
1

An Improved Memetic Algorithm to Enhance the
Sustainability and Reliability of Transport in

Container Terminals
Shayan Kavakeb and Trung Thanh Nguyen

Abstract—In this paper, we propose an improved memetic
algorithm by combining an evolutionary algorithm (EA) with
Monte Carlo simulation (MCS) to identify the robust number of
vehicles in environments with shuttle transport tasks (ESTTs).
ESTTs are very common settings where vehicles shuttle between
pickup and delivery points to transport goods. Examples of
ESTTs are military bases, warehouses, manufacturing floors, and
container terminals. In this study, MCS works as a local search to
take into account risks of disruptions and guide the EA towards
more reliable solutions. The disruptions arise from changes in the
travel time of vehicles which can be caused by any breakdown,
collision, accident and deadlock. Identifying the robust number
of vehicles can improve sustainability and reliability of ESTTs
against possible changes.

This paper improves our previous attempts in which we studied
a combination of an EA and MCS. Results of those studies
showed the process of sampling in MCS is very time consuming.
This prevents the EA from having an accurate estimation of the
robust solutions within reasonable time. This paper improves the
performance of the EA to make it possible to reach high quality
solutions in reasonable time to make it practical for the real-
world applications. Firstly, it proposes a new sampling technique
to generate samples that reflect the worst-case scenarios better.
This helps the EA to find better robust solutions using the
fewer number of samples. Secondly, it proposes a new adaptive
sampling technique to adjust the number of samples during
evolution. To evaluate the algorithm we tested it in one of the most
common ESTTs: real-world container terminals. Experimental
results show that by such improvements the performance of the
EA is improved significantly, making the proposed algorithm
perfectly usable for its real-world case studies.

I. INTRODUCTION

The purpose of this paper is to identify the robust num-
ber of vehicles to enhance sustainability and reliability in
environments with shuttle transport tasks (ESTTs). ESTTs
are very common settings where vehicles shuttle between
pickup and delivery points to transport goods. Examples of
ESTTs are military bases, warehouses, manufacturing floors,
and container terminals.

This paper extends our previous attempts [1, 2] in terms of
the performance of the evolutionary algorithm (EA) and qual-
ity of solutions. In [1], we proposed a memetic algorithm by
combining an EA with Monte Carlo simulation (MCS), named
Fleet Sizing Evolutionary Algorithm (FSEA), to identify the

Corresponding author: Trung Thanh Nguyen, email address:
T.T.Nguyen@ljmu.ac.uk, Tel: +44 151 231 2006

S. Kavakeb and T.T. Nguyen are with The School of Engineering,
Technology and Maritime Operation, Liverpool John Moores Univer-
sity, L3 3AF, United Kingdom; emails: S.Kavakeb@2011.ljmu.ac.uk and
T.T.Nguyen@ljmu.ac.uk.

robust number of vehicles in environments where vehicles
shuttle between pickup and delivery points to transport goods.
Examples of such environments are manufacturing factories,
warehouses and container terminals. In [2], we proposed an
extension on FSEA to improve its performance in terms of
computational time and finding robust solutions. In this paper,
to evaluate the performance of the algorithm, we choose
container terminals, one of the most common and important
ESTTs, as case studies. Note that although the experiments are
done in container terminal, the application of the algorithm can
be applied to any other ESTT with the same characteristics.
The next paragraph will highlight the significance of container
terminals and the importance of improving sustainability in
container terminals using EAs.

In recent decades, by the increase of containerisation, con-
tainer terminals has been dealing with a considerable high
number of containers. For example, a small-medium size
container terminal deals averagely with one million twenty-
foot equivalent units (TEUs) per year [3]. Therefore, to pro-
vide competitive services by container terminals, sustainability
has become a key factor. In other words, the robustness of
container terminals against unexpected changes has become
more important to guarantee acceptable services by container
terminals. One of the key factors to maintain the sustainability
of container terminals is the optimal equipment settings. This
is because equipping container terminals with the robust
number of equipment can prevent possible risks of changes
due to uncertainties. One of the most important equipment
in container terminals is transfer vehicles. These vehicles
transport containers between quay and stack areas, hence the
total throughput of container terminals is highly dependent
on the performance of transfer vehicles. To identify the robust
number of vehicles, the possible source of uncertainties should
be identified and taken into account. In [1, 2], uncertainties in
the travel time of vehicles were considered to be the main
source of uncertainties which have a significant impact on the
optimal number of vehicles. The travel time of vehicles in
container terminals is under the risk of being unexpectedly
changed due to many disruption factors such as breakdowns,
deadlocks and collisions.

