
Kendrick, P, Baker, T, Maamar, Z, Hussain, A, Buyya, R and Al-Jumeily, D

 An Efficient Multi-Cloud Service Composition Using A Distributed Multiagent-
based, Memory-driven Approach

http://researchonline.ljmu.ac.uk/id/eprint/9703/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Kendrick, P, Baker, T, Maamar, Z, Hussain, A, Buyya, R and Al-Jumeily, D 
(2018) An Efficient Multi-Cloud Service Composition Using A Distributed 
Multiagent-based, Memory-driven Approach. IEEE Transactions on 
Sustainable Computing. ISSN 2377-3782 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 1

An Efficient Multi-Cloud Service Composition
Using a Distributed Multiagent-based,

Memory-driven Approach
Philip Kendrick, Thar Baker, Member, IEEE, Zakaria Maamar, Abir Hussain, Member, IEEE,

Rajkummar Buyya, Fellow Member, IEEE, and Dhiya Al-Jumeily, Senior Member, IEEE,

Abstract—Cloud services are often distributed across several data centers requiring new scalable approaches to efficiently perform
searching to reduce the energy and price cost of fulfilling requests. Multiagent-based systems have arisen as a powerful technique for
improving distributed processing on a wide scale, which can operate in environments where partial observability is the norm and the
cost of prolonged search can be exponential. In this paper, we present a multiagent-based service composition approach, using
agent-matchmakers and agent-representatives, for the efficient retrieval of distributed services and propagation of information within
the agent network to reduce the amount of brute-force search. Our extensive simulation results indicate that by introducing localised
agent-based memory searches, the amount of actions (with their associated energy costs) can be reduced by over 50% which results
in a lower energy cost per composition request.

Index Terms—Cloud data centers, Energy efficiency, Service composition, Memory-driven solution, Multiagent simulation.

F

1 INTRODUCTION

IN a short period of time, the use of cloud computing to
benefit from features like elastic and pay-per-use resources

(whether software, platform, or infrastructure) has dramati-
cally increased. For instance, this use has generated £35 bil-
lion revenues in Europe by end of 2014 [1]. Elasticity permits
to scale up/down resources according to changing users’
(more/less) demands. Pay-per-use allows organizations to
cut down operation costs by using resources whenever
there is a need (like car rental). Along with these 2 fea-
tures, cloud advocates regularly convey the message that
cloud resources from one particular provider are sufficient
for satisfying a user’s demands. Unfortunately, this is not
always the case; first, users do not like to be locked into
one particular cloud provider1; and second, users’ demands
are more and more complex requiring the collaboration of
several independent cloud providers [3], [4].

• Philip Kendrick, Thar Baker, Abir Hussain and Dhiya Al-Jumeily are in
the Faculty of Engineering and Technology, Department of Computer
Science, Liverpool John Moores University, Liverpool, UK.
E-mail:p.g.kendrick@2012.ljmu.ac.uk, {t.baker, a.hussain,
d.aljumeily}@ljmu.ac.uk

• Zakaria Maamar in the College of Technological Innovation, Zayed Uni-
versity, Dubai, UAE.
E-mail: zakaria.maamar@zu.ac.ae

• Rajkummar Buyya is Director, Cloud Computing and Distributed Sys-
tems (CLOUDS) Lab, The University of Melbourne, Australia.
E-mail:rbuyya@unimelb.edu.au

Corresponding author: Thar Baker (https://sites.google.com/site/tharmbaker/).
1. According to a Logicworks survey by Wakefield Research, “78% of

IT decision makers believe that concerns about vendor lock-in prevent-
ing their organisation from maximising the benefits of cloud resources.
This means that the majority of IT leaders consciously choose not to
fully invest in cloud, because they value long-term vendor flexibility
over long-term cloud success” [2].

Also, Buyya et al. [5], [6] discuss the difficulty that
the cloud application service (Software-as-a-Service, SaaS)
providers encounter to meet the Quality of Service (QoS)
for all their customers, due to the fact that no single cloud
provider is able to establish their data centers at all possible
locations across the whole world. Hence, the use of services
of multiple cloud service providers is deemed necessary as,
together, they can provide better support for their specific
consumer needs.

There is a consensus in the ICT community that any open
environment like the Internet, requires a central authority
that would, among other things, oversee all operations
and guarantee fairness to all contributing parties. In our
proposed multi-cloud environment, we refer to the central
authority as matchmaker whose main role is to bridge the
gap between cloud users and cloud providers despite their
conflicting interests. Indeed, cloud users aim at minimizing
expenditures along with securing high-quality services2;
and, cloud providers aim at maximizing revenues along
with consuming less energy that would be due to data
processing, storage, and transfer between facilities (aka data
centers) hosting cloud resources. Being energy efficient
(aka green), in compliance with different regulations, has
become of a paramount importance to all cloud stakehold-
ers. The 2011 report of PBL Netherlands Environmental
Assessment Agency and JRC European Commission [7]
insist on reducing energy consumption in order to decrease
CO2 emission volume by 15-30% before 2020 [8]. In this
paper, we examine how to achieve an energy efficient multi-
cloud service collaboration. We advocate for software agents
as potential candidates for running this collaboration. They

2. Services wrap resources in compliance with Software-as-a-Service,
Platform-as-a-Service, and Infrastructure-as-a-Service.



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 2

will (i) act on behalf of all stakeholders so their anonymity
is maintained, (ii) be proactive when they respond to certain
events like sudden increase in energy consumption, (iii) co-
ordinate their activities with other peers, and (iv) memorize
past behaviours and act accordingly.

A quick literature review reveals that existing service
composition practices over the clouds overlook the energy
aspect. This management is directly dependent on the lo-
cations and size of cloud data centers [9] along with the
volume of data that needs exchange increasing network
traffic. Some statistics indicate that cloud use increased from
$16 billion in 2008 to $42 billion in 2012, and more rapidly
thereafter [10]. This rapid growth in services over clouds
(referred to as cloud services in the rest of this paper)
has generated £35 billion revenues just in Europe by end
of 2014 [1]. This paper presents and evaluates an energy-
conscious, distributed multi-agent based approach for com-
posing cloud services. Agents are potential candidates for
tackling the challenges of this composition. First, agents
would act on behalf of composition’s stakeholders by en-
suring their anonymity. Second, agents would be proactive
by taking preventive actions in response to certain events
like sudden increase in energy consumption.

