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Bottom trawling at Whittard Canyon: evidence for seabed modification, trawl 
plumes and food source heterogeneity, Daly et al., Ref: PROOCE_2017_188

We are grateful for the opportunity of submitting a revised version of our manuscript for the 

upcoming INCISE special edition. We would like to thank the reviewers for their 

constructive comments and suggestions which have significantly improved the revised 

manuscript. In response to the major and minor review comments, we have re-written and re-

structured substantial parts of the manuscript as indicated below, but with particular reference 

to improving figure quality, combining the different methods and drawing some more 

substantial conclusions to the analysis. We have addressed all comments and suggestions and 

we note that both reviewers have expressed concerns about the crossover between this work 

and that of Wilson et al., (2015a, b). This was an error in over referencing the previous work 

to set the new results in context, which has now been revised.

Specific responses to individual reviewers are summarised below.

Reviewer 1

We have slightly amended the title of the manuscript to add reference to each aspect of the 

work and hopefully retain or increase its impact. The discussion section has undergone 

considerable re-working based on the suggestions given.

Comments:

Line 61: Reviewer 2’s suggested citation was incorporated here.

Line 69: This has been clarified by making distinction between trawl doors and other ground 

gear.

Line 84: Changed to: adjacent to, and within

Line 85: Now described as natural ‘transport’ processes, we would consider that transport via 

riverine input could be seen as a process in the context of a canyon system.

Lines 480 onwards: The point about fishing grounds in close proximity to very steep slopes 

has been added (line 519) as has the fact that not all resuspended material will be transported 

(line 525). 



Lines 496-497: In the interest of clarity the word ‘novel’ has been dropped.

Lines 507-510: New datasets are, as yet, unprocessed and a research output is many months 

(or years) from completion.

Line 529 onwards: The discussion of the trawling plumes has been re-written, and in that 

section and throughout discussion, the importance of trawl plumes has had its emphasis 

increased. The intention of the comparison of the turbulent dissipation estimates (not current 

speeds) with non-trawl plumes was more to show that the values deduced from the basic 

analysis were not inappropriate for a gravity flow. The section has been re-written to take this 

into account. 

In general, the discussion section has been rewritten to provide a more coherent and stronger 

set of comparisons, implications and conclusions. 

Figures:

Fig 2: To reduce confusion this figure has been split in two with part (a) introducing the 

region’s bathymetry and areas of interest and includes depth contours. Part (b) introduces 

fishing effort. Many colour schemes were sampled but the original was preferred.

Fig 3: Thank you for pointing out the flaws of this figure. It has been removed and replaced. 

The new figure 3 shows maps of slope and rugosity for the region. It was not possible to 

display a VMS fishing grid overlaying slope or rugosity without confusion or colours 

clashing. Instead, contours of VMS fishing have been added to rugosity. Depth contours were 

retained with the slope map for further information.

Fig 5 (previously Fig 4): This figure stems from an initial analysis of the data and depicts the 

variation in rugosity (rather than rugosity itself) as it changes with increasing slope. This can 

be seen as a proxy for ‘heterogeneity’ of seafloor roughness. Description of this has been 

strengthened in the text (line 334).

Fig 7 (previously Fig 6):  We appreciate that the presentation of two along channel sections 

could be skewed by the aliasing of the data (mostly in the near seabed data) so a new 

approached was used. Here the post trawling event is still shown as the intention was to 

highlight that the channel is filled to several 100 metres above bottom with significantly 

enhanced SPM concentrations. We have also included where maximum SPM concentrations 



were found under natural conditions (as discussed by Wilson et al 2015) as a comparison for 

perspective. We have followed the suggestion to show (here selected) profiles as well to 

highlight the near seabed changes.

Fig 11 (previously Fig 10): While discussing benthic lifeforms and food source heterogeneity 

this figure is designed to aid the reader (especially non-experts) in visualising the 

sedimentary conditions experienced. This figure is not clamed as a result of analysis and the 

text (and caption) has been improved to reflect this. We would like to retain this figure.

Reviewer 2

With respect to the writing style, edits have been made to make the text more concise. 

References have been added as per PDF comments.

Restructuring has taken place between sections as per PDF comments. These and further 

restructuring of the introduction and discussion sections provides a more defined framework 

to the manuscript.

With the helpful comments of both reviewers, we now realise how it could appear like we are 

presenting previous work carried out by Wilson et al., (2015a) again here. We have 

endeavoured to highlight the development of the new work/results from the old throughout 

the revised manuscript.

With respect to VMS data, there is a misconception that the data is a census of fishing 

activity rather than a statistical representation. This has now been described in detail 

including statistical errors in the methods section. As far as I am aware AIS data is currently 

only available closer to shore, within VHF radio range (10-20 nautical miles), although newer 

satellite systems (SAIS) are presently coming on-stream.

An appendix of GAMs mathematics has not been included, because it is incredibly difficult 

to glean the precise mathematics used by the models. This is due to the fact that the internal 

mathematics seem to be only accessible through computer code in R. Instead there is a 

general GAMs model equation and description added to the methods section which includes 

references to literature and code for any reader wishing to pursue it further.



Following are replies to specific numbered PDF comments. Any comments dealt with above 

or changed exactly as recommended are not included below.

Comments:

[Comments 2-4]: Text has been re-written 

[Comment 10]: A sentence has not been added here about detailed calculations of global 

trawled area. It has been mentioned briefly in sentence one of this paragraph. At time of 

writing, the book Submarine Geomorphology was not available, nor do we currently have 

access to it, therefor we plan not to use it. 

[Comment 12]: This sentence has been changed in line with suggestions from Reviewer 1 

[Comment 13]: Halpern et al., (2008) has been included but Oberle et al., (2018) has not, as 

mentioned above

[Comments 14, 15]: Wilson et al., (2015a) did not analyse sediment dynamics (lines 125-

127). Further clarifications are to follow in the writing e.g. biogeochemical analysis here is 

new additional analysis on the samples described in Wilson et al., (2015a)

[Comments 16-18]: Please see new writing addressing in detail the concerns over VMS data, 

how it was filtered and inclusion of errors 

[Comment 19]:  Wilson et al., (2015a) has been removed here. They essentially just named 

the canyon branches as WC1-4 and this work simply carries on using the same naming 

convention. GIS analysis carried out for this paper occurred after Wilson et al., (2015a) was 

published 

[Comment 22]: Please note these errors quoted are for ‘fishing effort (hrs)’ (line 323) and are 

different to the errors mentioned for ‘fishing records’ (lines 167-169) 

[Comment 23]: This has been added as part of Fig. 6 (previously Fig. 5)

[Comments 24, 25]: This paragraph has been re-written to be more descriptive and 

explanatory of the results of Fig 6 (previously Fig 5), however, in the interest of aesthetics, 

graphics were not added to the figure to point out the deflecting contours above 10 degrees. 

[Comment 26]: This new figure has been added as Fig. 4 and placed before the old Fig. 4 

because it came earlier in the analysis process.



[Comment 30]: lines 381-384 address the difference between Wilson et al., (2015a) and this 

work.

[Comments 32-34]: This section has been re-written in line with the new figure 

[Comments 39-41]: This text has been moved to methods section 

[Comments 42, 43]: Revised

[Comment 44]: We agree that the word typical was used too much and has been edited where 

appropriate. It was a reference to conditions under the natural (i.e. non-plume) driving forces 

that have been identified previously. That is now stated in the text. 

[Comment 50]: We are unsure how to present the results of our statistical analysis as 

percentages.  

[Comment 55]: We do not have any data for sediment sizes within Whittard and published 

data are referenced elsewhere in the text (Amaro et al., 2016). We have, however, re-written 

the sentence in question to improve on its detail.

[Comment 56]: This has been rephrased.

[Comment 57]: It is unclear as to the specifics of this comment. An effort has been made to 

improve the text in connection to this figure.

[Comment 61]: Text has been enhanced in this paragraph and the figure caption has been 

amended. Please also see response comments to reviewer 1 above, on this matter (Fig 11). 

  

    

    

   



Highlights 

 Evidence for seabed modification by bottom trawling activity
 Trawl plume material and associated energy dissipates down canyon channels
 Heterogeneity in down canyon organic transport varies with trawling variability
 Heterogeneity may cause complication in interpreting biogeochemical distribution



1 Bottom trawling at Whittard Canyon: evidence for seabed 
2 modification, trawl plumes and food source heterogeneity
3

4 Eoghan Daly1,2, Mark P. Johnson1, Annette M. Wilson3, Hans D. Gerritsen4, Konstadinos 

5 Kiriakoulakis5, A. Louise Allcock6 and Martin White1,2.
6
7 1. Earth and Ocean Sciences, Ryan Institute - School of Natural Sciences, National 
8 University of Ireland, Galway, Ireland.
9 2. Irish Centre for Research in Applied Geoscience (ICRAG), National University of Ireland, 

10 Galway, Ireland.
11 3. Alfred Wegener Institute, Biologische Anstalt Helgoland, 27498 Helgoland, Germany.
12 4. Marine Institute, Rinville, Oranmore, Co. Galway, Ireland.
13 5. Natural Sciences and Psychology, Liverpool John Moores University, UK.
14 6. Zoology, Ryan Institute - School of Natural Sciences, National University of Ireland, 
15 Galway, Ireland.
16
17

18 Abstract

19 Fishing vessels are attracted to the dendritic Whittard Canyon system due to the abundance 

20 and diversity of species found there. Both midwater and bottom trawling are commonplace, 

21 including on deep canyon channel floors. Bottom trawling is identified here as a possible 

22 cause of changes to seafloor roughness along the canyon interfluves. An Arc Chord Ratio 

23 (ACR) rugosity index is calculated for the Whittard area and correlated with Vessel 

24 Monitoring System (VMS) data using various statistical models. Over higher slopes or 

25 rougher ground the heavily fished locations show a more homogeneous rugosity distribution 

26 than those lightly fished, indicating possible smoothing of the seabed. 

27 Bottom trawling activity on adjacent interfluves/shelf is known to generate energetic turbid, 

28 sediment plumes within the canyon branches to 2500 m depth, with elevated Suspended 

29 Particulate Matter (SPM) concentrations in the water column up to 400 m above the seabed. 

30 Lipid biomarker analysis of organic material collected from these plumes showed higher 

31 concentrations of total lipids at sites that are intensively trawled (east). In comparison to sites 

32 that are less intensively trawled (west), higher contributions of fatty alcohols were detected. 

