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Highlights 34 

PBK models have helped to facilitate quantitative in vitro to in vivo extrapolation 35 

PBK modelling has the potential to play a significant role in reducing animal testing 36 

It is critical to assess the validity of PBK models built using non-animal data 37 

A framework is needed for communicating characteristics and results of PBK modelling 38 
 39 

 40 

 41 
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Abstract 43 

The fields of toxicology and chemical risk assessment seek to reduce, and eventually replace, the use of animals 44 

for the prediction of toxicity in humans. In this context, physiologically based kinetic (PBK) modelling based on 45 

in vitro and in silico kinetic data  has the potential to a play significant role in reducing animal testing, by providing 46 

a methodology capable of incorporating in vitro human data to facilitate the development of in vitro to in vivo 47 

extrapolation of hazard information. In the present article, we discuss the challenges in: 1) applying PBK 48 

modelling to support regulatory decision making under the toxicology and risk-assessment paradigm shift 49 

towards animal replacement; 2) constructing PBK models without in vivo animal kinetic data, while relying solely 50 

on in vitro or in silico methods for model parameterization; and 3) assessing the validity and credibility of PBK 51 

models built largely using non-animal data. The strengths, uncertainties, and limitations of PBK models 52 

developed using in vitro or in silico data are discussed in an effort to establish a higher degree of confidence in 53 

the application of such models in a regulatory context. The article summarises the outcome of an expert 54 

workshop hosted by the European Commission Joint Research Centre (EC-JRC) - European Union Reference 55 

Laboratory for Alternatives to Animal Testing (EURL ECVAM), on “Physiologically-Based Kinetic modelling in risk 56 

assessment – reaching a whole new level in regulatory decision-making” held in Ispra, Italy, in November 2016, 57 

along with results from an international survey conducted in 2017 and recently reported activities occurring 58 

within the PBK modelling field. The discussions presented herein highlight the potential applications of next 59 

generation (NG)-PBK modelling, based on new data streams.  60 

Keywords: Physiologically Based kinetic models; PBPK; PBTK;  Toxicokinetics; In vitro; In silico.-   61 
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Introduction 62 

Modelling and simulation based approaches are gradually gaining interest as critical tools for safety and risk 63 

assessment of a variety of compounds including drugs, chemicals, consumer products, and food ingredients. 64 

These modelling approaches are recognised for the crucial role they play in, for example, predicting the 65 

biokinetics of drugs and chemicals in the organism without the need to conduct in vivo experiments. For more 66 

than 40 years, physiologically-based kinetic (PBK) models have been used to simulate biokinetics (Andersen and 67 

Krishnan, 2010; Mumtaz et al., 2012; Krishnan and Peyret, 2009; Bois et al., 2017). In PBK models, the body is 68 

represented as a series of interconnected compartments linked via blood flow, as depicted in the schematic 69 

below (Figure 1a), to simulate concentration-time curves in target organs or their surrogates, such as in blood 70 

(Figure 1b). PBK models use differential equations to describe the absorption, distribution, metabolism, and 71 

elimination (ADME) processes that govern the fate and transport of the chemical among these interconnected 72 

compartments. Proper use of PBK models helps to reduce uncertainties and to identify data gaps inherent in 73 

hazard characterisation approaches that rely upon default extrapolation factors (e.g., a multiplication factor of 74 

10 for inter-species extrapolation) to derive health-based guidance values from animal toxicity studies. PBK 75 

models provide a sound scientific basis to extrapolate across species, routes of exposure, and exposure 76 

scenarios, based on physiology and (physico-)chemical properties (Loizou et al., 2008; Bessems et al., 2014). As 77 

PBK models can be developed for specific individuals within the human population, they provide a means for 78 

quantifying inter-individual differences in kinetics, allowing for the determination of extrapolation factors across 79 

age groups or across populations of varying susceptibilities. With this information, safe chemical intake levels 80 

can be derived for individuals and populations. Most recently, PBK models have helped to facilitate quantitative 81 

in vitro to in vivo extrapolation (QIVIVE) approaches (Yoon et al., 2012, 2014, 2015; Wetmore et al., 2015; Louisse 82 

et al., 2017), enabling the use of in vitro toxicity data for the setting of safe intake levels. QIVIVE is an essential 83 

process in linking an in vitro measured biological (adverse) readout to a potential in vivo outcome (Groothuis et 84 

al., 2015). QIVIVE provides a means of considering exposure and dosimetry, and enables the use of in vitro 85 

toxicity data for risk-based assessments beyond hazard-based assessments (Bell et al., 2018). Once an in vitro 86 

concentration-response has been generated, the benchmark dose approach can be applied to the predicted 87 

dose – response data, to obtain an in vitro-based point of departure (PoD) or Reference Point (RfP) (Louisse et 88 

al., 2015; 2017). 89 

Nomenclature 90 

“Physiologically based pharmacokinetic” (PBPK) model is the most widely used term and was developed by the 91 

pharmaceutical field to simulate the kinetics of drugs. Despite the popular use of the term, “PBPK” is not entirely 92 

correct in the context of general chemical risk assessment. Another term preferred in the European Union (EU) 93 

and related to chemical risk assessment is “PBTK”, where TK is the abbreviation for “toxicokinetics”. However, 94 

this term is not entirely appropriate either (Clewell et al., 2008). Rather, a more general nomenclature, such as 95 

physiologically based biokinetic (PBBK) or the aforementioned PBK, might be seen as more appropriate. 96 

Regardless of the terminology used, PBK, PBPK, PBBK and PBTK can all be considered synonyms, and so 97 
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throughout this document we will consistently use the more general terms of PBK model or PBK modelling. It is 98 

noted that the ever-increasing advancements in in vitro and in silico methodologies in the field of toxicology can 99 

be used in combination with PBK models to support regulatory decisions on the use of chemical substances.  In 100 

the present manuscript the term next generation PBK (NG-PBK) model will be used to name these models. This 101 

term, NG-PBK, refers to PBK models that are developed without the provision of newly produced (i.e., without 102 

animal sacrifice) animal TK data for parametrisation and validation of those models, but rather through 103 

supporting in vitro, in silico, -omics, micro-scale applications. NG-PBK  models representing the human body 104 

should be parameterized and validated using in vitro, in silico, -omics data, micro-scale systems, and human in 105 

vivo data, when available. This stands also for PBK models built to represent animals (e.g. livestock, fish, bees), 106 

which should be  parameterized and validated using in vitro, in silico, -omics, micro-scale systems and historical 107 

or (bio)-monitoring animal data of the species of interest,  to avoid the need for animal sacrifice. 108 

