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Abstract— SRAM is vulnerable to device-to-device variation 

(DDV), since it uses minimum-sized devices and requires 

device-matching. In addition to the as-fabricated DDV at 

time-zero, aging induces a time-dependent DDV (TDDV). Bias 

temperature instability (BTI) is a dominant aging process. A 

number of techniques have been developed to characterize the 

BTI, including the conventional pulse IV, random telegraph 

noises (RTN), time dependent defect spectroscopy (TDDS), and 

TDDV accounting for the within-device fluctuation (TVF). These 

techniques, however, cannot be directly applied to SRAM, 

because their test conditions do not comply with typical SRAM 

operation. The central objective of this work is to develop a 

technique suitable for characterizing both the NBTI and PBTI in 

SRAM. The key issues addressed include the SRAM relevant 

sensing Vg, measurement delay, capturing the upper-envelope of 

degradation, sampling rate, and measurement time window. The 

differences between NBTI and PBTI are highlighted. The impact 

of NBTI and PBTI on the cell-level performance is assessed by 

simulation, based on experimental results obtained from 

individual devices. The simulation results show that, for a given 

static noise margin, test conditions have a significant effect on the 

minimum operation bias.     

  

I. INTRODUCTION 

 

RAM can occupy over 50% of the space for 

system-on-a-chip products, forcing it to use the 

minimum-sized devices. The device-to-device variability 

(DDV) increases as their size reduces [1-15]. SRAM is 

especially vulnerable to DDV, since it has a high packing 

density and requires device-match for its two cross-coupled 

inverters in Fig. 1. Apart from the as-fabricated DDV at 

time-zero [1-6], aging introduces a time-dependent DDV 

(TDDV) [7-15]. Aging originates from a number of sources: 

negative bias temperature instability (NBTI) [16-19], hot 
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carriers [20], and oxide breakdown [21]. For high-k/SiON gate 

dielectric stack, positive bias temperature instability (PBTI) 

can also be important [22-24]. Both NBTI for pMOSFETs and 

PBTI for nMOSFETs are investigated in this work.  

 BTI can induce TDDV in two ways. On one hand, different 

devices in a circuit can suffer from different BTIs. For example, 

the pMOSFET ‘PR’ in Fig. 1 suffers from NBTI stress, whilst 

‘PL’ does not, so that TDDV between PR and PL increases with 

time. On the other hand, even if two devices were stressed 

under the same conditions, the stochastic nature of 

charging-discharging the as-grown defects [8,11] and 

generating new defects [14,15] will result in TDDV.  

   A number of techniques have been developed to characterize 

the BTI and the TDDV, including the conventional pulse IV 

[25-26], random telegraph noises (RTN) [11-13, 27-29], time 

dependent defect spectroscopy (TDDS) [8], and TDDV 

accounting for the within-a-device fluctuation (TVF) [14,15]. 

Although these techniques have provided valuable information 

on the defects, they cannot be directly applied to SRAM, 

because their test conditions do not comply with the SRAM 

operation, as analyzed in section III. The objective of this work 

is to develop a technique suitable for characterizing both the 

NBTI and PBTI in SRAM. The key issues addressed include 

the sensing Vg, measurement delay, capturing the 

upper-envelope of degradation, sampling rate, and 

measurement time window. The impact of BTI-induced TDDV 

on the static noise margin (SNM) and the minimum operation 

voltage of SRAM will be simulated and their sensitivity to test 

conditions will be highlighted.    

   

II.  DEVICES AND EXPERIMENTS 

 

Both pMOSFETs and nMOSFETs have a channel length of 

50 nm and a width of 90 nm. The gate dielectric stack is HfO2 

with an Al2O3 cap layer and the equivalent oxide thickness is 

1.45 nm. The gate is TiN.  

