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Abstract. An adaptive 𝑝 -step prediction model for nonlinear dynamic processes is 

developed in this paper, and implemented with a radial basis function (RBF) network. 

The model can predict output for multi-step ahead with no need for the unknown future 

process output. Therefore, the long-range prediction accuracy is significantly enhanced, 

and consequently is especially useful as the internal model in a model predictive control 

framework. An improved network structure adaptation is also developed with the 

recursive orthogonal Least Squares (ROLS) algorithm. The developed model is on-line 

updated to adapt both its structure and parameters, so that a compact model structure and 

consequently a less computing cost are achieved with the developed adaptation algorithm 

applied. Two nonlinear dynamic systems are employed to evaluate the long-range 

prediction performance and minimum model structure, and compared with an existing 

PSC model and a non-adaptive RBF model. The simulation results confirm the 

effectiveness of the developed model and superior over the existing models. 

Keywords: RBF network, p-step model prediction, ROLS training algorithm, RBF 

structure adaptation, model predictive control.    
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Radial basis function (RBF) network models have been studied intensively in 

modelling nonlinear dynamic systems due to its learning abilities and simple architecture 

[1]. The attractive feature that, the RBF network can approximate a smooth nonlinear 

mapping to any specified accuracy provided that the network includes enough number of 

hidden layer nodes, was first studied by Broom and Lowe [2]. A RBF network that based 

on a nonlinear autoregressive with exogenous input model (NARX) was renowned for its 

promising abilities in modelling nonlinear dynamic systems [3]. However, one of the 

major drawbacks of NARX RBF network models is the lack of efficiency in long range 

output prediction due to its accumulated errors at each prediction step [4]. Bhartiya and 

Whiteley [5] developed a factorable p-step control (PSC) model that could make long 

prediction. The simulation results showed that the output prediction of their model 

performed better than the cascaded 1-step-ahead prediction. However, a major drawback 

of this model is that a huge network structure is required, which greatly increases the 

model complexity. A compact RBF network structure is imperative to avoid numerical 

ill-conditioning and for good generalization [6].  

Structure adaptation of a RBF model plays a major role in achieving a compact 

network while maintaining the model performance. Moreover, when the model is used in 

a model-based control scheme, model adaptation can model the time varying dynamics or 

post-fault dynamics change of the system, to achieve robust or fault tolerant control. 

There are several RBF network adaptation algorithms reported in the literature, such as 

that in [7-10]. A common feature of these adaptive networks is that the number and 

location of their hidden neurons are flexible and are adapted according to the dynamics of 

system to be modelled. 

To reduce the size of a network while maintaining its modelling accuracy, orthogonal 

decomposition has been employed in building adaptive structure of RBF networks. The 

batch orthogonal Least Squares algorithm was firstly employed to train neural networks 

by Chen and Billings [11] and the work was later extended to train RBF networks in [6, 

12]. Yu et al. [13] applied recursive orthogonal Least Squares (ROLS) algorithm to train 

the RBF network parameters in on-line mode and achieved a convincing performance. 

Gomm and Yu [14] introduced a forward and a backward centre selection algorithm 

using ROLS algorithm to achieve compact network structures while maintaining the 
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prediction performance. However, the centres were only selected from a pre-specified 

candidate centre set in [14], which limited the model’s prediction capability. To broaden 

the options of centres, Yu and Yu [15] proposed an adaptive structure algorithm for RBF 

networks using ROLS algorithm in which the new data were added as new centres based 

on the desired modelling performance. The results in [15] demonstrated that a compact 

network structure was achieved while maintaining the desired performance. The 

drawback is the network performance degraded for a number of sample periods after the 

migration of system’s operating point. To address this problem, Tok et al. [16] developed 

a new learning strategy to improve the tracking ability and the results showed that a 

better recovery speed was achieved. However, the tracking ability is obtained at the high 

expense of computational cost. 

The objective of this work is twofold. Firstly, a modified PSC model implemented 

with RBF network (therefore is called PS-RBF model) is adapted with both structure and 

parameters using the ROLS algorithm. The advantage of the proposed PS-RBF model is 

that it retains the important feature of reducing the model’s dependency on the future 

unknown system outputs to make 𝑝-step ahead predictions, while reducing the network 

model complexity and maintaining the prediction accuracy. The superior feature of the 

developed PS-RBF model over the PSC model [5] is that when the developed model is 

used in the model predictive control, the control performance will be more accurate. 

Moreover, due to the adaptation of the developed model, the performance degradation 

caused by dynamics change due to the faults or time varying components of the process 

will be greatly improved. Thus, the effectiveness of the PS-RBF network model is 

investigated, and its performance is compared with two network models of the same type: 

the PSC model and the multistep-ahead RBF network model (MSA-RBF). The 

simulation results show that not only does the developed model outperform the other two 

network models, it also produces a more compact model structure compared with the 

PSC model in [5]. 