Milestones in the history of PBK modelling 109 

The principles behind PBK modelling were first reported in 1937 by Teorell, in a publication entitled “Kinetics of 110 

distribution of substances administered to the body” (Teorell, 1937). Although Teorell’s work was the first 111 

attempt to describe the body as a series of equations, the complexity of the mathematics, lack of data, and lack 112 

of computing power rendered his concepts incomplete until the 1960s. Between the 1960s and 1970s, several 113 

PBK models were developed for pharmaceutical drugs to target cancers  (Bischoff and Dedrick 1968; Bischoff et 114 

al. 1970). These publications paved the way for more than 2000 articles written on the topic of PB(P/T)K 115 

modelling within the last forty years (Figure 2a). Over the past decade, there has been an increase in the 116 

development of PBK models for use in a variety of scientific fields, such as pharmacology, forensic sciences, and 117 

chemical risk assessment (Figure 2b), although such an increase was not seen for toxicology and veterinary 118 

medicine. Many risk assessors remain reluctant to apply these models within their work (Paini et al. 2017b, Punt 119 

et al., 2017, 2018), as PBK models are not often included in current hazard characterization and risk assessment 120 

protocols. In addition, some regulatory agencies may often have limited experience in using PBK models, and 121 

the complexity associated with the evaluation of model performance has also contributed to this reluctance. 122 

Over the past 20 years, several workshops have been held to promote the applicability of PBK models in the 123 

academic, industrial, and regulatory sectors. For example, a 1995 European Centre for the Validation of 124 

Alternative Methods (ECVAM) workshop discussing the use of biokinetic and in vitro methods resulted in 15 125 

recommendations that were submitted to support and guide future work in the PBK modelling field (Blaauboer 126 

et al., 1996). This workshop was followed by many others to better define the potential role of PBK modelling in 127 

science and risk assessment following a Three R (replacement, reduction and refinement) strategy (Bouvier 128 

d’Yvoire et al., 2007). In the same year, a workshop to address uncertainty and variability analysis in PBK 129 

modeling was held by Barton et al. (2007). Loizou et al. (2008) reported the need for clear descriptions of good 130 

modelling practices (GMP) for: 1) model development; 2) model characterisation; 3) model documentation; and 131 

4) model evaluation. A subsequent thematic workshop aimed to critically appraise PBK modelling software 132 

platforms and to provide a more detailed state-of-the-art overview of non-animal based PBK parameterisation 133 

tools (Bessems et al., 2014). A CEN (European Committee for Standardization) workshop in 2014 strived for 134 
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agreement upon the minimum requirements for the amount and type of information to be provided for 135 

exposure models, such as PBK models, along with documentation and guidelines for the structure and reporting 136 

of such information. The resulting CEN workshop agreement (CWA) was expected to provide a more rigorous 137 

means of describing exposure models and to aid users in better understanding them (Ciffroy et al., 2016a; 138 

Altenphol et al., 2018). The following year, a workshop assessed the state of knowledge in the application of PBK 139 

models in regulatory decision-making, in addition to sharing and discussing best practices in the use of PBK 140 

modelling to inform dose selection in specific patient populations (Wagner et al., 2015). In 2017, a workshop 141 

organized by the National Centre for the Replacement, Refinement, and Reduction of Animals in Research 142 

(NC3Rs) encouraged experts in exposure science to consider the role of PBK models in the extrapolation of 143 

external exposure data to internal concentrations to promote the application  of non-animal data in efficacy and 144 

safety testing  (Burden et al., 2017; https://www.nc3rs.org.uk/applying-exposure-science-increase-utility-non-145 

animal-data-efficacy-and-safety-testing ). A Lorentz Center workshop entitled “Non-animal Methods for 146 

Toxicokinetics: Meeting New Paradigms in Toxicology” was held at the end of 2017 and emphasized the role of 147 

PBK models (https://www.lorentzcenter.nl/lc/web/2017/943/info.php3?wsid=943&venue=Oort; 148 

https://www.lorentzcenter.nl/lc/web/2017/943/report.pdf). The first European Partnership for Alternative 149 

Approaches to Animal Testing (EPAA) partners’ forum, held at the end of 2017, aimed to provide an overview 150 

on toxicokinetics and read-across with insight into the role of PBK models (Laroche et al., 2018).   151 

 152 
Framing the problem 153 

The EURL ECVAM Strategy on Toxicokinetics1, as published in 2015, outlines opportunities for generating and 154 

making better use of TK data. The central feature of the strategy focuses on the use of PBK modelling to integrate 155 

data from in vitro and in silico methods for prediction of human whole-body biokinetic behavior, and enables 156 

QIVIVE to obtain safety guidance values expressed as external doses (Bell et al., 2018). In the past, in vivo 157 

tissue/blood concentration-time data were a prerequisite for calibrating and evaluating the predictive capability 158 

of a PBK model (Bessems, et al., 2014). The common practice was to start with an animal PBK model, calibrating 159 

it with animal in vivo data, and then re-parameterizing it based on in vitro biotransformation measurements or 160 

allometric scaling to develop a human PBK model. As the field of risk assessment evolves towards the goal of 161 

reducing, and eventually replacing, the use of animals for predicting human toxicity, PBK model development 162 

has seen a shift towards increased use of non-animal data for parameterization, along with increased use of the 163 

models for IVIVE. Efforts in this area should be directed towards developing standards that will increase the 164 

acceptance of in vitro methods for characterizing human-relevant ADME properties. To enhance the acceptance 165 

of PBK models at an international level, good modelling practice is required to guide the use of the in vitro and 166 

in silico methodologies in developing PBK models. As the first step, to initiate a dialogue on such a topic, the 167 

European Commission’s Joint Research Centre (JRC), EURL ECVAM, hosted a workshop on “Physiologically-Based 168 

Kinetic modelling in risk assessment – reaching a whole new level in regulatory decision-making” (Ispra, Italy, 169 

November 16–17, 2016). The workshop participants discussed challenges in: 1) applying NG-PBK modelling to 170 

                                                           
1 https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/eurl-ecvam-strategy  
achieving-3rs-impact-assessment-toxicokinetics-and-systemic-toxicity?search 

https://www.nc3rs.org.uk/applying-exposure-science-increase-utility-non-animal-data-efficacy-and-safety-testing
https://www.nc3rs.org.uk/applying-exposure-science-increase-utility-non-animal-data-efficacy-and-safety-testing
https://www.lorentzcenter.nl/lc/web/2017/943/info.php3?wsid=943&venue=Oort
https://www.lorentzcenter.nl/lc/web/2017/943/report.pdf
https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/eurl-ecvam-strategy
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support regulatory decision making; 2) constructing PBK models for safety assessment without animal in vivo 171 

data, relying solely on in vitro or in silico methods; and 3 assessing the validity of PBK models that rely only upon 172 

non-animal data. A portion of this current article summarizes the outcome of the workshop; detailed 173 

information on the workshop outcomes can be found in the workshop report (Paini et al., 2017a).  174 