Our contributions are manifold including: (i) a novel
multi-agent approach to performing Web services compo-
sition, (ii) a relaxable approach to fulfilling compositions
based on the user’s requirements of either an energy effi-
cient or cost efficient search, and (iii) to reduce the number
of energy footprint of performing Web service compositions
by up to 50% through our agent-based memory-driven
approach. Our agents can communicate with each other
providing a memory-driven approach in which each agent
is aware about its surrounding and the energy activities with
the data centers.

The rest of the paper is organized as follows. Section 2
discusses related works on agents and service computing
in brief. Section 3 presents the problem addressed along
with the formal definition of service composition problem.
Section 4 explains the model of processing Web service com-
position problem using intermediate agents, and introduces
the proposed algorithms and a case study to illustrate the
multiagent-based approach. Section 5 describes the imple-
mented simulator, followed by the testing and evaluation of
energy efficiency and price efficiency in Section 6. Finally,
Section 7 concludes the paper and draws up some future
work.

2 AGENTS AND SERVICES: A BRIEF OVERVIEW

Blending agent computing with service computing (with
focus on Web services) has been around for many years
as per the large number of scientific events that took place
(e.g., ESAS20143, ICWS20144, IEEE/WIC/ACM ICWI5,
IEEE/WIC/ACM‘WIIAT6, and ICEBE20177), some self-
organized international venues such as Agent-Based Service

3. https : //www.computer.org/web/compsac/2014/esas
4. https : //www.ieee.org/conferencesevents/conferences/conf

erencedetails/index.html?ConfID = 33102
5. https : //grid.cs.gsu.edu/wic2013/wi
6. https : //www.ieee.org/conferencesevents/conferences/conf

erencedetails/index.html?ConfID = 34076
7. http : //conferences.computer.org/icebe/

Oriented Computing8, and Extent Web services technolo-
gies: the use of multi-agent approaches9, and some other
references [11]–[14]. Agents help address different issues
such as how to agentify Web services, how to inject seman-
tics into Web services, how to build robust Web services,
how to develop communities of Web services, just to cite
some. However, to the best of our knowledge, there are
not serious efforts into addressing energy consumption in
a multiple cloud-based service composition environment.
Although competition is always healthy, multiple clouds
would require criteria to select the best scheduling for
optimized involvement, to address their (semantic) conflicts,
to ensure their coordination, etc. All these criteria will have
an impact on energy consumption.

Gutierrez-Garcia et al. [15], [16] propose a Multi-Agent
System (MAS) for service composition in cloud computing.
This composition is augmented in 2 orientation horizontal
composition where integration of heterogeneous services
(e.g., storage and compute) that satisfy a user request
are scattered across several clouds; or vertical composition
where homogenous services/resources are put together to
expand the capacity of a given cloud node rather than satis-
fying an external request (e.g., augmenting storage capacity
by adding new storage data centers [17]).

Parhi et al. [18], [19] use software reputation agents
to analyze the popularity of Web services and rank them
accordingly using user feedback and statistical information.
In this case, the behavior of individual users is tracked and
analyzed with focus on Web services’ QoS properties. The
model aims at reducing the amount of search for a service
composition over the network of multiple clouds using a
number of specialized agents.

Cloud service negotiation mechanisms and strategies, to
establish Service Level Agreements (SLAs) among the cloud
stakeholders (i.e., consumers, brokers, and providers) for
service composition are discussed in [20]–[23] using MASs.
However, the proposed multiagent-based negotiation mech-
anisms do not allow the clients/consumers to break the
contract, once set, if the service does not satisfy the con-
sumer needs. Contrarily, a multiagent-based cloud com-
merce model [24], [25] devises a complex negotiation mech-
anism, along with its “parallel” negotiation activities among
the cloud stakeholders in interrelated cloud service markets,
that is breach-able by the consumers after paying a certain
penalty fee.

Cloudle [26]–[28] proposes a new architecture for cloud
service composition consisting of a discovery agent, a cloud
ontology, a cloud services database, and multi-crawlers for
cloud. Cloudle allows multi-crawlers/agents to update the
cloud services database, also build a new one in certain
cases (e.g., none of the pre-defined services in the database
satisfy the request), with the new services composition after
scanning/surveying all available services. If none of the
available services serves the requested composition, the
multi-crawlers traverse the Web components and extract
relevant services, in which case it will need to build a
new database for those services, which is deemed a time-
consuming process.

8. http : //www.springer.com/gp/book/9781849960403
9. http : //www.springer.com/gp/book/9780387233437



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 3

To sum up, there are many references on Web services
and software agents; however, to the best of our knowledge,
none has addressed the energy aspect of service composition
on the clouds.

3 PROBLEM STATEMENT

In a traditional cloud service request scenario, a user sends
a request to a service provider directly, or via a matchmaker,
stating the specifications of the requested service(s). The
provider should then find the appropriate service(s) that
satisfies the order from a set of available services. This
scenario becomes more complicated as the number of re-
quested cloud services increase alike. Currently, locating the
best-fit service that matches the user needs and the match-
maker’s aims is considered to be the most challenging task
in multi-cloud environment due to many reasons ranging
from (i) users’ requirements (e.g., high performance service
with less payment), (ii) providers’ requirements (e.g., more
income with less expenditure) to (iii) environmental require-
ments (e.g., less energy consumption and carbon emission).
The current state-of-the-art solutions focus primarily on
users’ requirements and providers’ requirements, as de-
tailed in Section 2, whereas the primary aim of this paper is
to propose and evaluate a high-end energy efficient service
composition approach to address the overall amount of
energy required by the appropriate composite services. In
addition, Web Service Composition Problems (WSCP) over
the clouds are often treated as classical search problems [29]
with little attention given to the overhead of communicat-
ing over a network to perform service searching (refer to
Definition 1).

In this paper, we identify the main actions that
contribute to the overall energy cost of addressing WSCP:
(1) sending and receiving information over a network,
(2) brute-force searching cloud data center for matching
Web services, and (3) cataloguing information about Web
service locations in a central repository. We propose a
distributed multiagent approach to addressing WSCP by
reducing the amount of information sent over the network,
using agent-based memory-driven approach to reduce the
amount of service-location re-processing that must occur
overtime and distributing the knowledge of services across
several agents.

