Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

The XXL Survey. XIII. Baryon content of the bright cluster sample

Eckert, D and Ettori, S and Coupon, J and Gastaldello, F and Pierre, M and Melin, J-B and Brun, AMCL and McCarthy, IG and Adami, C and Chiappetti, L and Faccioli, L and Giles, P and Lavoie, S and Lefevre, JP and Lieu, M and Mantz, A and Maughan, B and McGee, S and Pacaud, F and Paltani, S and Sadibekova, T and Smith, GP and Ziparo, F (2015) The XXL Survey. XIII. Baryon content of the bright cluster sample. Astronomy and Astrophysics. ISSN 0004-6361

[img] Text
1512.03814v1.pdf - Accepted Version

Download (914kB)


Traditionally, galaxy clusters have been expected to retain all the material accreted since their formation epoch. For this reason, their matter content should be representative of the Universe as a whole, and thus their baryon fraction should be close to the Universal baryon fraction. We make use of the sample of the 100 brightest galaxy clusters discovered in the XXL Survey to investigate the fraction of baryons in the form of hot gas and stars in the cluster population. We measure the gas masses of the detected halos and use a mass--temperature relation directly calibrated using weak-lensing measurements for a subset of XXL clusters to estimate the halo mass. We find that the weak-lensing calibrated gas fraction of XXL-100-GC clusters is substantially lower than was found in previous studies using hydrostatic masses. Our best-fit relation between gas fraction and mass reads $f_{\rm gas,500}=0.055_{-0.006}^{+0.007}\left(M_{\rm 500}/10^{14}M_\odot\right)^{0.21_{-0.10}^{+0.11}}$. The baryon budget of galaxy clusters therefore falls short of the Universal baryon fraction by about a factor of two at $r_{\rm 500}$. Our measurements require a hydrostatic bias $1-b=M_X/M_{\rm WL}=0.72_{-0.07}^{+0.08}$ to match the gas fraction obtained using lensing and hydrostatic equilibrium. Comparing our gas fraction measurements with the expectations from numerical simulations, our results favour an extreme feedback scheme in which a significant fraction of the baryons are expelled from the cores of halos. This model is, however, in contrast with the thermodynamical properties of observed halos, which might suggest that weak-lensing masses are overestimated. We note that a mass bias $1-b=0.58$ as required to reconcile Planck CMB and cluster counts should translate into an even lower baryon fraction, which poses a major challenge to our current understanding of galaxy clusters. [Abridged]

Item Type: Article
Uncontrolled Keywords: astro-ph.CO; astro-ph.CO; astro-ph.GA; astro-ph.HE
Subjects: Q Science > QB Astronomy
Divisions: Astrophysics Research Institute
Publisher: EDP Sciences
Related URLs:
Date Deposited: 07 Jan 2016 12:52
Last Modified: 31 Mar 2016 09:12
URI: http://researchonline.ljmu.ac.uk/id/eprint/2527

Actions (login required)

View Item View Item