In addition to the EURL ECVAM workshop, an international survey was conducted in 2017 to understand the 175 

applications of PBK modelling in the broader scientific and regulatory communities. An aggregate summary, 176 

including analysis of the results, has been published (Paini et al., 2017b), while results presented per individual 177 

country are available online at http://apps.klimeto.com/pbk/. The survey provides insight into the current state 178 

of knowledge throughout the PBK modelling and user community, as well as a cursory volunteer contact list of 179 

modellers available for peer reviewing models. The main findings of the survey showed that though continuous 180 

expansion of the modelling community has allowed PBK models to gain ground for use in various scientific and 181 

regulatory risk assessment applications, this remains a slow process, due to a lack of guidance, data, and 182 

expertise, which continue to limit widespread acceptance of those models in such applications (Paini et al., 183 

2017b). Here, we  also discuss  recently reported activities in the field, (subsequent to  the  2016  EURL ECVAM  184 

workshop)  that demonstrate both ongoing developments in the field and the continued hesitancy within public 185 

health agencies to apply PBK modelling in their decisions. In addition, we will introduce as a new challenge the 186 

integration of NG-PBK modelling with toxicodynamic endpoints, as this will be essential for implementation of 187 

NG-PBK models. 188 

 189 

Salient Features: Applying NG-PBK modelling to support regulatory decision making 190 

As concluded from the 2017 survey (Paini 2017b), training, guidance, and dialogue are three main factors that 191 

will facilitate the successful acceptance of NG-PBK modelling in regulatory decision-making. 192 

1. Dialogue and Communication 193 

While training and guidance are both essential, their maximum benefits cannot be achieved without frequent 194 

dialogue between regulators, modellers, and model proponents (chemical registrants). Such frequent dialogue 195 

not only allows the proposers to better understand the needs of the regulators, but also allows the regulators 196 

to provide modellers with feedback throughout the development, evaluation, and application processes. For 197 

example, risk assessors present at the 2016 EURL ECVAM workshop indicated that they prefer to use the simplest 198 

model possible, as finding sufficient input data is rather challenging, but would be willing to use more complex 199 

models if necessity dictates and sufficient input data are available. Thus, dialogue can help regulators to convey 200 

their needs for specific training and for model features, and help proponents to understand the criteria 201 

necessary for regulatory acceptance. Conversely, the regulators can learn what is technically or scientifically 202 

feasible and what is not. As such dialogue may prove to be time-consuming, establishing a harmonized template 203 

for model construction and evaluation would facilitate the process. The template should be flexible enough for 204 

any regulatory agency or country to use, and would ideally incorporate an agreed-upon ontology . To efficiently 205 

http://apps.klimeto.com/pbk/
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develop a PBK model to support regulatory risk assessment, modellers and end users (proponents and 206 

regulators) need to clearly define their goals of model use and related model requirements at an early stage. For 207 

example, if a read-across approach is likely to be applied by the end users, biokinetic data for a pre-determined 208 

set of relevant chemicals (target and source chemicals) will constitute important supporting material and should 209 

be included in the submission package. In situations where safety assessment is conducted for a new chemical 210 

on the market, the following criteria may be used to facilitate regulatory acceptance of a PBK model for this 211 

substance: 1) the model should be transparent, with a usable code; 2) model uncertainty should consider 212 

biological plausibility, and be clearly described and quantified when possible; 3) uncertainty in exposure 213 

scenarios should be characterised, because this uncertainty will propagate to PBK model results; 4) user-friendly 214 

platforms should be used where possible; 5) the model should be fit-for-purpose with no unnecessary additional 215 

complexity, and with all required parameters measurable; and 6) the model should consider sufficient coverage 216 

of chemical space, to allow for read-across approaches if desired. In cases where the model performance needs 217 

to be evaluated using human in vivo data, regulators may consider using data that are generated from human 218 

trials, such as micro-dosing. It should be emphasized that clinical studies would only be conducted once the 219 

safety of the chemical has been established and the clinical investigation represents de minimis risk to the 220 

subjects.   221 

 222 

2. Training  223 

Within the current climate of desire to reduce, refine, and replace animal testing through ongoing scientific and 224 

technological advancements, it would be beneficial to risk assessors / managers and other workers in safety 225 

assessment to be kept abreast of the development of NG-PBK models . In order to achieve this goal, information 226 

on  a number of novel emerging technologies, in addition to PBK modelling, should be made more accessible. 227 

These include -omics, organ- on-a -chip, high-throughput screening methods, read-across, Adverse Outcome 228 

Pathways (AOPs), and IVIVE. Additionally, it would be helpful if guidance were available indicating  how these 229 

different approaches are integrated in support of chemical safety assessment. On the other hand, it is not 230 

necessary for risk assessors/managers, etc.  to have detailed knowledge related to all the diverse aspects of PBK 231 

modelling; rather, it may be sufficient to provide tailored training that focuses only on the specific needs of each 232 

regulatory sector and, where applicable, cross-sector needs. For example, some risk assessors may need or wish 233 

to run a model, and so they would require knowledge of the relevant software and expertise to review and run 234 

model codes. Other risk assessors may rely on a model peer review system to check the implementation and 235 

reliability of new model codes, and in this case, may only require sufficient knowledge to allow for interpretation 236 

of the data and to enable modelling predictions to be put in context. One option is for risk assessors to  assemble 237 

technical committees that consist of members possessing a range of expertise, to review the model code and 238 

interpret model results. The training content/format should also be tailored to achieve maximum effectiveness 239 

in understanding the application of models. In addition to the traditional classroom setting, training formats 240 

could include webinars, ad hoc short courses, and more refined or specialised graduate-level courses. Further, 241 

online training could potentially generate a larger audience that would also allow the modelling and user 242 
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community to continue to expand. Finally, since risk assessors generally place higher confidence in in vivo data, 243 

there is a need to make courses on alternative in vitro and in silico methods more accessible, to provide a path 244 

forward to acceptance of these NG-PBK model applications in regulatory decision making.  245 

