November, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2

Stochastic Signal of Rainfall (December, 2011-2030)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Di
ffe

re
nc

e 
in

 ra
in

fa
ll 

(m
m

)

B1 A1B A2



Appendices 227 
 

 
 

  

  

  

  

  

  
Figure 5-E.3: Stochastic signals of the solar radiation projection under B1, A1B and 
A2 scenarios for the period (2011-2030) 
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Figure 5-E.4: Stochastic signals of the maximum temperature projection under B1, 
A1B and A2 scenarios for the future period (2046-2065) 
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Figure 5-E.5: Stochastic signals of the rainfall projection under B1, A1B and A2 
scenarios for the future period (2046-2065) 
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Figure 5-E.6: Stochastic signals of the solar radiation projection under B1, A1B and 
A2 scenarios for the future period (2046-2065) 

Stochastic Signal of Solar Radiation(January, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(February, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(March, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(April, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(May, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(June, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(July, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(August, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(September, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(October, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(November, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(December, 2046-2065)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2



Appendices 231 
 

 
 

  

  

  

  

  

  
Figure 5-E.8: Stochastic signals of the maximum temperature projection under B1, 
A1B and A2 scenarios for the future period (2080-2099) 
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Stochastic Signal of Maximum Temperature (May, 2080-2099)
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Stochastic Signal of Maximum Temperature (June, 2080-2099)
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Stochastic Signal of Maximum Temperature (August, 2080-2099)
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Stochastic Signal of Maximum Temperature (September, 2080-2099)
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Stochastic Signal of Maximum Temperature (October, 2080-2099)
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Stochastic Signal of Maximum Temperature (November, 2080-2099)
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Stochastic Signal of Maximum Temperature (December, 2080-2099)
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Figure 5-E.8: Stochastic signals of the rainfall projection under B1, A1B and A2 
scenarios for the future period (2080-2099) 
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Figure 5-E.9: Stochastic signals of the solar radiation projection under B1, A1B and 
A2 scenarios for the future period (2080-2099) 
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Stochastic Signal of Solar Radiation(April, 2080-2099)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(May, 2080-2099)
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Stochastic Signal of Solar Radiation(June, 2080-2099)
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Stochastic Signal of Solar Radiation(July, 2080-2099)
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Stochastic Signal of Solar Radiation(August, 2080-2099)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Monthly data

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Di
ffe

re
nc

e 
in

 s
ol

ar
 ra

di
at

io
n 

(M
J/

m
2)

B1 A1B A2

Stochastic Signal of Solar Radiation(September, 2080-2099)
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Stochastic Signal of Solar Radiation(October, 2080-2099)
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Stochastic Signal of Solar Radiation(November, 2080-2099)
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Stochastic Signal of Solar Radiation(December, 2080-2099)
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