The experimental setup is given in Fig. 2(a) and Id was 

measured at |Vd|=0.1 V through a fast operational amplifier 

[30]. To find the response time of the setup, a step Vg was 

applied to the input and Fig. 2(b) shows that the output Id can 

response in 50 ns. Before aging, a reference Id-Vg was taken in 

3 µs and is shown in Fig. 3. The degradation during this short 

measurement time is negligible [14,26].  
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The test follows a ‘stress-then-sense’ procedure [25,26] and 

the technique developed in this work requires the device being  

stressed under ‘use’ voltage. The stress was carried out at 

Vg=+1.4 V for PBTI of nMOSFETs and Vg=-1.4 V for NBTI 

of pMOSFETs. During stress, Id was continuously monitored 

on-the-fly against time. To assess the aging on the SRAM trip 

voltage,  |Vg| was ramped down from 1.4 V to the trip point of 

the inverter, |Vtr|=0.7 V, in 3 µs to minimize the recovery [26] 

and Id was measured. Fig. 3(a) shows that the stress lowered Id 

by ΔIds at |Vtr|=0.7 V. The shift of trip voltage, ΔVtr, was 

taken against the reference IV. Fig. 3(b) plots the ΔVtr against 

the ΔId/Id measured at Vg=-1.4 V for 21 devices. They have a 

linear relation for all tested devices, which is used to convert 

ΔId/Id to ΔVtr.  

 All tests and measurements were carried out at 125 
o
C. Two 

channels of the oscilloscope were used for Id to obtain two 

different resolutions for the stress and measurement phases, 

respectively [15].      

     
 
Fig. 1 (a) A standard symmetric 6-transistor SRAM bitcell with PR, but not PL 

under NBTI stress. NL, but not NR, under PBTI stress when node Q is ‘0’ and 

bQ is ‘1’.  If the bitcell does not flip, the stress is DC. (b) The butterfly 

characteristics during read. Vtr is the trip point. 

 

 
  
Fig. 2 (a) The test circuit and (b) The characteristic response time of the system. 

Vg was stepped with an edge time of 10 ns and Id=(Vo-Vd)/R rises to 63% of 

its peak in 50 ns. 

 

 
Fig. 3 (a) ΔVtr evaluation. The reference IV was taken from a fresh device. 

After stress, Id at the trip point, Vg=Vtr, was measured and ΔVtr was taken 

from the Vg shift from the reference IV at this Id. (b) The linear relation 

between ΔId/Id measured under Vg=-1.4 V and ΔVtr. The data were obtained 

from 21 devices.  

III. SHORTCOMINGS OF EXISTING TECHNIQUES  

BTI tests were generally carried out on individual devices 

[7-16] and care must be excised when using these test data for 

assessing the impact on SRAM. In principle, the aging of a 

device in a circuit is the same as that for an individual device, 

provided the same voltage is applied during both stress and the 

measurement. To apply the test data obtained from individual 

devices to SRAM, it is crucial to align the measurement 

condition with the SRAM operation. In this section, the typical 

operation conditions of SRAM will be briefly reviewed first 

and the misalignment between the existing measurement 

techniques and SRAM operation will then be pointed out. 

A. Typical operation conditions of SRAM  

SRAM has three basic operation modes: read, write, and 

hold. BTI mainly occurs in hold-mode and Fig. 1(a) shows that, 

when Q=‘0’ and bQ= ‘1’, NL and PR suffers PBTI and NBTI, 

respectively, but NR and PL does not. This weakens NL and PR 

and maximizes the mismatch of the two inverters. In another 

word, the effects of PBTI and NBTI are ‘adding’, rather than 

cancelling, for SRAM. If a bitcell’s content does not change, 

NL and PR will be under the worst BTI stress: DC stress 

without recovery.        

The SNM for a standard 6-transistor SRAM is smaller during 

read than hold, because the pre-charged BL in Fig. 1(a) will 

partially pull-up Q through voltage dividing between AC0 and 

NL. The BTI weakens NL and PR by reducing their overdrive 

voltage |Vg-Vth| and in turn, the SNM. In contrast, this 

reduction of |Vg-Vth| does not reduce the write noise margin, 

since a weakened NL and PR will make the bitcell easier to flip. 

As a result, SRAM is most vulnerable to BTI during read. The 

typical read time is in the order of tens of nano-seconds, during 

which Q and bQ can approach Vtr in Fig. 1(b) and flip the 

bitcell erroneously. The SRAM-relevant BTI should use the 

operation bias for hold, Vg_op, as the stress voltage and the 

degradation should be sensed at Vg=Vtr.   

 

B. Shortcomings of existing techniques  

The conventional pulse IV (p-IV): The p-IV allows 

measuring threshold voltage shift at a pre-set stress time in ~µs 

that minimizes recovery during measurement [25,26]. It 

worked well for large devices where Id has little fluctuation, as 

shown in Fig. 4(a). For nm-size devices, however, Id fluctuates 

substantially (Fig. 4b) due to the discrete nature of 

charging-discharging. Fig. 4(c) shows that for the same stress, 

the degradation varies substantially, depending on the charging 

level immediately before triggering the measurement. The 

conventional p-IV makes one measurement and gives only one 

ΔVth at a pre-set time [25,26]. It does not take this 

within-a-device-fluctuation (WDF) into account and does not 

give the range of threshold voltage shift for a given stress time. 