3. Guidance 246 

While training is essential, establishing guidance and GMP on PBK model applications intended for regulatory 247 

purposes is also critical (Loizou et al., 2008). The GMP should include clear documentation on how to report a 248 

model’s scope and purposes, details of model development and evaluation, interpretation of results, and 249 

applications of the model in risk assessment (Loizou et al., 2008). It is recommended that the individual(s) or 250 

community network(s) responsible for each specific step in the development, evaluation, and application 251 

process be clearly identified, to increase transparency and allow end users to identify where targeted training 252 

may be required, if necessary, for a specific topic. The context in which the model is to be used, and thus the 253 

scope of the model development or amendment(s), should be clearly documented. This is especially important 254 

to avoid misuse of a reliable model, such as when results of the simulations are applied for the wrong purpose 255 

or when the model is applied outside of its applicability domain.  256 

The WHO-IPCS published, in 2010, a guidance document on the characterisation and application of PBK models 257 

in risk assessment (WHO, 2010). Nevertheless, no comprehensive guidance documentation is currently available 258 

for reporting and evaluating NG-PBK models without use of animal in vivo TK data, or for interpreting and 259 

applying outputs from these models for human safety assessment. Recently, several efforts have been made to 260 

produce such documentation. For example, the Scientific Committee for Consumer Safety (SCCS) considers all 261 

available scientific data in their safety evaluation of cosmetic substances, including data generated from PBK 262 

modelling. In the most recent Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety 263 

Evaluation (SCCS/1564/15)2, the SCCS defines the conditions for the use of PBK models submitted for risk 264 

assessment purposes. PBK modelling has already been accepted as a tool for risk assessment or for use as 265 

supporting information in some of the chemical-specific dossiers evaluated by the SCCS, EFSA, and US-EPA. The 266 

SCCS document could act as a starting point or as a template for a new general guidance document. Additionally, 267 

the new reporting guidelines from the US Food and Drug Administration (FDA) and European Medicine Agency 268 

(EMA) (US FDA, 2018; EMA, 2016), on harmonization of reporting and on qualification of PBK modelling and 269 

simulation, can also apply to NG-PBK models. To extend this concept, a working group at the Organisation for 270 

Economic Co-operation and Development (OECD), comprised of more than 45 scientists from different areas of 271 

scientific expertise, are drafting a guidance document for characterizing, validating, and reporting uncertainties 272 

in NG-PBK model applications. 273 

 274 

Salient Features: Constructing PBK models for safety assessment without animal in vivo data  275 

                                                           
2 http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf 
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PBK models are built using three sets of parameters: i) physiological and anatomical parameters, with  276 

representative reference parameters taken from the species under study (animal or human); ii) biokinetic / 277 

ADME properties, which can be gathered using in vitro methods or by fitting the model to an in vivo data set; 278 

and iii) physico-chemical parameters, which are experimentally derived or obtained using in silico approaches 279 

such as quantitative activity relationship (QSAR) models (Rietjens et al., 2011). For GMP, the PBK model 280 

construction should consider the compound exposure situation/dosing strategy to be simulated (problem 281 

formulation). The exposure descriptions should include route of administration, timeframe of the simulation 282 

(i.e. exposure duration), and exposure frequency. In the cases of complex models that include inter-individual 283 

variability among some physiological values, the number of individuals that should be incorporated into the 284 

simulation for sufficient statistical power analysis should also be considered.   285 

In the case of NG-PBK models, assuming there is no possibility of generating in vivo animal data for the model 286 

calibration, there are two key pre-requisites to build the model: 287 

 Availability of in vitro and in silico alternatives to generate ADME properties (including prediction of 288 

metabolism) of sufficient quality 289 

 Availability and accessibility of modelling platforms. 290 

 291 

1. Availability of in vitro and in silico data for ADME properties 292 

Without in vivo data, the values of parameters in a PBK model will need to be derived from the results of in silico 293 

or in vitro experiments. Clearly, the accuracy of PBK models will be heavily reliant upon the quality of the model 294 

parameters, which often are not only tissue dependent but also chemical dependent. 295 

As it is useful to determine the minimum requirements for PBK models (with respect to data-poor and data-rich 296 

chemicals), a decision tree indicating requirements for different scenarios is presented here  (Figure 3). The most 297 

minimalistic model type, one-compartment models, parameterised with only protein binding and clearance 298 

data, have been developed and used to support chemical screening and prioritization (Rotroff et al., 2010; 299 

Wetmore et al., 2012, 2013, 2014; Tonnelier et al., 2012; Yoon et al., 2014; Wambaugh et al. 2015). Depending 300 

on the exposure route, a compartment representing the skin, intestine, or lung may need to be included in a 301 

model. If a compound is highly lipophilic, a fat compartment is required, and it may also be necessary for the 302 

model to describe uptake into the lymphatic system. Finally, depending on the hazard data available, additional 303 

compartments and biological processes may need to be added to the PBK model. Throughout development of 304 

the model, as more specific information is obtained on the chemical’s properties and mode of action (MoA), 305 

confidence is increased in the applicability of the models. A good strategy would be to begin with a generic 306 

model structure, then move to more specific models once knowledge is gained that indicates a unique biokinetic 307 

behavior of the compound in question. In using a simple model, it is possible that a key kinetic pathway specific 308 

to a given target chemical will not be taken into consideration. To address this issue, a database of all known 309 

ADME/TK processes, such as cell uptake (capturing the role of transporters), metabolism, and efflux, could be 310 

developed to help modellers identify which processes may need to be included for a specific chemical / purpose. 311 

 312 
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Membrane transporters influence the ADME processes of various endogenous and exogenous compounds 313 

(Klaassen and Aleksunes, 2010; SOLVO, 2017). In recent decades, the pharmaceutical field has placed 314 

considerable effort into the study of transporters affecting drug disposition, therapeutic efficacy, and adverse 315 

outcomes, but little is known in regards to transporter effects on environmental chemicals (Clerbaux et al., 316 

2018). Transporters can play a significant role in chemical distribution. As such, integration of membrane 317 

transporter-based experimental data during parameterization of several types of computational models (e.g., 318 

QSAR, pharmacophore, and PBK models), through use of platforms like  SimCyp, PKSim, or GastroPlus,  will 319 

enable better understanding of chemical/drug disposition (Clerbaux et al., 2018).  320 