Definition 1. The service composition problem over the
clouds is defined as finding a subset of services that can
fulfil some request:

• Let q ∈ Q represents the composition request defined
as a tuple 〈u, {i}, {o}, {p}〉 where u is the user’s
identity, i is a set of input information to be pro-
cessed, o is a set of expected output information, and
p is a set of user-preferences/restrictions governing
how the data should be handled (e.g., users may
specify that the data should not be processed out of
some specified region).

• Let S represents the set of services in a cloud data
center (sC ).

• The composition problem is to find a subset of ser-
vices located across multiple cloud data centers to
fulfil the request, such that: ∀q ∈ Q|∃s ∈ sC .

4 MODEL DEFINITION

The proposed model facilitates the processing of WSCP
requests by using two intermediate agents (Definition 2):
(1) the matchmaker that works on behalf of the user to
process requests, and (2) the cloud representative that works
on behalf of the cloud data center to make meta-information
available to the matchmaker (e.g., cost of services, energy
efficiency and availability). Together, the matchmaker and
representatives fulfil composite cloud requests that may
only be fulfilled by finding services located in different
cloud data centers (refer to Fig.1).

Proposals. The concept of a request proposal is introduced
as a container for information that is passed between the
matchmaker and representatives using a memory-driven
approach. The output of the agent-representatives search of
the cloud data center for suitable services is for zero-or-more
proposals containing groups of services that can be used to
transform the input data in some way. Incomplete proposals
(i.e., a group of services that only partially transform the in-
formation) may be made complete by combining proposals
or services located in other cloud data centers.

Regions. Regions are included within the model and the
computational cost of interacting with entities far away. Any
agent-matchmaker or agent-representative and cloud data
centers that are based within the same area (defined man-
ually or automatically based on relative network latency)
are grouped as being within the same region and prioritized
during the service composition search. Under circumstances
where a user request cannot be complete within a particular
region, we define a set of functions that allow matchmakers
to transfer the user request and representative proposals to
matchmakers in other regions for completion. To facilitate
this, we assume the existence of an agent repository storing
information about agent-matchmaker locations so that they
may be contacted. Following the transfer of the request or
proposal, the process of searching for services to fulfil the
request is functionally similar to that previously described
in Algorithm 1 and Algorithm 2 (shown in Section 4.1
below). The purpose of geographical boundaries is to allow
agents to build a historical database H of data centers that
it can work with to encourage local optimization and to
reduce the volume of requests that need to be outsourced
to previously unused data centers.

Routes. In addition to considering the global distance
between cloud data centers, agent-matchmakers and agent-
representatives also consider the network routes available
between each other. We assume the existence of many
network routes available between users and matchmakers,
matchmakers and representatives and representatives and
cloud data centers. As agents make communications to other
entities they also monitor the efficiency of the routes used
to locally prioritize faster routes and responsive agents.
Furthermore, we consider that routes are dynamic and so
propose an update model that allows agents to periodically
outside of normal operations traverse and measure the
effectiveness of the route in terms of latency. In addition, as
agents will be communicating and requesting information
stored locally or available through other agents, we consider
our solution a memory-driven approach.



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 4

Cloud 
datacenter 1

Cloud 
datacenter 2

Cloud 
datacenter n

User 1

User 2

User k

ProvisionInteractionComposition

User Agent-matchmaker Agent-representative Cloud datacenter

Legend:

Interaction

Figure 1
High-level overview of the agent-matchmaker and agent-representatives interactions for finding services located in
different cloud data centers using previously identified information and remembered in the agents memory.

4.1 Proposed Algorithms
Algorithm 1 and Algorithm 2 describe the functions of the
agent-matchmaker and agent-representative, respectively.

Definition 2. The proposed agent model is composed of four
main entities to facilitate the handling and searching of
service subsets to fulfil a composite cloud request.

• Let U represents the set of users that make requests.
• Let M represents the set of agent-matchmakers that

receive the initial request from a user u ∈ U .
Note that several users may use the same agent-
matchmaker.

• Let C represents the set of cloud data centers con-
taining services.

• Let R represents the set of agent-representatives be-
longing to an individual cloud data center (Cr) that
process requests from a matchmaker (m ∈M ).

Algorithm 1 lists the agent-matchmaker functions whose
role is to interface with the user and cloud representa-
tives. Matchmakers are geographically fixed agents within
a region that receive requests 〈u, {i}, {o}, {p}〉 from users
where u is the users identity, {i} is a set of input information
to be processed, {o} is a set of expected output information
and {p} is a set of user preferences for how {i} should be
processed. Following the submission of a new request, the
matchmaker first checks whether a “similar” request has
been processed in the past by checking whether it exists in a
log of past composition requests. H containing information
about the location of services that can transform {i} to

{o}. The current events are dynamically appended to the
historical log H after each successful composition request
has been fulfilled to increase the speed at which services
are located over time. If the request cannot be fulfilled by
knowledge from H , a search of data centers within the
agent’s local region begins. Several pieces of information
are combined to decide the order in which data centers
are searched for composite services. Firstly, a geographical
region is defined for each matchmaker containing all of the
available data centers and representative agents that can be
contacted. For data centers within this region, two pieces of
information are used:

1) infodc containing meta-data about the data center’s
services (e.g., service cost and energy efficiency). This
information is periodically sent from the representative
agent to the matchmaker during off-peak times.

2) inforoute contains information (e.g., congestion and
latency) about possible physical routes that can be taken
between the matchmaker and the representative agent.
Using this information in conjunction with any user
preferences (e.g., to prioritize service speed over cost),
the matchmaker decides the order in which data center
representatives are contacted.

Algorithm 2 lists the cloud representative functions
whose role is to search for the data center that it has been
assigned to. Upon receipt of a request from a matchmaker
〈m, {i}, {o}〉 where m is the matchmaker’s identity, {i} is
a set of input information to be processed, {o} is a set of
expected output information, the representative performs a
recursive search of the data center by finding any services



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 5

Algorithm 1 Agent Matchmaker Functions

Require:
〈u, {i}, {o}, {p}〉 ∈ q a request from user u where {i} is a set of input information, {o} is a set of expected output
information and {p} is a set of user preferences for how the request should be processed.
Clocal ← Clocal ⊆ C a set of cloud data centers in the agents region (i.e., state, country or continent).