The DC measurement of conventional parameter analyzer 

R1-2 

R1-3 

(a) (b) 
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typically uses the average value within a measurement time 

window of, say 10 ms, as represented by the point ‘C’ in Fig. 

4(b). It does not capture the fluctuation well. 

The random telegraph noises (RTN): Unlike the 

conventional p-IV, the RTN captures the WDF by monitoring 

Id against time [11-13,27-29]. The problem with the standard 

RTN technique is that it requires both charging and discharging 

a defect to produce a ‘telegraph-noise’, as shown in Fig. 5(a). 

However, there are substantial amount of defects that do not 

discharge under Vg_op= -1.4 V, as marked by the ‘LE’ for the 

lower envelope of ΔId/Id in Fig. 5(b) and they are not probed by 

RTN.  

 

 

 

 

 

 

 

 

 

 
Fig. 4 After a 1000 sec stress, Id under Vg=-1.4 V fluctuates little for a 10×10 

µm device (a), but substantially for a 90×50 nm device (b). The time window in 

(a) and (b) is 0.1 sec. Note the output signal Vo in Fig. 2(a) is negative, so that 

Id at ‘B’ is smaller than Id at ‘A’. The point ‘C’ represents a typical DC 

measurement at a speed of 10 ms per point. When triggering Vg-switch from 

the point ‘A’ and ‘B’, the recorded degradation is significantly different (c). 

 

 
 
Fig. 5 (a) For a given defect number, the RTN signal by enlarging the circled 

region of (b). Defects, however, increase with time. The ‘UE’ and ‘LE’ 

represent the upper and lower envelop of raw data and their difference is caused 

by the within-a-device-fluctuation (WDF) under a given Vg. The system 

measurement noise is negligible. 

 

To reduce the discharge time and observe it within the 

measurement time window, tw, the RTN is typically monitored 

at a |Vg| lower than the operation |Vg_op| [27,28]. As analyzed 

in the section III.A, for SRAM, Vg_op can be applied 

indefinitely during the ‘hold’ of a bitcell, but Vg may approach 

Vtr during read for a typical time of only ~10 ns. As a result, for 

SRAM, the charge fluctuation should be monitored at Vg_op, 

rather than at |Vg|<|Vg_op| [27,28]. Fig. 6 presents the transient 

ΔVtr when |Vg| was stepped down from |Vg_op| to |Vtr|. The 

ΔVtr is flat in ~µs range [11,26], although discharge happened 

at longer time. It should be pointed out that the flat ~µs region 

in Fig. 6 is not caused by system limitation, since its response 

time is 50 ns (Fig. 2b). As a result, there is no RTN signal in the 

time domain relevant to SRAM operation at Vtr, so that RTN 

cannot be used to measure ΔVtr in a time-domain relevant to 

reading a SRAM cell. Moreover, RTN is difficult to analyze 

when there are more than 4 traps [29].  

Time dependent defect spectroscopy (TDDS): TDDS [8] 

probes individual defects by monitoring their discharge after 

Vg switching from Vg_op to a low level close to Vth, as 

illustrated in Fig. 6. When triggered from the same point ‘B’ 

repeatedly, the same SRAM-relevant charge level in ~µs was 

observed. The subsequent discharge, however, introduces a 

considerable variation due to the stochastic nature of discharge. 

As a result, there is no TDDS signal at Vtr for SRAM operation 

condition and there is no unique relation between the ΔVtr at ~ 

µs and the amount of discharge measured within a limited time 

window. To further explore this point, Fig. 7 compares two 

cases triggered from ‘A’ and ‘B’. As expected, 

ΔVtr(‘B’)>ΔVtr(‘A’) in ~µs, but the two curves actually cross 

over later, confirming that there is no unique relation between 

ΔVtr at ~ µs and ΔVtr at longer time.  

Another difficulty with the TDDS is that discharge does not 

always complete within a practical time window, especially 

after a relatively long stress (e.g. >1000 sec), because of the 

‘permanent component’ [16,18] originating from the generated 

anti-neutralization positive charges [31-33]. Moreover, TDDS 

does not directly give the within-a-device-fluctuation (WDF) at 

Vg_op, which plays an important role in the BTI-induced 

TDDV, as to be shown in the sections IV.B and IV.D.  