The second objective is to ease the computational load in the adaptation algorithm in 

[16] by re-structuring the adaptation procedure. To achieve this, the amount of 

calculation in computing the decomposition of matrix 𝑅 is reduced. The efficiency of 

improved adaptation algorithm is verified by comparing it with existing algorithm in [16]. 
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In particular, an adaptive PS-RBF network is proposed. One of the advantages is that the 

adaptive PS-RBF network provides a smaller network structure than non-adaptive 

network while maintaining the network performance. The performance of adaptive PS-

RBF network is verified by modelling a nonlinear dynamical system. 

The outline of this paper is as follows. Section 2 describes the development of PS-

RBF network. Section 3 introduces the ROLS training algorithm of PS-RBF network; it 

also presents the performance of PS-RBF model and the comparison with other network 

models. Section 4 describes the optimized PS-RBF network model structure adaptation. 

Section 5 shows the experimental results of adaptive PS-RBF network. The conclusion is 

drawn in Section 6. 

 

2 𝒑-step RBF network 

It was reported in [5] that a PSC model was developed and implemented with RBF 

network. The PSC model is capable of predicting the system output over a prediction 

horizon without requiring future unknown system outputs. However, the downside of the 

PSC model is that it demands a huge network structure to achieve satisfactory 

performance. This makes the model impossible to be applied to fast systems due to the 

big computing load. Furthermore, a limitation is imposed to the selected input order of 

the network model, 𝑁𝑢 ≥ 2 in [5]. To address these problems, an improved model: a p-

step ahead prediction model, which is also implemented with a RBF network, is 

developed in this paper. The derivation of PS-RBF model is as follows. 

In the application of RBF networks [15, 17], a continuous-time nonlinear dynamic 

system is typically represented by a NARX model in (1). 

 𝑦𝑘 = 𝑓[𝑦𝑘−1, … , 𝑦𝑘−𝑁𝑦, 𝑢𝑘−1, … , 𝑢𝑘−𝑁𝑢] + 𝑒𝑘 (1) 

where 𝑢 ∈ ℜ𝑚 and 𝑦 ∈ ℜ𝑛 are the input and output vectors of the system, respectively; 

𝑁𝑦  and 𝑁𝑢  are output and input orders, and 𝑒  is the error. 𝑓[∗]  is a vector valued  

nonlinear function. A RBF network can be trained as a one-step-ahead (OSA) predictor 

or a multistep-ahead (MSA) predictor as depicted in Fig. 1. 
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Fig.1 Block diagrams of OSA and MSA predictors 

From Fig.1, it is understood that an OSA predictor is trained using the system inputs 

𝑢𝑘, … , 𝑢𝑘+1−𝑁𝑢
 and outputs 𝑦𝑘, … , 𝑦𝑘+1−𝑁𝑦

 at sample time 𝑘 to make a one-step-ahead 

prediction of �̂�𝑘+1 . The predictions �̂�𝑘+1, … . , �̂�𝑘+𝑝  by the OSA predictor over a 

prediction horizon 𝐻𝑝 are described as 

 �̂�𝑘+1 = 𝑓 [𝑦𝑘, … , 𝑦𝑘+1−𝑁𝑦
, 𝑢𝑘 , … , 𝑢𝑘+1−𝑁𝑢

] 
 

 �̂�𝑘+2 = 𝑓 [𝑦𝑘+1, … , 𝑦𝑘+2−𝑁𝑦 , 𝑢𝑘+1, … , 𝑢𝑘+2−𝑁𝑢
]                                (2)     

 ⋮  

 �̂�𝑘+𝐻𝑝
= 𝑓 [𝑦𝑘+𝐻𝑝−1, … , 𝑦𝑘+𝐻𝑝−𝑁𝑦

, 𝑢𝑘+𝐻𝑝−1, … , 𝑢𝑘+𝐻𝑝−𝑁𝑢
]  

In contrast, a different prediction mode of the MSA predictor from the OSA lies in that 

the predicted outputs �̂�𝑘+1, … , �̂�𝑘+𝐻𝑝−1 are used instead of system output in the prediction 

of future samples, �̂�𝑘+2, … , �̂�𝑘+𝐻𝑝
 across a prediction horizon 𝐻𝑝, as described below  

 �̂�𝑘+1 = 𝑓 [𝑦𝑘, … , 𝑦𝑘+1−𝑁𝑦
, 𝑢𝑘 , … , 𝑢𝑘+1−𝑁𝑢

] 
 

 �̂�𝑘+2 = 𝑓 [�̂�𝑘+1, 𝑦𝑘, … , 𝑦𝑘+2−𝑁𝑦
, 𝑢𝑘+1, … , 𝑢𝑘+2−𝑁𝑢

]                           (3)  
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 ⋮  

 �̂�𝑘+𝐻𝑝
= 𝑓 [�̂�𝑘+𝐻𝑝−1, … , �̂�𝑘+𝐻𝑝−𝑁𝑦

, 𝑢𝑘+𝐻𝑝−1, … , 𝑢𝑘+𝐻𝑝−𝑁𝑢
].  