33 While lower concentrations of unsaturated fatty acids were detected, biomarkers indicative of 

34 phytoplankton accounted for 93.4±0.7% of total lipids identified from eastern samples 

35 suggesting rapid transport of labile compounds. Results presented here suggest that intensive 
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36 trawling induced changes to sediment transport will complicate the interpretation of 

37 biogeochemical property distributions at canyon systems, particularly from single surveys. 

38 Anthropogenically generated heterogeneity in sediment supply and character will also impact 

39 on habitat suitability for resident ecosystems.

40

41 Keywords: Trawling Plumes; Whittard Canyon; Suspended Particulate Matter; Vessel 

42 Monitoring System; Rugosity Index; Lipid Biomarkers

43

44

45 1. Introduction

46

47 The continental margin, occupying a little over 10% of the ocean surface area, connects the 

48 shelf seas (and hence coastal regions) to the deep sea, plays a significant role in the provision 

49 of food and energy resources, is a site for biogeochemical cycling (including carbon 

50 sequestration), and hosts a range of diverse ecosystem habitats and associated ecosystem 

51 services (e.g. Levin and Dayton, 2009; Benn et al., 2010; Levin and Sibuet, 2012). The 

52 margin is an area of heterogeneous habitat driven, in part, by the variation in continental 

53 morphology and topographic features, including slope variations, banks, mounds, seeps and 

54 canyons (Levin et al., 2010). In particular, sedimentary slopes are the most extensive margin 

55 habitat and contain the most numerous and diverse benthic communities (Grassle and 

56 Maciolek, 1997; Levin and Sibuet, 2012). There is a growing anthropogenic impact at these 

57 margin environments (e.g. Eastwood et al., 2007; Benn et al., 2010; Doney, 2010; Ramirez-

58 Llodra et al., 2011). In particular, the spatial expansion of bottom trawling (Morato et al., 

59 2006) into the deeper environment has been recognized as a significant element in modifying 

60 both seabed morphology and the sediment flux across the margin (e.g. Benn et al., 2010; Puig 

61 et al., 2012; Martín et al., 2014b; Oberle et al., 2016a). Both anthropogenic and natural 

62 drivers of ecosystem change at the continental margin require further quantification as a 

63 foundation for offshore resource management and conservation (e.g. Davies et al., 2007; 

64 Benn et al., 2010).   
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65 Bottom trawling covers ground area comparable to between half (Watling and Norse, 1998) 

66 and three quarters (Kaiser et al., 2002) of the world’s continental shelves, can globally drive 

67 sediment flux similar in quantity to fluvial input (Oberle et al., 2016a) and can have greater 

68 impact on the seabed than all other anthropogenic pressures combined (Eastwood et al., 2007; 

69 Halpern et al., 2008; Benn et al., 2010). These impacts are exacerbated in deeper, off-shelf 

70 waters where background energy levels and species resilience is lower and habitat recovery 

71 time slower (Kaiser et al., 2002). Bottom trawling gear makes direct contact with the seafloor 

72 and is responsible for the sorting and layering of sediments, for overturning, breaking up 

73 sediment fabric and causing bed armouring (Martín et al., 2014a; Oberle et al., 2016b). The 

74 degree to which the seafloor is affected depends on bottom type, gear design and ground 

75 contact (Gerritsen et al., 2013), with trawl doors causing the most acute damage (O’Neill and 

76 Summerbell, 2011), while sweep lines, bridals and footropes cause the most widespread 

77 damage (Martín et al., 2014b). In addition to physical alterations, trawling activity can also 

78 alter the biogeochemical composition of local sediments (Pusceddu et al., 2005a, b), with 

79 compositional changes being more influential than the seasonal input of organic matter in 

80 some areas (Sañe et al., 2013). Fishing grounds commonly have lower concentrations of 

81 flocculent Organic Carbon (OC) due to winnowing and oxygenation (Martín et al., 2014a; 

82 Pusceddu et al., 2014). Given these significant changes, the resuspension of organic matter 

83 from coastal and shelf regions by bottom trawling will likely increase OC export rates to the 

84 deep (Martín et al., 2008; Palanques et al., 2014). Furthermore, heavy metals and other 

85 pollutants buried in coastal sediments can be released by trawling activity and transported to 

86 deeper more vulnerable areas (Jones, 1992; Palanques et al., 1994).

87 Submarine canyons provide a conduit for sediment flux between the shelf and deep ocean 

88 along the world’s continental margins and, as such, both the deep sea and submarine canyons 

89 are now recognised as potential major repositories for anthropogenic wastes and marine litter, 

90 including plastics (e.g. Pham et al., 2014). There are many natural transport processes that 

91 control sediment erosion, transportation and deposition adjacent to, and within, submarine 

92 canyons, such as storm waves (Sanchez-Vidal et al., 2012), river input (Khripounoff et al., 

93 2009), dense shelf water cascading (Canals et al., 2006) and slope failure, each dependent on 

94 local or regional physical conditions. When compared to natural canyon transport processes 

95 that drive sediment flux, several studies have discussed anthropogenic impact, through 

96 bottom trawling, as a major, if not dominant, process, especially on human time scales (e.g. 

97 Halpern et al., 2008; Puig et al., 2012; Martín et al., 2014b; Puig et al., 2014). Additionally, 
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98 bottom trawling in proximity to submarine canyons has been found to smooth out the 

99 seascape on large spatial scales, for example, at La Fonera Canyon (Puig et al., 2012; Martín 

100 et al., 2014a; Martín et al., 2014c; Payo-Payo et al., 2017), where changes to topography are 

101 now clearly visible on high resolution bathymetry maps (Puig et al., 2012). Trawler induced 

102 sediment gravity flows in La Fonera Canyon have been described in detail by Martín et al. 

103 (2014c). Payo-Payo et al. (2017) highlighted, through modelling anthropogenic sediment 

104 resuspension/transport, the ability of bottom trawling to affect wider areas than the fishing 

105 grounds, contrasting localised resettling on-shelf and over canyon flanks with widespread and 

106 distal displacement from sediment turbidity currents, especially over the steeper slopes. 

107 Changes to morphology and biogeochemistry caused by bottom trawling in submarine 

108 canyons can affect ecosystem functioning and massively reduce benthic habitat heterogeneity 

109 (Watling and Norse, 1998; Puig et al., 2012 and references within). Trawling of the seafloor, 

110 negatively impacts on the biodiversity and abundance of life found there (Watling and Norse, 

111 1998; Puig et al., 2012; Pusceddu et al., 2014); greatly reducing infaunal communities 

112 (O’Neill and Summerbell, 2011) when compared to untrawled areas.

113 In this paper the potential impacts of fishing on seabed morphology and down-canyon 

114 sediment distribution and associated biogeochemical parameters at the Whittard Canyon 

115 system on the Celtic Sea margin, NE Atlantic (Fig.1) have been assessed.  The Whittard 

116 Canyon is a dendritic system with canyon heads cutting the shelf at 180–200 m and a main 

117 channel axis opening onto deep ocean floor at 3600–4400 m (Reid and Hamilton, 1990; 

118 Amaro et al., 2016). Whittard Canyon has limited sediment input from fluvial processes due 

119 to its distance (~ 300 km) from land, but does experience significant off-shelf material flux. 

120 This is due to high overlying pelagic productivity (Sharples et al., 2013) and dynamical 

121 processes such as boundary currents and internal waves which drive transport via nepheloid 

122 layers (Wilson 2015b; Hall et al., 2017), slope failure and sediment gravity flows (Amaro et 

123 al., 2016). Additionally, Wilson et al. (2015a) observed Enhanced bottom Nepheloid Layers 

124 (ENLs) with significantly higher sediment concentrations in two branches of Whittard 

125 Canyon. These ENLs were correlated with fishing activity, via Vessel Monitoring System 

126 (VMS) data, to determine their anthropogenic origin but no detailed analysis of the plume 

127 dynamics were made at that time.

128 [Figure 1 here please, at 1.5 columns wide]
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129 Results are presented here in two parts; (i) a statistical comparison of fishing intensity and 

130 seafloor rugosity is carried out through a generalized additive model (GAM) fit, and (ii) a 

131 brief assessment is made of the dynamical and biogeochemical characteristics of the resulting 

132 trawl-induced sediment plumes found in the Whittard Canyon branches. Results are discussed 

133 with respect to potential issues in interpretation of suspended sediment distribution patterns, 

134 biogeochemical signatures and potential impacts on ecosystem functioning within this and 

135 similar canyon systems.

136

137 2. Methods

138

139 2.1. Spatially distributed fishing intensity and seafloor roughness

140 Vessel Monitoring Systems (VMS) are used internationally for tracking vessel activity 

141 including fishing vessels. In the Whittard region, the fishing activity consists of northern and 

142 southern European fishing fleets. The spatial distribution of fishing fleets can change due to 

143 factors such as targeting different specific species or the cost of fuel (Gerritsen and Lordan, 

144 2011). VMS monitoring is administered within the Irish Exclusive Economic Zone (EEZ) by 

145 the Irish Navel Service. Speed and position data are sent via satellite from each vessel at a 

146 minimum frequency of once every two hours. VMS data for this study were extracted for the 

147 period from January 2006 to February 2016 and then linked to logbook data to identify the 

148 gear type used (following methods described by Gerritsen and Lordan, 2011). Only bottom 

149 trawling vessels (which directly affect the seafloor) were retained in the dataset. Gear types 

150 used were bottom otter trawls (OTB), bottom pair trawls (PTB) and otter twin trawls (OTT) 

151 (Nédélec and Prado, 1990).  Fishing effort was defined according to Gerritsen and Lordan 

152 (2011). Each VMS record was assigned an effort value that was equal to the time interval 

153 since the previous record (generally 2 h). Records with time intervals > 4 h were given an 

154 effort value of 4 h. The data were then filtered to exclude vessel speeds < 0.5 knots or > 4.5 

155 knots in order to retain only the records that correspond to fishing activity. VMS data were 

156 then gridded to their provided resolution of 0.01 x 0.01 decimal degrees, or 740 m (east/west) 

157 x 1110 m (north/south) at these latitudes, for analysis using Geographical Information System 

158 (GIS) applications (Fig. 2b). It might be expected that the size of the grid cells should be 
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159 approximately equal to the distance that a vessel can travel between successive VMS records, 

160 otherwise the vessel could travel over a number of grid cells without being recorded, leading 

161 to bias. However, this is not the case. Instead, each VMS record is a sample of a vessel’s 

162 location (a systematic sample over time) and the number of VMS observations in each grid 

163 cell will therefore be proportional to the amount of time the vessels have spent in that cell. 