 
 
Fig. 6 Vg-switch from -1.4 V to -0.7 V was triggered from the point ‘B’ and 

ΔVtr is monitored for 10-2 sec under Vtr=-0.7 V. Vg=-1.4 V was then re-applied 

until the Id reached the point ‘B’ and the Vg-switch triggered again. This 

sequence was repeated 50 times. The discharge is absent for <5 µs. The 

stochastic discharge at longer time induces considerable variation, which is 

irrelevant to SRAM during read operation. 

 

The TDDV accounting for the WDF (TVF): The TVF 

[14,15] is based on the measurement in Fig. 5(b), where the 

upper envelop, ‘UE’, was divided into two components: a WDF 

and the defect that does not discharge under Vg_op, i.e. the 

lower envelope (LE). To capture the UE and LE, ΔId/Id was 

monitored continuously under Vg_op=-1.4 V. By comparing 

the WDF, LE, and UE of different devices, TVF allows 

separating device-to-device variation (DDV) from WDF. 
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The TVF proposed in our early work [14,15] monitors the 

degradation by ΔId/Id under Vg_op, but SRAM is most 

vulnerable to BTI during read when Vg approaching Vtr. The 

SRAM-aging should be characterized by ΔVtr, therefore. In 

addition the sampling rate used in [14,15] was only 100 point 

per second, which substantially underestimated the WDF, as to 

be shown in the section IV.A. The applicability of TVF to PBTI 

of nMOSFETs is not tested, either. 

 
 
Fig. 7 After triggering from the points ‘A’ and ‘B’ in Fig. 4b respectively, 

ΔVtr(‘A’)<ΔVtr(‘B’) in ~ µs, but ΔVtr(‘A’)>ΔVtr(‘B’) at 10 ms, indicating the 

ΔVtr measured at typical DC speed is not a reliable representation of the 

SRAM-relevant ΔVtr in ~ µs. 

  

IV. CHARACTERIZE BTIS-INDUCED TDDV FOR SRAM  

 

The TVF technique [14,15] will be revised and extended to 

nMOSFETs to probe the BTIs-induced TDDV for SRAM by 

addressing a number of key issues, including the sensing Vg, 

measurement delay, capturing the UE of degradation, sampling 

rate, and measurement time window. We will first study how to 

measure the SRAM-relevant BTI for one device reliably and 

then investigate the device-to-device variation. 

A. Measuring a single device 

AC or DC stress: Digital circuits are typically under AC 

stress with a reduced degradation when compared with DC 

stress. A SRAM bitcell, however, can hold its content 

indefinitely and the DC stress is used here, therefore.  

Sensing Vg and measurement delay: As analyzed in the 

section III.A, the SRAM is most vulnerable to BTI during read, 

when Vg can approach Vtr in ~ ns. A degradation of Vtr can 

cause a flip, so that BTI should be assessed by measuring ΔVtr 

at a sensing Vg~Vtr [26], as shown in Fig. 3. Ideally, the 

measurement delay should be only ~ ns, but this cannot be 

achieved for wafer level measurements. Fig. 7 shows that a 

measurement delay of ~ µs is adequate to minimize the 

recovery during measurement.   

Capturing the UE of ΔVtr: When a bitcell’s content does not 

change, WDF occurs under Vg_op. A bitcell can be read many 

times and there can be millions of bitcells in a SRAM. It is 

inevitable that some bitcells will be read when the charging 

reaches its upper-envelop (UE), i.e. the point ‘B’ in Figs. 

4(b)&(c). It is important to capture the UE of ΔVtr during test, 

therefore. This requires monitoring Id under Vg_op, rather than 

under a |Vg|<|Vg_op|.  

It has been reported that defects can have a wide range of 

charging and discharging time [8,11-13]. To capture the fast 

trap, the sampling rate, SR, must be sufficiently high. To 

capture the slow trap, the measurement time window must be 

sufficiently wide. 