From (1) and (2), it can be understood that the OSA predictor is able to provides more 

accurate prediction than the MSA as it is trained using the original system outputs and 

inputs. Whilst in the MSA the predicted outputs are used as the input for further 

prediction. As can be seen in (2) that the prediction errors are involved in the predicted 

output and are accumulated at each sample time when the predicted outputs are 

iteratively used for future predictions. This greatly reduces the prediction accuracy. 

Although the MSA is not as accurate as the OSA for one step ahead prediction, its ability 

in predicting for multi-step-ahead is essential in the applications of model predictive 

control [17, 18]. 

In order to improve the performance of MSA predictor, the p-step prediction (PS) 

model is proposed in this research. The PS model is designed to make predictions over a 

prediction horizon 𝐻𝑝, which avoids using the future process outputs. In other words, it 

combines the characteristics of OSA and MSA predictors. The derivation of PS model 

starts with an NARX model. An example is used to demonstrate the concept of PS model. 

Consider an example with the input order 𝑁𝑢 = 2 and the output order 𝑁𝑦 = 2 to make 

predictions across a prediction horizon 𝐻𝑝 = 3. Using this example, the NARX model in 

(1) can be expressed as 

 �̂�𝑘 = 𝐹[𝑦𝑘−1, 𝑦𝑘−2, 𝑢𝑘−1, 𝑢𝑘−2] (4) 

The outputs 𝑦𝑘−1, … , 𝑦𝑘−2 can be described in prediction forms of 

 𝑦𝑘−1 = 𝐹[𝑦𝑘−2, 𝑦𝑘−3, 𝑢𝑘−2, 𝑢𝑘−3] 
 

 𝑦𝑘−2 = 𝐹[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−3, 𝑢𝑘−4] (5) 

Now, substituting (5) into equation (4) yields, 

 
�̂�𝑘 = 𝐹[𝐹[𝑦𝑘−2, 𝑦𝑘−3, 𝑢𝑘−2, 𝑢𝑘−3], 𝐹[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−3, 𝑢𝑘−4], 

𝑢𝑘−1, 𝑢𝑘−2]  

 �̂�𝑘 = 𝐹[𝐹[𝐹[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−3, 𝑢𝑘−4], 𝑦𝑘−3, 𝑢𝑘−2, 𝑢𝑘−3], (6) 
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𝐹[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−3, 𝑢𝑘−4], 𝑢𝑘−1, 𝑢𝑘−2] 

Using a function 𝐺 to represent the composite function F in (6),  

 �̂�𝑘/𝑘−3 = 𝐺[𝑦𝑘−3, 𝑦𝑘−4, 𝑢𝑘−1, 𝑢𝑘−2, 𝑢𝑘−3, 𝑢𝑘−4] (7) 

Using (7) for predictions over  𝐻𝑝 = 3 , they are as follows, 

 �̂�𝑘+1/𝑘−2 = 𝐺[𝑦𝑘−2, 𝑦𝑘−3, 𝑢𝑘 , 𝑢𝑘−1, 𝑢𝑘−2, 𝑢𝑘−3] 
 

 �̂�𝑘+2/𝑘−1 = 𝐺[𝑦𝑘−1, 𝑦𝑘−2, 𝑢𝑘+1, 𝑢𝑘, 𝑢𝑘−1, 𝑢𝑘−2] 
 

 �̂�𝑘+3/𝑘 = 𝐺[𝑦𝑘, 𝑦𝑘−1, 𝑢𝑘+2, 𝑢𝑘+1, 𝑢𝑘 , 𝑢𝑘−1] (8) 

From (7), it can be written in a general form, 

 �̂�𝑘/𝑘−𝑝 = 𝐺 [𝑦𝑘−𝑝, … , 𝑦𝑘−𝑝+1−𝑁𝑦
, 𝑢𝑘−1, . . , 𝑢𝑘−𝑝+1−𝑁𝑢

] (9) 

or alternatively, 

 �̂�𝑘+𝑝/𝑘 = 𝐺 [𝑦𝑘, … , 𝑦𝑘+1−𝑁𝑦
, 𝑢𝑘−1+𝑝, . . , 𝑢𝑘+1−𝑁𝑢

]. (10) 

From (10), it can be observed that �̂�𝑘+𝑝/𝑘 is predicted according to system outputs up to 

𝑘𝑡ℎ  sample, which are all available at the current sample period k. This avoids using 

𝑦𝑘+1, … , 𝑦𝑘+𝑝−1, which are not available yet and have to be approximated with the 

predicted values. Therefore, the dependency of the prediction on the predicted outputs 

over the prediction horizon 𝐻𝑝 is avoided, and it improves the prediction accuracy.  