Define:
H is a database of past composition requests and how they were fulfilled.
inforoute ← ∅ ordered information about the possible routes and their efficiency to the agent representatives (R) and
data centers (Clocal).
infodc ← ∅ ordered information about the data centers (e.g., energy efficiency, average cost).
infostate ← ∅ . Information obtained from agent representatives
resp← ∅ the service composition response from SearchDatacenter({i}, {o}).

1: for 〈u, {i}, {o}, {p}〉 ∈ qu do
2: if q ⊆ H then . If components of the request have been processed in the past, use that knowledge to directly

contact the correct cloud data center.
3: PollRepresentatives({i}, {o}, H)
4: else
5: PollRepresentatives({i}, {o}, ∅)
6: end if
7: end for

8: procedure POLLREPRESENTATIVES({i}, {o}, {p}, H) . Contact a representative to search for services matching the
input and output information.

9: for 〈{i}, {o}〉 ∈ q do . Begin recursive search of data centers for matching and missing services.
10: infostate ← C.ShareState
11: if p = cost saving then . Prioritise searching cheaper data centers.
12: for cost ∈ infodc do
13: resp← SearchDatacenter({i}, {o}) . Will return either a complete service composition, partial service

composition or null.
14: end for
15: else if p = efficiency then . Prioritise searching faster closer data centers.
16: for route ∈ inforoute do
17: resp← SearchDatacenter({i}, {o})
18: end for
19: else if p = region specific then . Search for services in a specific region.
20: for {C | C = region} do
21: resp← SearchDatacenter({i}, {o})
22: end for
23: else if p = offpeak then . Search for services that are currently within the offpeak time.
24: if {C | C.offpeak ∈ infostate} then
25: resp← SearchDatacenter({i}, {o})
26: end if
27: end if
28: end for . End once service composition is complete or searching is exhausted.
29: H ← resp . Update the log with the service location.
30: return resp . Return response to user.
31: end procedure

that match {i} or {o} as the respective inputs or outputs.
In the case where a request can be fulfilled by a single
service, the information is processed and returned to the
matchmaker. However, if the request is composite, the rep-
resentative will recursively search for services that can be
linked together to transform the input data {i} into the
output {o}. The outcome of the process is to either find
a subset of services that can fulfil the request or produce
proposals that can transform the input data in some way, but
not fully produce the output. Partially complete proposals

that are returned to the matchmaker may be fulfilled by
performing the same searching process at different data
centers. Under circumstances where the matchmaker has the
option to choose from several proposals that can fulfil the
user request, the user preference and meta-data about the
cost and energy efficiency are used to decide which service
composition should be used.



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 6

Algorithm 2 Agent Representative Functions

Require:
〈m, {i}, {o}〉 ∈ q a request from matchmaker m where {i} is a set of input information and {o} is a set of expected
output information.

Define:
C is a set of cloud data centers.
c′ ∈ C the identity of the cloud data center the representative is assigned to.
S the set of services in c′.
H ← ∅ a log of past composition requests and how they were fulfilled.
Clocal ← C ⊆ C . The subset of cloud data centers in the agents local region (i.e., state, country or continent).
inforoute ← ∅ ordered information about the possible routes and their efficiency to the agent-matchmaker (m) and
data centers (Clocal).
infodc ← ∅ ordered information about the data centers (e.g., energy efficiency and cost).

1: procedure SEARCHDATACENTER({i}, {o}) . Process incoming requests from matchmakers to search the data center
for matching services.

2: for s ∈ S do . Recursively find services with matching input or outputs.
3: if sc′ ∈ S = {i} ∨ sc′ ∈ S = {o} then
4: S′ ← sc′ . Add any services that can work with the requested information to S′.
5: end if
6: end for
7: if ∃({i} ∈ S′ ∧ {o} ∈ S′) then . Return the services if the request can be completed in full.
8: return S’
9: else if inforoute >= route ∈ infodc then . If it’s faster to contact other representatives directly than send data to

the matchmaker.
10: SearchDatacenter({i} ∈ S′, {o} ∈ S′) . Find missing the missing services.
11: else
12: return S’ . Return the incomplete request to the matchmaker.
13: end if
14: end procedure

15: procedure SHARESTATE() . Process incoming requests from matchmakers to share information.
16: infostate ← ∅ . Empty set of information to share with the matchmaker
17: δ ← current time
18: offpeak ← current offpeak time range

19: if δ ∈ offpeak then
20: infostate ← 〈isOffpeak, true〉
21: end if

return infostate
22: end procedure

4.2 Case Study

To illustrate the agent-based model, a simulation using
WSDL-defined services (Table 1) from the ICEBE05 dataset
[30] was performed. ICEBE05 Web service datasets are
originally auto-generated from software by the ICEBE05
organisation. It has been publicly available by Web service
research community to solicit algorithms and software to
discover pertinent Web services and compose them to make
value-added functionality. Within the dataset composition
services are represented by the input and output data used
to transform the input information into the output result.

The type of data is abstracted using unique 11-digit
codes (e.g., [P37a4226984]) representing that information
(refer to Table 1). Figure 2 shows a snapshot of the simu-
lated environment with three users (namely: User-0, User-
1, and User-2) making composition requests, the process
of which is described as follows: the simulation begins

with a user (User-1) submitting a request to transform the
input data [P37a4226984, P79a7296189] to the output data
[P90a6939861]. This request is sent to an agent matchmaker
(Matchmaker-1) which, using previously described perfor-
mance metrics, selects a cloud representative to search first
(Rep-3). The cloud representative, which is responsible for
searching the cloud data center (Center-3), either identifies
services which can be used to fulfil the request or commu-
nicates that no services satisfying the users requirements.
In this example, three services, 16, 100, and 141 (refer to
Table 1), were identified as being able to contribute to the
user’s request. While the identified services cannot complete
the user’s request directly, they can be used to partially
transform the data and with the use of additional services,
complete the request. Services 141 and 16 were returned
as a partial proposal and service 100 was returned as a
separate proposal. Details of the three services are then



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 7

Table 1
WSDL Services consisting of input and output information (abstracted using a unique 11-digit code) where input data is
required to run the service and output data is produced as a result of running the service.