In [1, 2], to encapsulate uncertainties in solutions, FSEA
used MCS to evaluate the robustness of solutions during
evolution. To do so, whenever FSEA wants to evaluate the
fitness of one solution it replicates n samples of that particular
solution by incorporating uncertainties in the travel time of ve-
hicles. The fitness of that particular solution is then calculated



2

based on its robustness on those samples. The robustness of
a solution is context-dependent. In many real-world situations
practitioners may choose to have a robust worst-case scenario
to absolutely avoid risks. In other situations, they may want
to have a robust average value or a robust mode value. If a
worst-case scenario is desired, the worst performance of the
solution on the samples is considered the fitness of the solution
so that the EA can evolve to find a solution with the better
worst-case scenario; otherwise, based on certain performance
measures [2] the results of evaluation on n samples should
produce the fitness of the solution.

The worst-case scenario is the focus of this paper. Normally,
the higher the number of samples, the more accurate the
evaluation of solutions. As a result, the number of samples
should be considerably high to make sure that the worst-
cases are included in the samples. Results of [1, 2] show
that the process of sampling in FSEA, however, is very time
consuming and having a large number of samples can worsen
the performance of FSEA in terms of computational time
significantly. The challenge is how to improve the performance
of FSEA to have high quality solutions in shorter time.

This paper attempts to resolve the above challenge. Firstly, it
proposes a new sampling technique to generate samples that
reflect the worst-case scenarios better. Using this technique,
the EA can achieve better solutions with the fewer number
of samples. Secondly, it proposes an adaptive approach to
increase the number of samples depending on the convergence
of FSEA. This can help FSEA to spend less time on solutions
in the earlier generations where it has not converged yet and
the quality of solutions is poor.

II. RELATED LITERATURE

The optimal fleet size has a significant impact on the
productivity of ports [4]. Having too few vehicles is not
efficient and would increase the waiting time of cranes. In
contrast, having too many vehicles is expensive and may
increase collisions and deadlocks. However, in spite of such
an important role of the optimal fleet size, the fleet sizing
problem (FSP) has not received enough attention from the
research community. Below is a brief review of research that
studied the FSP in ports.

Vis et al [5] modelled the FSP as a minimum flow problem.
They proposed a polynomial algorithm to solve the minimum
flow problem. This research, however, has a limitation that it
cannot be generalized for the cases where there is a special
area (called buffer) for cranes and vehicles to temporarily store
containers. Research in [5] was followed in [4] to be able to
consider buffers of containers. Vis et al [4] modelled the FSP
as an integer programming (IP) problem. The authors used the
commercial solver CPLEX to solve the integer programming.
Due to the limitation of the IP solvers, this model can be used
only for small-case problems, for example the size of buffer
and the number of containers should be considered very small.
Koo et al [6] proposed a two-phase algorithm to identify the
optimum number of vehicles in Busan port. In the proposed
algorithm, the fleet size is first estimated by a heuristic. A
tabu search algorithm is then applied to the given fleet size

to identify the optimal routes for the vehicles. If such routes
can be found the problem is solved; otherwise it increases the
fleet size until it finds feasible routes.