164 The resolution of the spatial grid is therefore not limited by the distance that a vessel can 

165 travel between successive VMS records, but instead by the number of records in each grid 

166 cell. Because the data are essentially count data, the precision can be estimated using a 

167 Poisson distribution. At the current resolution, 95% of grid cells in the study area had at least 

168 10 VMS records (relative standard error: 32%) and the mean number of records was 47 

169 (relative standard error: 15%).

170 [Figure 2 here please, at 1.5 columns wide]

171 Bathymetry was obtained from the Irish National Seabed Survey (INSS) for the Whittard 

172 Canyon region (extent: 48.416 to 49.105 N; −11.505 to −9.846 E). The INSS was carried out 

173 between 1999 and 2005, covering the majority of the Irish marine continental area and is 

174 freely accessible through the Geological Survey of Ireland (GSI) at a resolution of 0.001 x 

175 0.001 degrees (~ 74 m by 111 m). Rugosity, a non-standardised (unitless) descriptor for 

176 seafloor roughness, was extracted using bathymetry data, point averaged down to VMS grid 

177 resolution and then analysed for correlations with VMS fishing effort. Here an Arc-Chord 

178 Ratio (ACR) rugosity index was derived through a dedicated toolbox developed by Du Preez 

179 (2012) on an ArcGIS platform. The advantage of an ACR rugosity index is that it decouples 

180 background slope from the rugosity determination using a plane of best fit, rather than a more 

181 traditional horizontal plane. It is scale independent, therefore, making it well suited for use 

182 over the complex topographical features found around the Whittard Canyon.

183 Individual canyon branch polygons were drawn up within the canyon system to further 

184 scrutinise variation in fishing and potential sediment remobilisation across each location. These 

185 polygons (Labelled: WC1–WC4 in Fig. 2a) were delineated using depth contours and distance 

186 from canyon branch channels. The deep ends of the canyon branch polygons were bound to the 

187 2000 m depth contour. The polygons’ sides make a line orthogonal to depth contours where the 

188 contours turn most sharply, stepping down from the canyon interfluves. The upper end of the 

189 polygons (where not touching another polygon) are defined to be a VMS grid cell above or 

190 touching the 200 m contour, in order to include those VMS cells as part of that canyon branch 
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191 analysis. Although this approach is somewhat subjective, it is a best attempt at placing 

192 boundaries between these complexly shaped spurs and channels. Further polygons were drawn 

193 within these canyon branch divisions in an effort to focus on trawled areas that have the largest 

194 effect on sediment transport into the canyon channels. One approach here was to alter the 

195 original polygons by using a 10 hour VMS fishing contour as the inner or channel-side 

196 boundary, in order to isolate, for analysis, the regularly fished interfluves of the original 

197 polygon from the canyon axis. A second approach was to identify areas at the steepest limits of 

198 fishing occurrence over slopes with greatest potential for down canyon sediment supply; these 

199 strips are approximately 500 m wide and situated directly above areas of > 20° slope. Fishing 

200 rarely occurred anywhere steeper than a 20° slope angle (Fig. 3a).

201 Potential influences on the rugosity of the seabed were considered to be broad scale 

202 geographic gradients, slope and fishing intensity. Estimates of the contributions of these 

203 variables were made using generalized additive models (GAMs). An example of a GAM in 

204 general form is as follows:

205                             (1)𝜇𝑖 ≡ 𝐸(𝑅𝑖);       𝑔(𝜇𝑖) = 𝑋𝑖𝛽 + 𝑆1(𝑥1𝑖) + 𝑆2(𝑥2𝑖, 𝑥3𝑖) + 𝐿𝑛𝑖𝑆3(𝑥4) + … 

206 Where μi is the expected value of the response variable Ri and g is a known, monotonic, link 

207 function; Xiβ represents any fully parametric components of the linear predictor while 

208 S1i,2i,3i… are the smooth functions of the predictor variables (x1i,2i,3i…); Lni is included here as 

209 an example linear functional of s3i, where there can be multiple or no such linear functional 

210 terms throughout the model (Wood and Augustin, 2002; Wood, 2006; Wood, 2017). Ri here 

211 is the interpolated rugosity value for each fished VMS grid cell. Predictors (x1i-4i) were the 

212 latitude and longitude of each grid square (for geographic patterns), the estimated slope and 

213 the total fishing hours. GAMs were used because they provide a flexible statistical modelling 

214 framework for investigation of potentially nonlinear relationships, including interactions 

215 between predictor variables. Fitted GAMs are smoothed functions through the data using 

216 penalised regression splines, such that for example:

217                                                                                                                 (2)𝑆(𝑥) = ∑𝑖 = 1𝑓𝑖(𝑥)𝛽𝑖

218 Where the smooth function S constitutes values for the unknown parameters βi and where fi 

219 are chosen and known ‘basis functions’ on which the smoothing formulae rely on (Wood, 

220 2006; Wood, 2017).
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221 Screening of the data suggested that the data were not normally distributed. GAMs were 

222 therefore estimated (in R package mgcv, Wood, 2017) using a log-link to reflect the log-

223 normal response variable. A number of models are possible given the four predictor variables 

224 investigated. The comparisons of interest were defined as a purely geographic pattern 

225 (predictors: latitude and longitude), a model based on just slope and fishing hours, and 

226 models where variables were allowed to interact in pairs or with all four variables together. 

227 Interaction terms test the hypothesis that the relationship of the response variable to a 

228 predictor is not fixed, but depends on a further predictor or predictors. The most informative 

229 of the alternative models was selected using the generalized cross validation (GCV) score, 

230 with low values indicating the best model (Wood, 2017). GCV scores penalize additional 

231 degrees of freedom, so the most complex model is not necessarily chosen as the most 

232 informative.

233 [Figure 3 here please, at 1 column wide]

234 2.2. Hydrographic Observations

235 Four branches of the Whittard Canyon were surveyed during summer 2013 (CE13008: 9–17th 

236 June 2013) & 2016 (CE16006: 29th May–15th June 2016) on the RV Celtic Explorer. 

237 Suspended Particulate Matter (SPM) was estimated from transmissometer measurements (C-

238 star, WET labs; 0.25 m path length, operating at 650 nm) in conjunction with hydrographic 

239 measurements made with a CTD (Seabird SBE 911) and SBE32 rosette. Raw values (volts) 

240 were converted to SPM (μg l-1) following the linear regression of beam attenuation values 

241 and the mass of SPM obtained from filtered water samples (Wilson et al., 2015b).

242 An assessment of the dynamical characteristics of recent trawling plumes measured was 

243 made using vertical CTD profiles. The turbulent length scales and first order estimation of 

244 magnitude in turbulent kinetic energy dissipation were quantified through Thorpe Length 

245 scale (LT) analysis (Thorpe, 1977; Dillon, 1982).  This method estimates the characteristic 

246 length scale (LT) of density overturns within a CTD profile of sufficient vertical resolution 

247 (here 0.25m CTD data was used). LT is determined by reordering a profile of individual 

248 density values (i at depth zi) into one where density increases monotonically with depth (i 

249 at depth zo). A corresponding profile of density displacements (zi − zo) is produced. LT is then 

250 defined as the RMS displacement value over an appropriate averaging process. This 

251 averaging is typically over individual overturns in a ‘packet’ of finite vertical extent where 
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252 the sum of the individual Thorpe displacements equals zero, and that are not associated with 

253 instrument noise (e.g. Galbraith and Kelley, 1996; Mater et al., 2013). Furthermore, a simple 

254 estimate of the energy dissipation () can be made following the arguments of Dillon (1982) 

255 and assuming LT is proportional to the Ozmidov length scale, Lo, which is used to describe 

256 the scale of turbulence in a stably stratified flow. Here we note caution in that LT is 

257 principally a method to estimate the vertical eddy size from the density profiles and only a 

258 limited method to fully quantify the turbulence (e.g. Mater et al., 2013).

259 Assuming that LT and LO are proportional,  can be found from a measurement of LT,    

260   0.64*LT
2 * N-3                                                                                                                    (3)

261 where N is the buoyancy frequency (N2 = [−g/0] * d/dz).

262

263 2.3. Biogeochemical analysis of suspended particulate material

264 Suspended particulate organic matter (sPOM) was collected using a Stand Alone Pump 

265 System (SAPS; Challenger Oceanic), deployed by a winch on the CTD wire or attached to 

266 the CTD. Large volumes of water (163–1143 l) were filtered through two stacked pre-

267 combusted (400 °C; > 6 hrs) glass fibre GF/F (Whatman, 293 mm diameter) filters at the 

268 surface and near bottom depths (7–22 m above the seabed). Filters were folded into quarters, 

269 wrapped in pre-combusted aluminium foil on recovery and stored at −80 °C for the duration 

270 of the cruise. Filters were subsequently freeze-dried and stored at −20 °C until analysis.

271 Elemental and molecular analysis was carried out on sPOM collected from Bottom Nepheloid 

272 Layers (BNLs) between 1310–1370 m water depth (< 20 m above the seabed) from the four 

273 branches and a surface sample (locations: Fig. 2a). Particulate organic carbon (POC) and 

274 particulate nitrogen (PN) were measured from punched circles (113 mm2) in homogeneous 

275 areas at the middle and edge of the top filter only. Analyses were carried out using a 

276 CEInstruments NC 2500 CHN analyser in duplicates and the mean value was taken. POC 

277 values were obtained after de-carbonation of the filters (HCl vapour method; Yamamuro and 

278 Kayanne, 1995), whereas PN values were determined without de-carbonation. Mean values 

279 of the middle and edge filter samples were taken to eliminate filtration artefacts. 

280 Concentrations below the limit of detection (< 0.01) were considered nil. Values were not 
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281 corrected for dissolved organic material due to the large volumes of water filtered (Moran et 

282 al., 1999).  

283 Lipid extractions and analyses of suspended Particulate Organic Matter (sPOM) were carried 

284 out according to the methods of Kiriakoulakis et al. (2007; 2009; 2011) to determine the total 

285 fatty acid and alcohol content. Briefly, portions (1/4) of the SAPS filter (~ 6.21–7.75 g) were 

286 spiked with 20 μl of internal standard (100 ng/μl 5α(H)-Cholestane; Sigma) and extracted by 

287 sonication (30 min @ 30 °C; x 3) in ~ 20 ml dichloromethane:methanol (9:1). Extracts were 

288 later transmethylated (24 hrs; 40 °C) with 1 ml methanolic acetyl chloride (30:1) and 

289 derivatised with 50 μl of bis-trimethylsilyltrifluoroacetamide (BSFTA, 1% 

290 trimethylsilylchloride; Stigma; 30 min @ 40 °C). Extracts were stored at −20 °C until 

291 analysis. 