Service No. Input Data Ouput Data Location

141 [P79a7296189, P37a4226984] [P93a0686486, P11a9459124, P22a4008387] data center 2

16 [P11a9459124, P93a0686486, P22a4008387] [P62a7398547, P90a6939861, P71a7297795] data center 2

100 [P22a4008387, P11a9459124] [P90a6939861] data center 2

76 [P37a4226984, P79a7296189] [P11a9459124, P22a4008387] data center 4

96 [P37a4226984, P79a7296189] [P22a4008387, P11a9459124] data center 4

Figure 2
The simulated cloud environment containing users, agent-
matchmakers, agent-representatives and cloud data centers.

sent back to the agent matchmaker (Matchmaker-1) who
contacts other representatives (Rep-1 and Rep-2) to search
for composite services that can transform the data further.
Services 76 and 96, found at a different data center (Rep-
2), where found to be able to be combined with service 100
to produce the required data transformation and were both
returned as proposals to the matchmaker. As new proposals
are submitted to the matchmaker, it can select the best
possible composition to fulfil the users requests based on
their requirements. The matchmaker can, therefore, select
the most efficient service to be used to process the data.

5 SIMULATION ENVIRONMENT

In this section, a discussion about the implementation of
the proposed simulator, including how the model entities
(e.g., agents and cloud data centers) are simulated, as well
as an explanation of the underlying variables is provided. A
new simulator was required to fully take advantage of the
multiagent-based architecture and to allow measurements
of individual actions taken by each agent. The simulated

Table 2
Agent and environment variables.

Variable Value

No. Routes 3

No. Regions 3

No. Data centers 5

No. Users 3

No. Users Per Matchmaker 2

Request Size 5

environment holds three dynamic entities: users, agent-
matchmakers and agent-representatives. The cloud data
center is treated as a static entity that may be queried by
the agent representative to find corresponding Web services
that match a request. Cloud services are extracted from the
ICEBE05 dataset [30] and distributed randomly between the
available cloud data centers. Cloud requests are made by
the user to the agent-matchmaker for fulfilment.

Within the simulated environment, a number of vari-
ables control the number of entities and complexity of
the WSCP. Table 2 lists several parameters, of which, No.
Routes and No. Regions controls the operating landscape by
defining the number of possible routes between the user
and agent-matchmaker as well as the number of routes
between the agent-matchmaker and agent-representative.
Each cloud data center belongs to a particular region which
simulates the geographical distance between clusters of
cloud data centers. The variables No. Users and No. Users
Per Matchmaker simulate the number of users that can make
requests and the number of users that are assigned to a
particular matchmaker. In this paper, we focus on one user
that submits requests to evaluate the effectiveness of the
architecture and leave discussion of request parallelism for
future work. Finally, the variable Request Size controls the
number of services required to transform the request input
into the desired output.

The aforementioned simulated environment can be
viewed graphically as a set of nodes representing the entities
and edges representing the propagation of information and
user requests (Fig. 2 showing the interaction of 3 users, 2
matchmaking agents and 5 representatives).



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 8

Figure 3
Five simulation evaluations showing the baseline exhaustive search and improved agent algorithms.

Figure 4
An evaluation of 20,000 users interacting with the baseline and proposed agent-based system.

6 PERFORMANCE EVALUATION

To evaluate the proposed model the ICEBE05 dataset [30]
was used to search for solutions to randomly generated
WSCPs. Composition services were randomly generated by
finding series of Web services that when ordered, would
transform some initial input data into the requested output
data. The complexity of the WSCPs are controlled by the
number of services available that can fulfil the request as
well as the length of the problem.

The baseline algorithm for searching services to fulfil the
WSCP uses an exhaustive search of the environment, and is
computationally similar to algorithms that do not make use
of the proposed additional features. The baseline algorithm

performs a randomised search of the available cloud data
centers for the desired composition of services and repre-
sents how search would be performed without the memory
of past composition requests and information about the
likely location of composition parts. The evaluation metric
is Number of Actions, which is a counter of actions performed
such as sending and receiving requests and searching cloud
data centers for matching services. Of the available actions
that increment this metric, searching the cloud data center
for matching services increases the value the most as it
corresponds to the computation cost of iteratively searching
for information. In this way, exhaustively searching cloud
data centers for matching services is costly and is avoided



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 9

in the improved algorithm. The improved algorithm uses
agent memory of past searches to allow agents to find
whole or partial services compositions without having to
exhaustively search a cloud data center. The reduction in
the number of actions needed to fulfil a request results in a
less computationally expensive solution to the WSCP.

For the experimental setup, 5 iterations of 20 WSCPs
were created by the user and tested under the baseline
exhaustive algorithm and the improved memory-driven
approach. For each of the 5 iterations, a new randomly gen-
erated environment was created from the ICEBE05 service
files [30] and simulator parameters (Table 2). The number
of actions used to fulfil the 20 requests are shown in Fig. 3.
The number of actions needed to fulfil the request is largely
governed by the complexity of the randomly generated
WSCP, however, for each of the tested cases, the proposed
improved algorithm outperformed the baseline. The degree
of improvement made over the baseline is governed by
the relevance of previously processed requests, such that,
if the previously fulfilled requests contain services that can
be used for the current WSCP, then the improvement is
greater as the amount of exhaustive searching required is
reduced. Additionally, Fig. 4 shows the results of 20,000
users interacting with both the baseline and agent-based
systems (using 50 agent matchmakers and 30 data centers).
The results show a decrease in the average number of
actions and a decrease in the overall energy cost resulting
from the use of the agent approach. The trade-off in the
system is an increase price cost due to the use of preferential
web services to reduce the energy cost.

The benefit of using agent-based memory to distribute
the burden of processing WSCPs between agents results in
a less computationally expensive search of the environment.

6.1 Partial Observability
The proposed solution to solving WSCPs assumes the limi-
tation of partial observability, e.g., the location of all services
are not known at all times. Other works that use classical
graph planning solutions, such as [29], assume a higher
degree of observability and knowledge of the environment
which is unrealistic given the amount of services, cloud
data centers and the computational cost of maintaining the
knowledge. Our proposed solution finds a middle-ground
by logging information about complete WSCP solutions to
increase the search performance.