Sampling rate: To investigate the dependence of WDF on 

SR, it is desirable to fix the number of defects during the 

measurement. This can be achieved by first stressing a device 

heavily, so that further defect generation is negligible during 

the subsequent measurement. After a stress time of 1,000 sec or 

longer, tests show that further increase in defect number in the 

subsequent 40 sec is less than 0.27 mV, which is within the test 

resolution. Fig. 8(a) gives the WDF measured within a time 

window of tw=1 sec at different SR after 50 ksec stress. The 

WDF increased substantially with SR, but Fig. 8(b) shows that 

a saturation is reached around SR=1 M/s. This indicates that the 

defects responsible for WDF have a charging/discharging time 

larger than ~ µs, in agreement with the lack of fluctuation in the 

~ µs region in Fig. 7. We will use SR=10 M/s for the on-the-fly 

measurement of ΔId/Id hereafter and emphasize that it is 

enough to capture the fast traps for NBTI.  

Measurement window: Fig. 9(a) indicates that the WDF is 

approximately constant as the measurement time window, tw, 

increases. This is, however, an artifact. Once the tw is plotted in 

logarithmic scale, Fig. 9(b) shows that WDF increases with tw. 

As a result, tw should be made as long as possible. Since Id is 

monitored on-the-fly, the longest possible tw is tw=stress time 

and this is achieved by recording Id continuously during test. 

The time window here is for measuring ΔId/Id under 

Vg_op=-1.4 V and it increases with stress time. 

 

 
 

Fig. 8 Dependence of within-a-device-fluctuation (WDF) on the sampling rate 

for pMOSFETs. Id fluctuation increases with sampling rate (SR) when SR<1 

M/s (a), but saturates after SR>1 M/s (b). The device was stressed for 50 ksec to 

ensure that further degradation during the measurement itself is negligible. 

 
Fig. 9 Dependence of within-a-device-fluctuation on the measurement time 

window for pMOSFETs. Although the Id fluctuation appears insensitive to 

time in a linear scale in (a), it clearly increases with time when plotted in a 

logarithmic scale in (b) for a pMOSFET.  

 

Measurement Time window, tw (s) Measurement Time window, tw (s) 

(a) 

(a) 

(b) 
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After examining the WDF caused by the NBTI of 

pMOSFETs, we turn our attention to the PBTI of nMOSFETs. 

As illustrated in Fig. 1, when the pMOSFET (PR) is suffering 

NBTI, the nMOSFET (NL) is suffering PBTI at the same time. 

Fig. 10(a) shows that the PBTI-induced WDF increases by a 

factor over 3 with sampling rate, and then saturates for  SR≥400 

k/s. Similar to the NBTI-induced WDF, the PBTI-induced 

WDF also increases with measurement time window in Fig. 

10(b). The revised TVF proposed for NBTI can be used to 

probe the PBTI of nMOSFETs. 

 
 
Fig. 10 Within-a-device-fluctuation of PBTI in an nMOSFET. The nMOSFET 

was pre-stressed for 1 ks under Vg=+1.4 V to ensure negligible new defect 

creation during the measurement itself. (a) Dependence on sampling rate. Id 

fluctuation increase with sampling rate (SR), but saturates after SR>400 k/s. (b) 

Dependence on the measurement time window. 

 

In short, the TVF monitors ΔId/Id on-the-fly and then convert 

it to ΔVtr at the trip point based on the pulse-IV. It is different 

from the conventional on-the-fly method that measures ΔVth at 

the stress Vg, rather than at the trip point. It is also different 

from the conventional pulse-IV that did not monitor the ΔId/Id 

on-the-fly and did not capture the upper-envelope of ΔId/Id.   

 
Fig. 11 The ΔVtr_UE against stress time, recorded for 56 90×50 nm 

pMOSFETs. For each device, ΔId/Id0 was continuously monitored under 

Vg=-1.4 V and its UE was extracted, as shown in Fig. 5(b). This ΔId/Id0_UE 

was then converted to ΔVtr_UE by using their relation in Fig. 3(b). The thick 

line highlights the device with the highest degradation at 1000 sec, although it 

is close to the bottom at short time. The step-like change is caused by the 

discreteness of charges. 

 

B. NBTI-induced TDDV 

After studying how to characterize the SRAM-relevant BTI 

for a single device by the improved TVF, the same test like Fig. 

5 was repeated for 56 different pMOSFETs to study the 

NBTI-induced time-dependent device-to-device variation 

(TDDV). The ‘ΔId/Id0_UE’ measured in Fig. 5 is converted to 

ΔVtr_UE by using Fig. 3(b) for each device and the 

device-to-device variations are given in Fig. 11. It increases in 

steps and the gap between two steps varies due to the 

discreteness and stochastics of charges. The thick line 

represents the devices of the largest UE at a stress time of 1000 

sec. Their positions relative to other devices change with time. 