292 GC-MS analysis was carried out using a Varian 450 Gas Chromatographer Mass 

293 Spectrometer. Extracts were run in batches and loaded onto the column (Agilent VF-MS 

294 column: 30 m x 0.25 mm, 0.25 μm; carrier gas helium @ 1 mL min-1) using a CP8400 

295 autosampler and a CP-1177 split/splitless injector. The column was fed directly into the 

296 electron (EI) source of a Saturn 220 mass spectrometer (ionisation potential 70 eV; source 

297 temperature 220 °C; trap current 300 μA; full data acquisition mode). Chromatograms were 

298 reviewed and processed using Varian MS Workstation software (version 6.9.1). Compounds 

299 were identified by comparison of their mass spectra and relative retention times with 

300 authentic standards (Supelco TM37 FAME mix; 47085-U; 47015-U; 47033 Sigma-Aldrich) 

301 using the total ion current (TIC) chromatogram. Compound concentrations were calculated 

302 by comparison of peak areas of the internal standard with those of the compounds of interest. 

303 The relative response factors of the analytes were determined individually and/or for similar 

304 compounds. Organic contamination in procedural blanks extracted with each sample batch 

305 was subtracted from the sample values. Reproducibility of similar lipid analyses was 

306 determined to be 15% by Kiriakoulakis et al. (2000). Concentrations were normalised to ±

307 volume of water as an indicator of food availability. The contribution of phytoplankton in 

308 each sample was calculated by the sum of C14 – C22 saturated fatty alcohols (Volkman et al., 

309 1998), straight chained fatty acids and C16:1(n-7) (Harwood and Russell, 1984; Conte et al., 

310 2003) and PUFAs (e.g. Duineveld et al., 2012); see also supplementary information. 

311 Similarly, bacterial indices were calculated by the sum of C18:1n7 and odd numbered saturated 

312 and branched fatty acids (Volkman and Johns, 1977; Duineveld et al., 2012).
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313

314 3. Results

315

316 3.1. Bottom trawling intensity and rugosity correlation

317 Fishing occurred up to depths of around 1300 m right across the region studied (~ 7744 km2), 

318 with fishing intensity clearly related to bathymetry and to large scale canyon features, such as 

319 interfluves or plateaux, up as far as the shelf break (Fig. 2b). The combined total time spent 

320 by the fishing industry engaging in bottom trawling was 1.46 x 105 hours or just under 17 

321 years over the 10-year period analysed. Over each VMS grid square (approximately 0.82 

322 km2) actively fished in the 10 years, the mean fishing effort was 4.8 hrs, median fishing effort 

323 was 23.4 hrs and the highest fished grid-square saw 208 hrs of bottom trawling (fishing effort 

324 from VMS having an accuracy of approximately 88% after Gerritsen and Lordan, 2011). The 

325 highest bottom fishing values were found out along the interfluves and plateaus adjacent to 

326 steeper slopes. Although concentrated on lower slopes and shallower waters, fishing effort 

327 regularly occurred on steeper inclines (> 10°) on canyon flanks around the edges of 

328 interfluves and occasionally in waters deeper than 1000 m. As of December 2016, deep-sea 

329 bottom trawling below 800 m deep is prohibited in these waters by EU law (EU 2016/2336).

330  [Figure 4 here please, at 1 column wide]

331 In an effort to assess the most appropriate type of analysis, an initial plot of rugosity against 

332 slope was constructed with fishing points split between high and low around their median (Fig. 

333 4). This identified the non-linear nature of the dataset, where the relationship between slope 

334 and rugosity may be different with different levels of fishing activity. High levels of fishing 

335 only occurred on low slopes and less complex rugosity, whereas low levels of fishing 

336 occurred over the whole region considered. Further examination of the data suggested that the 

337 calculated variation in rugosity among grid squares was lower in more heavily fished areas. 

338 This pattern changed with slope (Fig. 5). By splitting the rugosity values into heavily and 

339 lightly fished grid squares (using median fishing effort: 23.4 hrs), standard deviation of 

340 rugosity can be summarized for each subset, and viewed as a proxy for heterogeneity of 

341 seafloor roughness. For shallower slopes there was no difference between high and low 
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342 fished grid squares, but at higher slopes the more heavily fished areas had less variation in 

343 rugosity (roughness) values.

344 [Figure 5 here please, at 1 column wide, with black and white for print and colour for online 

345 viewing]

346 There was statistical evidence for location, slope and fishing intensity all being related to 

347 changes in rugosity (Table 1). Judged by GCV scores, models with only two variables were 

348 inferior to a model that contained all four predictors (comparing models 1–3). Allowing all 

349 four variables to interact (model 4) did not improve predictive value compared to the model 

350 where all variables had independent effects (model 3). A model with terms where slope and 

351 fishing interacted, along with a geographic interaction (model 6), had the lowest GCV score 

352 and highest adjusted-R2 of the alternative models. This can therefore be viewed as the most 

353 informative summary of the relationships between variables. 

354 [Table 1 here please]

355 The geographic effect (Fig. 6a) is a general decrease in rugosity with increasing latitude, with 

356 some variation in the rate of change with longitude, as is expected in this area going from 

357 deep canyon to shelf. Independent of the geographic pattern, rugosity contours show 

358 increasing roughness with steeper slopes (Fig. 6b). The interaction with fishing intensity 

359 indicated a local increase in rugosity for low slope areas (particularly between 30 and 100 

360 fishing hours), reflected in the deflection of the fitted contour at low slopes. For example, the 

361 average rugosity on seabed with less than 0.5 degree slope was 1.0048 (SE 0.00011) between 

362 40 and 70 VMS hours and 1.0045 (SE 0.00011) at all other VMS values. Rugosity contours 

363 for areas with slopes steeper than 10° suggested that rugosity decreased with increased 

364 fishing. This pattern can be interpreted by comparing areas with low and high fishing effort 

365 for the same slope value. For example, at zero fishing, the predicted residual variation 

366 rugosity is above 0.005 on a 10° slope; at 50 fishing hours residual rugosity was predicted to 

367 be below 0.005 at the same slope value.

368  [Figure 6 here please, at 1 column wide]

369 An east-west variation in fishing intensity was discovered across the four main canyon 

370 branches studied (WC1–WC4). Due to its geometry and the distribution of fishing intensity 

371 around that channel, WC4 was the largest probable contributor to down-slope sediment flux; 
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372 followed by WC3 (Table 2).  WC2 and WC1 to the west contributed least. By focussing on 

373 the interfluves flanking the WC4 canyon branch channel, the largest fishing intensity per area 

374 (79.6 hrs km-2 over the 10 years) was identified out of the whole region. There was very little 

375 fishing occurring on slopes greater than 20°, consequently this was chosen as a boundary 

376 between slopes fished and not fished. As with individual canyon branch results, these focused 

377 areas (Table 2), such as ones fished just above slopes of 20°, displayed a steady west to east 

378 increase (~ 5.3 hrs km-2) in fishing intensity.

379 [Table 2 here please]

380 3.2. Sediment plumes within the canyon channels.

381 Trawling, whilst modifying the seabed, also generated sources of suspended material at the 

382 shelf edge adjacent to the branches of the Whittard system. Sediment plumes had been 

383 observed in branches WC3 and WC4 during the 2013 survey (Wilson et al., 2015a). Since 

384 those reported observations, further plumes have been observed in the WC2 and WC4 

385 branches during a subsequent survey in 2016. Both the along canyon and mid-water 

386 conditions due to trawling plume activity were apparent from vertical profiles of 10m 

387 averaged derived SPM concentrations (Fig. 7). Under what were considered typical 

388 conditions (i.e. no trawling plumes evident), Benthic Nepheloid Layers (BNLs) of thickness 

389 100–200 m have SPM concentrations within a canyon branch similar to that of corresponding 

390 surface plankton layers (0.15–0.4 mg l-1, hatched shading in Fig. 7a). The highest values 

391 occurred at bottom depths associated with boundary currents or internal wave energy 

392 enhancement (Wilson, 2015b). The immediate aftermath of what was considered a trawling 

393 plume event in WC4 resulted in an increase in benthic layer SPM concentrations, in excess of 

394 1 mg l-1, throughout the entire length of the canyon branch that was sampled (Fig. 7b). 

395 Maximum BNL SPM concentration was 8 mg l-1 within the mid-canyon section. 

396 Furthermore, values in excess of 0.3 mg l-1, found over small spatial extents at certain depths 

397 in normal conditions, now occupied the lower 200–400 m adjacent to the seabed along the 

398 entire >45 km of the canyon branch surveyed. 

399 [Figure 7 here please, at 1.5 columns wide]

400 Under non-trawling plume conditions, individual vertical profiles of density and derived SPM 

401 showed a bottom boundary layer region from 1300 m to 15 mab (metres above seabed) 

402 marked by a step in the density gradient (Fig. 8a). No well-defined bottom mixed density 
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403 layer was apparent in the profile shown in Fig. 8a, although often present in other vertical 

404 density profiles. An overall stratified layer up to 600 m depth was present above the bottom 

405 layer, associated with the depth range at, or adjacent to, the permanent thermocline (Fig. 8a). 

406 The mid water layers contained small vertically homogeneous/near homogeneous density 

407 layers, including reversals in the density gradient, of vertical extent 1–10 m. A BNL in the 

408 lower 50 m of the water column is associated with a peak value of SPM reaching 1 mg l-1 

409 (Fig. 8b). A subsequent vertical profile made five days later at the same location indicated a 

410 much more turbid BNL with a peak value of 7.7 mg l-1 (the axis scale truncates the plume), 

411 but with a significant increase in background (mid water) SPM concentrations from ~ 1200 m 

412 depth, or ~ 170 mab.  This high concentration BNL was associated with a well-mixed bottom 

413 density layer capped by a pycnocline of density difference ~0.05 kg m-3 (Fig. 8f).     