6.2 Energy Efficiency
In addition to making improvements over traditional ex-
haustive search algorithms, the proposed system makes use
of metrics such as service energy efficiency and the traversal
time of routes between communicating entities. Where mul-
tiple services from different cloud data centers can be used
to fulfil a request, the agents use the two aforementioned
metrics to decide which service should be used to fulfil the
request.

Figures 5 and 6 show the results of 50 composition
requests performed in succession with the same agent-
matchmaker. The baseline search algorithm (Fig. 5), does
not make use of the proposed agent functions and simply
searches the available cloud data centers for corresponding

services. Three variables are used in the analysis: (1) Search
actions represents the number computational actions per-
formed in the search for matching services (e.g., searching
the data center and sending network messages to and from
the agent representative). This feature is a general measure
of how much work is performed to complete the composi-
tion request with lower values representing a more efficient
search. (2) Energy cost represents the cost associated with
searching for services within the cloud center. Each service
has an associated energy cost which corresponds to the
computation cost of using the service. (3) Memory cost is
an agent-specific measure of the data remembered between
composition requests (i.e., the location of past successful
compositions). Over time the memory cost increases as more
information about the locations and meta-data regarding
statistics about the cloud data center are stored.

The benefit of having an agent-based memory function
rather than a central system is that agents can in effect
“specialise” their memory for a group local users that make
use of the agent’s services, for example, the agent may store
information unique to a set of user requests that may not
be useful for other user requests. In a central repository, all
information for all users would be processed to find the rel-
evant information, however, in a decentralised user-group
system such as this, the relevant information can be found
quicker as non-relevant information is stored elsewhere. For
the baseline search that does not utilize the agent memory
functions, this remains at a constant zero cost. The average
action cost for the baseline approach is 46584.3584 and
for the agent-based memory-driven approach is 24452.7752
making the agent system on average 52% more efficient.

In comparison to the baseline, the memory-driven agent
search incurs a memory cost but due to the off-line meta-
data gathering functions and memory of past compositions,
the cost of search overall is reduced. While the memory
cost is an additional burden on the agent-matchmaker, in
future work we aim to consider ways to distribute this
cost between the users so the burden of storing the data
is reduced.

Energy efficiency is an important factor to consider for
web services compositions, although many research papers
(See Table 3) often overlook it for more traditional evalua-
tion criteria such as the composition time or cost. However,
other approaches such as [37] focus on energy consumption
of the physical data centers’ infrastructure.

6.3 Price Efficiency

The simulator was expanded to consider the cost of obtain-
ing services from cloud data centers. Each data center loca-
tion has an associated timezone and several hours declared
as being off-peak, during which the cost of using the services
is reduced. The baseline and energy efficient algorithms do
not consider the price in their compositions while the cost
efficient algorithm, which functions similarly to the energy
efficient algorithm, however prioritizes cost over energy.
The off-line meta-data gathering function from the previous
section is used to build a timetable of cloud data centers that
are in their off-peak timezone and are given priority when
cost efficiency is required. Experiments have shown that
the energy efficient algorithm is on average more than 50%



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 10

Figure 5
Memory cost and action cost of the baseline search algorithm which uses no memory functions.

Figure 6
Memory cost and action cost of the proposed memory-driven agent-based search algorithm.

efficient in searching the cloud data centers compared to the
baseline (owing to the agent memory and efficiency prior-
itization), however, the cost efficient algorithm is typically
less efficient than the energy efficient approach, providing a
10-20% cost reduction, as shown in Fig.7. The prioritization
of these two features can be set by the user to reflect their
individual needs.

6.4 Model Vulnerabilities
While distributed agent-based systems offer improvements
over monolithic processing approaches, they necessarily
incur costs that can limit the effectiveness of the system.
The proposed model described in Section 4 relies on the use

of distributed agents capable of storing information about
past events. As a result, additional memory is required for
each agent to be able to store past events which adds an
additional cost and overhead to the system. This cost is
managed by only storing fully complete past events (i.e., no
partial or incomplete WSC proposals) to reduce the amount
of information stored. Furthermore, as with any distributed
agent-based approach, high availability is required to ensure
that processing can take place in real-time without delay.

The benefit of employing multiple agents rather than
handling all requests through a central system is the dis-
tribution of work that can be spread across the whole
network. Rather than having one location that may suffer



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 11

Table 3
Performance comparison of related works by approach.

Author Approach Evaluation
Criteria

Evaluation Result Considers Energy Efficiency

Zhang et al. [31] Genetic Algorithm Response Time,
Reliability, Cost

1060.8ms, 29.06%,
$1060.8

7

Huang et al. [32] Approximation Algorithm Run Time Cost 16-453ms depend-
ing on network
structure

7

Karimi et al. [33] Culture Genetic Algorithm Composition Time 450-500ms 7

Parhi et al. [34] Agent Ontological Approach Average Execu-
tion Time, Search
Efficiency

0.0006-0.0007ms,
55-60%

7

Akinwunmi et al. [35] Trust Based Round Trip Time 301ms 7

Wang et al. [36] NetMIP, WebCloudSim Resource
Consumption,
QoS optimality,
Computation
Time

2,453 bytes on
average, 1.0 on
average, 80ms

7

Wang et al. [37] Particle Swarm Optimization Algorithm Energy Consump-
tion

Saving 35% of
Energy of Active
Servers

X

Wang et al. [38] Skyline Component Computation Reliability, Time
Cost

Saving 35% of
Energy of Active
Servers

7

Figure 7
A comparison of the cost of using the baseline algorithm,
the agent-based energy efficient algorithm and the adapted
agent-based cost efficient algorithm.

from localised problems such as routing errors or loss of
power, the network of agents can provide a more available
and robust system to handle requests. The disadvantage
of this approach is that each agent is smaller in capacity
than any central system and as such cannot handle as many
concurrent requests. Within the simulator, multiple users
can interact with a single matchmaking agent to represent
concurrent compositions (see Fig. 2), however we leave a
discussion on the actual capacity of those agents to future
work in a live environment where the hardware capacity of
an agent can be studied.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a Multiagent architecture
for processing web service composition requests. Using a
combination of agent-matchmakers that process the requests
of the user and agent representatives that mediate commu-
nication between the matchmaker and cloud data center, our
Multiagent-based approach, driven by localised memory,
has shown to be an effective way to perform cost and energy
efficient search of the cloud network. Evaluated on the
ICEBE05 dataset, the agent-based memory-driven approach
of remembering successful past service compositions for
use in future events improved the action cost (a measure
of how much work must be done to fulfil the request) by
52% making the system as a whole an efficient way to fulfil
composition requests.