The FSP in ports, similar to other optimisation problems
[7, 8, 9, 10, 11], is subject to uncertainties in environments
[1, 2]. Examples of such uncertainties are changes in the
travel time of vehicles and process time of cranes. Results of
[1] confirmed that the impact of uncertainties on the optimal
number of vehicles is significant. In the literature there exists
papers that considered uncertainties in the environment to
improve sustainability of systems. In [12, 13, 14, 15], genetic
algorithms and Monte Carol simulation were combined to take
into account the reliability of system components. In these
studies Monte Carlo simulation was used to evaluate the fitness
of chromosomes by estimating the reliability of the system
and maintenance status of system components. Sörensen and
Sevaux [16] proposed a practical approach to combine Monte
Carlo simulation with meta-heuristics for flexible vehicle
routing problem. It used Monte Carlo simulation to estimate
the robustness or flexibility of solutions. Sevaux and Sörensen
[17] modified the genetic algorithm to compute robust machine
schedules given uncertainties in the system. For this genetic
algorithm new robustness measures were defined to evaluate
solutions based on the robustness and distance to the baseline
solutions.

As one can see, none of the above papers considered
uncertainties in container terminals which leaves an important
gap behind. This paper tries to close this gap by improving
the performance of FSEA to identify the robust number of
vehicles in container terminals under uncertainties in the travel
time of vehicles. Within this study, we focus on the case of
the intelligent autonomous vehicles (IAVs), a new generation
of automatic vehicles, but the results can be applied to other
similar type of vehicles as well.

III. AN EA TO IDENTIFY THE ROBUST NUMBER OF IAVS

This section explains the EA, proposed in [1, 2], to identify
the robust number of IAVs. The figures and pseudo-codes in
this section are adapted from [1, 2].

A. IAVs in Ports

In ports, vehicles transport containers between quay side
and stacking areas. A quay side area is a place where vessels
are berthed and a stacking area is a place where containers
are stacked for temporary periods. Stacking areas consist of a
number of blocks to stack containers. Each block is served by
a number of stacking cranes (SCs) to stack/unstack containers.
Once a vessel is berthed a number of quay cranes (QCs)
would be assigned to that vessel. QCs discharge containers
from the vessel, vehicles then would come to collect containers
and transport them to the stacking area. If vehicles can pick
up containers by themselves QCs can place containers in
“buffer” from which vehicles can collect containers; otherwise
QCs must wait until vehicles arrive. The IAV is one of the
few vehicles that is able to pick up/drop off containers by
themselves thanks to a special table-shape structure named
the "cassette". Therefore, they can be used in combination



3

with buffers in ports so that cranes and IAVs do not have to
wait for each other. This way, the waiting time of both cranes
and IAVs can be minimised. IAVs then transport containers to
the stacking area and drop off containers in a buffer next to
a SC. The SC then can come and collect containers from the
buffer. Once all the containers are discharged from the vessel
the loading tasks start. The loading tasks are similar to the
discharging tasks but in an opposite direction.

B. Time Window for Each Container
A time window is a closed interval bracketed by the time a

container becomes available in a buffer (release time) and the
latest time this container must be picked up from the buffer by
IAVs (due time). Each container has a time window associated
to itself. Each container needs to be picked up within its
time window. To help define the precise pickup time, each
time window is discretized into a number of possible pickup
moments [4].

C. A Graph Model for the FSP
The FSP in [4] was modelled as a directed graph. This

graph shows all possible ways that IAVs can collect containers
and all pairs of containers that are compatible (i.e. the two
containers can be collected by the same vehicle within their
time windows). Each node of this graph represents a container
in one of its pickup time and each arc of this graph connects
two compatible containers (nodes). This graph also has a sink
node and a source node. These nodes are used to show the
starting and ending points of each path. A path starts from the
source node and passes through some compatible containers
(nodes) to end at the sink node. Each path is actually a
sequence of containers to be collected by an IAV. The objective
of the problem is to find the minimum number of paths
covering all containers subject to the following constraints:

1) each container can only be picked up or dropped off
once

2) each container cannot be picked up or dropped off by
more than one vehicle.

The number of paths is equivalent to the number of IAVs.
Figure III.1 shows the graph model of an FSP example. In
this example, there are three containers for IAVs to collect.
Container 1 has two possible pickup times i.e. container 1 can
be picked up either in its first pickup time (j11) or its second
pickup time (j12). Similarly, container 3 has two possible
pickup times: j31 and j32. Container 2 has one start time
(j21). The compatible nodes are connected by directed arcs
i.e. the containers that can be transported sequentially by one
IVA. This figure shows one solution of this example with two
IAVs. Container 1 at pickup time j11 and container 3 at pickup
time j32 are assigned to IAV 1 and container 2 is assigned to
IAV 2. Thus, the fleet size for this particular example is two.