414 Associated with the vertical profiles of density and SPM, individual Thorpe density 

415 displacements in mid water occurred with magnitude up to 1–5 m over small vertical extents, 

416 with an increase in the magnitude of displacement packets below 1000 m (Fig. 8c). A large 

417 overturn was highlighted between 1200–1300 m, with maximum displacements peaking at 30 

418 m immediately above the bottom boundary region. For the plume event, similar mid water 

419 characteristics in Thorpe displacements were again present but with a significant increase in 

420 amplitude per overturn region below 1150 m. Increased amplitude in displacements (up to 20 

421 m) between 1200–1300 m were associated with the upper of the two-layer BNL and 

422 maximum displacements immediately above the seabed. LT values up to 2 m were found 

423 between depths 600–1000 m, with values increasing to ~ 5 m below 1000 m and a peak of 12 

424 m associated with the upper layer of the BNL (Fig. 8d). Corresponding values of the 

425 turbulent kinetic energy dissipation () indicated that the small mid water overturns had 

426 values of  between 10-9–10-8 W kg-1 for the typical (pre-plume) scenario (Fig. 8e). The large 

427 overturn immediately above the BBL/BNL was slightly larger (3 x 10-8 W kg-1). For the 

428 plume event, LT values above the BNL were similar to values for a non-plume scenario, but 

429 increased significantly below 1200 m with values of O(10m) in the upper BNL and peaking 

430 at 22 m in the lower BNL layer (Fig. 8i). Turbulent energy dissipation during the plume event 

431 was generally larger in mid water compared to mid water conditions with no trawl plume 

432 present, with a number of values in excess of 10-8 W kg-1 (Fig. 8j). Values peaked between 

433 1200–1300 m in the upper BNL with  ~ 10-7 W kg-1).

434 [Figure 8 here please, at 2 columns wide]
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435 A second example of a trawling plume (from the 2013 survey), showed a plume that occurred 

436 at a depth above the BBL, presumably the plume reaching equilibrium density before the 

437 seabed was reached (Fig. 9). This profile was made 30 hours after one in the same location 

438 which indicated no enhanced BNL concentration layer, and suggested a plume was captured 

439 by the CTD profile near the end of the plume event.  The main plume was centred at 1200 m 

440 (water depth was 1370 m), about 100 m thick, with SPM concentration peaking at 5 mg l-1, 

441 over an order of magnitude larger than non-plume BNL values (Fig. 9b). Individual overturns 

442 and displacements were fewer in number than in the previous example but generally larger in 

443 scale (30–40 m in vertical extent with displacements peaking at 15–20 m (e.g. at 850–900 m 

444 and 800 m, Fig. 9c). The upper boundary of the main plume was associated with a larger 

445 overturn between 1150–1220 m and displacements up to 30 m. Turbulent energy dissipation 

446 (Fig. 9e) was elevated for the overturns at 800, 850–900 m and for the smaller of the two 

447 plumes at 1000–1100 m, with values close to 10-7 W kg-1, or an order of magnitude larger 

448 than the typical mid water values associated with small overturns. The main plume overturn 

449 had a value of  = 10-6 W kg-1, the maximum energy dissipation estimated from the profiles 

450 analysed and perhaps reflecting the capture, rather than the aftermath of, the plume event.

451  [Figure 9 here please, at 2 columns wide]

452

453 3.3. Variation in quality and quantity of suspended particulate material

454 The SAPs sampled SPM concentrations in the four E/BNLs (1308–1370 m) varied across the 

455 four branches (WC1–WC4; see location in Fig. 2a) with mean values of SPM = 1.01 ±0.86 

456 mg l-1 (Table 3). Highest values were detected in WC4 (2.160 mg l-1) and associated with 

457 bottom trawling activity. Although sampled during the same period of trawl activity, lower 

458 SPM concentrations (0.29 mg l-1) were detected in the adjacent branch (WC3). High SPM 

459 concentrations were also detected in WC1 (SPM = 1.18 mg l-1) but were not previously 

460 linked to bottom trawling on the western side of the canyon system. Material from the near-

461 surface has a molar C/N value of 6.4, typical of oceanic surface water, while C/N values from 

462 the E/BNLs at depth ranged from 8.2–22.2 across the four branches, with the lowest values in 

463 WC4 and highest in WC1. 

464 Lipids (total fatty acids and alcohols) detected in suspended Particulate Organic Matter 

465 (sPOM) across the four branches displayed complexity and heterogeneity in both their 
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466 composition and concentration (Fig. 10 & Table 3). As four of the five filters were torn on 

467 recovery (a sampling artefact) and POC may have passed through onto the second filter, 

468 concentrations are normalised to volume of water filter (ng l-1) here rather than OC content 

469 for a more reliable interpretation. The number of individual compounds identified differed 

470 greatly, with material from the east showing less complexity (16±6 V 34±17 individual 

471 compounds). Total lipid concentrations across the four branches, ranged between 181.5–

472 1301.9 ng l-1 (Fig. 10), with higher values found on the eastern side of the system. As a 

473 reference point, the concentration of total lipids in the near surface was 1510.4 ng l-1, 

474 comparable to those in the east (1092.3 ±296.4 ng l-1), while concentrations in the west were 

475 twice as low (349.3 ±237.3 ng l-1).

476 [Table 3 here please]

477 Variability in the principal lipid classes (saturated fatty acids, MUFAs, PUFAs and fatty 

478 alcohols) was evident (Fig. 10). Fatty acids ranged from C14 to C22 (see supplementary 

479 information for most commonly identified compounds). Saturated fatty acids and MUFAs 

480 were well represented across the four samples and accounted for 34.8 ±12.0% and 34.6 

481 ±22.6%. PUFAs represented < 16.9%, except in the surface (36.8%). The greatest variance in 

482 dominant lipid class was observed in the alcohols, ranging from 1.8–50.8% with a mean of 

483 3.4 ±2.3% in the western (WC1 & 2) and 46.5 ±6.1% in eastern branches (WC3 & 4).

484 Although PUFAs were rare, particularly in eastern branches, lipid biomarkers of 

485 phytoplankton origin accounted for 93.43 ±0.7% of the total lipids in WC3 and WC4. In 

486 comparison WC1 & WC2 had lower concentrations with 68.12 ±9.9% of the total lipids 

487 represented by compounds that indicated phytoplankton origin. Near-surface waters showed 

488 lower percentages of phytoplankton markers than any of the samples at depth (78.3%).

489 All samples showed some level of bacterial reworking in the lipid signatures (4.4 ±2.6%).  

490 Bacterial biomarkers followed the opposite pattern to the phytoplankton markers, with higher 

491 mean values in the western branches (6.4 ±1.9) and lower in the eastern (2.5 ±1.3%), further 

492 indicating that material in the eastern branches is more recently suspended/transported and 

493 fresher.

494 [Figure 10 here please, at 1.5 columns wide]
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496 4. Discussion

497

498 Based on a contemporary snapshot (last 10 years) of an area where fishermen have pushed 

499 out into deeper fishing grounds, fishing intensity was found to be variable across the Whittard 

500 Canyon (Fig. 2). Highest fishing intensity was generally associated with smoother 

501 morphology, especially over steeper sloping parts of canyon interfluves (Fig. 3). The trawling 

502 vessels used were only limited by the physical constraints of their gear and slopes greater 

503 than 15° (> 1300 hrs in 10 years) were regularly fished, but rarely over slopes > 20° (90 hrs 

504 in 10 years). Trawling along the continental margin immediately to the east of Whittard 

505 Canyon is seasonal, with most fishing occurring between July and March with a maximum in 

506 August (Sharples et al., 2013). Due to the considerable width of the Celtic Shelf and large 

507 distances from the nearest fishing ports, and to the size and complexity of the Whittard 

508 Canyon, the canyon does not endure the same localised fishing intensity or working weekday 

509 cycles found at other submarine canyons more connected to coastal regions, e.g. along the 

510 NW Mediterranean shelf edge (e.g. Palanques et al., 2006).

511 It can be estimated that grounds at Whittard are fished an average of 1.7 times per year by 

512 isolating the grounds most frequently fished as those above 800 m (an area of 4456 km2). 

513 This value was derived from a fishing effort of 1.37 x104 hrs per year, a trawl speed of 5.5 

514 km hr-1 (Pilskaln et al., 1998; O’Neill and Summerbell, 2011) and a typical door spread of 

515 100 m for deep water fishing (Gerritsen et al., 2013; Payo-Payo et al., 2017). Assuming a re-

516 suspended mass of 1.6 kg m-2 of fished area (Oberle et al., 2016), a first order estimate of 

517 7.13 Mt total sediment per year may be mobilised and potentially available to enter the 

518 Whittard system via trawling. Notwithstanding the approximations and assumptions made 

519 here, this estimate highlights the ability for anthropogenic forcing to alter natural sediment 

520 flux, especially in areas in proximity to steep slopes with potential for triggering sediment 

521 gravity flows (Palanques et al., 2006; Martín et al., 2014c). Focusing on individual branches, 

522 ground over the flanks of WC4 were found to be fished 2.6 times the regional average, 

523 affording it the greatest potential for remobilising substrate. Using fishing intensity (Table 2), 

524 an approximation of re-suspended sediment at WC4 can be estimated (this time for ‘fishing 

525 intensity’, after O’Neill and Summerbell (2011), as opposed to ‘fished area’) of 9.54 x 105 

526 tonne yr-1. Even if a large proportion of this suspended material resettles locally there remains 
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527 the potential for large quantities of material to be transported down canyon to deeper waters. 

528 These rough estimates and to a lesser extent those for WC3 and WC1 & 2 further west, have 

529 implications for generation of sediment gravity flows (Martín et al., 2014a), ENLs (Wilson et 

530 al., 2015a), as well as a changing seafloor geomorphology. Traditional studies of sediment 

531 flux across continental margins must take these anthropogenic affects into consideration, 

532 especially in canyons, such as Whittard, which are more prone to a net export flux of 

533 pelagically derived organic material, (natural or anthropogenic), due to large distance from 

534 riverine sources (Oberle et al., 2016).

535 Our results provide a statistical interpretation of the relationship between bottom trawling and 

536 seafloor roughness in the vicinity of a large terrestrially distant submarine canyon system, 

537 using a rugosity index independent of slope. Rugosity varies across many scales and in doing 

538 so moderates benthic habitat at similar scales (Wilson et al., 2007; Dunn and Halpin, 2009). 

539 As with slope angle (20°), rugosity is a physical constraint to bottom trawling but it has 

540 proven challenging to constrain a rugosity cut-off point for fishing activity. The Whittard 

541 Canyon area is likely enduring the same effects from seafloor ploughing as those found at La 

542 Fonera Canyon in the NW Mediterranean by Puig et al. (2012) albeit at a slower rate and 

543 wider geographical area. The GAMs analysis highlighted a complex association between 

544 VMS fishing effort and rugosity (Table 1 & Fig. 6b). Where fishing activity occurred on 

545 steeper slopes, there were areas of less complex rugosity than would be expected in the 

546 absence of fishing. A cause and effect relationship, i.e. whether fishing vessels seek out 

547 sloping areas of lower complexity or whether the activity of fishing has reduced complexity 

548 in slope areas where active, could not be established. Results here, however, are in line with 

549 other studies (e.g. Puig et al., 2012; Payo-Payo et al., 2017). In this respect, future work is 

550 planned to focus on cause of seabed alteration in Whittard by conducting a ‘before and after’ 

551 analysis of previous (Irish National Seabed Survey, INSS) and new multibeam bathymetric 

552 surveys and correlating those results with VMS data.