 

3 𝒑-Step RBF network training 

3.1 Training with ROLS algorithm 

The recursive orthogonal Least Squares algorithm is used to train the developed PS-

RBF network. A RBF network is a three layer network with input layer, hidden layer and 

output layer. There are hidden neurons in the hidden layer and there is a centre in each 

hidden neuron. The network input vector 𝑥𝑘 using the PS model in (9) is 

 𝑥𝑘 = [𝑦𝑘−𝑝  …  𝑦𝑘−𝑝+1−𝑁𝑦
   𝑢𝑘−1   …  𝑢𝑘−𝑝+1−𝑁𝑢

] (11) 
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where 𝑢 and 𝑦 are system input and output, respectively. A Gaussian function is used as 

the activation function then the hidden layer output 𝜙𝑖(𝑘) is given as 

 𝜙𝑖(𝑘) = exp (−
‖𝑥𝑘 − 𝑐𝑖‖

2

𝜎𝑖
2 ) , 𝑖 = 1, … , 𝑛ℎ (12) 

where 𝑛ℎ is the number of hidden neurons and 𝑐𝑖 ∈ ℜ𝑛×𝑛ℎ is the 𝑖th centre. 𝜎𝑖 represents 

the width of the Gaussian function at the 𝑖th centre. The network output is 

 �̂�(𝑘) = 𝑊𝑇(𝑘)𝜙(𝑘) (13) 

where 𝑊𝑘 ∈ ℜ𝑛ℎ×𝑝 is the weighting matrix connecting hidden layer nodes and network 

outputs.  

Considering (11) as a set of collected input-output training data for 𝑁 samples, 

 𝑌 = �̂� + 𝐸 = Φ𝑊 + 𝐸 (14) 

where 𝑌 ∈ ℜ𝑁×𝑝 is the desired output matrix and �̂� ∈ ℜ𝑁×𝑝 is the network output matrix. 

Φ ∈ ℜ𝑁×𝑛ℎ is the hidden layer output matrix and 𝐸 ∈ ℜ𝑁×𝑝 is the prediction error matrix. 

The matrix formations are as follows 

𝑌𝑇 = [𝑦(1), … , 𝑦(𝑁)], �̂�𝑇 = [�̂�(1), … , �̂�(𝑁)], 

 Φ𝑇 = [𝜙(1), … , 𝜙(𝑁)],        𝐸𝑇 = [𝑒(1), … , 𝑒(𝑁)],                        (15)  

The procedure to train the weights of the network using ROLS algorithm is reviewed as 

follows [13]. The following cost function is formed based on (14) and is used to solve for 

weight 𝑊, 

 𝐽(𝑊) = ‖𝐸‖𝐹 = ‖𝑌 − Φ𝑊‖𝐹 (16) 

where ‖∗‖𝐹  is the F-norm of a matrix defined as ‖𝐴‖𝐹
2 = 𝑡𝑟𝑎𝑐𝑒(𝐴𝑇𝐴) . With ROLS 

training algorithm, the cost function at each sample time 𝑘 becomes 

 𝐽(𝑘) = ‖𝐸(𝑘)‖𝐹 = ‖[
𝑌(𝑘 − 1)

𝑦𝑇(𝑘)
] − [

Φ(𝑘 − 1)

𝜙𝑇(𝑘)
] 𝑊(𝑘)‖

𝐹

. (17) 

Applying the orthogonal transformation, (17) becomes 

Φ(𝑘 − 1) = 𝑄(𝑘 − 1) [𝑅(𝑘 − 1)
0

],        𝑄𝑇(𝑘 − 1)𝑌(𝑘 − 1) = [
�̂�(𝑘 − 1)

�̃�(𝑘 − 1)
] 
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 𝐽(𝑘) = ‖[

�̂�(𝑘 − 1)

𝑦𝑇(𝑘)

�̃�(𝑘 − 1)

] − [
𝑅(𝑘 − 1)

𝜙𝑇(𝑘)
0

] 𝑊(𝑘)‖

𝐹

 (18) 

leaving ‖�̃�(𝑘 − 1)‖
𝐹
 as the modelling residual. 

With the arrival of new sample data, the update to network structure is as follows, 

 [
𝑅(𝑘 − 1)

…
𝜙𝑇(𝑘)

] = 𝑄(𝑘) [
𝑅(𝑘)

…
0

] (19) 

 [
�̂�(𝑘)

…
�̃�𝑇(𝑘)

] = 𝑄𝑇(𝑘) [
�̂�(𝑘 − 1)

…
𝑦𝑇(𝑘)

] (20) 

The eventual cost function is 

 𝐽(𝑘) = ‖[

�̂�(𝑘) − 𝑅(𝑘)𝑊(𝑘)

�̃�𝑇(𝑘)

�̃�(𝑘 − 1)

]‖

𝐹

 (21) 

and then, the optimal weight 𝑊(𝑘) can be computed using 

 𝑅(𝑘)𝑊(𝑘) = �̂�(𝑘). (22) 

The modelling residual is 

 ‖�̃�(𝑘)‖
𝐹

2
= ‖[

�̃�(𝑘)

�̃�(𝑘 − 1)
]‖

𝐹

2

= ‖�̃�𝑇(𝑘)‖𝐹
2 + ‖�̃�(𝑘 − 1)‖

𝐹

2
. (23) 

The procedure of ROLS training algorithm is summarized as the following: Set the initial 

value, 𝑅(0) = 𝛼𝐼 where 𝛼 is a small positive value, and �̂�(0) with ‖�̃�(0)‖
𝐹

2
= 0. Then, 

at iteration 𝑘, new data 𝑦𝑇(𝑘) arrives, calculate 𝜙(𝑘). It is followed by computing 𝑅(𝑘) 

and �̂�(𝑘) using (19) and (20), respectively. Finally, solve the weight 𝑊(𝑘) using (22). 