For example, the device of largest UE at 1000 sec had one of 

the lowest UE at short time. As a result, it is essential to 

measure the NBTI in all devices at all time. 

     

     
 

Fig. 12  The statistical distribution of ΔVtr_UE for NBTI of pMOSFETs. An 

increase of stress time raised not only the average, but also the variation. The 

solid lines were fitted with the Gaussian distribution.  

 
 
Fig. 13 NBTI of pMOSFETs: The kinetics of the average, µ (a), and standard 

deviation, σ (b). µ_UE> 2×µ_LE, due to the contribution of WDF under a given 

Vg. The ‘DC’ represents the typical results measured by a quasi-DC parameter 

analyzer. σ_UE≈σ_LE within 2 ms, but σ_UE>σ_LE afterwards. 

 

 

                
Fig. 14  PBTI of 45 nMOSFETs. Stress conditions were Vg=+1.4 V under 

125 °C. The thick line in (a) highlights the device with the highest degradation 

at 1000 s, although it was close to the bottom at short stress time. (b) Statistical 

distribution of ΔVth_UE, solid lines were fitted with the Gaussian distribution. 

Sampling rate (/s) Measurement Time window, tw (s) 

(a) 
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  The distributions of UE are given in Fig. 12 and they can be 

fitted reasonably with the Gaussian distribution. The kinetics of 

the average (µ) and standard deviation (σ) is given in Figs. 

13(a)&(b), respectively. As time increases, both µ and σ 

increase. µ_UE more than doubles µ_LE and the typical DC 

measurement also substantially underestimates µ_UE.  

Although µ_LE<µ_UE/2 in Fig. 13(a), σ _LE≈σ _UE 

initially (i.e. < 2 ms) in Fig. 13(b), indicating the WDF 

contributes little to DDV initially. For longer stress, however, 

σ_UE is clearly above σ_LE and the WDF does vary for 

different devices.  

 

 

                           
Fig. 15 A comparison of the kinetics: PBTI versus NBTI under |Vg|=1.4 V at 

125 oC. (a) The average, μ; (b) the standard deviation, σ; and (c) σ/μ. NBTI is 
substantially higher than PBTI, but PBTI has higher σ/μ, indicating a higher 

relative variation. 

C. PBTI-induced TDDV 

Similar results were obtained for PBTI in nMOSFETs, as 

shown in Figs. 14(a)&(b). Figs. 15(a)-(c) compare the UE of 

NBTI and PBTI when stressed under |Vg|=1.4 V. After 1000 

sec stress, the average of NBTI is 5 times of that of PBTI. The 

difference in their standard deviation, however, is smaller. This 

leads to a higher σ/µ for PBTI (Fig. 15(c)), indicating the 

device-to-device variation is relatively larger for PBTI of 

nMOSFETs. 

D. Impact on SRAM 

Ideally, to assess the impact of BTI on SRAM performance, 

one would like to insert the aged devices into a SRAM cell and 

measure it directly [34]. Such test structure, however, is not 

available to this work, so that we simulate the impact. The 

design and optimization of SRAM must meet multiple 

constraints, such as static and dynamic margins and power 

consumptions. In this work, we focus only on one key 

parameter, the static read noise margin (SNM).  

 

The worst case BTIs for SRAM: To illustrate the potential 

impact of BTI on SRAM, we use simulation based on a 45 nm 

technology. The SNM was simulated with both access 

transistors, AC0 and AC1 in Fig. 1(a) switched on. The bias at 

Q, VQ, is swept from zero to 1.4 V and the VbQ is recorded to 

obtain the voltage transfer characteristics (VTC) for the 

inverter on the right hand side (PR-NR). We then sweep VbQ 

and record VQ to obtain the VTC for the inverter on the left 

hand side (PL-NL). These two VTCs form the ‘butterfly’ in 

Fig. 1(b). 

We will first consider the NBTI and PBTI separately and then 

combine them. When reading a bitcell, the worst case is that 

both NBTI and PBTI reach their UE, which maximizes the 

mismatch between the two inverters. As an example, Fig. 16 

shows that this occurred three times for two devices. Given that 

there are often multi-millions bitcells in a SRAM, one should 

consider the combined impact of UE_NBTI and UE_PBTI. 