553 Significant trawling induced sediment plumes are generated within the canyon channels of the 

554 Whittard system, remnants of which have been observed in light transmission profiles of up to 

555 200 m thick adjacent to the seabed (Fig. 7). Such anthropogenic sourced sediment plumes had 

556 been suggested to occur in Whittard Canyon previously (Wilson et al., 2015a), and there is 

557 undisputed evidence for them in a number of canyons at the NW Mediterranean continental 

558 margin (e.g. La Fonera Canyon (Martín et al., 2014b)). Trawling induced plumes are, 
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559 therefore, another mechanism for creating down canyon sediment flows to add to those 

560 generated by naturally occurring processes, such as storm wave mobilisation of sediment (Xu 

561 et al., 2004), tidally generated (Lee et al., 2009), or riverine flood events (Khripounoff et al., 

562 2009).  The intensity and prolonged seasonal timeframe of fishing activity, however, implies 

563 that the anthropogenically generated plumes will provide a significant contribution to the 

564 integrated export flux at continental margin sites.

565 The sediment gravity flows observed here are energetic, with an estimated turbulent energy 

566 dissipation () an order of magnitude greater than for benthic nepheloid layers that occur 

567 under background conditions, despite the observations being made post event (Figs. 8, 9). 

568 Values in  up to 10-6 W kg-1 were estimated from Thorpe length scale analysis of density 

569 overturns in CTD profiles. The use of Thorpe length scale is a simple and indirect method to 

570 determine  (e.g. Mater et al., 2013), with additional errors in absolute values related to the 

571 small number of overturns sampled here (e.g. MacDonald et al., 2013). Furthermore,   is 

572 dependent on the variability of LT with Ozmidov length scale Lo, and LT probably represents 

573 the turbulent kinetic energy level more than the dissipation (Mater et al., 2015); also mean 

574 values should be treated with caution. Notwithstanding this, the dissipation values of  appear 

575 reasonable in magnitude even if estimated from a few profiles. The dissipation values found 

576 here are comparable to those estimated from similar analysis, although through different 

577 forcing conditions. For example, in Gaoping Canyon a value of order 10-8 W kg-1 (Lee et al., 

578 2009) was found using the Thorpe displacement method, ~ 2 x 10-6 W kg-1 with maximum 

579 Thorpe displacements of 30 m. In the head of Monterey Canyon Gregg et al. (2005), 

580 correcting previous values found in upper Monterey canyon using microstructure 

581 measurements (Carter and Gregg, 2002), estimated values of  ~1.97 x 10-7 W kg-1, but 

582 attributed this to tidal mixing. 

583 The values found, however, do suggest the fact that the plume events were associated with 

584 enhanced turbulent kinetic energy, and keep material in suspension for extended periods of 

585 time. This was observed in the aftermath of a trawl event in WC4, with enhanced SPM 

586 concentrations apparent over a large vertical range throughout the canyon section (e.g. Fig. 7). 

587 The increase in overturn scale and dissipation values in mid water also highlight the 

588 possibility that intermediate nepheloid layers may be generated as remobilised sediment 

589 enters the channel from the interfluves where trawling is most intense (Fig. 2b). The elevated 

590 dynamics associated with such gravity flows will also allow detachment of sediment laden 

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121



591 water from the main plumes away from the bottom boundary, such as those observed in La 

592 Fonera Canyon at a bottom depth of ~ 600 m (Martín et al., 2014c). Evidence for that in 

593 Whittard comes from the observation of a turbid layer immediately above the bottom 

594 boundary and generally elevated turbulent energy in mid water during the event highlighted in 

595 Fig. 8. Trawl induced plumes measured in 2013 in WC3 and WC4 were found in water depths 

596 associated with the mid canyon reaches that had steepest canyon walls, which would promote 

597 gravity flows from the adjacent interfluves (Wilson et al., 2015a). The generation of thick 

598 BNLs and INLs, together with elevated turbulent energy levels within the water column, 

599 suggests that material will be kept in suspension for longer and that interpretation of 

600 BNL/INL sources, drivers and distribution patterns are likely to be anthropogenically 

601 influenced.   

602 The impacts of potentially introducing even a small fraction of the 7.13 Mt sediment per year, 

603 suspended by bottom trawling activities into the canyon system cannot be overlooked.  The 

604 area of the northern Bay of Biscay has high primary productivity, in the region of 200 gC m-2 

605 yr-1 (Wollast and Chou, 2001). Organic carbon burial has been estimated at 0.05 g m-2 yr-1 at 

606 the upper slope break of the Goban Spur and 0.11 g m-2 yr-1 further down slope (van Weering 

607 et al., 1998). Perhaps, the high energy density plumes induced by trawl activity can exceed 

608 the natural export of recently deposited material from the shelf and slope (Wollast, 1998). 

609 From a climate perspective, the anthropogenic enhancement of sediment transport off shelf to 

610 the deeper margin below the permanent thermocline, and hence out of reach from 

611 atmospheric influence, has implications for long term carbon sequestration (e.g. Holt et al., 

612 2009).

613 Whittard canyon, like many other submarine canyons, hosts rich biodiversity (e.g. De Leo 

614 2010; Vetter et al., 2010). Diverse communities of benthic and suspension feeding fauna (Fig. 

615 11) seek refuge and utilise the enhanced food input that is sustained by the canyon 

616 morphology (Huvenne et al., 2011; Johnson et al., 2013).  It would seem likely that adding 

617 such volumes of material will have an influence on the natural biogeochemical status of 

618 sinking, food rich particles in the deep-sea (Billet et al., 1983). Some studies have even 

619 suggested that anthropogenic modification by trawling can have greater effects than seasonal 

620 input of carbon (Sañé et al., 2013).

621 While Duineveld et al. (2001) and Amaro et al. (2015) also reported episodic events 

622 transporting substantial amounts of SPM, the cause of these events was not identified. SPM 
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623 concentrations in the two eastern branches (WC3 & 4) varied dramatically (1.2 ±1.3 mg l-1) 

624 as well as the OC content and C/N ratios (51.2 ±40.8%; 13.8 ±8 respectively). However, the 

625 lipid composition from WC3 & 4 was remarkably similar; with SFAs and alcohols 

626 dominating in both samples (SFAs: 36.8 ±1.4%; Alcohols: 46.5 ±6.1%) (Fig. 10). Contrary to 

627 that found by Amaro et al. (2015), here many of the individual compounds identified have 

628 phytoplankton origins (> 90%) and are a good food source to canyon communities within the 

629 eastern branches. Furthermore, C/N values in WC4 were comparable to surface values (7.3 

630 ±1.3), and suggested that at least some of the material is fresh and has been rapidly 

631 transported to this depth (1370 m) within the canyon. It is likely these compounds are utilised 

632 before reaching the channel of the system (Amaro et al., 2015). The lipid composition from 

633 the western branches was notably different and had dramatically lower alcohol content (3.4 

634 ±2.3%) and higher contributions of both MUFAs (53.5 ±8.9%) and PUFAs (10.3 ± 9.3%) 

635 (Fig. 10). Huvenne et al. (2011) also reported differences in their lipid compositions between 

636 different branches, albeit the samples were also collected at different depths. They attributed 

637 differences in the contributions of PUFAs (in the east) and MUFAs (in the west) to variations 

638 in the contributions from phytoplankton and zooplankton from/at distinct locations and this 

639 may also be the case here. However, our results would suggest that anthropogenic loading 

640 should also to be considered when interpreting the biogeochemical signatures within a multi-

641 channel system, particularly given the regional variation in fishing intensity.

642 Other studies have also found differences between western and eastern branches of the 

643 canyon systems in faunal community compositions and abundance (Gunton et al. (2015) and 

644 references within) and in sediment characteristics (Duros et al., 2011; 2012; Hunter et al., 

645 2013) and have been related to physical dynamics. Recent modelling and glider observations 

646 (Amaro et al., 2016; Aslam et al., 2017) have shown that the heterogeneity of benthic 

647 dynamics within Whittard Canyon is large with highly variable energy fluxes (in direction 

648 and magnitude) across the various branches. Trawling may input more material into the 

649 system and high energy plumes may transport fresh material from shelf regions to greater 

650 depths within the canyon, but local dynamics in each branch will also influence the local 

651 material transport and spatial heterogeneity in the canyon biogeochemistry. Furthermore, the 

652 biogeochemical data presented here only show a snap shot in time. Indeed, although low 

653 concentrations of SPM were detected at the site in WC3 (Fig 2. Sample point: S3), the 

654 sampling date (14th June 2013) coincided with the detection of trawl induced ENLs in as 

655 defined by Wilson et al. (2015a) in this branch. Given this and the high C/N values, these 
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656 measurements may be from the remnants of a trawl plume. The initial particle loading and 

657 duration since the passage of a trawling plume event will determine the biogeochemical 

658 composition of the suspended organic material, which further explains the highly 

659 heterogenous C/N values measured here and in ENLs by Wilson et al. (2015a).

660 Together with the geographic distribution of fishing activity, compositional differences 

661 between organic material from western and eastern branches suggest that there may be a 

662 zonal trend in anthropogenically introduced sediment supply. However further work is 

663 needed, as there was a lack of replicates and the limited number of samples presented here,  

664 does not allow for robust statistical analysis of any relationship or difference. There were no 

665 statistically significant results for any of the two-sample T-tests (assuming unequal variances) 

666 preformed, but there were strong indications that there was a difference between 

667 contributions of some lipid groups, (e.g.  alcohols t = −9.3, p = 0.07). Other studies have 

668 suggested that lipids are too labile to examine this question (Sañé et al., 2013), but here we 

669 have shown that lipids may be used as sensitive biomarkers and may provide greater insight 

670 into the alteration of organic material in the canyon by natural and/or trawling processes. 

671 [Figure 11 here please, at 2 columns wide]

672 Alterations to the food source may have positive and negative implications depending on the 

673 species feeding mechanism/habitat (e.g. Billett et al., 1983; Ramirez-Llodra et al., 2005; 

674 Quattrini et al., 2015 and references within). Increased input into the system may favour 

675 suspension feeding fauna/fauna living on walls, while benthic organisms may be victim to a 

676 food source with less bioavailability and higher degradation at the seabed. Figure 11 presents 

677 a set of photo images, in order to visualise the varying conditions experienced by local fauna. 

