Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Investigation of creep behaviours of gypsum specimens with flaws under different uniaxial loads

Marolt Cebasek, T and Frühwirt, T (2017) Investigation of creep behaviours of gypsum specimens with flaws under different uniaxial loads. Journal of Rock Mechanics and Geotechnical Engineering, 10 (1). pp. 151-163. ISSN 1674-7755

[img]
Preview
Text
Investigation of creep behaviours of gypsum specimens with flaws under different uniaxial loads.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (2MB) | Preview

Abstract

The aim of this study is to identify the influence of the dip angle of a pre-existing macrocrack on the lifetime and ultimate deformation of rock-like material. Prediction of lifetime has been studied for three groups of specimens under axial static compressive load levels. The specimens were investigated from 65% to 85% of UCS (uniaxial compressive strength) at an interval of 10% of UCS for the groups of specimens with a single modelled open flaw with a dip angle to the loading direction of 30° (first group), at an interval of 5% of UCS increment for the groups of specimens with single (second group), and double sequential open flaws with a dip angle to the loading direction of 60° (third group). This study shows that crack propagation in specimens with a single flaw follows the same sequences. At first, wing cracks appear, and then shear crack develops from the existing wing cracks. Shear cracking is responsible for specimen failure in all three groups. A slip is expected in specimens from the third group which connects two individual modelled open flaws. The moment of the slip is noticed as a characteristic rise in the axial deformation at a constant load level. It is also observed that axial deformation versus time follows the same pattern, irrespective of local geometry. Specimens from the first group exhibit higher axial deformation under different load levels in comparison with the specimens from the second and third groups.

Item Type: Article
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Civil Engineering (merged with Built Env 10 Aug 20)
Publisher: Elsevier
Date Deposited: 15 Aug 2019 09:49
Last Modified: 04 Sep 2021 08:59
DOI or ID number: 10.1016/j.jrmge.2017.11.002
URI: https://researchonline.ljmu.ac.uk/id/eprint/11203
View Item View Item