Further, as part of the future work, the proposed
multiagent-based approach will be put in practice on a real
world multi-clouds system in order to examine its viability
and applicability on such complex real scenarios.



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 12

REFERENCES

[1] T. A. Luxembourg, “Vat aspects of cloud computing in luxem-
bourg,” 07 2013.

[2] Logicworks, “Vendor lock-in is big roadblock
to cloud success, survey finds,” December 2017,
http://www.logicworks.com/blog/2016/08/vendor-lock-in-
is-big-roadblock-to-cloud-success-survey-finds/.

[3] B. Aldawsari, T. Baker, and D. England, “Towards a holistic
brokerage system for multi-cloud environment,” in 10th IEEE In-
ternational Conference on Internet Technology and Secured Transactions
(ICITST), pp. 249–255, IEEE, 2015.

[4] T. Baker, B. Al-Dawsari, H. Tawfik, and Y. Ngoko, “Greedi: An
energy efficient routing algorithm for big data on cloud,” Ad Hok
Networks, vol. 35, pp. 83–96, December 2015.

[5] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-
oriented federation of cloud computing environments for scal-
ing of application services,” International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP 2010), vol. 6081,
no. Lecture Notes in Computer Science, pp. 13–31, 2010.

[6] A. N. Toosi, R. O. Sinnott, and R. Buyya, “Resource provision-
ing for data-intensive applications with deadline constraints on
hybrid clouds using aneka,” Future Generation Compter Systems,
vol. 79, no. 2, pp. 765–775, 2018.

[7] J. G. Olivier, G. Janssens-Maenhou, M. Muntean, and J. Peters.,
“Trend in global co2 emissions: Pbl netherlands environmental
assessment agency and jrc european commission report,” 2016.

[8] C. Jiang, Y. Wang, D. Ou, B. Luo, and W. Shi, “Energy proportional
servers: Where are we in 2016?,” in in Proceedings of the 37th IEEE
International Conference on Distributed Computing Systems (ICDCS),
vol. Applications/Experience Track, 2017.

[9] W. Shi and T. F. Wenisch, “Energy-efficient data centers,” IEEE
Internet Computing, vol. 21, no. 4, 2017.

[10] E. Gleeson, “Computing industry set for a shocking change,” 07
2013.

[11] R. Liu, F. Chen, H. Yang, W. Chu, and Y.-B. Lai, “Agent-based web
services evolution for pervasive computing,” in 11th IEEE Asia-
Pacific Software Engineering Conference, IEEE, 2004.

[12] G. Zou, Y. Xiang, Y. Gan, D. Wang, and Z. Liu, “An agent-based
web service selection and ranking framework with qos,” in 2nd
IEEE International Conference on Computer Science and Information
Technology (ICCSIT 2009), IEEE, 2009.

[13] O. Kwona, G. m, and K. Lee, “An agent-based web service
approach for supply chain collaboration,” Scientia Iranica, vol. 18,
no. 6, pp. 1545–1552, 2011.

[14] J. Bentahar, Z. Maamar, W. Wan, D. Benslimane, P. Thiran, and
S. Subramanian, “Agent-based communities of web services: an
argumentation-driven approach,” Service Oriented Computing and
Applications, vol. 2, no. 4, pp. 219–238, 2008.

[15] J. Gutierrez-Garcia and K. Sim, “Agent-based cloud workflow
execution,” Integrated Computer-Aided Engineering, vol. 19, no. 1,
pp. 39–56, 2012.

[16] J. Gutierrez-Garcia, F. Ramos-Corchado, and J. Koning, “An
obligation-based framework for web service composition via
agent conversations,” An International Journal Web Intelligence and
Agent Systems, vol. 10, no. 2, pp. 135–150, 2012.

[17] J. O. Gutierrez-Garcia and K. M. Sim, “Agent-based cloud service
composition,” Applied Intelligence, vol. 38, no. 3, 2013.

[18] M. Parhi, B. Pattanayak, and M. Patra, Intelligent Computing,
Communication and Devices, vol. 308, ch. A Multi-agent-Based
Framework for Cloud Service Description and Discovery Using
Ontology A Multi-agent-Based Framework for Cloud Service De-
scription and Discovery Using Ontology, pp. 337–348. 01 2015.

[19] M. Parhi and B. K. Pattanayak, “A multi-agent-based framework
for cloud service description and discovery using ontology,”
ARPN Journal of Engineering and Applied Sciences, vol. 9, no. 4,
pp. 542–553, 2014.

[20] K. M. Sim and B. Shi, “Concurrent negotiation and coordination
for grid resource coallocation,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 40, no. 2, pp. 753–766, 2010.

[21] K. M. Sim, “Grid resource negotiation: Survey and new direc-
tions,” IEEE Transactions on Systems, Man and Cybernetics, vol. 40,
no. 3, pp. 245–257, 2010.

[22] K. M. Sim, “Evolving fuzzy rules for relaxed-criteria negotia-
tion,” IEEE Transactions on Systems, Man and Cybernetics, vol. 38,
no. 6, pp. 1486–1500, 2008.

[23] D. Yoo and K. M. Sim, “A multilateral negotiation model for cloud
service market,” in Proceeding of Grid and Distributed Computing,
Control and Automation. Communications in Computer and Informa-
tion Science, vol. 121, (Berlin, Heidelberg), pp. 54–63, Springer,
2010.

[24] K. M. Sim, “Towards complex negotiation for cloud economy,” in
Proceeding of the International Conference on Advances in Grid and
Pervasive Computing (GPC ’10), 2010.

[25] A. More, S. Vij, and D. Mukhopadhyay, “Agent based negotiation
using cloud – an approach in e-commerce,” in ICT and Critical
Infrastructure: Proceedings of the 48th Annual Convention of Computer
Society of India, vol. 248, 2014.