 321 

Protein binding in plasma influences the partitioning of endogenous and exogenous compounds from the blood 322 

into the tissues. The plasma protein binding property is, among other things, related to lipophilicity, as binding 323 

becomes greater with more lipophilic chemicals, thus sequestering such chemicals in blood and limiting the 324 

systemic availability and distribution of unbound fraction of the chemical. A common and widely used method 325 

for estimating plasma protein binding in vitro is the rapid equilibrium method, which involves measurement of 326 

chemical transport across a dialysis membrane with a high surface area-to-volume ration within a Teflon-lined 327 

plate well (Waters et al., 2008).   328 

 329 

Metabolism is an important feature to consider in a model, especially when a metabolite is assumed or known 330 

to be the toxic moiety. Both in vitro and in silico methods can be informative in providing predictions for 331 

metabolism and clearance. Kirchmair et al (2015) reviewed software for predicting a range of features associated 332 

with metabolism (e.g. identification of labile moieties, enzyme interactions and metabolite prediction).. The 333 

focus of these in silico tools is mainly the estimation of the qualitative nature of the metabolites (i.e., which 334 

metabolites are formed based on the parent compound’s molecular structure) and seldom allows for estimation 335 

of rate constants. A common criticism of software for predicting metabolites is the tendency for over-prediction: 336 

theoretically possible metabolites are not differentiated from those that occur experimentally. Some software 337 

platforms have attempted to address this issue through inclusion of filtering rules. For example, in order to 338 

reduce over-prediction within the Meteor Nexus software (Lhasa Ltd, Leeds), Marchant et al (2017) describe a 339 

process whereby k-nearest neighbor analysis is combined with expert knowledge of biotransformation to reduce 340 

the over-prediction of metabolites. Such in silico models do not predict efflux of metabolites.  341 

 342 

In vitro data for metabolism may be generated using tissue slices, organ (e.g., liver) homogenates, cell lines, 343 

spheroids, or (sub)cellular fractions (such as microsomes, baculosomes, S9, and cytosol1), where metabolism is 344 

measured as loss of the parent compound or production of metabolite(s). It should be noted that if metabolism 345 

occurs very slowly, it may not be detected in a short-term in vitro assay. If a chemical is known to be 346 

predominantly excreted unchanged in urine, then metabolism is less relevant to the model. However, if 347 

metabolism of a parent compound is thought to be metabolized to undergo biliary excretion or to be excreted 348 

via the bile, then a model including such elimination pathways is necessary, first by determining which pathways 349 

of elimination are most relevant to the target chemical. In silico and in vitro models have also been developed 350 
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for predicting different processes involved in elimination. These include in silico models for total clearance 351 

(Lombardo et al., 2014) and metabolism (Pirovano et al., 2015) and in vitro models for biliary excretion (Ghibellini 352 

et al., 2006). However, more work is required to develop models for elimination, and the applicability domain 353 

for existing models should be carefully considered before application to a wider range of chemicals. A current 354 

limitation is that there are no (OECD) guideline(s) addressing in vitro methods to determine kinetic parameters, 355 

except for the guideline on Skin Absorption (OECD TG 428). In the absence of standardised methods for 356 

generating in vitro parameters to calibrate PBK models, it is important that in vitro metabolism data or data 357 

regarding transporters are produced according to the new OECD good in vitro method practice (GIVIMP)3. The 358 

GIVIMP document is meant to serve as technical guidance on generating and applying quality data through good 359 

scientific and quality practices, to support the regulatory human safety assessment of chemicals using in vitro 360 

methods. 361 

 362 

Bessems et al. (2014) provides a general overview of the currently available in vitro and in silico methods for 363 

characterizing human ADME and the gaps and challenges faced.  Mostrag-Szlichtyng et al (2010) provide an 364 

extensive review specifically of in silico tools (i.e., QSAR models and software) for prediction of ADME properties 365 

that are relevant to PBK model building. More recently, Patel et al (2018) have collated and assessed the quality 366 

of over 80 models for 31 absorption-, distribution-, and excretion-related endpoints (Patel et al., 2018).  367 

 368 

Finally, toxicodynamic data derived from in vitro toxicity tests are typically based on nominal concentrations of 369 

the substances, which may contain significant errors due to the loss of biological, physical,  and toxicological 370 

chemical processes in such tests. An in vitro biokinetic study plays a significant role in translating a nominal 371 

concentration used in in vitro systems to the actual level of cell exposure producing the effect. Several 372 

methodologies can be applied to address such a relationship, such as in vitro fate and transport mass balance 373 

models recently developed by several research teams (Kramer 2010a, 2010b; Armitage et al., 2014; Fischer et 374 

al., 2017; Zaldivar Comenges et al., 2017).  375 

 376 

2. Availability of modelling platforms 377 

Currently, several open source modelling platforms, such as IndusChemFAte (Cefic LRI, http://cefic-378 

lri.org/toolbox/induschemfate/), High-Throughput Toxicokinetics (httk)-r package (Wambaugh et al., 2018, 379 

https://cran.r-project.org/web/packages/httk/index.html), MEGEN-RVis (Loizou et al, 2011; 380 

https://megen.useconnect.co.uk/), PLETHEM (http://www.scitovation.com/plethem.html), MERLIN-EXPO 381 

(Ciffroy et al., 2016b; Suciu et al., 2016; https://merlin-expo.eu/), and PK-Sim (www.systems-biology.com), and 382 

license-based platforms such as GastroPlus (www.simulations-plus.com) and SimCyp 383 

(https://www.certara.com), are available to individuals possessing varying degrees of expertise in PBK  384 

modeling.  These platforms provide different computational tools that allow non-programmers to develop and 385 

run model simulations with varying options to gain a better understanding of model behavior, which is essential 386 

                                                           
3 http://www.oecd.org/env/ehs/testing/OECD_Draft_GIVIMP_in_Human_Safety_Assessment.pdf 

http://www.systems-biology.com/
http://www.simulations-plus.com/
https://www.certara.com/
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for interpretation of model output. The PBK models run from these platforms can be parameterised using in 387 

vitro or in silico data. However, programmers or users with modeling skills can also use R, MATLAB, and Berkeley 388 

Madonna software to develop customised PBK models, and to support the generation of innovative modeling 389 

components, which might otherwise not be generated through use of the more-structured commercial 390 

platforms. 391 

 392 

A concern for the use of open source modelling platforms, as compared to use of their proprietary counterparts, 393 

is the lack of sustainable resources and funding that are needed for further development and maintenance of 394 

those platforms. While most of these platforms are initiated by a research grant, upon completion of the project, 395 

the developers are often unable to find other funding sources to maintain it. In order for a modelling platform 396 

to remain sustainable, it is essential to maintain access to the model’s equations, so that these can be easily 397 

coded later. Sustainability also depends on the ability of model updates to be communicated to end-users. 398 

Establishment of an open source library as a repository for all available model information, including a peer 399 

review process, is strongly recommended.  400 

 401 

 402 

3.  Integrating NG-PBK modelling with toxicodynamic endpoints  403 

There is high value in the use of PBK models to predict internal target tissue doses for risk assessment 404 

applications, based on the assumption that a similar tissue response arises from an equivalent target tissue dose, 405 

rather than the external dose, across different exposure conditions. In addition, toxicodynamic processes that 406 

that are interpreted in a high-throughput context from in vitro dose–response data can be integrated with PBK 407 

models, to link external exposure concentrations to target tissue doses to adverse endpoints. Such integration 408 

allows for support of several risk assessment extrapolations, such as QIVIVE and reverse dosimetry approaches. 409 