D. Representation
The FSP in FSEA is represented as a string of pairs <

xi, yi >, 1 ≤ i ≤ n where n is the number of containers;
xi represents index of the pickup time of container i; and yi
represents the container to be transported by the same IAV
after container i.

Figure III.1. An example of how an FSP can be modelled as a directed graph.

E. Recombination

To improve the fitness of an individual a new recombination-
based heuristic operator was developed in [1]. At each genera-
tion, FSEA applies the heuristic to individuals to improve their
fitness by reducing the number of IAVs in each individual.
To do so, for each individual it selects one IAV randomly
to remove, let us call it IAV_delete. It then tries to assign
all containers of IAV_delete, if possible, to other IAVs. By
removing all the containers of IAV_delete, this IAV can be
removed from the fleet (Figure III.2).

Figure III.2. This figure shows an example of how the heuristic reduces the
number of IAVs. The left plot shows the original solution with three IAVs.
The right plot shows the solution after being improved by the heuristic. As
can be seen, by moving container 4 (j41) to the list of containers of IAV 2,
the fleet size decreases to two.

F. Mutation

The mutation operator uses a similar idea to the heuristic.
The purpose of applying the mutation operator is to help the
heuristic to remove IAV_delete. It moves containers between
IAVs apart from IAV_delete in a hope that it can make room
to insert containers from IAV_delete (Figure III.3).

G. Evaluation

In the static case i.e. no uncertainty, the number of IAVs
(i.e. the number of paths in the graph model of the FSP) in a
solution can be considered the fitness of that solution. In the
uncertain case, however, evaluating the fitness of individuals
only based on the number of IAVs may not be totally realistic.
There may be a case where individuals have the same number
of IAVs but have different sequences of containers i.e. they
have different schedules for the same number of IAVs. Those
schedules may perform differently under uncertainties and



4

Figure III.3. An example of how the mutation can help the heuristic to remove
IAV_delete. Plot a shows the original solution before being mutated in which
IAV_delete has only container 4 (j41). However, at this moment there is no
available position for container 4 in other IAVs. To improve the situation, the
mutation operator moves container 3 (j32) from IAV 2 to the list of containers
of IAV 1 (plot b). The heuristic then assigns container 4 to IAV 2 and removes
IAV_delete from the list of IAVs (plot c).

some schedules may be more robust against uncertainties.
Thus, to handle uncertainties FSEA calculates the fitness of
each individual based on not only the number of IAVs in
the individual but also on the robustness of the schedule of
that particular solution. To do so, FSEA uses a Monte Carlo
simulation (MCS) to evaluate the robustness of individuals by
simulating possible uncertainties in the travel time (caused by
failures such as breakdown, congestion or delay etc) that may
happen to the schedules of individuals.

To measure the robustness of each solution, MCS produces
a number of instance of that particular solution, each with a
different failure outcome due to uncertainties. Each instance
is generated by estimating possible failures of the IAVs in
the solution. Those possible failures give an estimate of the
time that IAVs may become unavailable due to the failures.
Once a failure happens to an IAV it takes a mean-time-to-
repair duration (MTTR) to get repaired and back to the system
(Algorithm 1). IAVs that are in failures cannot transport their
assigned containers. Those containers, if possible, should be
assigned to other available IAVs to prevent causing any delay
to the system. If no IAV is available, additional IAVs must be
added to the fleet to take over those containers.