 

3.2 𝑝-Step RBF network modelling 

Two simulation examples including a set of data from a dryer and another set of data 

from a chaotic Mackey-Glass time series are used to evaluate the performance of the 

proposed PS RBF model. In addition, the proposed network model is compared with two 
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existing RBF models, one is the MSA predictor [17] and the other is the PSC model [5]. 

The MSA model is selected due to its popularity for being employed as long range 

predictors. The PSC network model was developed based on PS model, which implies 

that the performance comparison between them is imperative. In order to further evaluate 

the ability of proposed network in long range prediction, the proposed PS-RBF model 

and the PSC model are simulated using two different prediction horizons 𝐻𝑝 = 5 and 

𝐻𝑝 = 15 respectively.  

For a fair comparison, all the three network models are trained with the ROLS 

algorithm and the parameters in all networks are carefully tuned. The K-means clustering 

algorithm and P-nearest neighbour algorithm are used to compute the position of centres 

and radius of the Gaussian functions, respectively. The mean absolute error (MAE) is 

used to measure the prediction errors,  

 𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑗=1

 (24) 

where 𝑁 is the number of data samples. The MAE is used here rather than the mean 

square error (MSE) is because in the former the error is the same level with the output 

while in the latter the error is in the same level with the squared error. The latter is easy to 

cause confusion. The whole set of obtained input-output data samples are linearly scaled 

to [0 1] to minimize the error caused by the big difference between ranges of different 

variables. 

  𝑢𝑠 =
𝑢 − min (𝑢)

max(𝑢) − min (𝑢)
                 𝑦𝑠 =

𝑦 − min (𝑦)

max(𝑦) − min (𝑦)
 (25) 

where 𝑢 and 𝑦 are input and output in raw data and 𝑢𝑠 and 𝑦𝑠 are the scaled data; min(𝑢) 

and min(𝑦) are the minimum values of input and output, respectively. The scaled output 

predictions are then scaled back after the model is used. 

 

3.2.1 Modelling the dryer 

The first simulation example is a set of dryer data that is available in MATLAB. 

According to MATLAB, the dryer data is collected from a single input single output 

(SISO) real laboratory-scale ‘hairdryer’. The obtained 1000 input-output dryer data 
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samples are halved into two sets – first 500 data samples are used as training data and the 

remainders are used as validation data.  

The simulation is arranged in the following way. The proposed PS-RBF model is 

compared with the two other models, the MA model and the PSC model. The MA model 

uses the process input and output as that input the ARX model, so it is a typical model 

used for dynamic system modelling. The MA model is selected here for comparison of 

modelling ability. The PSC model is a model developed for long range prediction and 

used here for comparison of long range prediction performance. In comparison with the 

MA model only 5 step ahead prediction is chosen while 20 and 60 centres are chosen. 

But in comparison with the PSC model not only different prediction horizons are chosen 

and different centres are also chosen. The criteria and modelling performances of all the 

three network models are listed in Table 1. 

Table 1 Performance comparison of different RBF models for dyer data 

RBF Network MA PSC Proposed PS-RBF 

Prediction 

Horizon 
𝐻𝑝 = 5 𝐻𝑝 = 5 𝐻𝑝 = 15 𝐻𝑝 = 5 𝐻𝑝 = 15 

Number of 

centres 
20              60 60 205 20 20 

Training data 

MAE 
0.11713     0.1162 0.11641 0.12764 0.10127 0.07708 

Validation data 

MAE 
0.11867     0.1178 0.10419 0.14878 0.11593 0.10421 

 

    It can be concluded from the results presented in Table 1 that the proposed PS-RBF 

model uses much fewer centres and has smaller prediction errors compared with the PSC 

model. On the other hand, the proposed PS-RBF model also outperforms the MSA model 

in terms of smaller prediction error when they used the same size network. By using two 

different prediction horizons, 𝐻𝑝 = 5 and 𝐻𝑝 = 15, it indicates another benefit of the 

proposed PS-RBF model, which is that the prediction error is reduced with the longer 

prediction horizon, while the PSC model is with a bigger prediction error even with a 
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much larger size of network. From this point of view, the prediction performance of the 

proposed network model is significantly better than the other two models especially when 

the models are used for the model predictive control. And, it has good long range 

prediction ability as shown in Fig. 2 and Fig. 3. 

