Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Cloud structure of three Galactic infrared dark star-forming regions from combining ground and space based bolometric observations

Lin, Y and Liu, HB and Dale, JE and Li, D and Busquet, G and Zhang, Z-Y and Ginsburg, A and Galvan-Madrid, R and Kovacs, A and Koch, E and Qian, L and Wang, K and Longmore, SN and Chen, H-R and Walker, DL (2017) Cloud structure of three Galactic infrared dark star-forming regions from combining ground and space based bolometric observations. The Astrophysical Journal, 840 (1). ISSN 1538-4357

Full text not available from this repository. Please see publisher or open access link below:
Open Access URL: https://arxiv.org/pdf/1704.06448.pdf (Accepted version)

Abstract

We have modified the iterative procedure introduced by Lin et al. (2016), to systematically combine the submm images taken from ground based (e.g., CSO, JCMT, APEX) and space (e.g., Herschel, Planck) telescopes. We applied the updated procedure to observations of three well studied Infrared Dark Clouds (IRDCs): G11.11-0.12, G14.225-0.506 and G28.34+0.06, and then performed single-component, modified black-body fits to derive $\sim$10$"$ resolution dust temperature and column density maps. The derived column density maps show that these three IRDCs exhibit complex filamentary structures embedding with rich clumps/cores. We compared the column density probability distribution functions (N-PDFs) and two-point correlation (2PT) functions of the column density field between these IRDCs with several OB cluster-forming regions. Based on the observed correlation and measurements, and complementary hydrodynamical simulations for a 10$^{4}$ $\rm M_{\odot}$ molecular cloud, we hypothesize that cloud evolution can be better characterized by the evolution of the (column) density distribution function and the relative power of dense structures as a function of spatial scales, rather than merely based on the presence of star-forming activity. Based on the small analyzed sample, we propose four evolutionary stages, namely: {\it cloud integration, stellar assembly, cloud pre-dispersal and dispersed-cloud.} The initial {\it cloud integration} stage and the final {\it dispersed cloud} stage may be distinguished from the two intermediate stages by a steeper than $-$4 power-law index of the N-PDF. The {\it cloud integration} stage and the subsequent {\it stellar assembly} stage are further distinguished from each other by the larger luminosity-to-mass ratio ($>$40 $\rm L_{\odot}/M_{\odot}$) of the latter.

Item Type: Article
Uncontrolled Keywords: astro-ph.GA; astro-ph.GA
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: American Astronomical Society
Related URLs:
Date Deposited: 28 Apr 2017 10:17
Last Modified: 30 Jun 2017 10:43
DOI or Identification number: 10.3847/1538-4357/aa6c67
URI: http://researchonline.ljmu.ac.uk/id/eprint/6318

Actions (login required)

View Item View Item