 
Fig. 16 The UE of NBTI and PBTI. The worst TDDV occurs when NBTI and 

PBTI reach their UE simultaneously, as marked by the vertical dotted lines.  

 

 
     

 
 

Fig. 17  Simulation of the BTI impact on SRAM for a 45 nm technology. (a) 

The NBTI impact on SRAM. The degradation is much larger for the UE_NBTI 

than the LE_NBTI. (b) Degradation by both NBTI and PBTI. (c) SNM 
degradation caused by UE_NBTI, UE_PBTI, and their combination. (d)  For 

the same |ΔVtr|, PBTI results in a larger ΔSNM/SNM. 

 

BTIs impact on SNM: One of the most important parameters 

for SRAM read stability is the Static Noise Margin (SNM) [35]. 

SNM is typically measured from the size of the square that can 

be fitted into the two voltage transfer characteristics (VTC)  for 

the butterfly (Fig. 1(b)). To simulate the impact of NBTI, we 

assume that PR is aged by ΔVtr(NBTI) and simulate the VTC 

for the PR-NR inverter. Fig. 17(a) shows the VTC(PR-NR) is 

shifted towards left, reducing SNM. The impact of UE_NBTI is 

significantly higher than that of LE_NBTI, so that it is 

important to capture the UE. 

Similarly, to simulate the impact of PBTI, we assume that 

NL is aged by ΔVtr(PBTI) and simulate the VTC for the PL-NL 

inverter and Fig. 17(b) shows the VTC(PL-NL) is shifted 
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towards right. Since the two VTCs were shifted in the opposite 

direction by NBTI and PBTI, respectively, their effect on the 

SNM reduction is adding. 

Fig. 17(c) shows that reduction of SNM caused by UE_NBTI 

and UE_PBTI separately and by combining them. Although 

NBTI has a larger impact, the contribution of PBTI is around 

one-fourth of the combined and must be taken into account. 

Early works [23,36] show that PBTI of high-k/SiON stack is 

sensitive to processing conditions and the smaller PBTI in Fig. 

17(c) could be achieved through process optimization. For the 

same |ΔVtr|, however, Fig. 17(d) shows that PBTI has a larger 

effect on SNM degradation. This is because during read, VQ in 

Figs. 1(a)&(b) is not at zero, due to the voltage dividing 

between AC0 and NL [37].      

Fig. 18 gives the distribution of ΔSNM/SNM. A 

combination of NBTI and PBTI increases not only its average, 

but also its variation. 

     

BTIs impact on the minimum VDD: To reduce power 

consumption, lowering VDD is desirable. A lower VDD, however, 

reduces SNM, as shown in Fig. 19. For a given SNM, the 

required VDD can be substantially increased by the BTI-induced 

TDDVs. For example, for a 45nm CMOS technology, to keep a 

SNM=180 mV, VDD is about 0.9 V before BTI. It increases to 

1.2 V when considering the UE_NBTI and rises further to 1.38 

V after combining UE_NBTI and UE_PBTI.   

 

      
Fig. 18 Statistical distributions of ΔSNM/SNM caused by NBTI, PBTI, and 

NBTI+PBTI. The devices were stressed under |Vg|=1.4 V for 1000 sec at 125 
oC. The SNM was simulated based on the experimental UE_NBTI and 
UE_PBTI. 

 

 
 

Fig. 19 SNM versus VDD with NBTI, PBTI, and NBTI+PBTI. For a required 

SNM, BTIs increase the minimum VDD substantially. The SNM was simulated 
based on the experimental UE_NBTI and UE_PBTI. 

  

V. CONCLUSIONS  

The existing techniques are not suitable for probing the 

BTI-induced TDDV for SRAM and a technique suitable for this 

task has been developed by improving the Time-dependent 

Variation accounting within-device Fluctuation (TVF). The 

key issues addressed include the sensing Vg, measurement 

delay, capturing the upper-envelop of degradation, sampling 

rate, and measurement time window. The TVF allows 

capturing both the fast and slow traps, minimizing the missing 

of a defect during measurement.  The results show that the 

within-a-device fluctuation is significant and it should be 

captured at the operation bias, rather than at a Vg close to 

threshold level. Both NBTI for pMOSFETs and PBTI for 

nMOSFETs were investigated and compared. The NBTI is 

substantially higher than the PBTI, but PBTI also makes 

considerable contribution to TDDV for the high-k/SiON stack. 

For the same average ΔVtr, PBTI has a large variation and also 

a large effect on the SNM.   
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