The total fleet size including the additional IAVs is used to
measure the robustness of solutions. The higher the number of
additional IAVs, the less robust a solution under uncertainties.
Results of robustness of a solution on n samples is considered
fitness of that individual. In [1], the average of total fleet size
of n samples are used to calculate the fitness of individuals.
In [2], we studied the impact of different robustness measures
by using different aggregation functions (e.g. the maximum,
minimum and mode values of the total fleet size). In this
paper, because the worst-case scenario is the focus, we use

Algorithm 1 EstimateFailures
1: F := 0
2: t := 0
3: while t < makespan
4: Generate a random exponential value te using the parameterλ
5: tf := te + t
6: tr := tf + MTTR
7: if tf < makespan
8: F := F ∪ {< tf , tr >}
9: t := tr

10: return F
where F is the set of duration of failures, t is the simulation time,
makespan is the time that the last job is done, λ is the failure rate
of IAVs and MTTR is the mean time to repair.

the maximum function, i.e. the largest total fleet size over n
samples, as the fitness of individuals. To get a more accurate
evaluation on the robustness of a solution, we need to use
more Monte Carlo samples, i.e. we need to generate more
instances of the solution under uncertainties. The results of
[1], however, showed that the process of sampling is very
time consuming and in large-scale problems almost makes it
impossible to have an accurate estimation of robust solutions.
In this paper, Section IV, we propose two new extensions on
FSEA to have a better estimation of fitness of individuals in
reasonable time using the fewer number of samples.

H. Dynamic Sampling Technique

In [2], we proposed an extension on FSEA, named iFSEA,
to improve the performance of FSEA. It uses a dynamic
sampling strategy to increase the number of samples step by
step. It starts with a small number of samples to evaluate
solutions and step by step it increases the number of samples
after a certain number of generations until it reaches its
maximum. This technique is improved in this paper to an
adaptive approach in Section IV.

IV. EXTENSIONS ON FSEA

This section discusses two extensions on FSEA, called
FSEA+. We first explain an approach to generate the samples
that reflect the worst-case scenarios better. We then explain an
adaptive sampling technique to adjust the number samples.

A. Generating Samples that Reflect the Worst-case Scenarios
Better

As mentioned in Section I, the purpose of this paper is
to identify the robust number of IAVs that has the best
performance in the worst-case scenario. In order to find such a
robust solution, the number of samples should be considerably
high to be confident that the worst-case samples are included
in the generated samples. Results of [1], however, showed the
process of sampling in FSEA is very time consuming and
increase in the number samples deteriorates the performance
of FSEA significantly, so such increase in the number of
samples is not possible. Thus, we propose a new approach
that generates the samples that reflect the worst-cases better
rather than increasing the number of samples.



5

Recall from Section III, we encapsulate possible uncertain-
ties in an individual by generating multiple instances (called
samples) of the same individual, of which in each sample
we introduce various failures to the IAVs. The failures for
IAVs are estimated using an exponential distribution with the
parameter λ - the failure rate of IAVs. The total time that
vehicles are under repair is called the duration of failures.
Due to uncertainties, different samples of the same individual
may have different duration of failures. Furthermore, when
we compare two different samples of the same individual, it
can be assumed that the sample with a larger total duration
of failures is more likely to need more additional vehicles to
cover the failures, and hence to have a larger fleet size (i.e.
worse fitness). If this assumption is true, then samples with
the largest durations of failures might be the ones with the
largest fleet size, i.e. they are the worst-case scenarios.

Following this assumption, to find the worst-case scenarios,
instead of simulating uncertainties using MCS in all possible
samples of an individual, we propose to just apply MCS
to those samples with the largest total durations of failures.
This will save computational time because MCS is very
time consuming while estimating the duration of failures is
computationally cheap.

In this paper, our proposed idea above is implemented in
a sampling procedure named MC+. To do so, in the process
of sampling, for each individual, MC+ generates a pool of
samples with a considerably large size m. For each sample,
MC+ does not apply MCS directly but only estimates the
total duration of failures given uncertainties (based on an
exponential distribution). Among those samples it selects n
(n < m) samples with the largest total durations of failures
and evaluates the robustness on those n samples (Algorithm
2).