 
Fig.2 Performance of PS-RBF network (𝐻𝑝 = 15) in training data of dryer 
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Fig.3 Performance of PS-RBF network (𝐻𝑝 = 15) in validation data of dryer 

 

3.2.2 Modelling Chaotic Mackey-Glass time series 

The chaotic Mackey-Glass time series is a nonlinear model that is frequently 

employed as a system identification example. The discrete time series is described as [19] 

 𝑥(𝑡 + 1) = (1 − 𝑎)𝑥(𝑡) +
𝑏𝑥(𝑡 − 𝜏)

1 + 𝑥10(𝑡 − 𝜏)
 (26) 

where the parameters 𝑎 = 0.1, 𝑏 = 0.2 and the initial condition 𝑥(0) = 1.2, 𝜏 = 17. 

The criteria and prediction performance of all the three network models are recorded 

in Table 2.  

Table 2 Prediction results of the three models for Mackey-Glass time series 

RBF Network MA PSC Proposed PS-RBF 

Prediction 

Horizon 
- 𝐻𝑝 = 5 𝐻𝑝 = 15 𝐻𝑝 = 5 𝐻𝑝 = 15 
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Number of 

centres 
25 24 62 20 45 

Training data 

MAE 
0.063434 0.010178 0.008264 0.0093808 0.0080148 

Validation data 

MAE 
0.065759 0.010379 0.0086541 0.0089941 0.0073537 

 

It is evident from the results in Table 2 that both the proposed PS-RBF models with 𝐻𝑝 =

5 and 𝐻𝑝 = 15 significantly outperform the MSA model in both training and validation 

data. The second point is that the performance of the proposed PS-RBF model uses fewer 

centres than the PSC model, while the prediction error is still smaller than the latter 

model. From Table 2, it has again shown the feature of the proposed network model that 

the prediction error is reduced for longer prediction horizon, with the cost of larger size 

of the network. In this example, it indicates that the proposed network is again the best 

choice of all the three models. The prediction performances of the proposed PS-RBF 

model for 𝐻𝑝 = 15 are displayed in in Fig.4 and Fig.5 for the training data and validation 

data, respectively.  
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Fig.4 Performance of PS-RBF model (𝐻𝑝 = 15) in training data of Mackey-Glass time-

series 

 
Fig.5 Performance of PS-RBF model (𝐻𝑝 = 15) in validation data of Mackey-Glass time 

series 

4. 𝒑-step RBF model structure adaptation 

The purpose of introducing a structure adaptation into PS-RBF model is to enhance 

its model compactness. The network structure adaptation algorithm developed in [16] is 

improved and used in this work. The procedure in the adaptation algorithm in [16] is re-

structured to minimize the resource usage. 

The ROLS training algorithm is particularly useful in developing an adaptive network 

structure because it allows the assessment of contributions of each centre in the network 

structure. However, one of the drawbacks is the 𝑅 matrix is needed to re-triangularize 

after it is augmented. Thus, the objective of improvement is to reduce the amount in 

computing the decomposition of augmented 𝑅  matrix especially in evaluating the 

contributions of centres and modelling residual. The concept of structure adaptation in 

[16] is to manipulate the contributions of centre and modelling residual to perform a 

series of actions such as adding, pruning and grouping centres to achieve a parsimonious 
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network structure. In this work, in order to improve the computational efficiency, the 

procedure of adaptation is amended and compared with the existing algorithm [16] in 

Table 3. 

Table 3 Comparison of procedures in adaptation algorithms 

Step Adaptation Algorithm in [16] Improved Adaptation Algorithm 

1 
Adapt new data, compute the 

contribution of each centre 

Adapt new data and compute the 

contribution of each centre 

2 Add a new centre Prune a centre 

3 
Compute and assesses the modelling 

residual, prune a centre 
Add a new centre 

4 Group the centre Group the centre 

 

The proposed adaptation algorithm at each sample period is as follows: The first step 

is to adapt the new data into the network structure and evaluate the computed 

contribution of each centre. The next step is to prune a centre which has the least 

contribution. Then, the learning strategy developed in [16] is employed to add a new 

centre. The last step is to group the centre and the active centres are used to form the final 

network.  

For the existing method in [16], the procedure is to compute the contribution of each 

centre and add a new centre and then, compute and asses the modelling residual caused 

by removing each centre to prune a centre. In contrast, the improved adaptation algorithm 

is to prune a centre and add a new centre based on the computed centres’ contributions at 

step 1, which avoids the computing of the modelling residual caused by removing each 

centre. The advantage of this improved algorithm is, at each sample time, it reduces one 

cycle of computing the decomposition of augmented 𝑅 matrix at step 3, which reduces 

the total computing load. The action of adding, pruning and grouping of centres is briefly 

explained in following sections. 

 

4.1 Prune & add centres 
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At sample time 𝑘, the new data 𝑥(𝑘) is adapted into 𝑅 matrix using (19) and (20). 