Examples of PBK/TD models are reported in table 3 of Punt et al., 2011. However, the application of PBK/TD 410 

models in risk assessment requires proper evaluation of model purpose, model assumptions and structure, 411 

mathematical representation, parameter estimation, computer implementation, and predictive capacity.  412 

 The topic of model evaluation will be captured in the next chapter.   413 

 414 

Salient Features: Model evaluation- assessing the validity of PBK models that rely only upon non-animal data 415 

A question that often arises is “How can we trust a PBK model prediction if there are no in vivo data to evaluate 416 

the simulation; how can the model gain credibility then?”  417 

The following approaches could be applied and are described in further detail below: 1) read-across; 2) micro-418 

scale systems; 3) pragmatic conservative scenario approach; 4) “credibility matrix”; 5) the reliability of dose 419 

metric predictions provided with uncertainty and sensitivity analyses (WHO 2010); and 6) population 420 

characteristics and virtual population libraries. 421 

 422 
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1. Read-across 423 

For those cases in which in vivo data exist for one chemical, a read-across approach4 may be applied to 424 

parameterize models for other chemicals (Schultz et al., 2015).  For example, if a valid PBK model exists for 425 

chemical A (source chemical), and chemical B (target chemical) lacks any in vivo data and has been shown to be 426 

similar in structure to chemical A, then the same parameterised PBK model structure/code and in vivo data for 427 

chemical A can be used for chemical B. This read-across approach has been demonstrated by case studies 428 

applying the PBK Knowledgebase developed by Lu et al. (2016). Alternatively, if parameterisation of the PBK 429 

model using available in vitro or in silico data for chemical B is possible, predictions can be compared to output 430 

from the model for chemical A based on in vivo data, in order to evaluate the PBK model for chemical B. When 431 

using such a model based on similarity between different chemicals, the influence of chemical-specific 432 

properties mediating ADME behaviour (e.g., log P, specific functional groups) should be carefully considered.  433 

 434 

2. Micro-scale systems 435 

Microscale systems, such as human-on-a-chip technology, could potentially be applied to measure and predict 436 

kinetics and whole body response to substances (Sung et al., 2014), thus aiding in evaluation and increased 437 

confidence in NG-PBK models. However, the limitations of these novel microscale systems should be carefully 438 

considered. For example, flow rates from model systems are often not scaled down in a similar manner as tissue 439 

volumes, thus rendering interpretation of the data difficult for PBK model applications. 440 

 441 

3. Pragmatic conservative scenario approach 442 

When in vivo data are lacking for model evaluation, a pragmatic conservative scenario could be followed in order 443 

to derive the most conservative estimate for risk assessment. For NG-PBK modeling, such an approach needs to 444 

be designed in such a way that the structure and input of the model is likely to lead to an overestimation of the 445 

internal concentration. This can be achieved by including uncertainty factors in the input parameters of the 446 

model. A worst-case estimate for absorption can for example be set to 100%. Other input parameters, such as 447 

metabolic clearance can be set to a value that is a certain extent lower than that measured for in vitro rates. To 448 

define the conservative boundaries around each input parameter, the uncertainties of each in vitro or in silico 449 

input method need to be identified.   450 

 451 

4. Credibility matrix  452 

There is a need to develop a framework for supporting the credibility of PBK models in support of risk assessment 453 

applications. As a first requirement for credibility, PBK models should be biologically plausible. Often, modellers 454 

or mathematicians exclude a number of biologically-relevant processes because these processes are considered 455 

to have no bearing on the model results and because models should be kept as simple as possible  created 456 

                                                           
4 Quotation: “The underlining philosophy of read-across is that substances which are similar in chemical 

structure will have similar properties and thereby, have similar toxicokinetics and toxicodynamics. 
Experimental derived toxicological proprieties from one substance, often referred to as source chemical, 
can be read across to fill the data gap for a second substance, the target chemical, which has a similar 
molecular structure but is lacking data” (Schultz et al., 2015). 
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following the required purpose/problem formulation. However, such assumptions must always be discussed and 457 

agreed upon with biologists and toxicologists, to prevent the omission of critical biological and toxicological 458 

steps or key events. Good documentation of model assumptions is critical for modelers to demonstrate the 459 

validity of their models to reviewers and users, and visualization is a key feature when dealing with 460 

communication of these models. The recent EFSA uncertainty guidance document provides a reporting table for 461 

listing and evaluating model uncertainties (EFSA 2018).  462 

 463 

From the 2016 EURL ECVAM workshop, the following graphical representation and application of the “credibility 464 

matrix by Patterson & Whelan” has been proposed. The matrix (Figure 4) allows for locating a specific model 465 

type based on the information available, i.e whether a model is principled and testable, as well as knowledge of 466 

the biology and the availability of data, which should aid in systematically establishing  model credibility via a 467 

process of social epistemology (Patterson & Whelan, 2017). If a model falls in the bottom left region (testable 468 

and with full knowledge), confidence in  the model is likely high. However, if a model falls in the top right region 469 

of the matrix (not testable and without any knowledge of the system biology), confidence in the model is likely 470 

low due to the uncertainties associated with it. In other words, regulators are unlikely to trust model types found 471 

in the top right region of the matrix when making decisions. The question is, to what degree a PBK model would 472 

need to be placed towards the bottom left corner to attain sufficient credibility for regulators. In some sense, 473 

testable models do not really predict, but provide an estimate to compare against available data in a 474 

retrospective fashion. 475 

 476 

The proposed framework should lay out the requirements for validating models with different degrees of 477 

knowledge and testability (e.g., quantitative validation), which could aid in quantifying the uncertainty currently 478 

existing with animal models, and which can help regulators assess whether models developed through in vitro 479 

and in silico methodologies can be equally reliable, or even more so, compared to current risk assessment 480 

approaches.  Biological systems, by nature, are complex networks operating under simple rules that can be 481 

described by non-linear dynamic processes, and which exhibit non-trivial emergent and self-organizing behavior. 482 

As a result, a measured value might represent a particular, and perhaps unknown, state of a system, which 483 

makes its use, as a comparator for a predicted value, challenging.  To handle such issues, approaches that 484 

operate on experience-based validation are required. Ideally, these, approaches would capture the diversity of 485 

experiences to establish generic digital twins, which are couplings of validated models with their real-world 486 

datasets (see Patterson et al., 2016).  487 

 488 

There is disagreement amongst modellers as to the meaning of the terms model evaluation, verification, and 489 

validation; for instance, EMA has shifted to use of the word “qualification”. Regardless of which term is more 490 

appropriate, the analytical purpose is to ensure that the model is appropriate for the task at hand, and that its 491 

predictions are a reasonable representation of reality. Once confirming that the model is a reasonable 492 

representation of reality for the intended purpose, several analyses may be used to “validate” a model, including 493 
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sensitivity analysis, robustness analysis5, assumption justification, model argumentation, structured calibration, 494 

predictive performance, proper scoring rules, and relation to reality. To “verify” a model, the model scope should 495 

be revisited and the model equations and code reviewed. The following key elements were suggested by the 496 

