Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Stellar Property Statistics of Massive Halos from Cosmological Hydrodynamics Simulations: Common Kernel Shapes

Anbajagane, D, Evrard, AE, Farahi, A, Barnes, DJ, Dolag, K, McCarthy, IG, Nelson, D and Pillepich, A (2020) Stellar Property Statistics of Massive Halos from Cosmological Hydrodynamics Simulations: Common Kernel Shapes. Monthly Notices of the Royal Astronomical Society, 495 (1). pp. 686-704. ISSN 0035-8711

paper2.pdf - Published Version

Download (4MB) | Preview


We study stellar property statistics, including satellite galaxy occupation, of massive halo populations realized by three cosmological hydrodynamics simulations: BAHAMAS + MACSIS, TNG300 of the IllustrisTNG suite, and Magneticum Pathfinder. The simulations incorporate independent sub-grid methods for astrophysical processes with spatial resolutions ranging from $1.5$ to $6$ kpc, and each generates samples of $1000$ or more halos with $M_{\rm halo}> 10^{13.5} M_{\odot}$ at redshift $z=0$. Applying localized, linear regression (LLR), we extract halo mass-conditioned statistics (normalizations, slopes, and intrinsic covariance) for a three-element stellar property vector consisting of: i) $N_{sat}$, the number of satellite galaxies with stellar mass, $M_{\star, \rm sat} > 10^{10} M_{\odot}$ within radius $R_{200c}$ of the halo; ii) $M_{\star,\rm tot}$, the total stellar mass within that radius, and; iii) $M_{\star,\rm BCG}$, the gravitationally-bound stellar mass of the central galaxy within a $100 \, \rm kpc$ radius. Scaling parameters for the three properties with halo mass show mild differences among the simulations, in part due to numerical resolution, but there is qualitative agreement on property correlations, with halos having smaller than average central galaxies tending to also have smaller total stellar mass and a larger number of satellite galaxies. Marginalizing over total halo mass, we find the satellite galaxy kernel, $p(\ln N_{sat}\,|\,M_{\rm halo},z)$ to be consistently skewed left, with skewness parameter $\gamma = -0.91 \pm 0.02$, while that of $\ln M_{\star,\rm tot}$ is closer to log-normal, in all three simulations. The highest resolution simulations find $\gamma \simeq -0.8$ for the $z=0$ shape of $p(\ln M_{\star,\rm BCG}\,|\,M_{\rm halo},z)$ and also that the fractional scatter in total stellar mass is below $10\%$ in halos more massive than $10^{14.3} M_{\odot}$.

Item Type: Article
Additional Information: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Uncontrolled Keywords: astro-ph.GA; astro-ph.GA; astro-ph.CO
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: Oxford University Press
Related URLs:
Date Deposited: 02 Jun 2020 10:40
Last Modified: 02 Jun 2020 10:45
DOI or Identification number: 10.1093/mnras/staa1147
URI: http://researchonline.ljmu.ac.uk/id/eprint/13038

Actions (login required)

View Item View Item