678 Species that are accustomed to low sedimentation rates would be forced to endure any extra 

679 deposition introduced by trawl fishing. These are often slow growing and/or niche species 

680 susceptible to minor changes in their environment. Although these images cannot infer any 

681 impacts from anthropogenic events, they do portray the wide variation of sedimentary 

682 settings found. Anthropogenically generated heterogeneity in sediment supply and character 

683 will also impact on habitat suitability for resident ecosystems and associated habitat niche 

684 modelling (Davies et al., 2014; Robert et al., 2015).

685
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686 In recent times, the adverse effects of pollution have been realised within the marine realm, 

687 for example, from offshore hydrocarbon drill cuttings on delicate cold-water coral habitats 

688 (Purser and Thomsen, 2012). Toxic compounds, such as trace metals (e.g. Palanques et al., 

689 2008; Heimbürger et al., 2012; Sousa et al., 2012), along with general marine litter (Tubau et 

690 al., 2015), especially micro-plastics, are being increasingly discovered on continental shelves, 

691 margins and canyons. If trawling induced plumes can induce enhanced sediment flux across 

692 the margin, then equally they have the capacity to accelerate the spread of other 

693 anthropogenic processes, such as contamination, from shelf to deep ocean regions. This 

694 anthropogenic forcing can be accentuated even further by the funnelling effect of submarine 

695 canyons like those found at Whittard Canyon, even when located some distance from the 

696 coastal zone.

697
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1013 Figure captions

1014

1015 Fig. 1. General overview of the Celtic Margin off the northwest European Continental Shelf. 

1016 The red box is Fig. 2: Whittard Canyon. Image reproduced from the GEBCO world map 

1017 2014, www.gebco.net

1018 Fig. 2. Area map of Whittard Canyon: (a) showing contoured bathymetry (in blue), SPM 

1019 sample location labels: Ss = surface SPM; S1–4 = SPM samples from WC1–4 and turbulent 

1020 energy analysis locations: K8 (Fig. 8) & K9 (Fig. 9).  (b) bathymetry overlaid with bottom 

1021 trawling fishing hours from light in yellow to heavy in brown, with a minimum of 10 hrs 

1022 shown. 
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1023 Fig. 3. (a) Map image of slope angle at Whittard Canyon, with areas in red being greater than 

1024 20°. (b): Map image of ACR rugosity index; contours of VMS fishing effort are 

1025 superimposed at 10 h (brown) and 100 h (green).

1026 Fig. 4. ACR Rugosity against slope angle for all VMS grid cells split between high (purple) 

1027 and low (orange) fishing by their median.

1028 Fig. 5. Canyon branch WC3: Standard deviation of rugosity among grid cells for the heavier 

1029 fished (purple) and lighter fished (orange) data points.  Split between ‘heavy’ and ‘light’ 

1030 fishing on the basis of the median VMS fishing value. [Colour for online publishing]

1031 Fig. 5. Canyon branch WC3: Standard deviation of rugosity among grid cells for the heavier 

1032 fished (solid) and lighter fished (dashed) data points.  Split between ‘heavy’ and ‘light’ 

1033 fishing on the basis of the median VMS fishing value. [Black and white for print]

1034 Fig. 6. (a) Geographical representation of data points with contours of predicted residual 

1035 variation rugosity as output by GAMs package mgcv (Wood, 2017). (b) Partial residual plot 

1036 showing the combined influence of fishing effort and slope on rugosity. Contours of rugosity 

1037 indicate the GAM fit to data for the whole Whittard Canyon region, controlling for the other 

1038 predictors in the best model. Points indicate the distribution of observations for each 

1039 predictor.

1040 Fig. 7. (a) Along channel section of SPM concentration (mg l-1) in WC4 in the immediate 

1041 aftermath of a trawling plume, showing the 0.3 and 1 mg l-1 contours only. For comparison 

1042 the hatched area indicates the regions where SPM concentrations > 0.3 mg l-1 were measured 

1043 in other canyon branches when no trawling plumes were evident during the survey.  The 

1044 station locations are shown by the ‘x’. In (b), selected vertical profiles of SPM for the above 

1045 section are indicated in the thick line with thin line showing examples from the same depth in 

1046 unaffected branches.

1047 Fig. 8. Vertical profiles of (a) t, (b) SPM (mg l-1), (c) Individual Thorpe displacements (m), 

1048 (d) Thorpe Length Scale for overturns (m) and (e) log10 of the turbulent energy dissipation (, 

1049 W kg-1), for the WC4 location at ~ 1380 water depth in 2016 (see Fig. 2a; K8).  (f-j) are the 

1050 corresponding profiles at the same location during a plume event 31 hours later. Note in (g), 

1051 the SPM scale is cut off at 5 mg l-1, for clarity – the maximum value in the near bottom turbid 

1052 layer was 8 mg l-1.
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1053 Fig. 9. Vertical profiles of (a) t, (b) SPM (mg l-1), (c) Individual Thorpe displacements (m), 

1054 (d) Thorpe Length Scale for overturns (m) and (e) log10 of the turbulent energy dissipation (, 

1055 W kg-1), for the WC3 location at ~ 1385 water depth, 2013 (see Fig. 2a; K9).

1056 Fig. 10. Map image showing concentrations of total lipids normalised to volume of water (ng 

1057 l-1) detected in suspended particulate organic matter collected in four branches (WC1 – 4) and 

1058 at the surface of Whittard Canyon in June 2013. Pie charts show the contribution of saturated 

1059 fatty acids, monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs) and 

1060 fatty alcohols in each sample (locations: S1 – 4 and surface sample Ss; see Fig. 2a).  

1061

1062 Fig. 11. Photo images from Whittard Canyon 2013 – 2016, displaying contrasting sediment 

1063 concentrations both in the water column and resettling on benthic fauna. (a1): Cloudy water 

1064 surrounds a Brisingid starfish; WC3. (a2): Very clear water and a Flytrap anemone; WC1. 

1065 (b1): Sediment laden Acesta excavata; WC3. (b2): Clean A. excavata; WC3. (c1): The soft 

1066 coral Anthomastus topped with a vail of sediment; WC3. (c2): An Anthomastus perched on a 

1067 canyon wall with polyps fully extended. Note that the Anthomastus (c1) with retracted polyps 

1068 may have become sediment covered during earlier ROV manoeuvres adjacent to site 

1069 (visibility was not sufficient to determine this from the video), but the quantity of loose 

1070 sediment available for such coverage may have been introduced by trawling.

1071

1072 Table captions

1073 Table 1. Generalised Additive Model (GAM) fits to predict rugosity values in the full dataset, 

1074 excluding cells with zero fishing (n = 6241 grid cells). Model predictors: R = Rugosity, Ln = 

1075 longitude, Lt = Latitude, V = VMS fishing hours, S = slope angle. Variables in brackets have 

1076 been modelled as interacting predictors. Generalised Cross Validation (GCV) scores indicate 

1077 the relative performance of models, with lower values indicating better fits. Adjusted R2 

1078 values are a less robust indicator of model fit, but are included as their interpretation is more 

1079 intuitive as an indicator of the performance of models at fitting the data.

1080 Table 2. Fishing intensity (hrs/km2) for each canyon branch, showing results for whole 

1081 branches and also broken down into specific areas within branch.
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1082 Table 3. Biogeochemical data for four samples (Locations S1 – 4; see Fig. 2a) & the surface 

1083 sample (Ss) used in this study with mean ± standard deviation for Western and Eastern 

1084 samples. SPM: suspended particulate matter; C:N: molar carbon to nitrogen ratio; MUFA: 

1085 monounsaturated fatty acids; PUFA: polyunsaturated fatty acids. Individual compounds, lipid 

1086 group and primary biomarkers used for indices are shown in the Appendix. * indicates torn 

1087 filters.  

1088 Supplementary Table 1/Appendix: List of compounds most commonly identified in this study 

1089 with groups and their corresponding IUPAC names. Individual compounds used for the 

1090 phytoplankton and bacterial indices are indicated.
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Figures and Tables:

Fig. 1. General overview of the Celtic Margin off the northwest European Continental 

Shelf. The red box is Fig. 2: Whittard Canyon. Image reproduced from the GEBCO world 

map 2014, www.gebco.net [1.5 columns wide]
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Fig. 2. Area map of Whittard Canyon: (a) showing contoured bathymetry (in blue), SPM 

sample location labels: Ss = surface SPM; S1–4 = SPM samples from WC1–4 and 

turbulent energy analysis locations: K8 (Fig. 8) & K9 (Fig. 9). (b) bathymetry overlaid 

with bottom trawling fishing hours from light in yellow to heavy in brown, with a 

minimum of 10 hrs shown. [1.5 columns wide]
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Fig. 3. (a) Map image of slope angle at Whittard Canyon, with areas in red greater than 

20°. (b): Map image of ACR rugosity index; contours of VMS fishing effort are 

superimposed at 10 h (brown) and 100 h (green). [One column wide]
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Fig. 4. ACR Rugosity against slope angle for all VMS grid cells split between high 

(purple) and low (orange) fishing by their median. [One column wide]
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Fig. 5. Canyon branch WC3: Standard deviation of rugosity among grid cells for the 

heavier fished (purple) and lighter fished (orange) data points.  Split between ‘heavy’ and 

‘light’ fishing on the basis of the median VMS fishing value. [One column wide, for online 

publishing]

Fig. 5. Canyon branch WC3: Standard deviation of rugosity among grid cells for the 

heavier fished (solid) and lighter fished (dashed) data points.  Split between ‘heavy’ and 

‘light’ fishing on the basis of the median VMS fishing value. [One column wide, for 

printing]
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Fig. 6. (a) Geographical representation of data points with contours of predicted residual 

variation rugosity as output by GAMs package mgcv (Wood, 2017). (b) Partial residual 

plot showing the combined influence of fishing effort and slope on rugosity. Contours of 

rugosity indicate the GAM fit to data for the whole Whittard Canyon region, controlling 

for the other predictors in the best model. Points indicate the distribution of observations 

for each predictor. [One column wide]
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Fig. 7. (a) Along channel section of SPM concentration (mg l-1) in WC4 in the immediate 

aftermath of a trawling plume, showing the 0.3 and 1 mg l-1 contours only. For comparison 

the hatched area indicates the regions where SPM concentrations > 0.3 mg l-1 were 

measured in other canyon branches when no trawling plumes were evident during the 

survey.  The station locations are shown by the ‘x’. In (b), selected vertical profiles of 