2016 EURL ECVAM workshop participants to achieve model credibility (Paini et al., 2017a): 497 

 Understand the model; 498 

 Understand the data underpinning the model; 499 

 State clearly the assumptions and hypothesis encoded; 500 

 Consider the gap between the model and reality, based on available observations.  501 

This last item can be a description of what is lacking in the model. The outcomes of sensitivity analyses can be 502 

used to explain some model deficits. One possible approach, as opposed to the statement in the introduction 503 

regarding developing the simplest model, would be to start with a more complex model and then remove 504 

parameters to which the predictions are not sensitive. The potential problem with this approach is that when 505 

there are many parameters with large uncertainties, they may introduce a great deal of variation into the 506 

uncertainty analysis. 507 

   508 

5. Reliability of dose metric predictions (model testing, uncertainty, and sensitivity)  509 

In 2010, the World Health Organization (WHO) reported the level of confidence needed to gain credibility in a 510 

PBK model intended for risk assessment (WHO, 2010). The degree of confidence in a PBK model’s predictions 511 

depends upon how well the model has been tested against real data and whether adequate sensitivity and 512 

uncertainty analyses have been conducted, in order to support the reliability of predictions (WHO, 2010). In the 513 

case of NG-PBK models, the lack of “real data” (e.g in vivo human data) that are required to evaluate model 514 

predictions for the purpose of validation render such validation nearly impossible. However, reporting of 515 

adequate sensitivity and uncertainty is certainly relevant and encouraged. Tables providing guidance in 516 

reporting results of uncertainty and sensitivity analyses have been provided in the WHO 2010 article, as a tool 517 

to better document the evaluation of model predictions (from WHO 2010; Meek et al. 2013). There are several 518 

areas that are considered to present current challenges in accepting model-informed drug development, which 519 

can also provide insight into necessary acceptance criteria for PBK model-based drug development. Among 520 

those criteria, most noteworthy is that the adequacy of submitted PBK models is to be based on their intended 521 

purposes at different stages of drug development (Paini et al., 2017a). That is, determination of whether a model 522 

is fit-for-purpose and the need to identify and transparently communicate the knowledge gaps. EMA and US 523 

FDA published a draft document in 2016 as guidance on the qualification and reporting of physiologically based 524 

pharmacokinetic (PBPK) modelling and simulations (EMA, 2016; US FDA 2018). The aim of this guideline is to 525 

describe the expected content that should be included in PBK modelling and simulation reports during regulatory 526 

submission, including applications for authorization of medicinal products, pediatric investigation plans, and 527 

                                                           
5 Quotation from Saltelli et al 2000 Sensitivity Analysis – What is Sensitivity Analysis? “For a software engineer, 

SA could be related to the robustness and reliability of the software with respect to different assumptions “ 
… “For a statistician, involved in statistical modelling, SA is mostly known and practice under the heading 
of “robustness analysis” (Saltelli, 2000). 
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clinical trial applications. This also includes the documentation needed to support the qualification of a PBK 528 

platform for an intended use, such as results of sensitivity and uncertainty analyses. 529 

6. Population characteristics and virtual population libraries  530 

This chapter reports information on population characteristics as virtual population libraries for the in silico 531 

medicine field. However we believe that this information could be also relevant for the chemical risk assessment. 532 

Efforts undertaken to better capture the heterogeneity in the human species can certainly be applied to 533 

environmental chemical risks, as different population cohorts may be more at risk to specific chemical exposures 534 

than are other cohorts. Important aspects of human heterogeneity include inter-individual variations in lifestyle, 535 

health status (immunosuppressed, disease patient) genetic polymorphism (gene expression), physiology (uptake 536 

rate), biochemistry and molecular biology (Mclanahan et al., 2012), all with respect to age. These factors will 537 

interact and influence the chemical ADME and biokinetic behaviors and toxicodynamics within the body. 538 

Parameters in a PBK model have a direct biological correspondence, providing a useful framework for 539 

determining the impact of observed variations in physiological and biochemical factors on the population 540 

variability in the achieved target of a particular chemical (Clewell and Andersen, 1996; Price et al., 2003; 541 

Mclanahan et al., 2012). In addition, integration of genetic information from –omics studies will enhance 542 

predictions for precise and personalized medicine.  Applications for predicting the kinetics of substances within 543 

specific populations, such as in the field of pediatrics, have been increasing in their  development and use (Leong 544 

et al., 2012). In the pharmaceutical field, population-specific PBK models can simulate untestable clinical 545 

outcomes, allowing for evaluating the effects of intrinsic (e.g., organ dysfunction, age, genetics, etc.) and 546 

extrinsic (e.g., drug-drug interactions) factors, alone or in combination, on drug target concentrations.  547 

  548 
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Next steps and future perspectives 549 

With an increasing demand for application of alternative methods within the risk assessment framework, the 550 

need for the development of higher throughput NG-PBK models has also increased. A guidance document for 551 

GMP for PBK modelling could also be extended to other types of in silico biokinetic models, such as in vitro mass 552 

balance models (Armitage et al., 2014; Zaldivar Comenges et al., 2017). Existing guidance documents (WHO, 553 

2010 and EPA, 2006), and those documents of EFSA (2014), and European Committee for Standardization (CEN, 554 