The 𝑅 matrix is updated with the information of new data and the contribution of each 

centre is evaluated using 

 ‖�̂�‖
𝐹

= ∑‖�̂�𝑖�̂�𝑖
𝑇‖

𝐹

𝑛ℎ

𝑖=1

 (27) 

where  �̂�𝑖
𝑇  is the 𝑖 th row of �̂� . This shows that the 𝑖 th centre has its individual 

contribution to ‖�̂�‖
𝐹

 of ‖�̂�𝑖�̂�𝑖
𝑇‖

𝐹
.  

Then, the centre with the least contribution is pruned. The following step is, based on the 

computed contributions of each centre, add a new centre. The location of newly added 

centre 𝐶𝑛𝑒𝑤 is decided [16] using 

 𝐶𝑛𝑒𝑤 = 𝜀𝐶𝑚𝑐 + (1 − 𝜀)𝑥(𝑘) (28) 

where 𝜀 is a parameter that affects the location of new centre and is chosen between 0 

and 1. A bigger 𝜀 will move the new centre to the new operating region, while a smaller 𝜀 

tends to allow the new centre stay at current location. After a new centre is added, the 𝑅 

matrix and �̂� matrix are retrained. 

 

4.2 Grouping centres 

The grouping centre algorithm developed in [16] is employed here. The selected 

centres are stored in a centre bank, where they have been divided into two groups: active 

centre group and redundant centre group. In a sample period, after a centre is pruned or 

added, the added centre is classified into one of the group, according to the modelling 

residual caused by the centre. At the current sample time 𝑘, selected active centres are 

used to form a network model for prediction purpose. Redundant centres are preserved 

for use in the later sample periods. The grouping centre algorithm commences by 

quarantining the redundant centres and when the grouping algorithm halts, the remainders 

are active centres. Akaike’s final prediction error (FPE) is used as the stopping criterion, 

 𝐹𝑃𝐸 =
1 + 𝛽(𝑛𝑤/𝑁𝑐)

1 − 𝛽(𝑛𝑤/𝑁𝑐)
𝑉,    𝑉 = ‖�̃�(𝑁)‖

𝐹

2
/𝑁𝑐 (29) 
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where 𝑉 is the loss function, 𝑛𝑤 is the number of weights. 𝛽 is a weighting factor and is 

also used to decide the number of active centres due to that the sample data 𝑁𝑐 in (29) is a 

fixed parameter. The number of active centres 𝑐𝑎 can be decided using [16], 

 𝑐𝑎 =
𝑁𝑐

𝛽
. (30) 

The procedure of centre grouping algorithm is summarized as: 

Step 1) After the centre bank is updated (adding and pruning of centres), initialize 𝑉 and 

𝐹𝑃𝐸. 

Step 2) Calculate the loss function 𝑉𝑗 when each centre is grouped in turn using (29). 

Step 3) Set 𝑖 = arg min (𝑉𝑗) and compute the 𝐹𝑃𝐸 for the smallest loss function, 𝐹𝑃𝐸𝑖 

using (23). If 𝐹𝑃𝐸𝑖 < 𝐹𝑃𝐸 , group the centre 𝑖 as redundant centre and go to step 

4). If 𝐹𝑃𝐸𝑖 > 𝐹𝑃𝐸, go to step 5). 

Step 4) After that, set �̂� = 𝑅𝑖  , �̂� = �̂�𝑖  , 𝑉 = 𝑉𝑖  , FPE = FPE𝑖  and 𝑛ℎ = 𝑛ℎ − 1. Go to 

step 2). 

Step 5) Stop the grouping procedure. The remaining centres are active centres and the 

optimal weight 𝑊𝑗 can be computed using (22). 

 

4.3 𝑝-step RBF network adaptation procedure 

At each sample time 𝑘, the procedure involves the action of adding, pruning and 

grouping of centres. The overall procedure of the proposed structure and parameter 

adaptation algorithm for the PS-RBF network model is as follows. 

Step 1) Form a centre bank with a pre-specified number of centres using K-means 

clustering algorithm. Then, use a set of sample data to initialize 𝑅 matrix and 𝑊 

matrix. 

Step 2) At each sample time 𝑘, adapts the new data into 𝑅 matrix using (19) and then, 

evaluate the contribution of each centre using (27). Prune the centre with the 

least contribution from the centre bank. 

Step 3) Add a new centre into the centre bank using (28). Then, retrain the 𝑅 matrix and 

�̂� matrix. 
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Step 4) The final step is to group the centres using the procedure in Section 4.2 and 

form a final network model using active centres.  

Step 5) Sample time 𝑘 = 𝑘 + 1, go to step 2. 

 

5 Simulations with network structure adaptation 

In this section, simulations have been done with the two nonlinear dynamic processes 

used in Section 3 to compare the computational cost and prediction performance of non-

adaptive and adaptive PS-RBF models. Firstly, the computation times of the existing 

adaptation algorithm and of the proposed algorithm are compared. Here the computation 

time is used to indicate the computing load of the algorithm. Secondly, the performance 

and model compactness of non-adaptive and adaptive PS-RBF networks are also 

compared using the two systems. 

