Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Disproportionate changes in skeletal muscle strength and size with resistance training and ageing

Degens, H and Erskine, RM and Morse, CI (2009) Disproportionate changes in skeletal muscle strength and size with resistance training and ageing. Journal of Musculoskeletal & Neuronal Interactions, 9 (3). pp. 123-129. ISSN 1108-7161

Full text not available from this repository. Please see publisher or open access link below:
Open Access URL: http://www.ismni.org/jmni/pdf/37/02DEGENS.pdf (Published version)

Abstract

The ability of a muscle to shorten and produce force is crucial for locomotion, posture, balance and respiration. During a contraction, myosin heads on the myosin filament propel the actin filament via ATP hydrolysis, resulting in shortening of the muscle and/or force generation. The maximal shortening velocity of a muscle fibre is largely determined by the myosin ATPase activity, while maximal force is primarily determined by the cross-sectional area. Since most muscles are pennate rather than parallel-fibred and work at different lever ratios, muscle architecture and joint-tendon anatomy has to be taken into account to obtain the force and velocity characteristics of a muscle. Additionally, the recruitment of agonistic and antagonistic muscles will contribute to the torque generated during a contraction. Finally, tendon compliance may impact on the rate of force rise and force generated if it is such that the muscle contraction proceeds in the ascending limb of the length-tension relation. Even when magnetic resonance imaging and ultrasound, combined with EMG and/or electrical stimulation, have been applied to relate changes in muscle contractile properties to alterations in muscle size and architecture during ageing and resistance training, a disproportionate change in muscle strength and size remains to be explained.

Item Type: Article
Uncontrolled Keywords: 1109 Neurosciences, 1116 Medical Physiology
Subjects: R Medicine > RC Internal medicine > RC1200 Sports Medicine
Divisions: Sport & Exercise Sciences
Publisher: Hylonome
Related URLs:
Date Deposited: 27 Nov 2017 11:38
Last Modified: 27 Nov 2017 11:38
URI: http://researchonline.ljmu.ac.uk/id/eprint/7602

Actions (login required)

View Item View Item