2015), that are less PBK-specific, require updating with respect to the current trends, due to the continuous 555 

evolution in science and risk assessment. The recent United States Food and Drug Administration (US FDA, 2018) 556 

and European Medicine Agency (EMA, 2016) guidelines are the first that open up the possibility to submit non-557 

animal PBK model results for drug dossier submission and provide excellent examples that other agencies could 558 

follow. At the same time, the OECD is working on a guidance document for the characterization, validation, and 559 

reporting of physiologically based models for regulatory applications that should be ready in 2019, and which 560 

attempts to set principles for NG-PBK model validation. 561 

However, the challenge remains in making appropriate use of in vitro data and/or in silico predictions when 1) 562 

building these models; 2) interpreting model outputs and integrating the outputs with other sources of 563 

information for risk assessment purposes; and 3) attempting to gain model credibility by underlining all 564 

uncertainties and assumptions when in vivo human data are unavailable for proper model evaluation. The 565 

uncertainty and variability associated with PBK models, and the proposed GMP (Loizou et al., 2008), should be 566 

further developed and should include guidance for PBK models built using in vitro and in silico methodologies to 567 

estimate ADME properties. The use of a matrix in the new risk assessment paradigm, to underline and quantify 568 

the uncertainty associated with NG-PBK models, compared to models based on in vivo animal data, would be 569 

desirable.  570 

Several standardised decision trees could be developed to guide modellers in their construction of a PBK model 571 

in the absence of in vivo data for calibration, and to guide risk assessors in application and interpretation of PBK 572 

models. For instance, PBK-predicted internal dose metrics vs. in vitro PoD from toxicity testing could be taken 573 

into account, along with in vitro results linking to in vivo adverse outcomes for a tiered assessment, perhaps 574 

through application of the traditional and internal threshold of toxicological concern (TTC) approach (Kroes et 575 

al., 2007; Worth et al., 2012). With the need for several international working groups to further develop such 576 

documentation, communication is required among these groups to ensure compatibility of in vitro kinetic and 577 

dynamic methods with PBK models, in addition to communication with regulators to fit the total risk-assessment 578 

framework. It should be noted that for such communication to be achieved, funding would be necessary. 579 

There remains a need to create a community to address issues with human ADME/TK and NG-PBK models, such 580 

as the development of criteria for model construction and model evaluation. A group of scientists across the 581 

academic, industrial, and governmental landscapes should be available and willing to establish a peer review 582 

system for PBK models. Criteria should exist to select those individuals that will review the models, and 583 

templates and check lists should be provided to assist in the review process. A public repository is needed for 584 
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PBK models that have been built and/or peer reviewed, and once this repository is developed, relevant 585 

documentation can be introduced from an independent peer review to support model credibility. Such a 586 

repository is in line with the work reported in Lu et al., (2016) and will allow for the curation of more case studies 587 

and the creation of libraries of ad hoc PBK models that could be used for training purposes. Additionally, this 588 

repository will facilitate risk assessment approaches applying PBK models and IVIVE, and communicate to 589 

decision makers more efficiently the current state of science regarding the use of animal-free models in 590 

regulatory applications. Perspectives from the various industrial stakeholders (e.g. pharmaceutical, food safety, 591 

agricultural, and personal care product industries) also need to be communicated, to provide greater insight of 592 

current practice and understanding of future needs of these sectors, to enable promotion of best practices.  593 

Application of NG-PBK models, in the context of exposure in specific population of patients, would be extremely 594 

valuable in the generation of virtual population/patient libraries. These libraries would enable clinical trials to 595 

entail populations with a greater number of “virtual” individuals, which might not otherwise be possible to 596 

conduct with a limited number of real persons/patients. Additionally, these libraries would introduce 597 

populations more rarely encountered, such as those possessing enzyme polymorphisms that exert a greater 598 

influence on drug-drug interactions or those with rare genetic diseases or health abnormalities. Such libraries 599 

would also prove useful in chemical risk assessment when evaluating interindividual variability in relation to 600 

chemical exposures and toxicological outcomes.    601 

Finally, it is recommended that a means for training new modellers and risk assessors be established . Such 602 

training, which can be provided with specific courses or as a continuous education course within scientific 603 

conferences, will focus on PBK model development, evaluation, and application. Though several challenges still 604 

remain, the suggestions and steps presented in this work provide a path towards gaining acceptance of NG-PBK 605 

models in regulatory practices.  606 

In summary, to facilitate the development and use of NG-PBK models, which do not rely on animal in vivo data, 607 

and their acceptance in the regulatory domain, the following are recommended:  608 

i) development of more transparent, accessible, and user-friendly software platforms that facilitate 609 

development and application of PBK models by a community of users, and which allow specific populations to 610 

be modelled or population variability to be evaluated; 611 

ii) development of resources to inform new developments in in silico and in vitro approaches that may be used 612 

to provide data for model development; 613 

iii) development and refinement of existing web applications and PBK model platforms that have the ability to 614 

conduct QIVIVE and reverse dosimetry in an automated manner;  615 

iv) knowledge sharing initiatives that allow members of the regulatory community, such as risk assessors and 616 

risk managers, to become familiar with relevant PBK model information, while model developers gain a better 617 

understanding of regulatory needs; 618 
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v) GMPs and harmonised guidelines for reporting the steps taken during model development, evaluation, and 619 

application, with respect to NG- PBK models. This would include the use of a clear and common terminologies.  620 

 621 

  622 
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Figure Legend  842 

Figure 1. (a) Schematic representation of a physiologically based kinetic (PBK) model, (b) with an example of a typical PBK 843 

model-output (time-dependent chemical concentration in blood). 844 

Figure 2. A. Number of papers published per year within the last 60 years. The search was conducted using the online 845 

repository PubMed on the 7th of March 2018, with key words string including “PBPK OR PBBK OR PBTK OR PBK”. B. The 846 

number of papers (figure 2 A) published with key words string including “PBPK OR PBBK OR PBTK OR PBK” were normalized 847 

to the following terms: Toxicology;  Pharmacology; Chemical Safety OR Risk assessment; Forensic Sciences and Veterinary. 848 

Figure 3. An example of a schematic decision tree to decide what tier of PBK model to apply when encountering 849 

data-poor or data-rich chemicals during model parameterization and based on problem formulation.  850 

Figure 4. Credibility matrix showing comparative loci for a model based on traditional in vivo data-based approaches and for 851 

a model based on an alternative approach (i.e., in vitro, in silico methods and/or micro-scale systems). The rationale for the 852 

locations of the model types, indicated by stars and letters, are given in the side-bar legend. For example, in silico models 853 

placed at the top right, might consist of a simple model ‘a’ based on a limited set of data, for instance in a QSAR. This leads 854 

to a more sophisticated, but still heuristic, model ‘b’ based on the understanding gained from model ‘a’. The predictions 855 

from models ‘a’ and ‘b’ are used to design in vitro tests that enable the development of model ‘c’, which can be validated 856 

using the rational-empirical approach, thus enhancing its credibility. Finally, this leads to the development of clinical studies 857 

and model ‘d’, supported by its predecessors and quantitatively validated or confirmed using clinical data. This places model 858 

‘d’ in the bottom left corner, as a model whose predictions stakeholders, including regulators, practitioners, and patients, 859 

will likely use to make decisions (adapted from Paini et al., 2017a, proposed by Patterson and Whelan 2017). 860 
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Figure 1. Paini et al.,  865 
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A. 867 

B. 868 

Figure 2 Paini et al.,  869 
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Figure 4. Paini et al. 875 
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