 

5.1 Modelling the dryer 

This simulation example provides two comparisons. The first comparison is for the 

computational cost between improved and existing adaptation algorithms. And, the 

second comparison is for the performances of output prediction between the adaptive and 

non-adaptive PS-RBF networks. MATLAB R2009a on an Intel Core i3 laptop with 

Windows 7 system is used to carry out the simulation. In Section 3.1.1, it indicates that 

the PS-RBF network with 𝐻𝑝 = 15  has the best overall performance. Thus, it is 

employed in this example. 

The adaptive PS-RBF network is chosen to have 𝑁𝑦 = 1, 𝑁𝑢 = 1 and delay time 𝑑 =

2. A centre bank with 20 centres is initially formed. In this simulation, 𝜀 is selected as 0.1. 

𝑁𝑐 and 𝛽  are chosen as 50 and 4, respectively. The computation time and modelling 

performances are recorded in Table 4. It demonstrates that the computation time of the 

improved adaptation algorithm is relatively less than the existing adaptation algorithm in 

[16] while retaining its modelling performance. 

At the same time, the performance of the non-adaptive PS-RBF network (𝐻𝑝 = 15) in 

Table 1 is used for comparison purpose. In order to compare the performances of 
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adaptive and non-adaptive networks, the identical 500 validation data in Section 3.1.1 is 

used for this simulation. From Table 1, the MAE values of PS-RBF network (with 20 

centres) with 𝐻𝑝 = 15 in validation data is 0.10421. The compared results show that the 

proposed adaptive PS-RBF network, as shown in Fig. 6 and Table 4, outperforms the 

non-adaptive PS-RBF network using a more compact network structure. In Table 4, the 

CPU time shown is for all the 500 samples calculated with the Matlab codes. If C code is 

used the time used would be greatly reduced to probably 1/10 of original time or less. 

Thus, the benefit of adopting the structure adaptation algorithm is that it enables PS-RBF 

network to employ a compact network structure without degrading the modelling 

performance. 

Table 4 Performance comparison between different adaption algorithms for dryer data 

Adaptation Algorithm 
Number of 

centres 
CPU time (s) 

Validation 

data MAE 

Algorithm in [16] 13 40.774462 0.061487 

Improved algorithm 13 36.978412 0.061793 
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Fig. 6 Performance of adaptive PS-RBF model (𝐻𝑝 = 15) in validation data of dryer 

 

5.2 A numerical example 

Consider a nonlinear dynamic system to be modelled which is described in [20, 21], 

 𝑦(𝑘 + 1) =
𝑦(𝑘)𝑦(𝑘 + 1)(𝑦(𝑘) + 2.5)

1 + 𝑦(𝑘)2 + 𝑦(𝑘 − 1)2
+ 𝑢(𝑘) ( 24) 

where 𝑢 and 𝑦 are the system input and output, respectively. The initial conditions are 

𝑦(1) = 0 and 𝑦(2) = 0. The 500 inputs data are generated by a unit value addition to 

random values superimposed by a constant value 0.2. The prediction horizon 𝐻𝑝 = 15 is 

selected. The model output and input orders of adaptive PS-RBF network model are 

𝑁𝑦 = 1 and 𝑁𝑢 = 1, respectively. Other parameters are 𝜀 = 0.2, 𝑁𝑐 = 50 and 𝛽 = 3. An 

initial centre bank with 40 centres is formed. The performances of both non-adaptive and 

proposed adaptive PS-RBF network models are compared. The parameters and modelling 

performances of both networks are listed in Table 5. The performance of proposed 

adaptive PS-RBF network model is displayed in Fig. 7. With the proposed adaptive 
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structure, the adaptive PS-RBF model manages to achieve similar performances with a 

more compact network structure as shown in Table 5. 

 
Fig.7 Performance of proposed adaptive PS-RBF model 

Table 5 Performance of non-adaptive and adaptive PS RBF networks 

Adaptive PS RBF Network Non-adaptive Adaptive 

Number of centres 60 17 

MAE 0.010105 0.010236 

 

6 Conclusions 

In this paper, a 𝑝-step ahead prediction model is developed for nonlinear dynamic 

systems and implemented with RBF network. The proposed model is adapted for both 

structure and parameters with the ROLS algorithm. The model is especially useful to be 

used as the internal model in the model predictive control framework for nonlinear 

dynamic systems. Compared with the existing PSC model for modelling two nonlinear 

dynamic systems, it is demonstrated by simulations that the developed model 
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outperforms the PSC network model in terms of output prediction performance and 

model compactness. These two features make the developed model more suitable to be 

used in the model predictive control. 

Furthermore, the structure adaptation using the ROLS algorithm is improved by 

restructuring the algorithm for decomposition of the augmented R matrix, so that the 

computing time is significantly reduced. Then, the algorithm is used to adapt both 

structure and parameters of the developed model. This further enhances the effectiveness 

of the developed model with less computing time and more compact model. Simulation 

results of the two application examples confirmed these improvements. 
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