[26] J. Kang and K. M. Sim, “Cloudle: A multi-criteria cloud service
search engine,” in IEEE Asia-Pacific Services Computing Conference
(APSCC), IEEE Xplore, 2011.

[27] J. Kang and K. M. Sim, “Cloudle: An ontology-enhanced cloud
service search engine,” in Proceeding of First International Workshop
Cloud Information System Engineering, Collocated with 11th Interna-
tional Conference Web Information System Engineering, 2010.

[28] J. Kang and K. M. Sim, “loudle: An agent-based cloud search
engine that consults a cloud ontology,” in Proceeding of International
Conference Cloud Computing and Virtualization, pp. 312–318, 2010.

[29] S. C. Oh and S. R. T. Kumara, “Effective Web Services Composition
in Diverse and Large-Scale Services Networks,” Smrr, vol. 1, no. 1,
pp. 15–32, 2006.

[30] H. K. B. University, “ICEBE05 Dataset,” 2005.
[31] M. Zhang, L. Liu, and S. Liu, “Genetic Algorithm Based QoS-

aware Service Composition in Multi-cloud,” Proceedings - 2015
IEEE Conference on Collaboration and Internet Computing, CIC 2015,
pp. 113–118, 2016.

[32] J. Huang, Y. Liu, R. Yu, Q. Duan, and Y. Tanaka, “Modeling and
algorithms for qos-aware service composition in virtualization-
based cloud computing,” IEICE Transactions on Communications,
vol. E96-B, no. 1, pp. 10–19, 2013.

[33] M. B. Karimi, A. Isazadeh, and A. M. Rahmani, “QoS-aware
service composition in cloud computing using data mining tech-
niques and genetic algorithm,” The Journal of Supercomputing,
vol. 73, no. 4, pp. 1387–1415, 2017.

[34] M. Parhi, B. K. Pattanayak, and M. R. Patra, “A multi-agent-
based framework for cloud service discovery and selection using
ontology,” Service Oriented Computing and Applications, vol. 12,
no. 2, pp. 137–154, 2018.

[35] A. Akinwunmi, E. Olajubu, and G. Aderounmu, “A multi-agent
system approach for trustworthy cloud service discovery,” Cogent
Engineering, vol. 3, no. 1, 2016.

[36] S. Wang, A. Zhou, F. Yang, and R. N. Chang, “Towards network-
aware service composition in the cloud,” IEEE Transactions on
Cloud Computing, 2016.

[37] S. Wang, A. Zhou, C.-H. Hsu, X. Xiao, and F. Yang, “Provision of
data-intensive services through energy- and qos-aware virtual ma-
chine placement in national cloud data centers,” IEEE Transactions
on Emerging Topics in Computing, vol. 4, no. 2, 2015.

[38] S. Wang, A. Zhou, M. Yang, L. Sun, C.-H. Hsu, and fangchun
yang, “Service composition in cyber-physical-social systems,”
IEEE Transactions on Emerging Topics in Computing, 2017.



JOURNAL OF LATEX CLASS FILES, VOL. XXX, NO. XXX, XXXX 13

Philip Kendrick is a PhD candidate in the De-
partment of Computer Science at Liverpool John
Moores University, UK. He is interested in the
areas of Multi-Agent Systems, Machine Learn-
ing and Cyber Security. More specifically, his
work examines how non-linear algorithms can
be used to improve the performance of net-
worked systems.

Thar Baker is a Senior Lecturer in Software
Systems Engineering, Head of Computer Sci-
ence Research Group and member of Applied
Computing Research Group in the Department
of Computer Science at Liverpool John Moores
University, UK. Thar has published numerous
referred research papers in multidisciplinary re-
search areas including: Cloud computing, algo-
rithm design, energy efficiency, and Web service
computing. He has been involved as a member
of editorial board and review committees for a

number of international journals and conferences.

Zakaria Maamar is a Professor in the College
of Technological Innovation at Zayed Univer-
sity, Dubai campus. His research interests in-
clude mobile computing, business process man-
agement, and social computing. Dr. Maamar
has published several papers in peer-reviewed
journals and conference proceedings. He has
a PhD in computer science from Laval Uni-
versity, Canada. He can be reached at za-
karia.maamar@zu.ac.ae

Abir Hussain is a Professor and the head of
the Applied Computing Research Group at the
Faculty of Engineering and Technology in Liv-
erpool John Moores University, UK. She has
published numerous referred research papers
in conferences and Journal in the research ar-
eas of Neural Networks and Telecommunication
Fraud Detection. Her research has been pub-
lished in a number of high esteemed and high
impact journals such as the Expert Systems
with Applications, PloS ONE, Electronic Letters,

Neurocomputing, and Neural Networks and Applications. She is one of
the initiators and chairs of the Development in e-Systems Engineering
(DeSE) series, most notably illustrated by the IEEE technically spon-
sored DeSE International Conference Series

Rajkummar Buyya is a Redmond Barry Dis-
tinguished Professor and Director of the Cloud
Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Aus-
tralia. He is also serving as the founding CEO
of Manjrasoft, a spin-off company of the Uni-
versity, commercializing its innovations in Cloud
Computing. He has authored over 625 publica-
tions and seven text books including ”Mastering
Cloud Computing” published by McGraw Hill,
China Machine Press, and Morgan Kaufmann

for Indian, Chinese and international markets respectively. He is one of
the highly cited authors in computer science and software engineering
worldwide (h-index=118, g-index=245, 73,200+ citations). Dr. Buyya is
recognized as a ”Web of Science Highly Cited Researcher” in 2016 and
2017 by Thomson Reuters, a Fellow of IEEE, and Scopus Researcher
of the Year 2017 with Excellence in Innovative Research Award by
Elsevier for his outstanding contributions to Cloud computing. For further
information on Dr.Buyya, please visit his cyberhome: www.buyya.com

Dhiya Al-Jumeily Dhiya Al-Jumeily is a profes-
sor of Artificial Intelligence and the Associate
Dean of External Engagement for the Faculty
of Engineering and Technology. He has exten-
sive research interests covering a wide variety
of interdisciplinary perspectives concerning the
theory and practice of Applied Computing in
medicine, human biology, and health care. He
has published well over 170 peer reviewed sci-
entific publications, 6 books and 5 book chap-
ters, in multidisciplinary research areas