Algorithm 2 MCS+
1: Identify FS, the number of IAVs in individual ~X
2: F := 0 //F is the set of duration of failures
3: FSL := 0
4: sampNo := GetNumberOf Samples()
5: for j from 1 to m //m is the size of the pool of samples
6: for i from 1 to FS
7: F [j][i] := EstimateFailures()
8: Sort F based on the total duration of failures in each sample
9: for j from 1 to sampNo

10: UJ : = 0 //UJ is the list of uncovered containers
11: tempFS : = FS
12: for i from 1 to tempFS
13: Identify the uncovered containers due to IAV i’s failures in DF [j]
and add them to UJ
14: for i from 1 to length(UJ)
15: if container UJ [i] can be covered by an available IAV k
16: Assign container UJ [i] to IAV k
17: else
18: tempFS := tempFS + 1; //add a new IAV to the fleet
19: Assign container UJ [i] to the newly added IAV
20: FSL := FSL ∪ {tempFS}
21: return the maximum of FSL
where FSL stores the results of evaluation of individual ~X on the
samples, sampNo is the number of samples for each evaluation,
F [j][i] is the duration of failures of IAV i in sample j and tempFS
is the fleet size for the current sample.

B. Adaptive Sampling Technique

FSEA has a disadvantage: it applies the same large number
of MC samples to every individual in every generation, regard-
less of the quality of the individuals. This is not effective be-
cause any samples on poor-quality individuals will be wasted.
To improve this situation, we propose an adaptive sampling
technique in FSEA+. This technique evaluates the robustness
of solutions in the earlier generations using fewer number
samples and it increases the number of samples adaptively
based on the convergence of the population. The idea is that,
if the algorithm finds a (local or global) optimum, we need
to accurately investigate the impact of uncertainties on that
optimum. To do so, we will look for sign of (temporary)
convergence and whenever it happens we will increase the
number of allowed samples for the MCS. We consider the
algorithm as temporarily converged if after α consecutive
generations we do not observe either of the following criteria
in the best individual: 1) a decrease in the fleet size; 2) a
decrease in the number of containers assigned to IAV_delete,
which is the vehicle that the recombination heuristics (see
Subsection III-E) wants to eliminate.

Starting from an initial number of samples n0, whenever a
temporary convergence occurs according to the criteria above,
the algorithm increases the number of samples by a value
β. The algorithm follows this approach until it reaches the
maximum allowed number of samples n. Algorithms 3 and
4 show the pseudo-codes for the adaptive sampling technique
and FSEA+, respectively. As mentioned in Subsection III-H,
our previous algorithm iFSEA also has a dynamic approach to
adjust the number of samples during evolution. That approach,
however, is not adaptive: it always increases the number of
samples after each fixed number of generations regardless
of the convergence of the algorithm. That approach is also
problem-dependent and for each problem its parameters should
be tuned.

Algorithm 3 GetNumberOfSamples
1: if no improvement happens to the populations forα consecutive generations
2: if sampNo + β > n //β is the step to increase the number of samples
3: return n //n is the maximum number of samples
4: sampNo := sampNo + β //sampNo is the number of samples
5: return sampNo
6: else
7: return sampNo

Algorithm 4 FSEA+
1: Initialize population Pt

2: Evaluate population Pt by MCS+()
3: for genCounter from 1 to genNo
4: Select elements from Pt to copy into Pt+1

5: for i from 1 to popSize
6: Apply the mutation operator to individual i
7: Apply the heuristic operator to individual i
8: Evaluate new population Pt+1 by MCS+()
9: Pt := Pt+1

10: return the best individual
where genNo is the maximum number of generations and popSize
is the size of the population.



6

V. EXPERIMENTAL RESULTS

This section provides results of the experimental study. It
first provides details of test cases and parameters settings. It
then shows the improvement in robust solutions by comparing
results of FSEA+ and iFSEA for the worst-case scenarios.
Following that, it discusses improvement in the performance
of the algorithm by comparing results of non-adaptive FSEA+
and adaptive FSEA+. Non-adaptive FSEA+ is the case where
the number of samples during the evolution is constant i.e.
n0 = n and adaptive FSEA+ adjusts the number of samples
adaptively.