SPM for the above section are indicated in the thick line with thin line showing examples 

from the same depth in unaffected branches. [1.5 columns wide]
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Fig. 8. Vertical profiles of (a) t, (b) SPM (mg l-1), (c) Individual Thorpe displacements 

(m), (d) Thorpe Length Scale for overturns (m) and (e) log10 of the turbulent energy 

dissipation (, W kg-1), for the WC4 location at ~ 1380 water depth in 2016 (see Fig. 2a; 

K8).  (f-j) are the corresponding profiles at the same location during a plume event 31 

hours later. Note in (g), the SPM scale is cut off at 5 mg l-1, for clarity – the maximum 

value in the near bottom turbid layer was 8 mg l-1. [Two columns wide]
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Fig. 9. Vertical profiles of (a) t, (b) SPM (mg l-1), (c) Individual Thorpe displacements 

(m), (d) Thorpe Length Scale for overturns (m) and (e) log10 of the turbulent energy 

dissipation (, W kg-1), for the WC3 location at ~ 1385 water depth, 2013 (see Fig. 2a; 

K9). [Two columns wide]
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Fig. 10. Map image showing concentrations of total lipids normalised to volume of water 

(ng l-1) detected in suspended particulate organic matter collected in four branches (WC1 – 

4) and at the surface of Whittard Canyon in June 2013. Pie charts show the contribution of 

saturated fatty acids, monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids 

(PUFAs) and fatty alcohols in each sample (locations: S1 – 4 and surface sample Ss; see 

Fig. 2a).  [1.5 columns wide]
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Fig. 11. Photo images from Whittard Canyon 2013 – 2016, displaying contrasting 

sediment concentrations both in the water column and resettling on benthic fauna. (a1): 

Cloudy water surrounds a Brisingid starfish; WC3. (a2): Very clear water and a Flytrap 

anemone; WC1. (b1): Sediment laden Acesta excavata; WC3. (b2): Clean A. excavata; 

WC3. (c1): The soft coral Anthomastus topped with a vail of sediment; WC3. (c2): An 

Anthomastus perched on a canyon wall with polyps fully extended. Note that the 

Anthomastus (c1) with retracted polyps may have become sediment covered during earlier 

ROV manoeuvres adjacent to site (visibility was not sufficient to determine this from the 

video), but the quantity of loose sediment available for such coverage may have been 

introduced by trawling. [Two columns wide]
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Model Terms GCV x10-5 Adj R2 %

1 Ln + Lt 6.12 38.9

2  S + V 3.39 64.1

3 Ln + Lt + S + V 2.51 74.9

4  (Ln x Lt x S x V) 2.53 74.9

5 (Ln x Lt) + V 4.81 52.1

6 (Ln x Lt) + (S x V) 2.46 75.6

7 (Ln x Lt) + S 2.49 55.2

Table 1. Generalised Additive Model (GAM) fits to predict rugosity values in the full 

dataset, excluding cells with zero fishing (n = 6241 grid cells). Model predictors: R = 

Rugosity, Ln = longitude, Lt = Latitude, V = VMS fishing hours, S = slope angle. 

Variables in brackets have been modelled as interacting predictors. Generalised Cross 

Validation (GCV) scores indicate the relative performance of models, with lower values 

indicating better fits. Adjusted R2 values are a less robust indicator of model fit, but are 

included as their interpretation is more intuitive as an indicator of the performance of 

models at fitting the data.
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Whole canyon branch Shallower and higher fished 
interfluves

Areas directly above 20° 
slope

Fishing Area Effort Fishing Area Effort Fishing Area Effort

(hours) (Km2) (hrs/km2) (hours) (Km2) (hrs/km2) (hours) (Km2) (hrs/km2)

WC1 5755.6 220.4 26.1 5264.4 101.0 52.1 54.3 10.0 5.4

WC2 5926.7 264.8 22.4 5766.4 92.1 62.6 133.6 12.0 11.1

WC3 8847.2 214.1 41.3 8423.5 118.1 71.3 196.5 12.4 15.9

WC4 11132.3 260.9 42.7 10779.5 135.5 79.6 278.6 13.1 21.3

Table 2: Fishing intensity (hrs/km2) for each canyon branch, showing results for whole 

branches and also broken down into specific areas within branch.
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Variable Unit SURFACE WEST EAST

Branch * WC1* WC2* WC3* WC4 

Sample depth (mab) 12
1308 (12 
mab)

1335 (20 
mab) mean SD

1370 
(7mab)

1368 
(15mab) mean SD

SPM mg l-1 NA 1.18 0.43 0.80 0.53 0.29 2.16 1.23 1.32

C/N Molar 6.36 22.19 9.25 15.72 9.15 19.52 8.16 13.84 8.03
Total lipids 
normalised to water ng l-1 1510.44 517.07 181.50 349.29 237.29 1301.85 882.74 1092.30 296.36
Saturated fatty acids ng l-1 607.40 94.96 85.79 90.37 6.48 465.90 332.84 399.37 94.09
MUFA ng l-1 319.84 309.20 85.66 197.43 158.07 174.37 157.16 165.77 12.17
PUFA ng l-1 556.22 87.29 6.87 47.08 56.86 20.72 20.72
Alcohol ng l-1 26.98 25.63 3.18 14.40 15.87 661.58 372.03 516.80 204.75
Saturated fatty acids % 40.21 18.36 47.27 32.82 20.44 35.79 37.70 36.75 1.36
MUFA % 21.18 59.80 47.19 53.50 8.91 13.39 17.80 15.60 3.12
PUFA % 36.82 16.88 3.79 10.33 9.26 0.00 2.35 1.17 1.66
Alcohol % 1.79 4.96 1.75 3.35 2.26 50.82 42.14 46.48 6.13
Unsaturated fatty 
acids % 58.00 76.68 50.98 63.83 18.17 13.39 20.15 16.77 4.78

INDICES
Phyto ng l-1 1182.73 315.85 136.39 226.12 126.90 1222.93 820.26 1021.59 284.73

% 78.30 61.09 75.15 68.12 9.94 93.94 92.92 93.43 0.72
ng l-1 66.85 25.92 13.93 19.93 8.47 20.50 29.83 25.17 6.60

Bacterial % 4.43 5.01 7.68 6.35 1.88 1.57 3.38 2.48 1.28

Table 3. Biogeochemical data for four samples (Locations S1 – 4; see Fig. 2a) and the 

surface sample (Ss) used in this study with mean ± standard deviation for Western and 

Eastern samples. SPM: suspended particulate matter; C:N: molar carbon to nitrogen ratio; 

MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids. Individual 

compounds, lipid group and primary biomarkers used for indices are shown in the 

Appendix. * indicates torn filters
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Appendix [supplementary data]

List of compounds most commonly identified in this study with groups and their corresponding IUPAC 
names. Individual compounds used for the phytoplankton and bacterial indices are indicated.

Compound Group IUPAC name  Reference for lipid 
biomarker/indices

br-C14:1 MUFA Tetradecanoic acid (double 
bond position unknown)

C14:1 (n-5) MUFA 9-Tetradecenoic acid

C14:0 acid SFA Tetradecanoic acid Phytoplankton (Conte et al. 2003; 
Harwood and Russell, 1984)

C14:0 alcohol Alcohol Tetradecan-1-ol Phytoplankton (Volkman et al., 1998)

C15:1(n-5) MUFA Methyl 10-cis-
pentadecenoate

Bacteria (Volkman & Johns, 1977;

Duineveld et al., 2012)

i-C15:0 BFA 12-Methyltetradecanoic 
acid

Bacteria (Volkman & Johns, 1977;

Duineveld et al., 2012)

a-C15:0 BFA 12-Methyltetradecanoic 
acid

Bacteria (Volkman & Johns, 1977;

Duineveld et al., 2012)

C15:0 SFA Pentadecanoic acid Phytoplankton (Conte et al. 2003; 
Harwood and Russell, 1984);

Bacteria (Volkman & Johns, 1977;

Duineveld et al., 2012)

br-C16:1 MUFA Hexadecenoic acid (double 
bond position unknown)

C16:1(n-7) MUFA 9-Hexadecenoic acid Phytoplankton (Conte et al. 2003; 
Harwood and Russell, 1984)

C16:0 acid SFA Hexadecanoic acid Phytoplankton (Conte et al. 2003; 
Harwood and Russell, 1984)

C16:0 alcohol Alcohol 1-Hexadecanol Phytoplankton (Volkman et al., 1998)

br/st-C17:1 MUFA Heptadecenoic acid double 
bond position unknown)

Bacteria (Volkman & Johns, 1977;

Duineveld et al., 2012)

C17:0 acid SFA Heptadecanoic acid Phytoplankton (Conte et al. 2003; 
Harwood and Russell, 1984); Bacteria 
(Volkman & Johns, 1977;

Duineveld et al., 2012)

C18:3(n-6) PUFA Phytoplankton (Duineveld et al. 2012)
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C18:2(n-6) PUFA Phytoplankton (Duineveld et al. 2012)

C18:1(n-9) MUFA

C18:1(n-7) 6,9,12-
Octadecatrienoic 
acid

Bacteria (Volkman & Johns, 1977;

Duineveld et al., 2012)

C18:0 acid 9,12-
Octadecadienoic 
acid

Phytoplankton (Conte et al. 2003; 
Harwood and Russell, 1984)

C18:0 alcohol 9-Octadecenoic 
acid

Phytoplankton (Volkman et al., 1998)

C20:5(n-3) 11-Octadecenoic 
acid

Phytoplankton (Duineveld et al. 2012)

C20:3 Octadecanoic 
acid

Eicosadienoic acid (double 
bond position unknown)

Phytoplankton (Duineveld et al. 2012)

C20:2 1-Octadecanol Eicosadienoic acid (double 
bond position unknown)

Phytoplankton (Duineveld et al. 2012)

C20:1(n-9) 5,8,11,14,17-
Eicosapentaenoic 
acid

11-Eicosenoic acid

C20:0 acid SFA Eicosanoic acid Phytoplankton (Conte et al. 2003; 
Harwood and Russell, 1984)

C20:0 alcohol Alcohol 1-Eicosanol Phytoplankton (Volkman et al., 1998)

C21:0 acid SFA Heneicosanoic acid Phytoplankton (Conte et al. 2003; 
Harwood and Russell, 1984)

C22:6 (n-3) PUFA Docosahexaenoic acid Phytoplankton (Duineveld et al. 2012)

C22:1(n-9) MUFA Tetracos-15-enoic acid

C22:0 acid SFA Docosanoic acid Phytoplankton (Conte et al. 2003; 
Harwood and Russell, 1984)

C24:1 (n-9) MUFA Nervonic
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