A. Test Cases and Parameter Settings

We consider a European port the case study of this paper1.
All settings are from real-world data of this port. In this
port there are three QCs available to discharge/load containers
from/into vessels, so we vary the number of QCs from one
to three. There are six stacking blocks available to stack
containers each is served by one SC. We assume that the
containers are distributed evenly between the stacking blocks.
The size of the buffer is varied from 0 to 10. The speeds
of loaded and empty IAVs are considered 2 m/s and 4 m/s,
respectively. The number of containers to be discharged is 100.
The distances between the QCs and SCs are as in [1, 2]. The
parameter setting for the experiments are shown in Table I.
Note that due to the lack of actual failure rates and MTTR of
IAVs, we chose the same failure rate and MTTR as in [18].

Table I
PARAMETERS SETTING FOR FSEA, IFSEA AND FSEA+

Alg. Parameter Value Description
FSEA+ n0 60 Initial number of

samples
β 20 Step to increase the

number samples
α 5 Temporary convergence

criterion
m 3000 Size of the pool of

samples
FSEA,
iF-
SEA
&
FSEA+

n 100 Maximum number of
samples

genNo 100 Maximum number of
generations

popSize 15 Size of the population
λ(failures/s) 1.0× 10−3 Failure rate of IAVs
MTTR(s) 500 Mean time to repair of

IAVs
other as in

([1, 2])

B. Comparing the Quality of Robust Solutions

Results of FSEA+ and iFSEA on the test cases are shown
in Figure V.1. The test cases are categorised based on the

1Due to the confidential agreements we cannot reveal the identity of this
port.

number of QCs that are involved in discharging tasks. The
results show that in 26 out of 33 cases FSEA+ found new
worst-case solutions with larger fleet sizes than what iFSEA
found. This confirms that using the new sampling technique
can help FSEA+ to find better robust solutions.

Figure V.1. Robust solutions for the worst-case scenarios by 100 samples per
evaluation.

C. Process Time Comparison

In this subsection, we first investigate how FSEA+ improves
the process time in comparison to the previous versions:
iFSEA and FSEA. To do so, we calculate the amount of time
that each algorithm needs to find the best robust solutions in
the worst-case scenarios. To find the same worst-case-scenario
robust solutions as FSEA+, FSEA and iFSEA have to use 3000
samples per evaluations. This causes these algorithms to spend
a large amount of time. Due to these two algorithms taking
very long time to reach the robust solutions of the same quality
as those of FSEA+, at the submission date we have only been
able to complete the experiments of iFSEA/FSEA with 3000
samples per evaluation in one test case: three QCs and buffer
size equals six. For this case, process times of FSEA/iFSEA
and FSEA+ are 62,555 and 2,800 seconds, respectively. Note
that although the other experiments have not completed yet,
the difference in comparison to FSEA+ should be as significant
as above.

To evaluate the contribution of the new adaptive approach
(Subsection. IV-A) to improve the performance of FSEA+,
we compare the adaptive FSEA+ with the non-adaptive one.
Figure V.2 shows that the new adaptive sampling technique
significantly reduces the process time of FSEA+.

VI. CONCLUSION

In this paper, we extend our attempts in [1, 2] to identify
the robust number of IAVs in ports. The extensions are: 1)
generating the samples that reflect the worst-case scenarios
better; 2) proposing an adaptive sampling approach to increase



7

Figure V.2. This figure shows the improvement in the process time of FSEA+
following the adaptive sampling approach.

the number samples based on the convergence of the algo-
rithm. Experimental results show that by using such sampling
technique, better robust solutions can be achieved within fewer
number of samples. This help improve the reliability and
sustainability of vehicle fleets in ports. Moreover, using the
new adaptive approach, the performance of the algorithm is
increased significantly.

ACKNOWLEDGMENT

This research was supported by a research grant from
RCUK NEMODE – New Economic Models in the Digital
Economy, Network+, a European project named Intelligent
Transportation for Dynamic Environment (InTraDE) and a
Seed-corn funding grant by the Chartered Institute of Logistics
and Transport.

REFERENCES

[1] S. Kavakeb, T. T. Nguyen, Z. Yang, and I.Jenkinson,
“Evolutionary fleet sizing in environments with shuttle
transportation tasks - case studies of container ports,”
Submitted to IEEE Computational Intelligence Magazine,
2014.

[2] S. Kavakeb, T. T. Nguyen, Z. Yang, and I. Jenkinson,
“Identifying the robust number of intelligent autonomous
vehicles in container terminals,” in EvoSTOC, EvoStar,
2014.

[3] U. N. C. on Trade and Development, “Review of maritme
transport,” 2013.

[4] I. F. A. Vis, R. M. B. M. De Koster, and M. W. P.
Savelsbergh, “Minimum vehicle fleet size under time-
window constraints at a container terminal.” Transporta-
tion Science, vol. 39, no. 2, pp. 249 – 260, 2005.

[5] I. F. A. Vis, R. M. B. M. De Koster, K. J. Roodbergen,
and L. W. P. Peeters, “Determination of the number of
automated guided vehicles required at a semi-automated
container terminal,” Journal of the Operational Research
Society, vol. 52, no. 4, pp. pp. 409–417, 2001.

[6] P. Koo, W. Lee, and D. Jang, “Fleet sizing and vehicle
routing for container transportation in a static environ-
ment.” OR Spectrum, vol. 26, no. 2, pp. 193 – 209, 2004.

[7] H.-G. Beyer and B. Sendhoff, “Robust optimization–a
comprehensive survey,” C. M. in applied mechanics and
engineering, vol. 196, no. 33, pp. 3190–3218, 2007.

[8] Y. Jin and J. Branke, “Evolutionary optimization in
uncertain environments-a survey,” IEEE Transaction on
Evolutionary Computation, vol. 9, no. 3, pp. 303–317,
2005.

[9] T. T. Nguyen, “Continuous dynamic optimisation us-
ing evolutionary algorithms,” Ph.D. dissertation, School
of Computer Science, University of Birmingham,
http://etheses.bham.ac.uk/1296, January 2011.

[10] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary
dynamic optimization: A survey of the state of the art,”
Swarm and Evolutionary Computation, vol. 6, pp. 1–24,
2012.

[11] F. Neri, G. L. Cascella, N. Salvalore, and S. Stasi, “An
adaptive prudent-daring evolutionary algorithm for noise
handling in on-line pmsm drive design,” in Evolution-
ary Computation, 2007. CEC 2007. IEEE Congress on.
IEEE, 2007, pp. 584–591.

[12] M. Marseguerra and E. Zio, “Optimising maintenance
and repair policies via a combination of genetic algo-
rithms and Monte Carlo simulation,” Reliability Engi-
neering & System Safety, vol. 68, no. 1, pp. 69–83, 2000.

[13] M.Marseguerra, E. Zio, and L. Podofillini, “Condition-
based maintenance optimization by means of genetic
algorithms and Monte Carlo simulation,” Reliability En-
gineering & System Safety, vol. 77, no. 2, pp. 151–165,
2002.

[14] M. Marseguerra, E. Zio, and L. Podofillini, “Genetic
algorithms and Monte Carlo simulation for the optimiza-
tion of system design and operation,” in Computational
Intelligence in Reliability Engineering. Springer, 2007,
pp. 101–150.

[15] M. Cantoni, M. Marseguerra, and E. Zio, “Genetic al-
gorithms and Monte Carlo simulation for optimal plant
design,” Reliability Engineering & System Safety, vol. 68,
no. 1, pp. 29–38, 2000.

[16] K. Sörensen and M. Sevaux, “A practical approach for
robust and flexible vehicle routing using metaheuristics
and Monte Carlo sampling,” Journal of Mathematical
Modelling and Algorithms, vol. 8, no. 4, pp. 387–407,
2009.

[17] M. Sevaux and K. Sörensen, “A genetic algorithm for ro-
bust schedules in a one-machine environment with ready
times and due dates,” Quarterly Journal of the Belgian,



8

French and Italian Operations Research Societies, vol. 2,
no. 2, pp. 129–147, 2004.

[18] B. Farling, C. Mosier, and F. Mahmoodi, “Analysis of
automated guided vehicle configurations in flexible man-
ufacturing systems,” International Journal of Production
Research, vol. 39, no. 18, pp. 4239–4260, 2001.


